The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/net80211/ieee80211_superg.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  *
   16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
   17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
   18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
   19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
   20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
   21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
   25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   26  */
   27 
   28 #include <sys/cdefs.h>
   29 __FBSDID("$FreeBSD$");
   30 
   31 #include "opt_wlan.h"
   32 
   33 #ifdef  IEEE80211_SUPPORT_SUPERG
   34 
   35 #include <sys/param.h>
   36 #include <sys/systm.h> 
   37 #include <sys/mbuf.h>   
   38 #include <sys/kernel.h>
   39 #include <sys/endian.h>
   40 
   41 #include <sys/socket.h>
   42 
   43 #include <net/if.h>
   44 #include <net/if_var.h>
   45 #include <net/if_llc.h>
   46 #include <net/if_media.h>
   47 #include <net/bpf.h>
   48 #include <net/ethernet.h>
   49 
   50 #include <net80211/ieee80211_var.h>
   51 #include <net80211/ieee80211_input.h>
   52 #include <net80211/ieee80211_phy.h>
   53 #include <net80211/ieee80211_superg.h>
   54 
   55 /*
   56  * Atheros fast-frame encapsulation format.
   57  * FF max payload:
   58  * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500:
   59  *   8   +   4   +  4   +   14  +   8   + 1500 +  6   +   14  +   8   + 1500
   60  * = 3066
   61  */
   62 /* fast frame header is 32-bits */
   63 #define ATH_FF_PROTO    0x0000003f      /* protocol */
   64 #define ATH_FF_PROTO_S  0
   65 #define ATH_FF_FTYPE    0x000000c0      /* frame type */
   66 #define ATH_FF_FTYPE_S  6
   67 #define ATH_FF_HLEN32   0x00000300      /* optional hdr length */
   68 #define ATH_FF_HLEN32_S 8
   69 #define ATH_FF_SEQNUM   0x001ffc00      /* sequence number */
   70 #define ATH_FF_SEQNUM_S 10
   71 #define ATH_FF_OFFSET   0xffe00000      /* offset to 2nd payload */
   72 #define ATH_FF_OFFSET_S 21
   73 
   74 #define ATH_FF_MAX_HDR_PAD      4
   75 #define ATH_FF_MAX_SEP_PAD      6
   76 #define ATH_FF_MAX_HDR          30
   77 
   78 #define ATH_FF_PROTO_L2TUNNEL   0       /* L2 tunnel protocol */
   79 #define ATH_FF_ETH_TYPE         0x88bd  /* Ether type for encapsulated frames */
   80 #define ATH_FF_SNAP_ORGCODE_0   0x00
   81 #define ATH_FF_SNAP_ORGCODE_1   0x03
   82 #define ATH_FF_SNAP_ORGCODE_2   0x7f
   83 
   84 #define ATH_FF_TXQMIN   2               /* min txq depth for staging */
   85 #define ATH_FF_TXQMAX   50              /* maximum # of queued frames allowed */
   86 #define ATH_FF_STAGEMAX 5               /* max waiting period for staged frame*/
   87 
   88 #define ETHER_HEADER_COPY(dst, src) \
   89         memcpy(dst, src, sizeof(struct ether_header))
   90 
   91 static  int ieee80211_ffppsmin = 2;     /* pps threshold for ff aggregation */
   92 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW,
   93         &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging");
   94 static  int ieee80211_ffagemax = -1;    /* max time frames held on stage q */
   95 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax,
   96     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
   97     &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I",
   98     "max hold time for fast-frame staging (ms)");
   99 
  100 static void
  101 ff_age_all(void *arg, int npending)
  102 {
  103         struct ieee80211com *ic = arg;
  104 
  105         /* XXX cache timer value somewhere (racy) */
  106         ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1);
  107 }
  108 
  109 void
  110 ieee80211_superg_attach(struct ieee80211com *ic)
  111 {
  112         struct ieee80211_superg *sg;
  113 
  114         IEEE80211_FF_LOCK_INIT(ic, ic->ic_name);
  115 
  116         sg = (struct ieee80211_superg *) IEEE80211_MALLOC(
  117              sizeof(struct ieee80211_superg), M_80211_VAP,
  118              IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
  119         if (sg == NULL) {
  120                 printf("%s: cannot allocate SuperG state block\n",
  121                     __func__);
  122                 return;
  123         }
  124         TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic);
  125         ic->ic_superg = sg;
  126 
  127         /*
  128          * Default to not being so aggressive for FF/AMSDU
  129          * aging, otherwise we may hold a frame around
  130          * for way too long before we expire it out.
  131          */
  132         ieee80211_ffagemax = msecs_to_ticks(2);
  133 }
  134 
  135 void
  136 ieee80211_superg_detach(struct ieee80211com *ic)
  137 {
  138 
  139         if (ic->ic_superg != NULL) {
  140                 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
  141 
  142                 while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0)
  143                         taskqueue_drain_timeout(ic->ic_tq, qtask);
  144                 IEEE80211_FREE(ic->ic_superg, M_80211_VAP);
  145                 ic->ic_superg = NULL;
  146         }
  147         IEEE80211_FF_LOCK_DESTROY(ic);
  148 }
  149 
  150 void
  151 ieee80211_superg_vattach(struct ieee80211vap *vap)
  152 {
  153         struct ieee80211com *ic = vap->iv_ic;
  154 
  155         if (ic->ic_superg == NULL)      /* NB: can't do fast-frames w/o state */
  156                 vap->iv_caps &= ~IEEE80211_C_FF;
  157         if (vap->iv_caps & IEEE80211_C_FF)
  158                 vap->iv_flags |= IEEE80211_F_FF;
  159         /* NB: we only implement sta mode */
  160         if (vap->iv_opmode == IEEE80211_M_STA &&
  161             (vap->iv_caps & IEEE80211_C_TURBOP))
  162                 vap->iv_flags |= IEEE80211_F_TURBOP;
  163 }
  164 
  165 void
  166 ieee80211_superg_vdetach(struct ieee80211vap *vap)
  167 {
  168 }
  169 
  170 #define ATH_OUI_BYTES           0x00, 0x03, 0x7f
  171 /*
  172  * Add a WME information element to a frame.
  173  */
  174 uint8_t *
  175 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix)
  176 {
  177         static const struct ieee80211_ath_ie info = {
  178                 .ath_id         = IEEE80211_ELEMID_VENDOR,
  179                 .ath_len        = sizeof(struct ieee80211_ath_ie) - 2,
  180                 .ath_oui        = { ATH_OUI_BYTES },
  181                 .ath_oui_type   = ATH_OUI_TYPE,
  182                 .ath_oui_subtype= ATH_OUI_SUBTYPE,
  183                 .ath_version    = ATH_OUI_VERSION,
  184         };
  185         struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
  186 
  187         memcpy(frm, &info, sizeof(info));
  188         ath->ath_capability = caps;
  189         if (defkeyix != IEEE80211_KEYIX_NONE) {
  190                 ath->ath_defkeyix[0] = (defkeyix & 0xff);
  191                 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
  192         } else {
  193                 ath->ath_defkeyix[0] = 0xff;
  194                 ath->ath_defkeyix[1] = 0x7f;
  195         }
  196         return frm + sizeof(info); 
  197 }
  198 #undef ATH_OUI_BYTES
  199 
  200 uint8_t *
  201 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss)
  202 {
  203         const struct ieee80211vap *vap = bss->ni_vap;
  204 
  205         return ieee80211_add_ath(frm,
  206             vap->iv_flags & IEEE80211_F_ATHEROS,
  207             ((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
  208             bss->ni_authmode != IEEE80211_AUTH_8021X) ?
  209             vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
  210 }
  211 
  212 void
  213 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie)
  214 {
  215         const struct ieee80211_ath_ie *ath =
  216                 (const struct ieee80211_ath_ie *) ie;
  217 
  218         ni->ni_ath_flags = ath->ath_capability;
  219         ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix);
  220 }
  221 
  222 int
  223 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm,
  224         const struct ieee80211_frame *wh)
  225 {
  226         struct ieee80211vap *vap = ni->ni_vap;
  227         const struct ieee80211_ath_ie *ath;
  228         u_int len = frm[1];
  229         int capschanged;
  230         uint16_t defkeyix;
  231 
  232         if (len < sizeof(struct ieee80211_ath_ie)-2) {
  233                 IEEE80211_DISCARD_IE(vap,
  234                     IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG,
  235                     wh, "Atheros", "too short, len %u", len);
  236                 return -1;
  237         }
  238         ath = (const struct ieee80211_ath_ie *)frm;
  239         capschanged = (ni->ni_ath_flags != ath->ath_capability);
  240         defkeyix = le16dec(ath->ath_defkeyix);
  241         if (capschanged || defkeyix != ni->ni_ath_defkeyix) {
  242                 ni->ni_ath_flags = ath->ath_capability;
  243                 ni->ni_ath_defkeyix = defkeyix;
  244                 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
  245                     "ath ie change: new caps 0x%x defkeyix 0x%x",
  246                     ni->ni_ath_flags, ni->ni_ath_defkeyix);
  247         }
  248         if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) {
  249                 uint16_t curflags, newflags;
  250 
  251                 /*
  252                  * Check for turbo mode switch.  Calculate flags
  253                  * for the new mode and effect the switch.
  254                  */
  255                 newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags;
  256                 /* NB: BOOST is not in ic_flags, so get it from the ie */
  257                 if (ath->ath_capability & ATHEROS_CAP_BOOST) 
  258                         newflags |= IEEE80211_CHAN_TURBO;
  259                 else
  260                         newflags &= ~IEEE80211_CHAN_TURBO;
  261                 if (newflags != curflags)
  262                         ieee80211_dturbo_switch(vap, newflags);
  263         }
  264         return capschanged;
  265 }
  266 
  267 /*
  268  * Decap the encapsulated frame pair and dispatch the first
  269  * for delivery.  The second frame is returned for delivery
  270  * via the normal path.
  271  */
  272 struct mbuf *
  273 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m)
  274 {
  275 #define FF_LLC_SIZE     (sizeof(struct ether_header) + sizeof(struct llc))
  276         struct ieee80211vap *vap = ni->ni_vap;
  277         struct llc *llc;
  278         uint32_t ath;
  279         struct mbuf *n;
  280         int framelen;
  281 
  282         /* NB: we assume caller does this check for us */
  283         KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF),
  284             ("ff not negotiated"));
  285         /*
  286          * Check for fast-frame tunnel encapsulation.
  287          */
  288         if (m->m_pkthdr.len < 3*FF_LLC_SIZE)
  289                 return m;
  290         if (m->m_len < FF_LLC_SIZE &&
  291             (m = m_pullup(m, FF_LLC_SIZE)) == NULL) {
  292                 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
  293                     ni->ni_macaddr, "fast-frame",
  294                     "%s", "m_pullup(llc) failed");
  295                 vap->iv_stats.is_rx_tooshort++;
  296                 return NULL;
  297         }
  298         llc = (struct llc *)(mtod(m, uint8_t *) +
  299             sizeof(struct ether_header));
  300         if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE))
  301                 return m;
  302         m_adj(m, FF_LLC_SIZE);
  303         m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath);
  304         if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) {
  305                 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
  306                     ni->ni_macaddr, "fast-frame",
  307                     "unsupport tunnel protocol, header 0x%x", ath);
  308                 vap->iv_stats.is_ff_badhdr++;
  309                 m_freem(m);
  310                 return NULL;
  311         }
  312         /* NB: skip header and alignment padding */
  313         m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2);
  314 
  315         vap->iv_stats.is_ff_decap++;
  316 
  317         /*
  318          * Decap the first frame, bust it apart from the
  319          * second and deliver; then decap the second frame
  320          * and return it to the caller for normal delivery.
  321          */
  322         m = ieee80211_decap1(m, &framelen);
  323         if (m == NULL) {
  324                 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
  325                     ni->ni_macaddr, "fast-frame", "%s", "first decap failed");
  326                 vap->iv_stats.is_ff_tooshort++;
  327                 return NULL;
  328         }
  329         n = m_split(m, framelen, M_NOWAIT);
  330         if (n == NULL) {
  331                 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
  332                     ni->ni_macaddr, "fast-frame",
  333                     "%s", "unable to split encapsulated frames");
  334                 vap->iv_stats.is_ff_split++;
  335                 m_freem(m);                     /* NB: must reclaim */
  336                 return NULL;
  337         }
  338         /* XXX not right for WDS */
  339         vap->iv_deliver_data(vap, ni, m);       /* 1st of pair */
  340 
  341         /*
  342          * Decap second frame.
  343          */
  344         m_adj(n, roundup2(framelen, 4) - framelen);     /* padding */
  345         n = ieee80211_decap1(n, &framelen);
  346         if (n == NULL) {
  347                 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY,
  348                     ni->ni_macaddr, "fast-frame", "%s", "second decap failed");
  349                 vap->iv_stats.is_ff_tooshort++;
  350         }
  351         /* XXX verify framelen against mbuf contents */
  352         return n;                               /* 2nd delivered by caller */
  353 #undef FF_LLC_SIZE
  354 }
  355 
  356 /*
  357  * Fast frame encapsulation.  There must be two packets
  358  * chained with m_nextpkt.  We do header adjustment for
  359  * each, add the tunnel encapsulation, and then concatenate
  360  * the mbuf chains to form a single frame for transmission.
  361  */
  362 struct mbuf *
  363 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
  364         struct ieee80211_key *key)
  365 {
  366         struct mbuf *m2;
  367         struct ether_header eh1, eh2;
  368         struct llc *llc;
  369         struct mbuf *m;
  370         int pad;
  371 
  372         m2 = m1->m_nextpkt;
  373         if (m2 == NULL) {
  374                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  375                     "%s: only one frame\n", __func__);
  376                 goto bad;
  377         }
  378         m1->m_nextpkt = NULL;
  379 
  380         /*
  381          * Adjust to include 802.11 header requirement.
  382          */
  383         KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
  384         ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
  385         m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1);
  386         if (m1 == NULL) {
  387                 printf("%s: failed initial mbuf_adjust\n", __func__);
  388                 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
  389                 m_freem(m2);
  390                 goto bad;
  391         }
  392 
  393         /*
  394          * Copy second frame's Ethernet header out of line
  395          * and adjust for possible padding in case there isn't room
  396          * at the end of first frame.
  397          */
  398         KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
  399         ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
  400         m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
  401         if (m2 == NULL) {
  402                 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
  403                 printf("%s: failed second \n", __func__);
  404                 goto bad;
  405         }
  406 
  407         /*
  408          * Now do tunnel encapsulation.  First, each
  409          * frame gets a standard encapsulation.
  410          */
  411         m1 = ieee80211_ff_encap1(vap, m1, &eh1);
  412         if (m1 == NULL)
  413                 goto bad;
  414         m2 = ieee80211_ff_encap1(vap, m2, &eh2);
  415         if (m2 == NULL)
  416                 goto bad;
  417 
  418         /*
  419          * Pad leading frame to a 4-byte boundary.  If there
  420          * is space at the end of the first frame, put it
  421          * there; otherwise prepend to the front of the second
  422          * frame.  We know doing the second will always work
  423          * because we reserve space above.  We prefer appending
  424          * as this typically has better DMA alignment properties.
  425          */
  426         for (m = m1; m->m_next != NULL; m = m->m_next)
  427                 ;
  428         pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
  429         if (pad) {
  430                 if (M_TRAILINGSPACE(m) < pad) {         /* prepend to second */
  431                         m2->m_data -= pad;
  432                         m2->m_len += pad;
  433                         m2->m_pkthdr.len += pad;
  434                 } else {                                /* append to first */
  435                         m->m_len += pad;
  436                         m1->m_pkthdr.len += pad;
  437                 }
  438         }
  439 
  440         /*
  441          * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the
  442          * QoS header.
  443          *
  444          * XXX optimize by prepending together
  445          */
  446         m->m_next = m2;                 /* NB: last mbuf from above */
  447         m1->m_pkthdr.len += m2->m_pkthdr.len;
  448         M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT);
  449         if (m1 == NULL) {               /* XXX cannot happen */
  450                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  451                     "%s: no space for tunnel header\n", __func__);
  452                 vap->iv_stats.is_tx_nobuf++;
  453                 return NULL;
  454         }
  455         memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
  456 
  457         M_PREPEND(m1, sizeof(struct llc), M_NOWAIT);
  458         if (m1 == NULL) {               /* XXX cannot happen */
  459                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  460                     "%s: no space for llc header\n", __func__);
  461                 vap->iv_stats.is_tx_nobuf++;
  462                 return NULL;
  463         }
  464         llc = mtod(m1, struct llc *);
  465         llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
  466         llc->llc_control = LLC_UI;
  467         llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
  468         llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
  469         llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
  470         llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
  471 
  472         vap->iv_stats.is_ff_encap++;
  473 
  474         return m1;
  475 bad:
  476         vap->iv_stats.is_ff_encapfail++;
  477         if (m1 != NULL)
  478                 m_freem(m1);
  479         if (m2 != NULL)
  480                 m_freem(m2);
  481         return NULL;
  482 }
  483 
  484 /*
  485  * A-MSDU encapsulation.
  486  *
  487  * This assumes just two frames for now, since we're borrowing the
  488  * same queuing code and infrastructure as fast-frames.
  489  *
  490  * There must be two packets chained with m_nextpkt.
  491  * We do header adjustment for each, and then concatenate the mbuf chains
  492  * to form a single frame for transmission.
  493  */
  494 struct mbuf *
  495 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace,
  496         struct ieee80211_key *key)
  497 {
  498         struct mbuf *m2;
  499         struct ether_header eh1, eh2;
  500         struct mbuf *m;
  501         int pad;
  502 
  503         m2 = m1->m_nextpkt;
  504         if (m2 == NULL) {
  505                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  506                     "%s: only one frame\n", __func__);
  507                 goto bad;
  508         }
  509         m1->m_nextpkt = NULL;
  510 
  511         /*
  512          * Include A-MSDU header in adjusting header layout.
  513          */
  514         KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!"));
  515         ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t));
  516         m1 = ieee80211_mbuf_adjust(vap,
  517                 hdrspace + sizeof(struct llc) + sizeof(uint32_t) +
  518                     sizeof(struct ether_header),
  519                 key, m1);
  520         if (m1 == NULL) {
  521                 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
  522                 m_freem(m2);
  523                 goto bad;
  524         }
  525 
  526         /*
  527          * Copy second frame's Ethernet header out of line
  528          * and adjust for encapsulation headers.  Note that
  529          * we make room for padding in case there isn't room
  530          * at the end of first frame.
  531          */
  532         KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
  533         ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
  534         m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2);
  535         if (m2 == NULL) {
  536                 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
  537                 goto bad;
  538         }
  539 
  540         /*
  541          * Now do tunnel encapsulation.  First, each
  542          * frame gets a standard encapsulation.
  543          */
  544         m1 = ieee80211_ff_encap1(vap, m1, &eh1);
  545         if (m1 == NULL)
  546                 goto bad;
  547         m2 = ieee80211_ff_encap1(vap, m2, &eh2);
  548         if (m2 == NULL)
  549                 goto bad;
  550 
  551         /*
  552          * Pad leading frame to a 4-byte boundary.  If there
  553          * is space at the end of the first frame, put it
  554          * there; otherwise prepend to the front of the second
  555          * frame.  We know doing the second will always work
  556          * because we reserve space above.  We prefer appending
  557          * as this typically has better DMA alignment properties.
  558          */
  559         for (m = m1; m->m_next != NULL; m = m->m_next)
  560                 ;
  561         pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
  562         if (pad) {
  563                 if (M_TRAILINGSPACE(m) < pad) {         /* prepend to second */
  564                         m2->m_data -= pad;
  565                         m2->m_len += pad;
  566                         m2->m_pkthdr.len += pad;
  567                 } else {                                /* append to first */
  568                         m->m_len += pad;
  569                         m1->m_pkthdr.len += pad;
  570                 }
  571         }
  572 
  573         /*
  574          * Now, stick 'em together.
  575          */
  576         m->m_next = m2;                 /* NB: last mbuf from above */
  577         m1->m_pkthdr.len += m2->m_pkthdr.len;
  578 
  579         vap->iv_stats.is_amsdu_encap++;
  580 
  581         return m1;
  582 bad:
  583         vap->iv_stats.is_amsdu_encapfail++;
  584         if (m1 != NULL)
  585                 m_freem(m1);
  586         if (m2 != NULL)
  587                 m_freem(m2);
  588         return NULL;
  589 }
  590 
  591 static void
  592 ff_transmit(struct ieee80211_node *ni, struct mbuf *m)
  593 {
  594         struct ieee80211vap *vap = ni->ni_vap;
  595         struct ieee80211com *ic = ni->ni_ic;
  596 
  597         IEEE80211_TX_LOCK_ASSERT(ic);
  598 
  599         /* encap and xmit */
  600         m = ieee80211_encap(vap, ni, m);
  601         if (m != NULL)
  602                 (void) ieee80211_parent_xmitpkt(ic, m);
  603         else
  604                 ieee80211_free_node(ni);
  605 }
  606 
  607 /*
  608  * Flush frames to device; note we re-use the linked list
  609  * the frames were stored on and use the sentinel (unchanged)
  610  * which may be non-NULL.
  611  */
  612 static void
  613 ff_flush(struct mbuf *head, struct mbuf *last)
  614 {
  615         struct mbuf *m, *next;
  616         struct ieee80211_node *ni;
  617         struct ieee80211vap *vap;
  618 
  619         for (m = head; m != last; m = next) {
  620                 next = m->m_nextpkt;
  621                 m->m_nextpkt = NULL;
  622 
  623                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
  624                 vap = ni->ni_vap;
  625 
  626                 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
  627                     "%s: flush frame, age %u", __func__, M_AGE_GET(m));
  628                 vap->iv_stats.is_ff_flush++;
  629 
  630                 ff_transmit(ni, m);
  631         }
  632 }
  633 
  634 /*
  635  * Age frames on the staging queue.
  636  */
  637 void
  638 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq,
  639     int quanta)
  640 {
  641         struct mbuf *m, *head;
  642         struct ieee80211_node *ni;
  643 
  644         IEEE80211_FF_LOCK(ic);
  645         if (sq->depth == 0) {
  646                 IEEE80211_FF_UNLOCK(ic);
  647                 return;         /* nothing to do */
  648         }
  649 
  650         KASSERT(sq->head != NULL, ("stageq empty"));
  651 
  652         head = sq->head;
  653         while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) {
  654                 int tid = WME_AC_TO_TID(M_WME_GETAC(m));
  655 
  656                 /* clear staging ref to frame */
  657                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
  658                 KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty"));
  659                 ni->ni_tx_superg[tid] = NULL;
  660 
  661                 sq->head = m->m_nextpkt;
  662                 sq->depth--;
  663         }
  664         if (m == NULL)
  665                 sq->tail = NULL;
  666         else
  667                 M_AGE_SUB(m, quanta);
  668         IEEE80211_FF_UNLOCK(ic);
  669 
  670         IEEE80211_TX_LOCK(ic);
  671         ff_flush(head, m);
  672         IEEE80211_TX_UNLOCK(ic);
  673 }
  674 
  675 static void
  676 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m)
  677 {
  678         int age = ieee80211_ffagemax;
  679 
  680         IEEE80211_FF_LOCK_ASSERT(ic);
  681 
  682         if (sq->tail != NULL) {
  683                 sq->tail->m_nextpkt = m;
  684                 age -= M_AGE_GET(sq->head);
  685         } else {
  686                 sq->head = m;
  687 
  688                 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer;
  689                 taskqueue_enqueue_timeout(ic->ic_tq, qtask, age);
  690         }
  691         KASSERT(age >= 0, ("age %d", age));
  692         M_AGE_SET(m, age);
  693         m->m_nextpkt = NULL;
  694         sq->tail = m;
  695         sq->depth++;
  696 }
  697 
  698 static void
  699 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged)
  700 {
  701         struct mbuf *m, *mprev;
  702 
  703         IEEE80211_FF_LOCK_ASSERT(ic);
  704 
  705         mprev = NULL;
  706         for (m = sq->head; m != NULL; m = m->m_nextpkt) {
  707                 if (m == mstaged) {
  708                         if (mprev == NULL)
  709                                 sq->head = m->m_nextpkt;
  710                         else
  711                                 mprev->m_nextpkt = m->m_nextpkt;
  712                         if (sq->tail == m)
  713                                 sq->tail = mprev;
  714                         sq->depth--;
  715                         return;
  716                 }
  717                 mprev = m;
  718         }
  719         printf("%s: packet not found\n", __func__);
  720 }
  721 
  722 static uint32_t
  723 ff_approx_txtime(struct ieee80211_node *ni,
  724         const struct mbuf *m1, const struct mbuf *m2)
  725 {
  726         struct ieee80211com *ic = ni->ni_ic;
  727         struct ieee80211vap *vap = ni->ni_vap;
  728         uint32_t framelen;
  729         uint32_t frame_time;
  730 
  731         /*
  732          * Approximate the frame length to be transmitted. A swag to add
  733          * the following maximal values to the skb payload:
  734          *   - 32: 802.11 encap + CRC
  735          *   - 24: encryption overhead (if wep bit)
  736          *   - 4 + 6: fast-frame header and padding
  737          *   - 16: 2 LLC FF tunnel headers
  738          *   - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd)
  739          */
  740         framelen = m1->m_pkthdr.len + 32 +
  741             ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR;
  742         if (vap->iv_flags & IEEE80211_F_PRIVACY)
  743                 framelen += 24;
  744         if (m2 != NULL)
  745                 framelen += m2->m_pkthdr.len;
  746 
  747         /*
  748          * For now, we assume non-shortgi, 20MHz, just because I want to
  749          * at least test 802.11n.
  750          */
  751         if (ni->ni_txrate & IEEE80211_RATE_MCS)
  752                 frame_time = ieee80211_compute_duration_ht(framelen,
  753                     ni->ni_txrate,
  754                     IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate),
  755                     0, /* isht40 */
  756                     0); /* isshortgi */
  757         else
  758                 frame_time = ieee80211_compute_duration(ic->ic_rt, framelen,
  759                             ni->ni_txrate, 0);
  760         return (frame_time);
  761 }
  762 
  763 /*
  764  * Check if the supplied frame can be partnered with an existing
  765  * or pending frame.  Return a reference to any frame that should be
  766  * sent on return; otherwise return NULL.
  767  */
  768 struct mbuf *
  769 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m)
  770 {
  771         struct ieee80211vap *vap = ni->ni_vap;
  772         struct ieee80211com *ic = ni->ni_ic;
  773         struct ieee80211_superg *sg = ic->ic_superg;
  774         const int pri = M_WME_GETAC(m);
  775         struct ieee80211_stageq *sq;
  776         struct ieee80211_tx_ampdu *tap;
  777         struct mbuf *mstaged;
  778         uint32_t txtime, limit;
  779 
  780         IEEE80211_TX_UNLOCK_ASSERT(ic);
  781 
  782         IEEE80211_LOCK(ic);
  783         limit = IEEE80211_TXOP_TO_US(
  784             ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
  785         IEEE80211_UNLOCK(ic);
  786 
  787         /*
  788          * Check if the supplied frame can be aggregated.
  789          *
  790          * NB: we allow EAPOL frames to be aggregated with other ucast traffic.
  791          *     Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
  792          *     be aggregated with other types of frames when encryption is on?
  793          */
  794         IEEE80211_FF_LOCK(ic);
  795         tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)];
  796         mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)];
  797         /* XXX NOTE: reusing packet counter state from A-MPDU */
  798         /*
  799          * XXX NOTE: this means we're double-counting; it should just
  800          * be done in ieee80211_output.c once for both superg and A-MPDU.
  801          */
  802         ieee80211_txampdu_count_packet(tap);
  803 
  804         /*
  805          * When not in station mode never aggregate a multicast
  806          * frame; this insures, for example, that a combined frame
  807          * does not require multiple encryption keys.
  808          */
  809         if (vap->iv_opmode != IEEE80211_M_STA &&
  810             ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) {
  811                 /* XXX flush staged frame? */
  812                 IEEE80211_FF_UNLOCK(ic);
  813                 return m;
  814         }
  815         /*
  816          * If there is no frame to combine with and the pps is
  817          * too low; then do not attempt to aggregate this frame.
  818          */
  819         if (mstaged == NULL &&
  820             ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) {
  821                 IEEE80211_FF_UNLOCK(ic);
  822                 return m;
  823         }
  824         sq = &sg->ff_stageq[pri];
  825         /*
  826          * Check the txop limit to insure the aggregate fits.
  827          */
  828         if (limit != 0 &&
  829             (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) {
  830                 /*
  831                  * Aggregate too long, return to the caller for direct
  832                  * transmission.  In addition, flush any pending frame
  833                  * before sending this one.
  834                  */
  835                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  836                     "%s: txtime %u exceeds txop limit %u\n",
  837                     __func__, txtime, limit);
  838 
  839                 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
  840                 if (mstaged != NULL)
  841                         stageq_remove(ic, sq, mstaged);
  842                 IEEE80211_FF_UNLOCK(ic);
  843 
  844                 if (mstaged != NULL) {
  845                         IEEE80211_TX_LOCK(ic);
  846                         IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
  847                             "%s: flush staged frame", __func__);
  848                         /* encap and xmit */
  849                         ff_transmit(ni, mstaged);
  850                         IEEE80211_TX_UNLOCK(ic);
  851                 }
  852                 return m;               /* NB: original frame */
  853         }
  854         /*
  855          * An aggregation candidate.  If there's a frame to partner
  856          * with then combine and return for processing.  Otherwise
  857          * save this frame and wait for a partner to show up (or
  858          * the frame to be flushed).  Note that staged frames also
  859          * hold their node reference.
  860          */
  861         if (mstaged != NULL) {
  862                 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL;
  863                 stageq_remove(ic, sq, mstaged);
  864                 IEEE80211_FF_UNLOCK(ic);
  865 
  866                 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
  867                     "%s: aggregate fast-frame", __func__);
  868                 /*
  869                  * Release the node reference; we only need
  870                  * the one already in mstaged.
  871                  */
  872                 KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni,
  873                     ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni));
  874                 ieee80211_free_node(ni);
  875 
  876                 m->m_nextpkt = NULL;
  877                 mstaged->m_nextpkt = m;
  878                 mstaged->m_flags |= M_FF; /* NB: mark for encap work */
  879         } else {
  880                 KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL,
  881                     ("ni_tx_superg[]: %p",
  882                     ni->ni_tx_superg[WME_AC_TO_TID(pri)]));
  883                 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m;
  884 
  885                 stageq_add(ic, sq, m);
  886                 IEEE80211_FF_UNLOCK(ic);
  887 
  888                 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni,
  889                     "%s: stage frame, %u queued", __func__, sq->depth);
  890                 /* NB: mstaged is NULL */
  891         }
  892         return mstaged;
  893 }
  894 
  895 struct mbuf *
  896 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m)
  897 {
  898         /*
  899          * XXX TODO: actually enforce the node support
  900          * and HTCAP requirements for the maximum A-MSDU
  901          * size.
  902          */
  903 
  904         /* First: software A-MSDU transmit? */
  905         if (! ieee80211_amsdu_tx_ok(ni))
  906                 return (m);
  907 
  908         /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */
  909         if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST))
  910                 return (m);
  911 
  912         /* Next - needs to be a data frame, non-broadcast, etc */
  913         if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
  914                 return (m);
  915 
  916         return (ieee80211_ff_check(ni, m));
  917 }
  918 
  919 void
  920 ieee80211_ff_node_init(struct ieee80211_node *ni)
  921 {
  922         /*
  923          * Clean FF state on re-associate.  This handles the case
  924          * where a station leaves w/o notifying us and then returns
  925          * before node is reaped for inactivity.
  926          */
  927         ieee80211_ff_node_cleanup(ni);
  928 }
  929 
  930 void
  931 ieee80211_ff_node_cleanup(struct ieee80211_node *ni)
  932 {
  933         struct ieee80211com *ic = ni->ni_ic;
  934         struct ieee80211_superg *sg = ic->ic_superg;
  935         struct mbuf *m, *next_m, *head;
  936         int tid;
  937 
  938         IEEE80211_FF_LOCK(ic);
  939         head = NULL;
  940         for (tid = 0; tid < WME_NUM_TID; tid++) {
  941                 int ac = TID_TO_WME_AC(tid);
  942                 /*
  943                  * XXX Initialise the packet counter.
  944                  *
  945                  * This may be double-work for 11n stations;
  946                  * but without it we never setup things.
  947                  */
  948                 ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]);
  949                 m = ni->ni_tx_superg[tid];
  950                 if (m != NULL) {
  951                         ni->ni_tx_superg[tid] = NULL;
  952                         stageq_remove(ic, &sg->ff_stageq[ac], m);
  953                         m->m_nextpkt = head;
  954                         head = m;
  955                 }
  956         }
  957         IEEE80211_FF_UNLOCK(ic);
  958 
  959         /*
  960          * Free mbufs, taking care to not dereference the mbuf after
  961          * we free it (hence grabbing m_nextpkt before we free it.)
  962          */
  963         m = head;
  964         while (m != NULL) {
  965                 next_m = m->m_nextpkt;
  966                 m_freem(m);
  967                 ieee80211_free_node(ni);
  968                 m = next_m;
  969         }
  970 }
  971 
  972 /*
  973  * Switch between turbo and non-turbo operating modes.
  974  * Use the specified channel flags to locate the new
  975  * channel, update 802.11 state, and then call back into
  976  * the driver to effect the change.
  977  */
  978 void
  979 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags)
  980 {
  981         struct ieee80211com *ic = vap->iv_ic;
  982         struct ieee80211_channel *chan;
  983 
  984         chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags);
  985         if (chan == NULL) {             /* XXX should not happen */
  986                 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  987                     "%s: no channel with freq %u flags 0x%x\n",
  988                     __func__, ic->ic_bsschan->ic_freq, newflags);
  989                 return;
  990         }
  991 
  992         IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
  993             "%s: %s -> %s (freq %u flags 0x%x)\n", __func__,
  994             ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)],
  995             ieee80211_phymode_name[ieee80211_chan2mode(chan)],
  996             chan->ic_freq, chan->ic_flags);
  997 
  998         ic->ic_bsschan = chan;
  999         ic->ic_prevchan = ic->ic_curchan;
 1000         ic->ic_curchan = chan;
 1001         ic->ic_rt = ieee80211_get_ratetable(chan);
 1002         ic->ic_set_channel(ic);
 1003         ieee80211_radiotap_chan_change(ic);
 1004         /* NB: do not need to reset ERP state 'cuz we're in sta mode */
 1005 }
 1006 
 1007 /*
 1008  * Return the current ``state'' of an Atheros capbility.
 1009  * If associated in station mode report the negotiated
 1010  * setting. Otherwise report the current setting.
 1011  */
 1012 static int
 1013 getathcap(struct ieee80211vap *vap, int cap)
 1014 {
 1015         if (vap->iv_opmode == IEEE80211_M_STA &&
 1016             vap->iv_state == IEEE80211_S_RUN)
 1017                 return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0;
 1018         else
 1019                 return (vap->iv_flags & cap) != 0;
 1020 }
 1021 
 1022 static int
 1023 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
 1024 {
 1025         switch (ireq->i_type) {
 1026         case IEEE80211_IOC_FF:
 1027                 ireq->i_val = getathcap(vap, IEEE80211_F_FF);
 1028                 break;
 1029         case IEEE80211_IOC_TURBOP:
 1030                 ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP);
 1031                 break;
 1032         default:
 1033                 return ENOSYS;
 1034         }
 1035         return 0;
 1036 }
 1037 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211);
 1038 
 1039 static int
 1040 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq)
 1041 {
 1042         switch (ireq->i_type) {
 1043         case IEEE80211_IOC_FF:
 1044                 if (ireq->i_val) {
 1045                         if ((vap->iv_caps & IEEE80211_C_FF) == 0)
 1046                                 return EOPNOTSUPP;
 1047                         vap->iv_flags |= IEEE80211_F_FF;
 1048                 } else
 1049                         vap->iv_flags &= ~IEEE80211_F_FF;
 1050                 return ENETRESET;
 1051         case IEEE80211_IOC_TURBOP:
 1052                 if (ireq->i_val) {
 1053                         if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0)
 1054                                 return EOPNOTSUPP;
 1055                         vap->iv_flags |= IEEE80211_F_TURBOP;
 1056                 } else
 1057                         vap->iv_flags &= ~IEEE80211_F_TURBOP;
 1058                 return ENETRESET;
 1059         default:
 1060                 return ENOSYS;
 1061         }
 1062 }
 1063 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211);
 1064 
 1065 #endif  /* IEEE80211_SUPPORT_SUPERG */

Cache object: b759fb30ba111fb3fad545f1f367732d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.