The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/in_pcb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2007-2009 Robert N. M. Watson
    5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
    6  * All rights reserved.
    7  *
    8  * Portions of this software were developed by Robert N. M. Watson under
    9  * contract to Juniper Networks, Inc.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 4. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/10.0/sys/netinet/in_pcb.c 253282 2013-07-12 19:08:33Z trociny $");
   40 
   41 #include "opt_ddb.h"
   42 #include "opt_ipsec.h"
   43 #include "opt_inet.h"
   44 #include "opt_inet6.h"
   45 #include "opt_pcbgroup.h"
   46 
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/callout.h>
   52 #include <sys/domain.h>
   53 #include <sys/protosw.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/refcount.h>
   59 #include <sys/jail.h>
   60 #include <sys/kernel.h>
   61 #include <sys/sysctl.h>
   62 
   63 #ifdef DDB
   64 #include <ddb/ddb.h>
   65 #endif
   66 
   67 #include <vm/uma.h>
   68 
   69 #include <net/if.h>
   70 #include <net/if_types.h>
   71 #include <net/route.h>
   72 #include <net/vnet.h>
   73 
   74 #if defined(INET) || defined(INET6)
   75 #include <netinet/in.h>
   76 #include <netinet/in_pcb.h>
   77 #include <netinet/ip_var.h>
   78 #include <netinet/tcp_var.h>
   79 #include <netinet/udp.h>
   80 #include <netinet/udp_var.h>
   81 #endif
   82 #ifdef INET
   83 #include <netinet/in_var.h>
   84 #endif
   85 #ifdef INET6
   86 #include <netinet/ip6.h>
   87 #include <netinet6/in6_pcb.h>
   88 #include <netinet6/in6_var.h>
   89 #include <netinet6/ip6_var.h>
   90 #endif /* INET6 */
   91 
   92 
   93 #ifdef IPSEC
   94 #include <netipsec/ipsec.h>
   95 #include <netipsec/key.h>
   96 #endif /* IPSEC */
   97 
   98 #include <security/mac/mac_framework.h>
   99 
  100 static struct callout   ipport_tick_callout;
  101 
  102 /*
  103  * These configure the range of local port addresses assigned to
  104  * "unspecified" outgoing connections/packets/whatever.
  105  */
  106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
  107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
  108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
  109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
  110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
  111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
  112 
  113 /*
  114  * Reserved ports accessible only to root. There are significant
  115  * security considerations that must be accounted for when changing these,
  116  * but the security benefits can be great. Please be careful.
  117  */
  118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
  119 VNET_DEFINE(int, ipport_reservedlow);
  120 
  121 /* Variables dealing with random ephemeral port allocation. */
  122 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
  123 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
  124 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
  125 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
  126 VNET_DEFINE(int, ipport_tcpallocs);
  127 static VNET_DEFINE(int, ipport_tcplastcount);
  128 
  129 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
  130 
  131 static void     in_pcbremlists(struct inpcb *inp);
  132 #ifdef INET
  133 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
  134                             struct in_addr faddr, u_int fport_arg,
  135                             struct in_addr laddr, u_int lport_arg,
  136                             int lookupflags, struct ifnet *ifp);
  137 
  138 #define RANGECHK(var, min, max) \
  139         if ((var) < (min)) { (var) = (min); } \
  140         else if ((var) > (max)) { (var) = (max); }
  141 
  142 static int
  143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
  144 {
  145         int error;
  146 
  147 #ifdef VIMAGE
  148         error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
  149 #else
  150         error = sysctl_handle_int(oidp, arg1, arg2, req);
  151 #endif
  152         if (error == 0) {
  153                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
  154                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
  155                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
  156                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
  157                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
  158                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
  159         }
  160         return (error);
  161 }
  162 
  163 #undef RANGECHK
  164 
  165 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
  166     "IP Ports");
  167 
  168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
  169         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
  170         &sysctl_net_ipport_check, "I", "");
  171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
  172         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
  173         &sysctl_net_ipport_check, "I", "");
  174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
  175         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
  176         &sysctl_net_ipport_check, "I", "");
  177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
  178         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
  179         &sysctl_net_ipport_check, "I", "");
  180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
  181         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
  182         &sysctl_net_ipport_check, "I", "");
  183 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
  184         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
  185         &sysctl_net_ipport_check, "I", "");
  186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
  187         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
  188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
  189         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
  190 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
  191         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
  192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
  193         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
  194         "allocations before switching to a sequental one");
  195 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
  196         &VNET_NAME(ipport_randomtime), 0,
  197         "Minimum time to keep sequental port "
  198         "allocation before switching to a random one");
  199 #endif /* INET */
  200 
  201 /*
  202  * in_pcb.c: manage the Protocol Control Blocks.
  203  *
  204  * NOTE: It is assumed that most of these functions will be called with
  205  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
  206  * functions often modify hash chains or addresses in pcbs.
  207  */
  208 
  209 /*
  210  * Initialize an inpcbinfo -- we should be able to reduce the number of
  211  * arguments in time.
  212  */
  213 void
  214 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
  215     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
  216     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
  217     uint32_t inpcbzone_flags, u_int hashfields)
  218 {
  219 
  220         INP_INFO_LOCK_INIT(pcbinfo, name);
  221         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
  222 #ifdef VIMAGE
  223         pcbinfo->ipi_vnet = curvnet;
  224 #endif
  225         pcbinfo->ipi_listhead = listhead;
  226         LIST_INIT(pcbinfo->ipi_listhead);
  227         pcbinfo->ipi_count = 0;
  228         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
  229             &pcbinfo->ipi_hashmask);
  230         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
  231             &pcbinfo->ipi_porthashmask);
  232 #ifdef PCBGROUP
  233         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
  234 #endif
  235         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
  236             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
  237             inpcbzone_flags);
  238         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
  239         uma_zone_set_warning(pcbinfo->ipi_zone,
  240             "kern.ipc.maxsockets limit reached");
  241 }
  242 
  243 /*
  244  * Destroy an inpcbinfo.
  245  */
  246 void
  247 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
  248 {
  249 
  250         KASSERT(pcbinfo->ipi_count == 0,
  251             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
  252 
  253         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
  254         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
  255             pcbinfo->ipi_porthashmask);
  256 #ifdef PCBGROUP
  257         in_pcbgroup_destroy(pcbinfo);
  258 #endif
  259         uma_zdestroy(pcbinfo->ipi_zone);
  260         INP_HASH_LOCK_DESTROY(pcbinfo);
  261         INP_INFO_LOCK_DESTROY(pcbinfo);
  262 }
  263 
  264 /*
  265  * Allocate a PCB and associate it with the socket.
  266  * On success return with the PCB locked.
  267  */
  268 int
  269 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
  270 {
  271         struct inpcb *inp;
  272         int error;
  273 
  274         INP_INFO_WLOCK_ASSERT(pcbinfo);
  275         error = 0;
  276         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
  277         if (inp == NULL)
  278                 return (ENOBUFS);
  279         bzero(inp, inp_zero_size);
  280         inp->inp_pcbinfo = pcbinfo;
  281         inp->inp_socket = so;
  282         inp->inp_cred = crhold(so->so_cred);
  283         inp->inp_inc.inc_fibnum = so->so_fibnum;
  284 #ifdef MAC
  285         error = mac_inpcb_init(inp, M_NOWAIT);
  286         if (error != 0)
  287                 goto out;
  288         mac_inpcb_create(so, inp);
  289 #endif
  290 #ifdef IPSEC
  291         error = ipsec_init_policy(so, &inp->inp_sp);
  292         if (error != 0) {
  293 #ifdef MAC
  294                 mac_inpcb_destroy(inp);
  295 #endif
  296                 goto out;
  297         }
  298 #endif /*IPSEC*/
  299 #ifdef INET6
  300         if (INP_SOCKAF(so) == AF_INET6) {
  301                 inp->inp_vflag |= INP_IPV6PROTO;
  302                 if (V_ip6_v6only)
  303                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
  304         }
  305 #endif
  306         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
  307         pcbinfo->ipi_count++;
  308         so->so_pcb = (caddr_t)inp;
  309 #ifdef INET6
  310         if (V_ip6_auto_flowlabel)
  311                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
  312 #endif
  313         INP_WLOCK(inp);
  314         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
  315         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
  316 #if defined(IPSEC) || defined(MAC)
  317 out:
  318         if (error != 0) {
  319                 crfree(inp->inp_cred);
  320                 uma_zfree(pcbinfo->ipi_zone, inp);
  321         }
  322 #endif
  323         return (error);
  324 }
  325 
  326 #ifdef INET
  327 int
  328 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  329 {
  330         int anonport, error;
  331 
  332         INP_WLOCK_ASSERT(inp);
  333         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
  334 
  335         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
  336                 return (EINVAL);
  337         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
  338         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
  339             &inp->inp_lport, cred);
  340         if (error)
  341                 return (error);
  342         if (in_pcbinshash(inp) != 0) {
  343                 inp->inp_laddr.s_addr = INADDR_ANY;
  344                 inp->inp_lport = 0;
  345                 return (EAGAIN);
  346         }
  347         if (anonport)
  348                 inp->inp_flags |= INP_ANONPORT;
  349         return (0);
  350 }
  351 #endif
  352 
  353 #if defined(INET) || defined(INET6)
  354 int
  355 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
  356     struct ucred *cred, int lookupflags)
  357 {
  358         struct inpcbinfo *pcbinfo;
  359         struct inpcb *tmpinp;
  360         unsigned short *lastport;
  361         int count, dorandom, error;
  362         u_short aux, first, last, lport;
  363 #ifdef INET
  364         struct in_addr laddr;
  365 #endif
  366 
  367         pcbinfo = inp->inp_pcbinfo;
  368 
  369         /*
  370          * Because no actual state changes occur here, a global write lock on
  371          * the pcbinfo isn't required.
  372          */
  373         INP_LOCK_ASSERT(inp);
  374         INP_HASH_LOCK_ASSERT(pcbinfo);
  375 
  376         if (inp->inp_flags & INP_HIGHPORT) {
  377                 first = V_ipport_hifirstauto;   /* sysctl */
  378                 last  = V_ipport_hilastauto;
  379                 lastport = &pcbinfo->ipi_lasthi;
  380         } else if (inp->inp_flags & INP_LOWPORT) {
  381                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
  382                 if (error)
  383                         return (error);
  384                 first = V_ipport_lowfirstauto;  /* 1023 */
  385                 last  = V_ipport_lowlastauto;   /* 600 */
  386                 lastport = &pcbinfo->ipi_lastlow;
  387         } else {
  388                 first = V_ipport_firstauto;     /* sysctl */
  389                 last  = V_ipport_lastauto;
  390                 lastport = &pcbinfo->ipi_lastport;
  391         }
  392         /*
  393          * For UDP, use random port allocation as long as the user
  394          * allows it.  For TCP (and as of yet unknown) connections,
  395          * use random port allocation only if the user allows it AND
  396          * ipport_tick() allows it.
  397          */
  398         if (V_ipport_randomized &&
  399                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
  400                 dorandom = 1;
  401         else
  402                 dorandom = 0;
  403         /*
  404          * It makes no sense to do random port allocation if
  405          * we have the only port available.
  406          */
  407         if (first == last)
  408                 dorandom = 0;
  409         /* Make sure to not include UDP packets in the count. */
  410         if (pcbinfo != &V_udbinfo)
  411                 V_ipport_tcpallocs++;
  412         /*
  413          * Instead of having two loops further down counting up or down
  414          * make sure that first is always <= last and go with only one
  415          * code path implementing all logic.
  416          */
  417         if (first > last) {
  418                 aux = first;
  419                 first = last;
  420                 last = aux;
  421         }
  422 
  423 #ifdef INET
  424         /* Make the compiler happy. */
  425         laddr.s_addr = 0;
  426         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
  427                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
  428                     __func__, inp));
  429                 laddr = *laddrp;
  430         }
  431 #endif
  432         tmpinp = NULL;  /* Make compiler happy. */
  433         lport = *lportp;
  434 
  435         if (dorandom)
  436                 *lastport = first + (arc4random() % (last - first));
  437 
  438         count = last - first;
  439 
  440         do {
  441                 if (count-- < 0)        /* completely used? */
  442                         return (EADDRNOTAVAIL);
  443                 ++*lastport;
  444                 if (*lastport < first || *lastport > last)
  445                         *lastport = first;
  446                 lport = htons(*lastport);
  447 
  448 #ifdef INET6
  449                 if ((inp->inp_vflag & INP_IPV6) != 0)
  450                         tmpinp = in6_pcblookup_local(pcbinfo,
  451                             &inp->in6p_laddr, lport, lookupflags, cred);
  452 #endif
  453 #if defined(INET) && defined(INET6)
  454                 else
  455 #endif
  456 #ifdef INET
  457                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
  458                             lport, lookupflags, cred);
  459 #endif
  460         } while (tmpinp != NULL);
  461 
  462 #ifdef INET
  463         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
  464                 laddrp->s_addr = laddr.s_addr;
  465 #endif                 
  466         *lportp = lport;
  467 
  468         return (0);
  469 }
  470 
  471 /*
  472  * Return cached socket options.
  473  */
  474 short
  475 inp_so_options(const struct inpcb *inp)
  476 {
  477    short so_options;
  478 
  479    so_options = 0;
  480 
  481    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
  482            so_options |= SO_REUSEPORT;
  483    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
  484            so_options |= SO_REUSEADDR;
  485    return (so_options);
  486 }
  487 #endif /* INET || INET6 */
  488 
  489 #ifdef INET
  490 /*
  491  * Set up a bind operation on a PCB, performing port allocation
  492  * as required, but do not actually modify the PCB. Callers can
  493  * either complete the bind by setting inp_laddr/inp_lport and
  494  * calling in_pcbinshash(), or they can just use the resulting
  495  * port and address to authorise the sending of a once-off packet.
  496  *
  497  * On error, the values of *laddrp and *lportp are not changed.
  498  */
  499 int
  500 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
  501     u_short *lportp, struct ucred *cred)
  502 {
  503         struct socket *so = inp->inp_socket;
  504         struct sockaddr_in *sin;
  505         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
  506         struct in_addr laddr;
  507         u_short lport = 0;
  508         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
  509         int error;
  510 
  511         /*
  512          * No state changes, so read locks are sufficient here.
  513          */
  514         INP_LOCK_ASSERT(inp);
  515         INP_HASH_LOCK_ASSERT(pcbinfo);
  516 
  517         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
  518                 return (EADDRNOTAVAIL);
  519         laddr.s_addr = *laddrp;
  520         if (nam != NULL && laddr.s_addr != INADDR_ANY)
  521                 return (EINVAL);
  522         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
  523                 lookupflags = INPLOOKUP_WILDCARD;
  524         if (nam == NULL) {
  525                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
  526                         return (error);
  527         } else {
  528                 sin = (struct sockaddr_in *)nam;
  529                 if (nam->sa_len != sizeof (*sin))
  530                         return (EINVAL);
  531 #ifdef notdef
  532                 /*
  533                  * We should check the family, but old programs
  534                  * incorrectly fail to initialize it.
  535                  */
  536                 if (sin->sin_family != AF_INET)
  537                         return (EAFNOSUPPORT);
  538 #endif
  539                 error = prison_local_ip4(cred, &sin->sin_addr);
  540                 if (error)
  541                         return (error);
  542                 if (sin->sin_port != *lportp) {
  543                         /* Don't allow the port to change. */
  544                         if (*lportp != 0)
  545                                 return (EINVAL);
  546                         lport = sin->sin_port;
  547                 }
  548                 /* NB: lport is left as 0 if the port isn't being changed. */
  549                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
  550                         /*
  551                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
  552                          * allow complete duplication of binding if
  553                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
  554                          * and a multicast address is bound on both
  555                          * new and duplicated sockets.
  556                          */
  557                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
  558                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
  559                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
  560                         sin->sin_port = 0;              /* yech... */
  561                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
  562                         /*
  563                          * Is the address a local IP address? 
  564                          * If INP_BINDANY is set, then the socket may be bound
  565                          * to any endpoint address, local or not.
  566                          */
  567                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
  568                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
  569                                 return (EADDRNOTAVAIL);
  570                 }
  571                 laddr = sin->sin_addr;
  572                 if (lport) {
  573                         struct inpcb *t;
  574                         struct tcptw *tw;
  575 
  576                         /* GROSS */
  577                         if (ntohs(lport) <= V_ipport_reservedhigh &&
  578                             ntohs(lport) >= V_ipport_reservedlow &&
  579                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
  580                             0))
  581                                 return (EACCES);
  582                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
  583                             priv_check_cred(inp->inp_cred,
  584                             PRIV_NETINET_REUSEPORT, 0) != 0) {
  585                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  586                                     lport, INPLOOKUP_WILDCARD, cred);
  587         /*
  588          * XXX
  589          * This entire block sorely needs a rewrite.
  590          */
  591                                 if (t &&
  592                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
  593                                     (so->so_type != SOCK_STREAM ||
  594                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
  595                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
  596                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
  597                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
  598                                     (inp->inp_cred->cr_uid !=
  599                                      t->inp_cred->cr_uid))
  600                                         return (EADDRINUSE);
  601                         }
  602                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  603                             lport, lookupflags, cred);
  604                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
  605                                 /*
  606                                  * XXXRW: If an incpb has had its timewait
  607                                  * state recycled, we treat the address as
  608                                  * being in use (for now).  This is better
  609                                  * than a panic, but not desirable.
  610                                  */
  611                                 tw = intotw(t);
  612                                 if (tw == NULL ||
  613                                     (reuseport & tw->tw_so_options) == 0)
  614                                         return (EADDRINUSE);
  615                         } else if (t && (reuseport & inp_so_options(t)) == 0) {
  616 #ifdef INET6
  617                                 if (ntohl(sin->sin_addr.s_addr) !=
  618                                     INADDR_ANY ||
  619                                     ntohl(t->inp_laddr.s_addr) !=
  620                                     INADDR_ANY ||
  621                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
  622                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
  623 #endif
  624                                 return (EADDRINUSE);
  625                         }
  626                 }
  627         }
  628         if (*lportp != 0)
  629                 lport = *lportp;
  630         if (lport == 0) {
  631                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
  632                 if (error != 0)
  633                         return (error);
  634 
  635         }
  636         *laddrp = laddr.s_addr;
  637         *lportp = lport;
  638         return (0);
  639 }
  640 
  641 /*
  642  * Connect from a socket to a specified address.
  643  * Both address and port must be specified in argument sin.
  644  * If don't have a local address for this socket yet,
  645  * then pick one.
  646  */
  647 int
  648 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
  649     struct ucred *cred, struct mbuf *m)
  650 {
  651         u_short lport, fport;
  652         in_addr_t laddr, faddr;
  653         int anonport, error;
  654 
  655         INP_WLOCK_ASSERT(inp);
  656         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
  657 
  658         lport = inp->inp_lport;
  659         laddr = inp->inp_laddr.s_addr;
  660         anonport = (lport == 0);
  661         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
  662             NULL, cred);
  663         if (error)
  664                 return (error);
  665 
  666         /* Do the initial binding of the local address if required. */
  667         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
  668                 inp->inp_lport = lport;
  669                 inp->inp_laddr.s_addr = laddr;
  670                 if (in_pcbinshash(inp) != 0) {
  671                         inp->inp_laddr.s_addr = INADDR_ANY;
  672                         inp->inp_lport = 0;
  673                         return (EAGAIN);
  674                 }
  675         }
  676 
  677         /* Commit the remaining changes. */
  678         inp->inp_lport = lport;
  679         inp->inp_laddr.s_addr = laddr;
  680         inp->inp_faddr.s_addr = faddr;
  681         inp->inp_fport = fport;
  682         in_pcbrehash_mbuf(inp, m);
  683 
  684         if (anonport)
  685                 inp->inp_flags |= INP_ANONPORT;
  686         return (0);
  687 }
  688 
  689 int
  690 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  691 {
  692 
  693         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
  694 }
  695 
  696 /*
  697  * Do proper source address selection on an unbound socket in case
  698  * of connect. Take jails into account as well.
  699  */
  700 static int
  701 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
  702     struct ucred *cred)
  703 {
  704         struct ifaddr *ifa;
  705         struct sockaddr *sa;
  706         struct sockaddr_in *sin;
  707         struct route sro;
  708         int error;
  709 
  710         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
  711 
  712         /*
  713          * Bypass source address selection and use the primary jail IP
  714          * if requested.
  715          */
  716         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
  717                 return (0);
  718 
  719         error = 0;
  720         bzero(&sro, sizeof(sro));
  721 
  722         sin = (struct sockaddr_in *)&sro.ro_dst;
  723         sin->sin_family = AF_INET;
  724         sin->sin_len = sizeof(struct sockaddr_in);
  725         sin->sin_addr.s_addr = faddr->s_addr;
  726 
  727         /*
  728          * If route is known our src addr is taken from the i/f,
  729          * else punt.
  730          *
  731          * Find out route to destination.
  732          */
  733         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
  734                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
  735 
  736         /*
  737          * If we found a route, use the address corresponding to
  738          * the outgoing interface.
  739          * 
  740          * Otherwise assume faddr is reachable on a directly connected
  741          * network and try to find a corresponding interface to take
  742          * the source address from.
  743          */
  744         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
  745                 struct in_ifaddr *ia;
  746                 struct ifnet *ifp;
  747 
  748                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
  749                 if (ia == NULL)
  750                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
  751                 if (ia == NULL) {
  752                         error = ENETUNREACH;
  753                         goto done;
  754                 }
  755 
  756                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  757                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  758                         ifa_free(&ia->ia_ifa);
  759                         goto done;
  760                 }
  761 
  762                 ifp = ia->ia_ifp;
  763                 ifa_free(&ia->ia_ifa);
  764                 ia = NULL;
  765                 IF_ADDR_RLOCK(ifp);
  766                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  767 
  768                         sa = ifa->ifa_addr;
  769                         if (sa->sa_family != AF_INET)
  770                                 continue;
  771                         sin = (struct sockaddr_in *)sa;
  772                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  773                                 ia = (struct in_ifaddr *)ifa;
  774                                 break;
  775                         }
  776                 }
  777                 if (ia != NULL) {
  778                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  779                         IF_ADDR_RUNLOCK(ifp);
  780                         goto done;
  781                 }
  782                 IF_ADDR_RUNLOCK(ifp);
  783 
  784                 /* 3. As a last resort return the 'default' jail address. */
  785                 error = prison_get_ip4(cred, laddr);
  786                 goto done;
  787         }
  788 
  789         /*
  790          * If the outgoing interface on the route found is not
  791          * a loopback interface, use the address from that interface.
  792          * In case of jails do those three steps:
  793          * 1. check if the interface address belongs to the jail. If so use it.
  794          * 2. check if we have any address on the outgoing interface
  795          *    belonging to this jail. If so use it.
  796          * 3. as a last resort return the 'default' jail address.
  797          */
  798         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
  799                 struct in_ifaddr *ia;
  800                 struct ifnet *ifp;
  801 
  802                 /* If not jailed, use the default returned. */
  803                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  804                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  805                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  806                         goto done;
  807                 }
  808 
  809                 /* Jailed. */
  810                 /* 1. Check if the iface address belongs to the jail. */
  811                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
  812                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  813                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  814                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  815                         goto done;
  816                 }
  817 
  818                 /*
  819                  * 2. Check if we have any address on the outgoing interface
  820                  *    belonging to this jail.
  821                  */
  822                 ia = NULL;
  823                 ifp = sro.ro_rt->rt_ifp;
  824                 IF_ADDR_RLOCK(ifp);
  825                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  826                         sa = ifa->ifa_addr;
  827                         if (sa->sa_family != AF_INET)
  828                                 continue;
  829                         sin = (struct sockaddr_in *)sa;
  830                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  831                                 ia = (struct in_ifaddr *)ifa;
  832                                 break;
  833                         }
  834                 }
  835                 if (ia != NULL) {
  836                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  837                         IF_ADDR_RUNLOCK(ifp);
  838                         goto done;
  839                 }
  840                 IF_ADDR_RUNLOCK(ifp);
  841 
  842                 /* 3. As a last resort return the 'default' jail address. */
  843                 error = prison_get_ip4(cred, laddr);
  844                 goto done;
  845         }
  846 
  847         /*
  848          * The outgoing interface is marked with 'loopback net', so a route
  849          * to ourselves is here.
  850          * Try to find the interface of the destination address and then
  851          * take the address from there. That interface is not necessarily
  852          * a loopback interface.
  853          * In case of jails, check that it is an address of the jail
  854          * and if we cannot find, fall back to the 'default' jail address.
  855          */
  856         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
  857                 struct sockaddr_in sain;
  858                 struct in_ifaddr *ia;
  859 
  860                 bzero(&sain, sizeof(struct sockaddr_in));
  861                 sain.sin_family = AF_INET;
  862                 sain.sin_len = sizeof(struct sockaddr_in);
  863                 sain.sin_addr.s_addr = faddr->s_addr;
  864 
  865                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
  866                 if (ia == NULL)
  867                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
  868                 if (ia == NULL)
  869                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
  870 
  871                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  872                         if (ia == NULL) {
  873                                 error = ENETUNREACH;
  874                                 goto done;
  875                         }
  876                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  877                         ifa_free(&ia->ia_ifa);
  878                         goto done;
  879                 }
  880 
  881                 /* Jailed. */
  882                 if (ia != NULL) {
  883                         struct ifnet *ifp;
  884 
  885                         ifp = ia->ia_ifp;
  886                         ifa_free(&ia->ia_ifa);
  887                         ia = NULL;
  888                         IF_ADDR_RLOCK(ifp);
  889                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  890 
  891                                 sa = ifa->ifa_addr;
  892                                 if (sa->sa_family != AF_INET)
  893                                         continue;
  894                                 sin = (struct sockaddr_in *)sa;
  895                                 if (prison_check_ip4(cred,
  896                                     &sin->sin_addr) == 0) {
  897                                         ia = (struct in_ifaddr *)ifa;
  898                                         break;
  899                                 }
  900                         }
  901                         if (ia != NULL) {
  902                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  903                                 IF_ADDR_RUNLOCK(ifp);
  904                                 goto done;
  905                         }
  906                         IF_ADDR_RUNLOCK(ifp);
  907                 }
  908 
  909                 /* 3. As a last resort return the 'default' jail address. */
  910                 error = prison_get_ip4(cred, laddr);
  911                 goto done;
  912         }
  913 
  914 done:
  915         if (sro.ro_rt != NULL)
  916                 RTFREE(sro.ro_rt);
  917         return (error);
  918 }
  919 
  920 /*
  921  * Set up for a connect from a socket to the specified address.
  922  * On entry, *laddrp and *lportp should contain the current local
  923  * address and port for the PCB; these are updated to the values
  924  * that should be placed in inp_laddr and inp_lport to complete
  925  * the connect.
  926  *
  927  * On success, *faddrp and *fportp will be set to the remote address
  928  * and port. These are not updated in the error case.
  929  *
  930  * If the operation fails because the connection already exists,
  931  * *oinpp will be set to the PCB of that connection so that the
  932  * caller can decide to override it. In all other cases, *oinpp
  933  * is set to NULL.
  934  */
  935 int
  936 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
  937     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
  938     struct inpcb **oinpp, struct ucred *cred)
  939 {
  940         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
  941         struct in_ifaddr *ia;
  942         struct inpcb *oinp;
  943         struct in_addr laddr, faddr;
  944         u_short lport, fport;
  945         int error;
  946 
  947         /*
  948          * Because a global state change doesn't actually occur here, a read
  949          * lock is sufficient.
  950          */
  951         INP_LOCK_ASSERT(inp);
  952         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
  953 
  954         if (oinpp != NULL)
  955                 *oinpp = NULL;
  956         if (nam->sa_len != sizeof (*sin))
  957                 return (EINVAL);
  958         if (sin->sin_family != AF_INET)
  959                 return (EAFNOSUPPORT);
  960         if (sin->sin_port == 0)
  961                 return (EADDRNOTAVAIL);
  962         laddr.s_addr = *laddrp;
  963         lport = *lportp;
  964         faddr = sin->sin_addr;
  965         fport = sin->sin_port;
  966 
  967         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
  968                 /*
  969                  * If the destination address is INADDR_ANY,
  970                  * use the primary local address.
  971                  * If the supplied address is INADDR_BROADCAST,
  972                  * and the primary interface supports broadcast,
  973                  * choose the broadcast address for that interface.
  974                  */
  975                 if (faddr.s_addr == INADDR_ANY) {
  976                         IN_IFADDR_RLOCK();
  977                         faddr =
  978                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
  979                         IN_IFADDR_RUNLOCK();
  980                         if (cred != NULL &&
  981                             (error = prison_get_ip4(cred, &faddr)) != 0)
  982                                 return (error);
  983                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
  984                         IN_IFADDR_RLOCK();
  985                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
  986                             IFF_BROADCAST)
  987                                 faddr = satosin(&TAILQ_FIRST(
  988                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
  989                         IN_IFADDR_RUNLOCK();
  990                 }
  991         }
  992         if (laddr.s_addr == INADDR_ANY) {
  993                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
  994                 /*
  995                  * If the destination address is multicast and an outgoing
  996                  * interface has been set as a multicast option, prefer the
  997                  * address of that interface as our source address.
  998                  */
  999                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
 1000                     inp->inp_moptions != NULL) {
 1001                         struct ip_moptions *imo;
 1002                         struct ifnet *ifp;
 1003 
 1004                         imo = inp->inp_moptions;
 1005                         if (imo->imo_multicast_ifp != NULL) {
 1006                                 ifp = imo->imo_multicast_ifp;
 1007                                 IN_IFADDR_RLOCK();
 1008                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
 1009                                         if ((ia->ia_ifp == ifp) &&
 1010                                             (cred == NULL ||
 1011                                             prison_check_ip4(cred,
 1012                                             &ia->ia_addr.sin_addr) == 0))
 1013                                                 break;
 1014                                 }
 1015                                 if (ia == NULL)
 1016                                         error = EADDRNOTAVAIL;
 1017                                 else {
 1018                                         laddr = ia->ia_addr.sin_addr;
 1019                                         error = 0;
 1020                                 }
 1021                                 IN_IFADDR_RUNLOCK();
 1022                         }
 1023                 }
 1024                 if (error)
 1025                         return (error);
 1026         }
 1027         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
 1028             laddr, lport, 0, NULL);
 1029         if (oinp != NULL) {
 1030                 if (oinpp != NULL)
 1031                         *oinpp = oinp;
 1032                 return (EADDRINUSE);
 1033         }
 1034         if (lport == 0) {
 1035                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
 1036                     cred);
 1037                 if (error)
 1038                         return (error);
 1039         }
 1040         *laddrp = laddr.s_addr;
 1041         *lportp = lport;
 1042         *faddrp = faddr.s_addr;
 1043         *fportp = fport;
 1044         return (0);
 1045 }
 1046 
 1047 void
 1048 in_pcbdisconnect(struct inpcb *inp)
 1049 {
 1050 
 1051         INP_WLOCK_ASSERT(inp);
 1052         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
 1053 
 1054         inp->inp_faddr.s_addr = INADDR_ANY;
 1055         inp->inp_fport = 0;
 1056         in_pcbrehash(inp);
 1057 }
 1058 #endif /* INET */
 1059 
 1060 /*
 1061  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
 1062  * For most protocols, this will be invoked immediately prior to calling
 1063  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
 1064  * socket, in which case in_pcbfree() is deferred.
 1065  */
 1066 void
 1067 in_pcbdetach(struct inpcb *inp)
 1068 {
 1069 
 1070         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
 1071 
 1072         inp->inp_socket->so_pcb = NULL;
 1073         inp->inp_socket = NULL;
 1074 }
 1075 
 1076 /*
 1077  * in_pcbref() bumps the reference count on an inpcb in order to maintain
 1078  * stability of an inpcb pointer despite the inpcb lock being released.  This
 1079  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
 1080  * but where the inpcb lock may already held, or when acquiring a reference
 1081  * via a pcbgroup.
 1082  *
 1083  * in_pcbref() should be used only to provide brief memory stability, and
 1084  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
 1085  * garbage collect the inpcb if it has been in_pcbfree()'d from another
 1086  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
 1087  * lock and rele are the *only* safe operations that may be performed on the
 1088  * inpcb.
 1089  *
 1090  * While the inpcb will not be freed, releasing the inpcb lock means that the
 1091  * connection's state may change, so the caller should be careful to
 1092  * revalidate any cached state on reacquiring the lock.  Drop the reference
 1093  * using in_pcbrele().
 1094  */
 1095 void
 1096 in_pcbref(struct inpcb *inp)
 1097 {
 1098 
 1099         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1100 
 1101         refcount_acquire(&inp->inp_refcount);
 1102 }
 1103 
 1104 /*
 1105  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
 1106  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
 1107  * return a flag indicating whether or not the inpcb remains valid.  If it is
 1108  * valid, we return with the inpcb lock held.
 1109  *
 1110  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
 1111  * reference on an inpcb.  Historically more work was done here (actually, in
 1112  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
 1113  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
 1114  * about memory stability (and continued use of the write lock).
 1115  */
 1116 int
 1117 in_pcbrele_rlocked(struct inpcb *inp)
 1118 {
 1119         struct inpcbinfo *pcbinfo;
 1120 
 1121         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1122 
 1123         INP_RLOCK_ASSERT(inp);
 1124 
 1125         if (refcount_release(&inp->inp_refcount) == 0) {
 1126                 /*
 1127                  * If the inpcb has been freed, let the caller know, even if
 1128                  * this isn't the last reference.
 1129                  */
 1130                 if (inp->inp_flags2 & INP_FREED) {
 1131                         INP_RUNLOCK(inp);
 1132                         return (1);
 1133                 }
 1134                 return (0);
 1135         }
 1136 
 1137         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1138 
 1139         INP_RUNLOCK(inp);
 1140         pcbinfo = inp->inp_pcbinfo;
 1141         uma_zfree(pcbinfo->ipi_zone, inp);
 1142         return (1);
 1143 }
 1144 
 1145 int
 1146 in_pcbrele_wlocked(struct inpcb *inp)
 1147 {
 1148         struct inpcbinfo *pcbinfo;
 1149 
 1150         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1151 
 1152         INP_WLOCK_ASSERT(inp);
 1153 
 1154         if (refcount_release(&inp->inp_refcount) == 0)
 1155                 return (0);
 1156 
 1157         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1158 
 1159         INP_WUNLOCK(inp);
 1160         pcbinfo = inp->inp_pcbinfo;
 1161         uma_zfree(pcbinfo->ipi_zone, inp);
 1162         return (1);
 1163 }
 1164 
 1165 /*
 1166  * Temporary wrapper.
 1167  */
 1168 int
 1169 in_pcbrele(struct inpcb *inp)
 1170 {
 1171 
 1172         return (in_pcbrele_wlocked(inp));
 1173 }
 1174 
 1175 /*
 1176  * Unconditionally schedule an inpcb to be freed by decrementing its
 1177  * reference count, which should occur only after the inpcb has been detached
 1178  * from its socket.  If another thread holds a temporary reference (acquired
 1179  * using in_pcbref()) then the free is deferred until that reference is
 1180  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
 1181  * work, including removal from global lists, is done in this context, where
 1182  * the pcbinfo lock is held.
 1183  */
 1184 void
 1185 in_pcbfree(struct inpcb *inp)
 1186 {
 1187         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1188 
 1189         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1190 
 1191         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1192         INP_WLOCK_ASSERT(inp);
 1193 
 1194         /* XXXRW: Do as much as possible here. */
 1195 #ifdef IPSEC
 1196         if (inp->inp_sp != NULL)
 1197                 ipsec_delete_pcbpolicy(inp);
 1198 #endif
 1199         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 1200         in_pcbremlists(inp);
 1201 #ifdef INET6
 1202         if (inp->inp_vflag & INP_IPV6PROTO) {
 1203                 ip6_freepcbopts(inp->in6p_outputopts);
 1204                 if (inp->in6p_moptions != NULL)
 1205                         ip6_freemoptions(inp->in6p_moptions);
 1206         }
 1207 #endif
 1208         if (inp->inp_options)
 1209                 (void)m_free(inp->inp_options);
 1210 #ifdef INET
 1211         if (inp->inp_moptions != NULL)
 1212                 inp_freemoptions(inp->inp_moptions);
 1213 #endif
 1214         inp->inp_vflag = 0;
 1215         inp->inp_flags2 |= INP_FREED;
 1216         crfree(inp->inp_cred);
 1217 #ifdef MAC
 1218         mac_inpcb_destroy(inp);
 1219 #endif
 1220         if (!in_pcbrele_wlocked(inp))
 1221                 INP_WUNLOCK(inp);
 1222 }
 1223 
 1224 /*
 1225  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
 1226  * port reservation, and preventing it from being returned by inpcb lookups.
 1227  *
 1228  * It is used by TCP to mark an inpcb as unused and avoid future packet
 1229  * delivery or event notification when a socket remains open but TCP has
 1230  * closed.  This might occur as a result of a shutdown()-initiated TCP close
 1231  * or a RST on the wire, and allows the port binding to be reused while still
 1232  * maintaining the invariant that so_pcb always points to a valid inpcb until
 1233  * in_pcbdetach().
 1234  *
 1235  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
 1236  * in_pcbnotifyall() and in_pcbpurgeif0()?
 1237  */
 1238 void
 1239 in_pcbdrop(struct inpcb *inp)
 1240 {
 1241 
 1242         INP_WLOCK_ASSERT(inp);
 1243 
 1244         /*
 1245          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
 1246          * the hash lock...?
 1247          */
 1248         inp->inp_flags |= INP_DROPPED;
 1249         if (inp->inp_flags & INP_INHASHLIST) {
 1250                 struct inpcbport *phd = inp->inp_phd;
 1251 
 1252                 INP_HASH_WLOCK(inp->inp_pcbinfo);
 1253                 LIST_REMOVE(inp, inp_hash);
 1254                 LIST_REMOVE(inp, inp_portlist);
 1255                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 1256                         LIST_REMOVE(phd, phd_hash);
 1257                         free(phd, M_PCB);
 1258                 }
 1259                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
 1260                 inp->inp_flags &= ~INP_INHASHLIST;
 1261 #ifdef PCBGROUP
 1262                 in_pcbgroup_remove(inp);
 1263 #endif
 1264         }
 1265 }
 1266 
 1267 #ifdef INET
 1268 /*
 1269  * Common routines to return the socket addresses associated with inpcbs.
 1270  */
 1271 struct sockaddr *
 1272 in_sockaddr(in_port_t port, struct in_addr *addr_p)
 1273 {
 1274         struct sockaddr_in *sin;
 1275 
 1276         sin = malloc(sizeof *sin, M_SONAME,
 1277                 M_WAITOK | M_ZERO);
 1278         sin->sin_family = AF_INET;
 1279         sin->sin_len = sizeof(*sin);
 1280         sin->sin_addr = *addr_p;
 1281         sin->sin_port = port;
 1282 
 1283         return (struct sockaddr *)sin;
 1284 }
 1285 
 1286 int
 1287 in_getsockaddr(struct socket *so, struct sockaddr **nam)
 1288 {
 1289         struct inpcb *inp;
 1290         struct in_addr addr;
 1291         in_port_t port;
 1292 
 1293         inp = sotoinpcb(so);
 1294         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
 1295 
 1296         INP_RLOCK(inp);
 1297         port = inp->inp_lport;
 1298         addr = inp->inp_laddr;
 1299         INP_RUNLOCK(inp);
 1300 
 1301         *nam = in_sockaddr(port, &addr);
 1302         return 0;
 1303 }
 1304 
 1305 int
 1306 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
 1307 {
 1308         struct inpcb *inp;
 1309         struct in_addr addr;
 1310         in_port_t port;
 1311 
 1312         inp = sotoinpcb(so);
 1313         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
 1314 
 1315         INP_RLOCK(inp);
 1316         port = inp->inp_fport;
 1317         addr = inp->inp_faddr;
 1318         INP_RUNLOCK(inp);
 1319 
 1320         *nam = in_sockaddr(port, &addr);
 1321         return 0;
 1322 }
 1323 
 1324 void
 1325 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
 1326     struct inpcb *(*notify)(struct inpcb *, int))
 1327 {
 1328         struct inpcb *inp, *inp_temp;
 1329 
 1330         INP_INFO_WLOCK(pcbinfo);
 1331         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
 1332                 INP_WLOCK(inp);
 1333 #ifdef INET6
 1334                 if ((inp->inp_vflag & INP_IPV4) == 0) {
 1335                         INP_WUNLOCK(inp);
 1336                         continue;
 1337                 }
 1338 #endif
 1339                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
 1340                     inp->inp_socket == NULL) {
 1341                         INP_WUNLOCK(inp);
 1342                         continue;
 1343                 }
 1344                 if ((*notify)(inp, errno))
 1345                         INP_WUNLOCK(inp);
 1346         }
 1347         INP_INFO_WUNLOCK(pcbinfo);
 1348 }
 1349 
 1350 void
 1351 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
 1352 {
 1353         struct inpcb *inp;
 1354         struct ip_moptions *imo;
 1355         int i, gap;
 1356 
 1357         INP_INFO_RLOCK(pcbinfo);
 1358         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
 1359                 INP_WLOCK(inp);
 1360                 imo = inp->inp_moptions;
 1361                 if ((inp->inp_vflag & INP_IPV4) &&
 1362                     imo != NULL) {
 1363                         /*
 1364                          * Unselect the outgoing interface if it is being
 1365                          * detached.
 1366                          */
 1367                         if (imo->imo_multicast_ifp == ifp)
 1368                                 imo->imo_multicast_ifp = NULL;
 1369 
 1370                         /*
 1371                          * Drop multicast group membership if we joined
 1372                          * through the interface being detached.
 1373                          */
 1374                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
 1375                             i++) {
 1376                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
 1377                                         in_delmulti(imo->imo_membership[i]);
 1378                                         gap++;
 1379                                 } else if (gap != 0)
 1380                                         imo->imo_membership[i - gap] =
 1381                                             imo->imo_membership[i];
 1382                         }
 1383                         imo->imo_num_memberships -= gap;
 1384                 }
 1385                 INP_WUNLOCK(inp);
 1386         }
 1387         INP_INFO_RUNLOCK(pcbinfo);
 1388 }
 1389 
 1390 /*
 1391  * Lookup a PCB based on the local address and port.  Caller must hold the
 1392  * hash lock.  No inpcb locks or references are acquired.
 1393  */
 1394 #define INP_LOOKUP_MAPPED_PCB_COST      3
 1395 struct inpcb *
 1396 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
 1397     u_short lport, int lookupflags, struct ucred *cred)
 1398 {
 1399         struct inpcb *inp;
 1400 #ifdef INET6
 1401         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
 1402 #else
 1403         int matchwild = 3;
 1404 #endif
 1405         int wildcard;
 1406 
 1407         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 1408             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1409 
 1410         INP_HASH_LOCK_ASSERT(pcbinfo);
 1411 
 1412         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
 1413                 struct inpcbhead *head;
 1414                 /*
 1415                  * Look for an unconnected (wildcard foreign addr) PCB that
 1416                  * matches the local address and port we're looking for.
 1417                  */
 1418                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1419                     0, pcbinfo->ipi_hashmask)];
 1420                 LIST_FOREACH(inp, head, inp_hash) {
 1421 #ifdef INET6
 1422                         /* XXX inp locking */
 1423                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1424                                 continue;
 1425 #endif
 1426                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
 1427                             inp->inp_laddr.s_addr == laddr.s_addr &&
 1428                             inp->inp_lport == lport) {
 1429                                 /*
 1430                                  * Found?
 1431                                  */
 1432                                 if (cred == NULL ||
 1433                                     prison_equal_ip4(cred->cr_prison,
 1434                                         inp->inp_cred->cr_prison))
 1435                                         return (inp);
 1436                         }
 1437                 }
 1438                 /*
 1439                  * Not found.
 1440                  */
 1441                 return (NULL);
 1442         } else {
 1443                 struct inpcbporthead *porthash;
 1444                 struct inpcbport *phd;
 1445                 struct inpcb *match = NULL;
 1446                 /*
 1447                  * Best fit PCB lookup.
 1448                  *
 1449                  * First see if this local port is in use by looking on the
 1450                  * port hash list.
 1451                  */
 1452                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
 1453                     pcbinfo->ipi_porthashmask)];
 1454                 LIST_FOREACH(phd, porthash, phd_hash) {
 1455                         if (phd->phd_port == lport)
 1456                                 break;
 1457                 }
 1458                 if (phd != NULL) {
 1459                         /*
 1460                          * Port is in use by one or more PCBs. Look for best
 1461                          * fit.
 1462                          */
 1463                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
 1464                                 wildcard = 0;
 1465                                 if (cred != NULL &&
 1466                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
 1467                                         cred->cr_prison))
 1468                                         continue;
 1469 #ifdef INET6
 1470                                 /* XXX inp locking */
 1471                                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1472                                         continue;
 1473                                 /*
 1474                                  * We never select the PCB that has
 1475                                  * INP_IPV6 flag and is bound to :: if
 1476                                  * we have another PCB which is bound
 1477                                  * to 0.0.0.0.  If a PCB has the
 1478                                  * INP_IPV6 flag, then we set its cost
 1479                                  * higher than IPv4 only PCBs.
 1480                                  *
 1481                                  * Note that the case only happens
 1482                                  * when a socket is bound to ::, under
 1483                                  * the condition that the use of the
 1484                                  * mapped address is allowed.
 1485                                  */
 1486                                 if ((inp->inp_vflag & INP_IPV6) != 0)
 1487                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
 1488 #endif
 1489                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
 1490                                         wildcard++;
 1491                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
 1492                                         if (laddr.s_addr == INADDR_ANY)
 1493                                                 wildcard++;
 1494                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
 1495                                                 continue;
 1496                                 } else {
 1497                                         if (laddr.s_addr != INADDR_ANY)
 1498                                                 wildcard++;
 1499                                 }
 1500                                 if (wildcard < matchwild) {
 1501                                         match = inp;
 1502                                         matchwild = wildcard;
 1503                                         if (matchwild == 0)
 1504                                                 break;
 1505                                 }
 1506                         }
 1507                 }
 1508                 return (match);
 1509         }
 1510 }
 1511 #undef INP_LOOKUP_MAPPED_PCB_COST
 1512 
 1513 #ifdef PCBGROUP
 1514 /*
 1515  * Lookup PCB in hash list, using pcbgroup tables.
 1516  */
 1517 static struct inpcb *
 1518 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
 1519     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
 1520     u_int lport_arg, int lookupflags, struct ifnet *ifp)
 1521 {
 1522         struct inpcbhead *head;
 1523         struct inpcb *inp, *tmpinp;
 1524         u_short fport = fport_arg, lport = lport_arg;
 1525 
 1526         /*
 1527          * First look for an exact match.
 1528          */
 1529         tmpinp = NULL;
 1530         INP_GROUP_LOCK(pcbgroup);
 1531         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1532             pcbgroup->ipg_hashmask)];
 1533         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
 1534 #ifdef INET6
 1535                 /* XXX inp locking */
 1536                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1537                         continue;
 1538 #endif
 1539                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1540                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1541                     inp->inp_fport == fport &&
 1542                     inp->inp_lport == lport) {
 1543                         /*
 1544                          * XXX We should be able to directly return
 1545                          * the inp here, without any checks.
 1546                          * Well unless both bound with SO_REUSEPORT?
 1547                          */
 1548                         if (prison_flag(inp->inp_cred, PR_IP4))
 1549                                 goto found;
 1550                         if (tmpinp == NULL)
 1551                                 tmpinp = inp;
 1552                 }
 1553         }
 1554         if (tmpinp != NULL) {
 1555                 inp = tmpinp;
 1556                 goto found;
 1557         }
 1558 
 1559         /*
 1560          * Then look for a wildcard match, if requested.
 1561          */
 1562         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 1563                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1564 #ifdef INET6
 1565                 struct inpcb *local_wild_mapped = NULL;
 1566 #endif
 1567                 struct inpcb *jail_wild = NULL;
 1568                 struct inpcbhead *head;
 1569                 int injail;
 1570 
 1571                 /*
 1572                  * Order of socket selection - we always prefer jails.
 1573                  *      1. jailed, non-wild.
 1574                  *      2. jailed, wild.
 1575                  *      3. non-jailed, non-wild.
 1576                  *      4. non-jailed, wild.
 1577                  */
 1578                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
 1579                     0, pcbinfo->ipi_wildmask)];
 1580                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
 1581 #ifdef INET6
 1582                         /* XXX inp locking */
 1583                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1584                                 continue;
 1585 #endif
 1586                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1587                             inp->inp_lport != lport)
 1588                                 continue;
 1589 
 1590                         /* XXX inp locking */
 1591                         if (ifp && ifp->if_type == IFT_FAITH &&
 1592                             (inp->inp_flags & INP_FAITH) == 0)
 1593                                 continue;
 1594 
 1595                         injail = prison_flag(inp->inp_cred, PR_IP4);
 1596                         if (injail) {
 1597                                 if (prison_check_ip4(inp->inp_cred,
 1598                                     &laddr) != 0)
 1599                                         continue;
 1600                         } else {
 1601                                 if (local_exact != NULL)
 1602                                         continue;
 1603                         }
 1604 
 1605                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1606                                 if (injail)
 1607                                         goto found;
 1608                                 else
 1609                                         local_exact = inp;
 1610                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1611 #ifdef INET6
 1612                                 /* XXX inp locking, NULL check */
 1613                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1614                                         local_wild_mapped = inp;
 1615                                 else
 1616 #endif
 1617                                         if (injail)
 1618                                                 jail_wild = inp;
 1619                                         else
 1620                                                 local_wild = inp;
 1621                         }
 1622                 } /* LIST_FOREACH */
 1623                 inp = jail_wild;
 1624                 if (inp == NULL)
 1625                         inp = local_exact;
 1626                 if (inp == NULL)
 1627                         inp = local_wild;
 1628 #ifdef INET6
 1629                 if (inp == NULL)
 1630                         inp = local_wild_mapped;
 1631 #endif
 1632                 if (inp != NULL)
 1633                         goto found;
 1634         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
 1635         INP_GROUP_UNLOCK(pcbgroup);
 1636         return (NULL);
 1637 
 1638 found:
 1639         in_pcbref(inp);
 1640         INP_GROUP_UNLOCK(pcbgroup);
 1641         if (lookupflags & INPLOOKUP_WLOCKPCB) {
 1642                 INP_WLOCK(inp);
 1643                 if (in_pcbrele_wlocked(inp))
 1644                         return (NULL);
 1645         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 1646                 INP_RLOCK(inp);
 1647                 if (in_pcbrele_rlocked(inp))
 1648                         return (NULL);
 1649         } else
 1650                 panic("%s: locking bug", __func__);
 1651         return (inp);
 1652 }
 1653 #endif /* PCBGROUP */
 1654 
 1655 /*
 1656  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
 1657  * that the caller has locked the hash list, and will not perform any further
 1658  * locking or reference operations on either the hash list or the connection.
 1659  */
 1660 static struct inpcb *
 1661 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1662     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
 1663     struct ifnet *ifp)
 1664 {
 1665         struct inpcbhead *head;
 1666         struct inpcb *inp, *tmpinp;
 1667         u_short fport = fport_arg, lport = lport_arg;
 1668 
 1669         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 1670             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1671 
 1672         INP_HASH_LOCK_ASSERT(pcbinfo);
 1673 
 1674         /*
 1675          * First look for an exact match.
 1676          */
 1677         tmpinp = NULL;
 1678         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1679             pcbinfo->ipi_hashmask)];
 1680         LIST_FOREACH(inp, head, inp_hash) {
 1681 #ifdef INET6
 1682                 /* XXX inp locking */
 1683                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1684                         continue;
 1685 #endif
 1686                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1687                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1688                     inp->inp_fport == fport &&
 1689                     inp->inp_lport == lport) {
 1690                         /*
 1691                          * XXX We should be able to directly return
 1692                          * the inp here, without any checks.
 1693                          * Well unless both bound with SO_REUSEPORT?
 1694                          */
 1695                         if (prison_flag(inp->inp_cred, PR_IP4))
 1696                                 return (inp);
 1697                         if (tmpinp == NULL)
 1698                                 tmpinp = inp;
 1699                 }
 1700         }
 1701         if (tmpinp != NULL)
 1702                 return (tmpinp);
 1703 
 1704         /*
 1705          * Then look for a wildcard match, if requested.
 1706          */
 1707         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 1708                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1709 #ifdef INET6
 1710                 struct inpcb *local_wild_mapped = NULL;
 1711 #endif
 1712                 struct inpcb *jail_wild = NULL;
 1713                 int injail;
 1714 
 1715                 /*
 1716                  * Order of socket selection - we always prefer jails.
 1717                  *      1. jailed, non-wild.
 1718                  *      2. jailed, wild.
 1719                  *      3. non-jailed, non-wild.
 1720                  *      4. non-jailed, wild.
 1721                  */
 1722 
 1723                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1724                     0, pcbinfo->ipi_hashmask)];
 1725                 LIST_FOREACH(inp, head, inp_hash) {
 1726 #ifdef INET6
 1727                         /* XXX inp locking */
 1728                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1729                                 continue;
 1730 #endif
 1731                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1732                             inp->inp_lport != lport)
 1733                                 continue;
 1734 
 1735                         /* XXX inp locking */
 1736                         if (ifp && ifp->if_type == IFT_FAITH &&
 1737                             (inp->inp_flags & INP_FAITH) == 0)
 1738                                 continue;
 1739 
 1740                         injail = prison_flag(inp->inp_cred, PR_IP4);
 1741                         if (injail) {
 1742                                 if (prison_check_ip4(inp->inp_cred,
 1743                                     &laddr) != 0)
 1744                                         continue;
 1745                         } else {
 1746                                 if (local_exact != NULL)
 1747                                         continue;
 1748                         }
 1749 
 1750                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1751                                 if (injail)
 1752                                         return (inp);
 1753                                 else
 1754                                         local_exact = inp;
 1755                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1756 #ifdef INET6
 1757                                 /* XXX inp locking, NULL check */
 1758                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1759                                         local_wild_mapped = inp;
 1760                                 else
 1761 #endif
 1762                                         if (injail)
 1763                                                 jail_wild = inp;
 1764                                         else
 1765                                                 local_wild = inp;
 1766                         }
 1767                 } /* LIST_FOREACH */
 1768                 if (jail_wild != NULL)
 1769                         return (jail_wild);
 1770                 if (local_exact != NULL)
 1771                         return (local_exact);
 1772                 if (local_wild != NULL)
 1773                         return (local_wild);
 1774 #ifdef INET6
 1775                 if (local_wild_mapped != NULL)
 1776                         return (local_wild_mapped);
 1777 #endif
 1778         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
 1779 
 1780         return (NULL);
 1781 }
 1782 
 1783 /*
 1784  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
 1785  * hash list lock, and will return the inpcb locked (i.e., requires
 1786  * INPLOOKUP_LOCKPCB).
 1787  */
 1788 static struct inpcb *
 1789 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1790     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
 1791     struct ifnet *ifp)
 1792 {
 1793         struct inpcb *inp;
 1794 
 1795         INP_HASH_RLOCK(pcbinfo);
 1796         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
 1797             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
 1798         if (inp != NULL) {
 1799                 in_pcbref(inp);
 1800                 INP_HASH_RUNLOCK(pcbinfo);
 1801                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
 1802                         INP_WLOCK(inp);
 1803                         if (in_pcbrele_wlocked(inp))
 1804                                 return (NULL);
 1805                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 1806                         INP_RLOCK(inp);
 1807                         if (in_pcbrele_rlocked(inp))
 1808                                 return (NULL);
 1809                 } else
 1810                         panic("%s: locking bug", __func__);
 1811         } else
 1812                 INP_HASH_RUNLOCK(pcbinfo);
 1813         return (inp);
 1814 }
 1815 
 1816 /*
 1817  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
 1818  * from which a pre-calculated hash value may be extracted.
 1819  *
 1820  * Possibly more of this logic should be in in_pcbgroup.c.
 1821  */
 1822 struct inpcb *
 1823 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
 1824     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
 1825 {
 1826 #if defined(PCBGROUP)
 1827         struct inpcbgroup *pcbgroup;
 1828 #endif
 1829 
 1830         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 1831             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1832         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 1833             ("%s: LOCKPCB not set", __func__));
 1834 
 1835 #if defined(PCBGROUP)
 1836         if (in_pcbgroup_enabled(pcbinfo)) {
 1837                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 1838                     fport);
 1839                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 1840                     laddr, lport, lookupflags, ifp));
 1841         }
 1842 #endif
 1843         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 1844             lookupflags, ifp));
 1845 }
 1846 
 1847 struct inpcb *
 1848 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1849     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
 1850     struct ifnet *ifp, struct mbuf *m)
 1851 {
 1852 #ifdef PCBGROUP
 1853         struct inpcbgroup *pcbgroup;
 1854 #endif
 1855 
 1856         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 1857             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1858         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 1859             ("%s: LOCKPCB not set", __func__));
 1860 
 1861 #ifdef PCBGROUP
 1862         if (in_pcbgroup_enabled(pcbinfo)) {
 1863                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
 1864                     m->m_pkthdr.flowid);
 1865                 if (pcbgroup != NULL)
 1866                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
 1867                             fport, laddr, lport, lookupflags, ifp));
 1868                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 1869                     fport);
 1870                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 1871                     laddr, lport, lookupflags, ifp));
 1872         }
 1873 #endif
 1874         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 1875             lookupflags, ifp));
 1876 }
 1877 #endif /* INET */
 1878 
 1879 /*
 1880  * Insert PCB onto various hash lists.
 1881  */
 1882 static int
 1883 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
 1884 {
 1885         struct inpcbhead *pcbhash;
 1886         struct inpcbporthead *pcbporthash;
 1887         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1888         struct inpcbport *phd;
 1889         u_int32_t hashkey_faddr;
 1890 
 1891         INP_WLOCK_ASSERT(inp);
 1892         INP_HASH_WLOCK_ASSERT(pcbinfo);
 1893 
 1894         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
 1895             ("in_pcbinshash: INP_INHASHLIST"));
 1896 
 1897 #ifdef INET6
 1898         if (inp->inp_vflag & INP_IPV6)
 1899                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1900         else
 1901 #endif
 1902         hashkey_faddr = inp->inp_faddr.s_addr;
 1903 
 1904         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1905                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1906 
 1907         pcbporthash = &pcbinfo->ipi_porthashbase[
 1908             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
 1909 
 1910         /*
 1911          * Go through port list and look for a head for this lport.
 1912          */
 1913         LIST_FOREACH(phd, pcbporthash, phd_hash) {
 1914                 if (phd->phd_port == inp->inp_lport)
 1915                         break;
 1916         }
 1917         /*
 1918          * If none exists, malloc one and tack it on.
 1919          */
 1920         if (phd == NULL) {
 1921                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
 1922                 if (phd == NULL) {
 1923                         return (ENOBUFS); /* XXX */
 1924                 }
 1925                 phd->phd_port = inp->inp_lport;
 1926                 LIST_INIT(&phd->phd_pcblist);
 1927                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
 1928         }
 1929         inp->inp_phd = phd;
 1930         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
 1931         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
 1932         inp->inp_flags |= INP_INHASHLIST;
 1933 #ifdef PCBGROUP
 1934         if (do_pcbgroup_update)
 1935                 in_pcbgroup_update(inp);
 1936 #endif
 1937         return (0);
 1938 }
 1939 
 1940 /*
 1941  * For now, there are two public interfaces to insert an inpcb into the hash
 1942  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
 1943  * is used only in the TCP syncache, where in_pcbinshash is called before the
 1944  * full 4-tuple is set for the inpcb, and we don't want to install in the
 1945  * pcbgroup until later.
 1946  *
 1947  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
 1948  * connection groups, and partially initialised inpcbs should not be exposed
 1949  * to either reservation hash tables or pcbgroups.
 1950  */
 1951 int
 1952 in_pcbinshash(struct inpcb *inp)
 1953 {
 1954 
 1955         return (in_pcbinshash_internal(inp, 1));
 1956 }
 1957 
 1958 int
 1959 in_pcbinshash_nopcbgroup(struct inpcb *inp)
 1960 {
 1961 
 1962         return (in_pcbinshash_internal(inp, 0));
 1963 }
 1964 
 1965 /*
 1966  * Move PCB to the proper hash bucket when { faddr, fport } have  been
 1967  * changed. NOTE: This does not handle the case of the lport changing (the
 1968  * hashed port list would have to be updated as well), so the lport must
 1969  * not change after in_pcbinshash() has been called.
 1970  */
 1971 void
 1972 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
 1973 {
 1974         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1975         struct inpcbhead *head;
 1976         u_int32_t hashkey_faddr;
 1977 
 1978         INP_WLOCK_ASSERT(inp);
 1979         INP_HASH_WLOCK_ASSERT(pcbinfo);
 1980 
 1981         KASSERT(inp->inp_flags & INP_INHASHLIST,
 1982             ("in_pcbrehash: !INP_INHASHLIST"));
 1983 
 1984 #ifdef INET6
 1985         if (inp->inp_vflag & INP_IPV6)
 1986                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1987         else
 1988 #endif
 1989         hashkey_faddr = inp->inp_faddr.s_addr;
 1990 
 1991         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1992                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1993 
 1994         LIST_REMOVE(inp, inp_hash);
 1995         LIST_INSERT_HEAD(head, inp, inp_hash);
 1996 
 1997 #ifdef PCBGROUP
 1998         if (m != NULL)
 1999                 in_pcbgroup_update_mbuf(inp, m);
 2000         else
 2001                 in_pcbgroup_update(inp);
 2002 #endif
 2003 }
 2004 
 2005 void
 2006 in_pcbrehash(struct inpcb *inp)
 2007 {
 2008 
 2009         in_pcbrehash_mbuf(inp, NULL);
 2010 }
 2011 
 2012 /*
 2013  * Remove PCB from various lists.
 2014  */
 2015 static void
 2016 in_pcbremlists(struct inpcb *inp)
 2017 {
 2018         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 2019 
 2020         INP_INFO_WLOCK_ASSERT(pcbinfo);
 2021         INP_WLOCK_ASSERT(inp);
 2022 
 2023         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 2024         if (inp->inp_flags & INP_INHASHLIST) {
 2025                 struct inpcbport *phd = inp->inp_phd;
 2026 
 2027                 INP_HASH_WLOCK(pcbinfo);
 2028                 LIST_REMOVE(inp, inp_hash);
 2029                 LIST_REMOVE(inp, inp_portlist);
 2030                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 2031                         LIST_REMOVE(phd, phd_hash);
 2032                         free(phd, M_PCB);
 2033                 }
 2034                 INP_HASH_WUNLOCK(pcbinfo);
 2035                 inp->inp_flags &= ~INP_INHASHLIST;
 2036         }
 2037         LIST_REMOVE(inp, inp_list);
 2038         pcbinfo->ipi_count--;
 2039 #ifdef PCBGROUP
 2040         in_pcbgroup_remove(inp);
 2041 #endif
 2042 }
 2043 
 2044 /*
 2045  * A set label operation has occurred at the socket layer, propagate the
 2046  * label change into the in_pcb for the socket.
 2047  */
 2048 void
 2049 in_pcbsosetlabel(struct socket *so)
 2050 {
 2051 #ifdef MAC
 2052         struct inpcb *inp;
 2053 
 2054         inp = sotoinpcb(so);
 2055         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
 2056 
 2057         INP_WLOCK(inp);
 2058         SOCK_LOCK(so);
 2059         mac_inpcb_sosetlabel(so, inp);
 2060         SOCK_UNLOCK(so);
 2061         INP_WUNLOCK(inp);
 2062 #endif
 2063 }
 2064 
 2065 /*
 2066  * ipport_tick runs once per second, determining if random port allocation
 2067  * should be continued.  If more than ipport_randomcps ports have been
 2068  * allocated in the last second, then we return to sequential port
 2069  * allocation. We return to random allocation only once we drop below
 2070  * ipport_randomcps for at least ipport_randomtime seconds.
 2071  */
 2072 static void
 2073 ipport_tick(void *xtp)
 2074 {
 2075         VNET_ITERATOR_DECL(vnet_iter);
 2076 
 2077         VNET_LIST_RLOCK_NOSLEEP();
 2078         VNET_FOREACH(vnet_iter) {
 2079                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
 2080                 if (V_ipport_tcpallocs <=
 2081                     V_ipport_tcplastcount + V_ipport_randomcps) {
 2082                         if (V_ipport_stoprandom > 0)
 2083                                 V_ipport_stoprandom--;
 2084                 } else
 2085                         V_ipport_stoprandom = V_ipport_randomtime;
 2086                 V_ipport_tcplastcount = V_ipport_tcpallocs;
 2087                 CURVNET_RESTORE();
 2088         }
 2089         VNET_LIST_RUNLOCK_NOSLEEP();
 2090         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
 2091 }
 2092 
 2093 static void
 2094 ip_fini(void *xtp)
 2095 {
 2096 
 2097         callout_stop(&ipport_tick_callout);
 2098 }
 2099 
 2100 /* 
 2101  * The ipport_callout should start running at about the time we attach the
 2102  * inet or inet6 domains.
 2103  */
 2104 static void
 2105 ipport_tick_init(const void *unused __unused)
 2106 {
 2107 
 2108         /* Start ipport_tick. */
 2109         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
 2110         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
 2111         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
 2112                 SHUTDOWN_PRI_DEFAULT);
 2113 }
 2114 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
 2115     ipport_tick_init, NULL);
 2116 
 2117 void
 2118 inp_wlock(struct inpcb *inp)
 2119 {
 2120 
 2121         INP_WLOCK(inp);
 2122 }
 2123 
 2124 void
 2125 inp_wunlock(struct inpcb *inp)
 2126 {
 2127 
 2128         INP_WUNLOCK(inp);
 2129 }
 2130 
 2131 void
 2132 inp_rlock(struct inpcb *inp)
 2133 {
 2134 
 2135         INP_RLOCK(inp);
 2136 }
 2137 
 2138 void
 2139 inp_runlock(struct inpcb *inp)
 2140 {
 2141 
 2142         INP_RUNLOCK(inp);
 2143 }
 2144 
 2145 #ifdef INVARIANTS
 2146 void
 2147 inp_lock_assert(struct inpcb *inp)
 2148 {
 2149 
 2150         INP_WLOCK_ASSERT(inp);
 2151 }
 2152 
 2153 void
 2154 inp_unlock_assert(struct inpcb *inp)
 2155 {
 2156 
 2157         INP_UNLOCK_ASSERT(inp);
 2158 }
 2159 #endif
 2160 
 2161 void
 2162 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
 2163 {
 2164         struct inpcb *inp;
 2165 
 2166         INP_INFO_RLOCK(&V_tcbinfo);
 2167         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
 2168                 INP_WLOCK(inp);
 2169                 func(inp, arg);
 2170                 INP_WUNLOCK(inp);
 2171         }
 2172         INP_INFO_RUNLOCK(&V_tcbinfo);
 2173 }
 2174 
 2175 struct socket *
 2176 inp_inpcbtosocket(struct inpcb *inp)
 2177 {
 2178 
 2179         INP_WLOCK_ASSERT(inp);
 2180         return (inp->inp_socket);
 2181 }
 2182 
 2183 struct tcpcb *
 2184 inp_inpcbtotcpcb(struct inpcb *inp)
 2185 {
 2186 
 2187         INP_WLOCK_ASSERT(inp);
 2188         return ((struct tcpcb *)inp->inp_ppcb);
 2189 }
 2190 
 2191 int
 2192 inp_ip_tos_get(const struct inpcb *inp)
 2193 {
 2194 
 2195         return (inp->inp_ip_tos);
 2196 }
 2197 
 2198 void
 2199 inp_ip_tos_set(struct inpcb *inp, int val)
 2200 {
 2201 
 2202         inp->inp_ip_tos = val;
 2203 }
 2204 
 2205 void
 2206 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
 2207     uint32_t *faddr, uint16_t *fp)
 2208 {
 2209 
 2210         INP_LOCK_ASSERT(inp);
 2211         *laddr = inp->inp_laddr.s_addr;
 2212         *faddr = inp->inp_faddr.s_addr;
 2213         *lp = inp->inp_lport;
 2214         *fp = inp->inp_fport;
 2215 }
 2216 
 2217 struct inpcb *
 2218 so_sotoinpcb(struct socket *so)
 2219 {
 2220 
 2221         return (sotoinpcb(so));
 2222 }
 2223 
 2224 struct tcpcb *
 2225 so_sototcpcb(struct socket *so)
 2226 {
 2227 
 2228         return (sototcpcb(so));
 2229 }
 2230 
 2231 #ifdef DDB
 2232 static void
 2233 db_print_indent(int indent)
 2234 {
 2235         int i;
 2236 
 2237         for (i = 0; i < indent; i++)
 2238                 db_printf(" ");
 2239 }
 2240 
 2241 static void
 2242 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
 2243 {
 2244         char faddr_str[48], laddr_str[48];
 2245 
 2246         db_print_indent(indent);
 2247         db_printf("%s at %p\n", name, inc);
 2248 
 2249         indent += 2;
 2250 
 2251 #ifdef INET6
 2252         if (inc->inc_flags & INC_ISIPV6) {
 2253                 /* IPv6. */
 2254                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
 2255                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
 2256         } else
 2257 #endif
 2258         {
 2259                 /* IPv4. */
 2260                 inet_ntoa_r(inc->inc_laddr, laddr_str);
 2261                 inet_ntoa_r(inc->inc_faddr, faddr_str);
 2262         }
 2263         db_print_indent(indent);
 2264         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
 2265             ntohs(inc->inc_lport));
 2266         db_print_indent(indent);
 2267         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
 2268             ntohs(inc->inc_fport));
 2269 }
 2270 
 2271 static void
 2272 db_print_inpflags(int inp_flags)
 2273 {
 2274         int comma;
 2275 
 2276         comma = 0;
 2277         if (inp_flags & INP_RECVOPTS) {
 2278                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
 2279                 comma = 1;
 2280         }
 2281         if (inp_flags & INP_RECVRETOPTS) {
 2282                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
 2283                 comma = 1;
 2284         }
 2285         if (inp_flags & INP_RECVDSTADDR) {
 2286                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
 2287                 comma = 1;
 2288         }
 2289         if (inp_flags & INP_HDRINCL) {
 2290                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
 2291                 comma = 1;
 2292         }
 2293         if (inp_flags & INP_HIGHPORT) {
 2294                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
 2295                 comma = 1;
 2296         }
 2297         if (inp_flags & INP_LOWPORT) {
 2298                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
 2299                 comma = 1;
 2300         }
 2301         if (inp_flags & INP_ANONPORT) {
 2302                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
 2303                 comma = 1;
 2304         }
 2305         if (inp_flags & INP_RECVIF) {
 2306                 db_printf("%sINP_RECVIF", comma ? ", " : "");
 2307                 comma = 1;
 2308         }
 2309         if (inp_flags & INP_MTUDISC) {
 2310                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
 2311                 comma = 1;
 2312         }
 2313         if (inp_flags & INP_FAITH) {
 2314                 db_printf("%sINP_FAITH", comma ? ", " : "");
 2315                 comma = 1;
 2316         }
 2317         if (inp_flags & INP_RECVTTL) {
 2318                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
 2319                 comma = 1;
 2320         }
 2321         if (inp_flags & INP_DONTFRAG) {
 2322                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
 2323                 comma = 1;
 2324         }
 2325         if (inp_flags & INP_RECVTOS) {
 2326                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
 2327                 comma = 1;
 2328         }
 2329         if (inp_flags & IN6P_IPV6_V6ONLY) {
 2330                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
 2331                 comma = 1;
 2332         }
 2333         if (inp_flags & IN6P_PKTINFO) {
 2334                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
 2335                 comma = 1;
 2336         }
 2337         if (inp_flags & IN6P_HOPLIMIT) {
 2338                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
 2339                 comma = 1;
 2340         }
 2341         if (inp_flags & IN6P_HOPOPTS) {
 2342                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
 2343                 comma = 1;
 2344         }
 2345         if (inp_flags & IN6P_DSTOPTS) {
 2346                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
 2347                 comma = 1;
 2348         }
 2349         if (inp_flags & IN6P_RTHDR) {
 2350                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
 2351                 comma = 1;
 2352         }
 2353         if (inp_flags & IN6P_RTHDRDSTOPTS) {
 2354                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
 2355                 comma = 1;
 2356         }
 2357         if (inp_flags & IN6P_TCLASS) {
 2358                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
 2359                 comma = 1;
 2360         }
 2361         if (inp_flags & IN6P_AUTOFLOWLABEL) {
 2362                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
 2363                 comma = 1;
 2364         }
 2365         if (inp_flags & INP_TIMEWAIT) {
 2366                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
 2367                 comma  = 1;
 2368         }
 2369         if (inp_flags & INP_ONESBCAST) {
 2370                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
 2371                 comma  = 1;
 2372         }
 2373         if (inp_flags & INP_DROPPED) {
 2374                 db_printf("%sINP_DROPPED", comma ? ", " : "");
 2375                 comma  = 1;
 2376         }
 2377         if (inp_flags & INP_SOCKREF) {
 2378                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
 2379                 comma  = 1;
 2380         }
 2381         if (inp_flags & IN6P_RFC2292) {
 2382                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
 2383                 comma = 1;
 2384         }
 2385         if (inp_flags & IN6P_MTU) {
 2386                 db_printf("IN6P_MTU%s", comma ? ", " : "");
 2387                 comma = 1;
 2388         }
 2389 }
 2390 
 2391 static void
 2392 db_print_inpvflag(u_char inp_vflag)
 2393 {
 2394         int comma;
 2395 
 2396         comma = 0;
 2397         if (inp_vflag & INP_IPV4) {
 2398                 db_printf("%sINP_IPV4", comma ? ", " : "");
 2399                 comma  = 1;
 2400         }
 2401         if (inp_vflag & INP_IPV6) {
 2402                 db_printf("%sINP_IPV6", comma ? ", " : "");
 2403                 comma  = 1;
 2404         }
 2405         if (inp_vflag & INP_IPV6PROTO) {
 2406                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
 2407                 comma  = 1;
 2408         }
 2409 }
 2410 
 2411 static void
 2412 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
 2413 {
 2414 
 2415         db_print_indent(indent);
 2416         db_printf("%s at %p\n", name, inp);
 2417 
 2418         indent += 2;
 2419 
 2420         db_print_indent(indent);
 2421         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
 2422 
 2423         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
 2424 
 2425         db_print_indent(indent);
 2426         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
 2427             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
 2428 
 2429         db_print_indent(indent);
 2430         db_printf("inp_label: %p   inp_flags: 0x%x (",
 2431            inp->inp_label, inp->inp_flags);
 2432         db_print_inpflags(inp->inp_flags);
 2433         db_printf(")\n");
 2434 
 2435         db_print_indent(indent);
 2436         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
 2437             inp->inp_vflag);
 2438         db_print_inpvflag(inp->inp_vflag);
 2439         db_printf(")\n");
 2440 
 2441         db_print_indent(indent);
 2442         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
 2443             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
 2444 
 2445         db_print_indent(indent);
 2446 #ifdef INET6
 2447         if (inp->inp_vflag & INP_IPV6) {
 2448                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
 2449                     "in6p_moptions: %p\n", inp->in6p_options,
 2450                     inp->in6p_outputopts, inp->in6p_moptions);
 2451                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
 2452                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
 2453                     inp->in6p_hops);
 2454         } else
 2455 #endif
 2456         {
 2457                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
 2458                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
 2459                     inp->inp_options, inp->inp_moptions);
 2460         }
 2461 
 2462         db_print_indent(indent);
 2463         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
 2464             (uintmax_t)inp->inp_gencnt);
 2465 }
 2466 
 2467 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
 2468 {
 2469         struct inpcb *inp;
 2470 
 2471         if (!have_addr) {
 2472                 db_printf("usage: show inpcb <addr>\n");
 2473                 return;
 2474         }
 2475         inp = (struct inpcb *)addr;
 2476 
 2477         db_print_inpcb(inp, "inpcb", 0);
 2478 }
 2479 #endif /* DDB */

Cache object: 923a37edbdc2d8530cfdaa0c31eaef71


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.