1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2007-2008
5 * Swinburne University of Technology, Melbourne, Australia
6 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
7 * Copyright (c) 2010 The FreeBSD Foundation
8 * All rights reserved.
9 *
10 * This software was developed at the Centre for Advanced Internet
11 * Architectures, Swinburne University of Technology, by Lawrence Stewart and
12 * James Healy, made possible in part by a grant from the Cisco University
13 * Research Program Fund at Community Foundation Silicon Valley.
14 *
15 * Portions of this software were developed at the Centre for Advanced
16 * Internet Architectures, Swinburne University of Technology, Melbourne,
17 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
18 *
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
21 * are met:
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 /*
42 * An implementation of the H-TCP congestion control algorithm for FreeBSD,
43 * based on the Internet Draft "draft-leith-tcp-htcp-06.txt" by Leith and
44 * Shorten. Originally released as part of the NewTCP research project at
45 * Swinburne University of Technology's Centre for Advanced Internet
46 * Architectures, Melbourne, Australia, which was made possible in part by a
47 * grant from the Cisco University Research Program Fund at Community Foundation
48 * Silicon Valley. More details are available at:
49 * http://caia.swin.edu.au/urp/newtcp/
50 */
51
52 #include <sys/cdefs.h>
53 __FBSDID("$FreeBSD$");
54
55 #include <sys/param.h>
56 #include <sys/kernel.h>
57 #include <sys/limits.h>
58 #include <sys/malloc.h>
59 #include <sys/module.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/sysctl.h>
63 #include <sys/systm.h>
64
65 #include <net/vnet.h>
66
67 #include <net/route.h>
68 #include <net/route/nhop.h>
69
70 #include <netinet/in_pcb.h>
71 #include <netinet/tcp.h>
72 #include <netinet/tcp_seq.h>
73 #include <netinet/tcp_timer.h>
74 #include <netinet/tcp_var.h>
75 #include <netinet/cc/cc.h>
76 #include <netinet/cc/cc_module.h>
77
78 /* Fixed point math shifts. */
79 #define HTCP_SHIFT 8
80 #define HTCP_ALPHA_INC_SHIFT 4
81
82 #define HTCP_INIT_ALPHA 1
83 #define HTCP_DELTA_L hz /* 1 sec in ticks. */
84 #define HTCP_MINBETA 128 /* 0.5 << HTCP_SHIFT. */
85 #define HTCP_MAXBETA 204 /* ~0.8 << HTCP_SHIFT. */
86 #define HTCP_MINROWE 26 /* ~0.1 << HTCP_SHIFT. */
87 #define HTCP_MAXROWE 512 /* 2 << HTCP_SHIFT. */
88
89 /* RTT_ref (ms) used in the calculation of alpha if RTT scaling is enabled. */
90 #define HTCP_RTT_REF 100
91
92 /* Don't trust SRTT until this many samples have been taken. */
93 #define HTCP_MIN_RTT_SAMPLES 8
94
95 /*
96 * HTCP_CALC_ALPHA performs a fixed point math calculation to determine the
97 * value of alpha, based on the function defined in the HTCP spec.
98 *
99 * i.e. 1 + 10(delta - delta_l) + ((delta - delta_l) / 2) ^ 2
100 *
101 * "diff" is passed in to the macro as "delta - delta_l" and is expected to be
102 * in units of ticks.
103 *
104 * The joyousnous of fixed point maths means our function implementation looks a
105 * little funky...
106 *
107 * In order to maintain some precision in the calculations, a fixed point shift
108 * HTCP_ALPHA_INC_SHIFT is used to ensure the integer divisions don't
109 * truncate the results too badly.
110 *
111 * The "16" value is the "1" term in the alpha function shifted up by
112 * HTCP_ALPHA_INC_SHIFT
113 *
114 * The "160" value is the "10" multiplier in the alpha function multiplied by
115 * 2^HTCP_ALPHA_INC_SHIFT
116 *
117 * Specifying these as constants reduces the computations required. After
118 * up-shifting all the terms in the function and performing the required
119 * calculations, we down-shift the final result by HTCP_ALPHA_INC_SHIFT to
120 * ensure it is back in the correct range.
121 *
122 * The "hz" terms are required as kernels can be configured to run with
123 * different tick timers, which we have to adjust for in the alpha calculation
124 * (which originally was defined in terms of seconds).
125 *
126 * We also have to be careful to constrain the value of diff such that it won't
127 * overflow whilst performing the calculation. The middle term i.e. (160 * diff)
128 * / hz is the limiting factor in the calculation. We must constrain diff to be
129 * less than the max size of an int divided by the constant 160 figure
130 * i.e. diff < INT_MAX / 160
131 *
132 * NB: Changing HTCP_ALPHA_INC_SHIFT will require you to MANUALLY update the
133 * constants used in this function!
134 */
135 #define HTCP_CALC_ALPHA(diff) \
136 ((\
137 (16) + \
138 ((160 * (diff)) / hz) + \
139 (((diff) / hz) * (((diff) << HTCP_ALPHA_INC_SHIFT) / (4 * hz))) \
140 ) >> HTCP_ALPHA_INC_SHIFT)
141
142 static void htcp_ack_received(struct cc_var *ccv, uint16_t type);
143 static void htcp_cb_destroy(struct cc_var *ccv);
144 static int htcp_cb_init(struct cc_var *ccv, void *ptr);
145 static void htcp_cong_signal(struct cc_var *ccv, uint32_t type);
146 static int htcp_mod_init(void);
147 static void htcp_post_recovery(struct cc_var *ccv);
148 static void htcp_recalc_alpha(struct cc_var *ccv);
149 static void htcp_recalc_beta(struct cc_var *ccv);
150 static void htcp_record_rtt(struct cc_var *ccv);
151 static void htcp_ssthresh_update(struct cc_var *ccv);
152 static size_t htcp_data_sz(void);
153
154 struct htcp {
155 /* cwnd before entering cong recovery. */
156 unsigned long prev_cwnd;
157 /* cwnd additive increase parameter. */
158 int alpha;
159 /* cwnd multiplicative decrease parameter. */
160 int beta;
161 /* Largest rtt seen for the flow. */
162 int maxrtt;
163 /* Shortest rtt seen for the flow. */
164 int minrtt;
165 /* Time of last congestion event in ticks. */
166 int t_last_cong;
167 };
168
169 static int htcp_rtt_ref;
170 /*
171 * The maximum number of ticks the value of diff can reach in
172 * htcp_recalc_alpha() before alpha will stop increasing due to overflow.
173 * See comment above HTCP_CALC_ALPHA for more info.
174 */
175 static int htcp_max_diff = INT_MAX / ((1 << HTCP_ALPHA_INC_SHIFT) * 10);
176
177 /* Per-netstack vars. */
178 VNET_DEFINE_STATIC(u_int, htcp_adaptive_backoff) = 0;
179 VNET_DEFINE_STATIC(u_int, htcp_rtt_scaling) = 0;
180 #define V_htcp_adaptive_backoff VNET(htcp_adaptive_backoff)
181 #define V_htcp_rtt_scaling VNET(htcp_rtt_scaling)
182
183 struct cc_algo htcp_cc_algo = {
184 .name = "htcp",
185 .ack_received = htcp_ack_received,
186 .cb_destroy = htcp_cb_destroy,
187 .cb_init = htcp_cb_init,
188 .cong_signal = htcp_cong_signal,
189 .mod_init = htcp_mod_init,
190 .post_recovery = htcp_post_recovery,
191 .cc_data_sz = htcp_data_sz,
192 .after_idle = newreno_cc_after_idle,
193 };
194
195 static void
196 htcp_ack_received(struct cc_var *ccv, uint16_t type)
197 {
198 struct htcp *htcp_data;
199
200 htcp_data = ccv->cc_data;
201 htcp_record_rtt(ccv);
202
203 /*
204 * Regular ACK and we're not in cong/fast recovery and we're cwnd
205 * limited and we're either not doing ABC or are slow starting or are
206 * doing ABC and we've sent a cwnd's worth of bytes.
207 */
208 if (type == CC_ACK && !IN_RECOVERY(CCV(ccv, t_flags)) &&
209 (ccv->flags & CCF_CWND_LIMITED) && (!V_tcp_do_rfc3465 ||
210 CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh) ||
211 (V_tcp_do_rfc3465 && ccv->flags & CCF_ABC_SENTAWND))) {
212 htcp_recalc_beta(ccv);
213 htcp_recalc_alpha(ccv);
214 /*
215 * Use the logic in NewReno ack_received() for slow start and
216 * for the first HTCP_DELTA_L ticks after either the flow starts
217 * or a congestion event (when alpha equals 1).
218 */
219 if (htcp_data->alpha == 1 ||
220 CCV(ccv, snd_cwnd) <= CCV(ccv, snd_ssthresh))
221 newreno_cc_ack_received(ccv, type);
222 else {
223 if (V_tcp_do_rfc3465) {
224 /* Increment cwnd by alpha segments. */
225 CCV(ccv, snd_cwnd) += htcp_data->alpha *
226 CCV(ccv, t_maxseg);
227 ccv->flags &= ~CCF_ABC_SENTAWND;
228 } else
229 /*
230 * Increment cwnd by alpha/cwnd segments to
231 * approximate an increase of alpha segments
232 * per RTT.
233 */
234 CCV(ccv, snd_cwnd) += (((htcp_data->alpha <<
235 HTCP_SHIFT) / (CCV(ccv, snd_cwnd) /
236 CCV(ccv, t_maxseg))) * CCV(ccv, t_maxseg))
237 >> HTCP_SHIFT;
238 }
239 }
240 }
241
242 static void
243 htcp_cb_destroy(struct cc_var *ccv)
244 {
245 free(ccv->cc_data, M_CC_MEM);
246 }
247
248 static size_t
249 htcp_data_sz(void)
250 {
251 return(sizeof(struct htcp));
252 }
253
254 static int
255 htcp_cb_init(struct cc_var *ccv, void *ptr)
256 {
257 struct htcp *htcp_data;
258
259 INP_WLOCK_ASSERT(tptoinpcb(ccv->ccvc.tcp));
260 if (ptr == NULL) {
261 htcp_data = malloc(sizeof(struct htcp), M_CC_MEM, M_NOWAIT);
262 if (htcp_data == NULL)
263 return (ENOMEM);
264 } else
265 htcp_data = ptr;
266
267 /* Init some key variables with sensible defaults. */
268 htcp_data->alpha = HTCP_INIT_ALPHA;
269 htcp_data->beta = HTCP_MINBETA;
270 htcp_data->maxrtt = TCPTV_SRTTBASE;
271 htcp_data->minrtt = TCPTV_SRTTBASE;
272 htcp_data->prev_cwnd = 0;
273 htcp_data->t_last_cong = ticks;
274
275 ccv->cc_data = htcp_data;
276
277 return (0);
278 }
279
280 /*
281 * Perform any necessary tasks before we enter congestion recovery.
282 */
283 static void
284 htcp_cong_signal(struct cc_var *ccv, uint32_t type)
285 {
286 struct htcp *htcp_data;
287 u_int mss;
288
289 htcp_data = ccv->cc_data;
290 mss = tcp_maxseg(ccv->ccvc.tcp);
291
292 switch (type) {
293 case CC_NDUPACK:
294 if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
295 if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
296 /*
297 * Apply hysteresis to maxrtt to ensure
298 * reductions in the RTT are reflected in our
299 * measurements.
300 */
301 htcp_data->maxrtt = (htcp_data->minrtt +
302 (htcp_data->maxrtt - htcp_data->minrtt) *
303 95) / 100;
304 htcp_ssthresh_update(ccv);
305 htcp_data->t_last_cong = ticks;
306 htcp_data->prev_cwnd = CCV(ccv, snd_cwnd);
307 }
308 ENTER_RECOVERY(CCV(ccv, t_flags));
309 }
310 break;
311
312 case CC_ECN:
313 if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
314 /*
315 * Apply hysteresis to maxrtt to ensure reductions in
316 * the RTT are reflected in our measurements.
317 */
318 htcp_data->maxrtt = (htcp_data->minrtt + (htcp_data->maxrtt -
319 htcp_data->minrtt) * 95) / 100;
320 htcp_ssthresh_update(ccv);
321 CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
322 htcp_data->t_last_cong = ticks;
323 htcp_data->prev_cwnd = CCV(ccv, snd_cwnd);
324 ENTER_CONGRECOVERY(CCV(ccv, t_flags));
325 }
326 break;
327
328 case CC_RTO:
329 CCV(ccv, snd_ssthresh) = max(min(CCV(ccv, snd_wnd),
330 CCV(ccv, snd_cwnd)) / 2 / mss,
331 2) * mss;
332 CCV(ccv, snd_cwnd) = mss;
333 /*
334 * Grab the current time and record it so we know when the
335 * most recent congestion event was. Only record it when the
336 * timeout has fired more than once, as there is a reasonable
337 * chance the first one is a false alarm and may not indicate
338 * congestion.
339 */
340 if (CCV(ccv, t_rxtshift) >= 2)
341 htcp_data->t_last_cong = ticks;
342 break;
343 }
344 }
345
346 static int
347 htcp_mod_init(void)
348 {
349 /*
350 * HTCP_RTT_REF is defined in ms, and t_srtt in the tcpcb is stored in
351 * units of TCP_RTT_SCALE*hz. Scale HTCP_RTT_REF to be in the same units
352 * as t_srtt.
353 */
354 htcp_rtt_ref = (HTCP_RTT_REF * TCP_RTT_SCALE * hz) / 1000;
355 return (0);
356 }
357
358 /*
359 * Perform any necessary tasks before we exit congestion recovery.
360 */
361 static void
362 htcp_post_recovery(struct cc_var *ccv)
363 {
364 int pipe;
365 struct htcp *htcp_data;
366
367 pipe = 0;
368 htcp_data = ccv->cc_data;
369
370 if (IN_FASTRECOVERY(CCV(ccv, t_flags))) {
371 /*
372 * If inflight data is less than ssthresh, set cwnd
373 * conservatively to avoid a burst of data, as suggested in the
374 * NewReno RFC. Otherwise, use the HTCP method.
375 *
376 * XXXLAS: Find a way to do this without needing curack
377 */
378 if (V_tcp_do_newsack)
379 pipe = tcp_compute_pipe(ccv->ccvc.tcp);
380 else
381 pipe = CCV(ccv, snd_max) - ccv->curack;
382
383 if (pipe < CCV(ccv, snd_ssthresh))
384 /*
385 * Ensure that cwnd down not collape to 1 MSS under
386 * adverse conditions. Implements RFC6582
387 */
388 CCV(ccv, snd_cwnd) = max(pipe, CCV(ccv, t_maxseg)) +
389 CCV(ccv, t_maxseg);
390 else
391 CCV(ccv, snd_cwnd) = max(1, ((htcp_data->beta *
392 htcp_data->prev_cwnd / CCV(ccv, t_maxseg))
393 >> HTCP_SHIFT)) * CCV(ccv, t_maxseg);
394 }
395 }
396
397 static void
398 htcp_recalc_alpha(struct cc_var *ccv)
399 {
400 struct htcp *htcp_data;
401 int alpha, diff, now;
402
403 htcp_data = ccv->cc_data;
404 now = ticks;
405
406 /*
407 * If ticks has wrapped around (will happen approximately once every 49
408 * days on a machine with the default kern.hz=1000) and a flow straddles
409 * the wrap point, our alpha calcs will be completely wrong. We cut our
410 * losses and restart alpha from scratch by setting t_last_cong = now -
411 * HTCP_DELTA_L.
412 *
413 * This does not deflate our cwnd at all. It simply slows the rate cwnd
414 * is growing by until alpha regains the value it held prior to taking
415 * this drastic measure.
416 */
417 if (now < htcp_data->t_last_cong)
418 htcp_data->t_last_cong = now - HTCP_DELTA_L;
419
420 diff = now - htcp_data->t_last_cong - HTCP_DELTA_L;
421
422 /* Cap alpha if the value of diff would overflow HTCP_CALC_ALPHA(). */
423 if (diff < htcp_max_diff) {
424 /*
425 * If it has been more than HTCP_DELTA_L ticks since congestion,
426 * increase alpha according to the function defined in the spec.
427 */
428 if (diff > 0) {
429 alpha = HTCP_CALC_ALPHA(diff);
430
431 /*
432 * Adaptive backoff fairness adjustment:
433 * 2 * (1 - beta) * alpha_raw
434 */
435 if (V_htcp_adaptive_backoff)
436 alpha = max(1, (2 * ((1 << HTCP_SHIFT) -
437 htcp_data->beta) * alpha) >> HTCP_SHIFT);
438
439 /*
440 * RTT scaling: (RTT / RTT_ref) * alpha
441 * alpha will be the raw value from HTCP_CALC_ALPHA() if
442 * adaptive backoff is off, or the adjusted value if
443 * adaptive backoff is on.
444 */
445 if (V_htcp_rtt_scaling)
446 alpha = max(1, (min(max(HTCP_MINROWE,
447 (CCV(ccv, t_srtt) << HTCP_SHIFT) /
448 htcp_rtt_ref), HTCP_MAXROWE) * alpha)
449 >> HTCP_SHIFT);
450
451 } else
452 alpha = 1;
453
454 htcp_data->alpha = alpha;
455 }
456 }
457
458 static void
459 htcp_recalc_beta(struct cc_var *ccv)
460 {
461 struct htcp *htcp_data;
462
463 htcp_data = ccv->cc_data;
464
465 /*
466 * TCPTV_SRTTBASE is the initialised value of each connection's SRTT, so
467 * we only calc beta if the connection's SRTT has been changed from its
468 * initial value. beta is bounded to ensure it is always between
469 * HTCP_MINBETA and HTCP_MAXBETA.
470 */
471 if (V_htcp_adaptive_backoff && htcp_data->minrtt != TCPTV_SRTTBASE &&
472 htcp_data->maxrtt != TCPTV_SRTTBASE)
473 htcp_data->beta = min(max(HTCP_MINBETA,
474 (htcp_data->minrtt << HTCP_SHIFT) / htcp_data->maxrtt),
475 HTCP_MAXBETA);
476 else
477 htcp_data->beta = HTCP_MINBETA;
478 }
479
480 /*
481 * Record the minimum and maximum RTT seen for the connection. These are used in
482 * the calculation of beta if adaptive backoff is enabled.
483 */
484 static void
485 htcp_record_rtt(struct cc_var *ccv)
486 {
487 struct htcp *htcp_data;
488
489 htcp_data = ccv->cc_data;
490
491 /* XXXLAS: Should there be some hysteresis for minrtt? */
492
493 /*
494 * Record the current SRTT as our minrtt if it's the smallest we've seen
495 * or minrtt is currently equal to its initialised value. Ignore SRTT
496 * until a min number of samples have been taken.
497 */
498 if ((CCV(ccv, t_srtt) < htcp_data->minrtt ||
499 htcp_data->minrtt == TCPTV_SRTTBASE) &&
500 (CCV(ccv, t_rttupdated) >= HTCP_MIN_RTT_SAMPLES))
501 htcp_data->minrtt = CCV(ccv, t_srtt);
502
503 /*
504 * Record the current SRTT as our maxrtt if it's the largest we've
505 * seen. Ignore SRTT until a min number of samples have been taken.
506 */
507 if (CCV(ccv, t_srtt) > htcp_data->maxrtt
508 && CCV(ccv, t_rttupdated) >= HTCP_MIN_RTT_SAMPLES)
509 htcp_data->maxrtt = CCV(ccv, t_srtt);
510 }
511
512 /*
513 * Update the ssthresh in the event of congestion.
514 */
515 static void
516 htcp_ssthresh_update(struct cc_var *ccv)
517 {
518 struct htcp *htcp_data;
519
520 htcp_data = ccv->cc_data;
521
522 /*
523 * On the first congestion event, set ssthresh to cwnd * 0.5, on
524 * subsequent congestion events, set it to cwnd * beta.
525 */
526 if (CCV(ccv, snd_ssthresh) == TCP_MAXWIN << TCP_MAX_WINSHIFT)
527 CCV(ccv, snd_ssthresh) = ((u_long)CCV(ccv, snd_cwnd) *
528 HTCP_MINBETA) >> HTCP_SHIFT;
529 else {
530 htcp_recalc_beta(ccv);
531 CCV(ccv, snd_ssthresh) = ((u_long)CCV(ccv, snd_cwnd) *
532 htcp_data->beta) >> HTCP_SHIFT;
533 }
534 }
535
536 SYSCTL_DECL(_net_inet_tcp_cc_htcp);
537 SYSCTL_NODE(_net_inet_tcp_cc, OID_AUTO, htcp, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
538 "H-TCP related settings");
539 SYSCTL_UINT(_net_inet_tcp_cc_htcp, OID_AUTO, adaptive_backoff,
540 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(htcp_adaptive_backoff), 0,
541 "enable H-TCP adaptive backoff");
542 SYSCTL_UINT(_net_inet_tcp_cc_htcp, OID_AUTO, rtt_scaling,
543 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(htcp_rtt_scaling), 0,
544 "enable H-TCP RTT scaling");
545
546 DECLARE_CC_MODULE(htcp, &htcp_cc_algo);
547 MODULE_VERSION(htcp, 2);
Cache object: a179fe960e95adf449c4c4c4fcfe766d
|