1 /*-
2 * Copyright (c) 2007-2008
3 * Swinburne University of Technology, Melbourne, Australia
4 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
5 * Copyright (c) 2014 Midori Kato <katoon@sfc.wide.ad.jp>
6 * Copyright (c) 2014 The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*
32 * An implementation of the DCTCP algorithm for FreeBSD, based on
33 * "Data Center TCP (DCTCP)" by M. Alizadeh, A. Greenberg, D. A. Maltz,
34 * J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.,
35 * in ACM Conference on SIGCOMM 2010, New York, USA,
36 * Originally released as the contribution of Microsoft Research project.
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include <sys/param.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/module.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/vnet.h>
52
53 #include <net/route.h>
54 #include <net/route/nhop.h>
55
56 #include <netinet/in_pcb.h>
57 #include <netinet/tcp.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_var.h>
60 #include <netinet/cc/cc.h>
61 #include <netinet/cc/cc_module.h>
62
63 #define DCTCP_SHIFT 10
64 #define MAX_ALPHA_VALUE (1<<DCTCP_SHIFT)
65 VNET_DEFINE_STATIC(uint32_t, dctcp_alpha) = MAX_ALPHA_VALUE;
66 #define V_dctcp_alpha VNET(dctcp_alpha)
67 VNET_DEFINE_STATIC(uint32_t, dctcp_shift_g) = 4;
68 #define V_dctcp_shift_g VNET(dctcp_shift_g)
69 VNET_DEFINE_STATIC(uint32_t, dctcp_slowstart) = 0;
70 #define V_dctcp_slowstart VNET(dctcp_slowstart)
71 VNET_DEFINE_STATIC(uint32_t, dctcp_ect1) = 0;
72 #define V_dctcp_ect1 VNET(dctcp_ect1)
73
74 struct dctcp {
75 uint32_t bytes_ecn; /* # of marked bytes during a RTT */
76 uint32_t bytes_total; /* # of acked bytes during a RTT */
77 int alpha; /* the fraction of marked bytes */
78 int ce_prev; /* CE state of the last segment */
79 tcp_seq save_sndnxt; /* end sequence number of the current window */
80 int ece_curr; /* ECE flag in this segment */
81 int ece_prev; /* ECE flag in the last segment */
82 uint32_t num_cong_events; /* # of congestion events */
83 };
84
85 static void dctcp_ack_received(struct cc_var *ccv, uint16_t type);
86 static void dctcp_after_idle(struct cc_var *ccv);
87 static void dctcp_cb_destroy(struct cc_var *ccv);
88 static int dctcp_cb_init(struct cc_var *ccv, void *ptr);
89 static void dctcp_cong_signal(struct cc_var *ccv, uint32_t type);
90 static void dctcp_conn_init(struct cc_var *ccv);
91 static void dctcp_post_recovery(struct cc_var *ccv);
92 static void dctcp_ecnpkt_handler(struct cc_var *ccv);
93 static void dctcp_update_alpha(struct cc_var *ccv);
94 static size_t dctcp_data_sz(void);
95
96 struct cc_algo dctcp_cc_algo = {
97 .name = "dctcp",
98 .ack_received = dctcp_ack_received,
99 .cb_destroy = dctcp_cb_destroy,
100 .cb_init = dctcp_cb_init,
101 .cong_signal = dctcp_cong_signal,
102 .conn_init = dctcp_conn_init,
103 .post_recovery = dctcp_post_recovery,
104 .ecnpkt_handler = dctcp_ecnpkt_handler,
105 .after_idle = dctcp_after_idle,
106 .cc_data_sz = dctcp_data_sz,
107 };
108
109 static void
110 dctcp_ack_received(struct cc_var *ccv, uint16_t type)
111 {
112 struct dctcp *dctcp_data;
113 int bytes_acked = 0;
114
115 dctcp_data = ccv->cc_data;
116
117 if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
118 /*
119 * DCTCP doesn't treat receipt of ECN marked packet as a
120 * congestion event. Thus, DCTCP always executes the ACK
121 * processing out of congestion recovery.
122 */
123 if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
124 EXIT_CONGRECOVERY(CCV(ccv, t_flags));
125 newreno_cc_ack_received(ccv, type);
126 ENTER_CONGRECOVERY(CCV(ccv, t_flags));
127 } else
128 newreno_cc_ack_received(ccv, type);
129
130 if (type == CC_DUPACK)
131 bytes_acked = min(ccv->bytes_this_ack, CCV(ccv, t_maxseg));
132
133 if (type == CC_ACK)
134 bytes_acked = ccv->bytes_this_ack;
135
136 /* Update total bytes. */
137 dctcp_data->bytes_total += bytes_acked;
138
139 /* Update total marked bytes. */
140 if (dctcp_data->ece_curr) {
141 //XXRMS: For fluid-model DCTCP, update
142 //cwnd here during for RTT fairness
143 if (!dctcp_data->ece_prev
144 && bytes_acked > CCV(ccv, t_maxseg)) {
145 dctcp_data->bytes_ecn +=
146 (bytes_acked - CCV(ccv, t_maxseg));
147 } else
148 dctcp_data->bytes_ecn += bytes_acked;
149 dctcp_data->ece_prev = 1;
150 } else {
151 if (dctcp_data->ece_prev
152 && bytes_acked > CCV(ccv, t_maxseg))
153 dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
154 dctcp_data->ece_prev = 0;
155 }
156 dctcp_data->ece_curr = 0;
157
158 /*
159 * Update the fraction of marked bytes at the end of
160 * current window size.
161 */
162 if (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
163 SEQ_GT(ccv->curack, dctcp_data->save_sndnxt))
164 dctcp_update_alpha(ccv);
165 } else
166 newreno_cc_ack_received(ccv, type);
167 }
168
169 static size_t
170 dctcp_data_sz(void)
171 {
172 return (sizeof(struct dctcp));
173 }
174
175 static void
176 dctcp_after_idle(struct cc_var *ccv)
177 {
178 struct dctcp *dctcp_data;
179
180 if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
181 dctcp_data = ccv->cc_data;
182
183 /* Initialize internal parameters after idle time */
184 dctcp_data->bytes_ecn = 0;
185 dctcp_data->bytes_total = 0;
186 dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
187 dctcp_data->alpha = V_dctcp_alpha;
188 dctcp_data->ece_curr = 0;
189 dctcp_data->ece_prev = 0;
190 dctcp_data->num_cong_events = 0;
191 }
192
193 newreno_cc_after_idle(ccv);
194 }
195
196 static void
197 dctcp_cb_destroy(struct cc_var *ccv)
198 {
199 free(ccv->cc_data, M_CC_MEM);
200 }
201
202 static int
203 dctcp_cb_init(struct cc_var *ccv, void *ptr)
204 {
205 struct dctcp *dctcp_data;
206
207 INP_WLOCK_ASSERT(tptoinpcb(ccv->ccvc.tcp));
208 if (ptr == NULL) {
209 dctcp_data = malloc(sizeof(struct dctcp), M_CC_MEM, M_NOWAIT|M_ZERO);
210 if (dctcp_data == NULL)
211 return (ENOMEM);
212 } else
213 dctcp_data = ptr;
214 /* Initialize some key variables with sensible defaults. */
215 dctcp_data->bytes_ecn = 0;
216 dctcp_data->bytes_total = 0;
217 /*
218 * When alpha is set to 0 in the beginning, DCTCP sender transfers as
219 * much data as possible until the value converges which may expand the
220 * queueing delay at the switch. When alpha is set to 1, queueing delay
221 * is kept small.
222 * Throughput-sensitive applications should have alpha = 0
223 * Latency-sensitive applications should have alpha = 1
224 *
225 * Note: DCTCP draft suggests initial alpha to be 1 but we've decided to
226 * keep it 0 as default.
227 */
228 dctcp_data->alpha = V_dctcp_alpha;
229 dctcp_data->save_sndnxt = 0;
230 dctcp_data->ce_prev = 0;
231 dctcp_data->ece_curr = 0;
232 dctcp_data->ece_prev = 0;
233 dctcp_data->num_cong_events = 0;
234
235 ccv->cc_data = dctcp_data;
236 return (0);
237 }
238
239 /*
240 * Perform any necessary tasks before we enter congestion recovery.
241 */
242 static void
243 dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
244 {
245 struct dctcp *dctcp_data;
246 u_int cwin, mss;
247
248 if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
249 dctcp_data = ccv->cc_data;
250 cwin = CCV(ccv, snd_cwnd);
251 mss = tcp_maxseg(ccv->ccvc.tcp);
252
253 switch (type) {
254 case CC_NDUPACK:
255 if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
256 if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
257 CCV(ccv, snd_ssthresh) =
258 max(cwin / 2, 2 * mss);
259 dctcp_data->num_cong_events++;
260 } else {
261 /* cwnd has already updated as congestion
262 * recovery. Reverse cwnd value using
263 * snd_cwnd_prev and recalculate snd_ssthresh
264 */
265 cwin = CCV(ccv, snd_cwnd_prev);
266 CCV(ccv, snd_ssthresh) =
267 max(cwin / 2, 2 * mss);
268 }
269 ENTER_RECOVERY(CCV(ccv, t_flags));
270 }
271 break;
272 case CC_ECN:
273 /*
274 * Save current snd_cwnd when the host encounters both
275 * congestion recovery and fast recovery.
276 */
277 CCV(ccv, snd_cwnd_prev) = cwin;
278 if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
279 if (V_dctcp_slowstart &&
280 dctcp_data->num_cong_events++ == 0) {
281 CCV(ccv, snd_ssthresh) =
282 max(cwin / 2, 2 * mss);
283 dctcp_data->alpha = MAX_ALPHA_VALUE;
284 dctcp_data->bytes_ecn = 0;
285 dctcp_data->bytes_total = 0;
286 dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
287 } else
288 CCV(ccv, snd_ssthresh) =
289 max((cwin - (((uint64_t)cwin *
290 dctcp_data->alpha) >> (DCTCP_SHIFT+1))),
291 2 * mss);
292 CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
293 ENTER_CONGRECOVERY(CCV(ccv, t_flags));
294 }
295 dctcp_data->ece_curr = 1;
296 break;
297 case CC_RTO:
298 CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd),
299 CCV(ccv, snd_cwnd)) / 2 / mss,
300 2) * mss;
301 CCV(ccv, snd_cwnd) = mss;
302 dctcp_update_alpha(ccv);
303 dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
304 dctcp_data->num_cong_events++;
305 break;
306 }
307 } else
308 newreno_cc_cong_signal(ccv, type);
309 }
310
311 static void
312 dctcp_conn_init(struct cc_var *ccv)
313 {
314 struct dctcp *dctcp_data;
315
316 dctcp_data = ccv->cc_data;
317
318 if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT) {
319 dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
320 if (V_dctcp_ect1)
321 CCV(ccv, t_flags2) |= TF2_ECN_USE_ECT1;
322 }
323 }
324
325 /*
326 * Perform any necessary tasks before we exit congestion recovery.
327 */
328 static void
329 dctcp_post_recovery(struct cc_var *ccv)
330 {
331 newreno_cc_post_recovery(ccv);
332
333 if (CCV(ccv, t_flags2) & TF2_ECN_PERMIT)
334 dctcp_update_alpha(ccv);
335 }
336
337 /*
338 * Execute an additional ECN processing using ECN field in IP header
339 * and the CWR bit in TCP header.
340 */
341 static void
342 dctcp_ecnpkt_handler(struct cc_var *ccv)
343 {
344 struct dctcp *dctcp_data;
345 uint32_t ccflag;
346 int acknow;
347
348 dctcp_data = ccv->cc_data;
349 ccflag = ccv->flags;
350 acknow = 0;
351
352 /*
353 * DCTCP responds with an ACK immediately when the CE state
354 * in between this segment and the last segment has changed.
355 */
356 if (ccflag & CCF_IPHDR_CE) {
357 if (!dctcp_data->ce_prev) {
358 acknow = 1;
359 dctcp_data->ce_prev = 1;
360 CCV(ccv, t_flags2) |= TF2_ECN_SND_ECE;
361 }
362 } else {
363 if (dctcp_data->ce_prev) {
364 acknow = 1;
365 dctcp_data->ce_prev = 0;
366 CCV(ccv, t_flags2) &= ~TF2_ECN_SND_ECE;
367 }
368 }
369
370 if ((acknow) || (ccflag & CCF_TCPHDR_CWR)) {
371 ccv->flags |= CCF_ACKNOW;
372 } else {
373 ccv->flags &= ~CCF_ACKNOW;
374 }
375 }
376
377 /*
378 * Update the fraction of marked bytes represented as 'alpha'.
379 * Also initialize several internal parameters at the end of this function.
380 */
381 static void
382 dctcp_update_alpha(struct cc_var *ccv)
383 {
384 struct dctcp *dctcp_data;
385 int alpha_prev;
386
387 dctcp_data = ccv->cc_data;
388 alpha_prev = dctcp_data->alpha;
389 dctcp_data->bytes_total = max(dctcp_data->bytes_total, 1);
390
391 /*
392 * Update alpha: alpha = (1 - g) * alpha + g * M.
393 * Here:
394 * g is weight factor
395 * recommaded to be set to 1/16
396 * small g = slow convergence between competitive DCTCP flows
397 * large g = impacts low utilization of bandwidth at switches
398 * M is fraction of marked segments in last RTT
399 * updated every RTT
400 * Alpha must be round to 0 - MAX_ALPHA_VALUE.
401 */
402 dctcp_data->alpha = ulmin(alpha_prev - (alpha_prev >> V_dctcp_shift_g) +
403 ((uint64_t)dctcp_data->bytes_ecn << (DCTCP_SHIFT - V_dctcp_shift_g)) /
404 dctcp_data->bytes_total, MAX_ALPHA_VALUE);
405
406 /* Initialize internal parameters for next alpha calculation */
407 dctcp_data->bytes_ecn = 0;
408 dctcp_data->bytes_total = 0;
409 dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
410 }
411
412 static int
413 dctcp_alpha_handler(SYSCTL_HANDLER_ARGS)
414 {
415 uint32_t new;
416 int error;
417
418 new = V_dctcp_alpha;
419 error = sysctl_handle_int(oidp, &new, 0, req);
420 if (error == 0 && req->newptr != NULL) {
421 if (new > MAX_ALPHA_VALUE)
422 error = EINVAL;
423 else
424 V_dctcp_alpha = new;
425 }
426
427 return (error);
428 }
429
430 static int
431 dctcp_shift_g_handler(SYSCTL_HANDLER_ARGS)
432 {
433 uint32_t new;
434 int error;
435
436 new = V_dctcp_shift_g;
437 error = sysctl_handle_int(oidp, &new, 0, req);
438 if (error == 0 && req->newptr != NULL) {
439 if (new > DCTCP_SHIFT)
440 error = EINVAL;
441 else
442 V_dctcp_shift_g = new;
443 }
444
445 return (error);
446 }
447
448 static int
449 dctcp_slowstart_handler(SYSCTL_HANDLER_ARGS)
450 {
451 uint32_t new;
452 int error;
453
454 new = V_dctcp_slowstart;
455 error = sysctl_handle_int(oidp, &new, 0, req);
456 if (error == 0 && req->newptr != NULL) {
457 if (new > 1)
458 error = EINVAL;
459 else
460 V_dctcp_slowstart = new;
461 }
462
463 return (error);
464 }
465
466 SYSCTL_DECL(_net_inet_tcp_cc_dctcp);
467 SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, dctcp,
468 CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
469 "dctcp congestion control related settings");
470
471 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, alpha,
472 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
473 &VNET_NAME(dctcp_alpha), 0, &dctcp_alpha_handler, "IU",
474 "dctcp alpha parameter at start of session");
475
476 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, shift_g,
477 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
478 &VNET_NAME(dctcp_shift_g), 4, &dctcp_shift_g_handler, "IU",
479 "dctcp shift parameter");
480
481 SYSCTL_PROC(_net_inet_tcp_cc_dctcp, OID_AUTO, slowstart,
482 CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
483 &VNET_NAME(dctcp_slowstart), 0, &dctcp_slowstart_handler, "IU",
484 "half CWND reduction after the first slow start");
485
486 SYSCTL_UINT(_net_inet_tcp_cc_dctcp, OID_AUTO, ect1,
487 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
488 &VNET_NAME(dctcp_ect1), 0,
489 "Send DCTCP segments with ÍP ECT(0) or ECT(1)");
490
491 DECLARE_CC_MODULE(dctcp, &dctcp_cc_algo);
492 MODULE_VERSION(dctcp, 2);
Cache object: ed3698812050689e6c976db42bd0bb52
|