The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/in_pcb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2007-2009 Robert N. M. Watson
    5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
    6  * All rights reserved.
    7  *
    8  * Portions of this software were developed by Robert N. M. Watson under
    9  * contract to Juniper Networks, Inc.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 4. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/10.3/sys/netinet/in_pcb.c 291652 2015-12-02 17:26:37Z fabient $");
   40 
   41 #include "opt_ddb.h"
   42 #include "opt_ipsec.h"
   43 #include "opt_inet.h"
   44 #include "opt_inet6.h"
   45 #include "opt_pcbgroup.h"
   46 
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/callout.h>
   52 #include <sys/domain.h>
   53 #include <sys/protosw.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/refcount.h>
   59 #include <sys/jail.h>
   60 #include <sys/kernel.h>
   61 #include <sys/sysctl.h>
   62 
   63 #ifdef DDB
   64 #include <ddb/ddb.h>
   65 #endif
   66 
   67 #include <vm/uma.h>
   68 
   69 #include <net/if.h>
   70 #include <net/if_types.h>
   71 #include <net/route.h>
   72 #include <net/vnet.h>
   73 
   74 #if defined(INET) || defined(INET6)
   75 #include <netinet/in.h>
   76 #include <netinet/in_pcb.h>
   77 #include <netinet/ip_var.h>
   78 #include <netinet/tcp_var.h>
   79 #include <netinet/udp.h>
   80 #include <netinet/udp_var.h>
   81 #endif
   82 #ifdef INET
   83 #include <netinet/in_var.h>
   84 #endif
   85 #ifdef INET6
   86 #include <netinet/ip6.h>
   87 #include <netinet6/in6_pcb.h>
   88 #include <netinet6/in6_var.h>
   89 #include <netinet6/ip6_var.h>
   90 #endif /* INET6 */
   91 
   92 
   93 #ifdef IPSEC
   94 #include <netipsec/ipsec.h>
   95 #include <netipsec/key.h>
   96 #endif /* IPSEC */
   97 
   98 #include <security/mac/mac_framework.h>
   99 
  100 static struct callout   ipport_tick_callout;
  101 
  102 /*
  103  * These configure the range of local port addresses assigned to
  104  * "unspecified" outgoing connections/packets/whatever.
  105  */
  106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
  107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
  108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
  109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
  110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
  111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
  112 
  113 /*
  114  * Reserved ports accessible only to root. There are significant
  115  * security considerations that must be accounted for when changing these,
  116  * but the security benefits can be great. Please be careful.
  117  */
  118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
  119 VNET_DEFINE(int, ipport_reservedlow);
  120 
  121 /* Variables dealing with random ephemeral port allocation. */
  122 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
  123 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
  124 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
  125 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
  126 VNET_DEFINE(int, ipport_tcpallocs);
  127 static VNET_DEFINE(int, ipport_tcplastcount);
  128 
  129 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
  130 
  131 static void     in_pcbremlists(struct inpcb *inp);
  132 #ifdef INET
  133 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
  134                             struct in_addr faddr, u_int fport_arg,
  135                             struct in_addr laddr, u_int lport_arg,
  136                             int lookupflags, struct ifnet *ifp);
  137 
  138 #define RANGECHK(var, min, max) \
  139         if ((var) < (min)) { (var) = (min); } \
  140         else if ((var) > (max)) { (var) = (max); }
  141 
  142 static int
  143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
  144 {
  145         int error;
  146 
  147         error = sysctl_handle_int(oidp, arg1, arg2, req);
  148         if (error == 0) {
  149                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
  150                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
  151                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
  152                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
  153                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
  154                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
  155         }
  156         return (error);
  157 }
  158 
  159 #undef RANGECHK
  160 
  161 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
  162     "IP Ports");
  163 
  164 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
  165         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
  166         &sysctl_net_ipport_check, "I", "");
  167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
  168         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
  169         &sysctl_net_ipport_check, "I", "");
  170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
  171         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
  172         &sysctl_net_ipport_check, "I", "");
  173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
  174         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
  175         &sysctl_net_ipport_check, "I", "");
  176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
  177         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
  178         &sysctl_net_ipport_check, "I", "");
  179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
  180         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
  181         &sysctl_net_ipport_check, "I", "");
  182 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
  183         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
  184 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
  185         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
  186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
  187         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
  188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
  189         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
  190         "allocations before switching to a sequental one");
  191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
  192         &VNET_NAME(ipport_randomtime), 0,
  193         "Minimum time to keep sequental port "
  194         "allocation before switching to a random one");
  195 #endif /* INET */
  196 
  197 /*
  198  * in_pcb.c: manage the Protocol Control Blocks.
  199  *
  200  * NOTE: It is assumed that most of these functions will be called with
  201  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
  202  * functions often modify hash chains or addresses in pcbs.
  203  */
  204 
  205 /*
  206  * Initialize an inpcbinfo -- we should be able to reduce the number of
  207  * arguments in time.
  208  */
  209 void
  210 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
  211     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
  212     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
  213     uint32_t inpcbzone_flags, u_int hashfields)
  214 {
  215 
  216         INP_INFO_LOCK_INIT(pcbinfo, name);
  217         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
  218 #ifdef VIMAGE
  219         pcbinfo->ipi_vnet = curvnet;
  220 #endif
  221         pcbinfo->ipi_listhead = listhead;
  222         LIST_INIT(pcbinfo->ipi_listhead);
  223         pcbinfo->ipi_count = 0;
  224         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
  225             &pcbinfo->ipi_hashmask);
  226         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
  227             &pcbinfo->ipi_porthashmask);
  228 #ifdef PCBGROUP
  229         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
  230 #endif
  231         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
  232             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
  233             inpcbzone_flags);
  234         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
  235         uma_zone_set_warning(pcbinfo->ipi_zone,
  236             "kern.ipc.maxsockets limit reached");
  237 }
  238 
  239 /*
  240  * Destroy an inpcbinfo.
  241  */
  242 void
  243 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
  244 {
  245 
  246         KASSERT(pcbinfo->ipi_count == 0,
  247             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
  248 
  249         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
  250         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
  251             pcbinfo->ipi_porthashmask);
  252 #ifdef PCBGROUP
  253         in_pcbgroup_destroy(pcbinfo);
  254 #endif
  255         uma_zdestroy(pcbinfo->ipi_zone);
  256         INP_HASH_LOCK_DESTROY(pcbinfo);
  257         INP_INFO_LOCK_DESTROY(pcbinfo);
  258 }
  259 
  260 /*
  261  * Allocate a PCB and associate it with the socket.
  262  * On success return with the PCB locked.
  263  */
  264 int
  265 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
  266 {
  267         struct inpcb *inp;
  268         int error;
  269 
  270         INP_INFO_WLOCK_ASSERT(pcbinfo);
  271         error = 0;
  272         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
  273         if (inp == NULL)
  274                 return (ENOBUFS);
  275         bzero(inp, inp_zero_size);
  276         inp->inp_pcbinfo = pcbinfo;
  277         inp->inp_socket = so;
  278         inp->inp_cred = crhold(so->so_cred);
  279         inp->inp_inc.inc_fibnum = so->so_fibnum;
  280 #ifdef MAC
  281         error = mac_inpcb_init(inp, M_NOWAIT);
  282         if (error != 0)
  283                 goto out;
  284         mac_inpcb_create(so, inp);
  285 #endif
  286 #ifdef IPSEC
  287         error = ipsec_init_policy(so, &inp->inp_sp);
  288         if (error != 0) {
  289 #ifdef MAC
  290                 mac_inpcb_destroy(inp);
  291 #endif
  292                 goto out;
  293         }
  294 #endif /*IPSEC*/
  295 #ifdef INET6
  296         if (INP_SOCKAF(so) == AF_INET6) {
  297                 inp->inp_vflag |= INP_IPV6PROTO;
  298                 if (V_ip6_v6only)
  299                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
  300         }
  301 #endif
  302         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
  303         pcbinfo->ipi_count++;
  304         so->so_pcb = (caddr_t)inp;
  305 #ifdef INET6
  306         if (V_ip6_auto_flowlabel)
  307                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
  308 #endif
  309         INP_WLOCK(inp);
  310         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
  311         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
  312 #if defined(IPSEC) || defined(MAC)
  313 out:
  314         if (error != 0) {
  315                 crfree(inp->inp_cred);
  316                 uma_zfree(pcbinfo->ipi_zone, inp);
  317         }
  318 #endif
  319         return (error);
  320 }
  321 
  322 #ifdef INET
  323 int
  324 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  325 {
  326         int anonport, error;
  327 
  328         INP_WLOCK_ASSERT(inp);
  329         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
  330 
  331         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
  332                 return (EINVAL);
  333         anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
  334         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
  335             &inp->inp_lport, cred);
  336         if (error)
  337                 return (error);
  338         if (in_pcbinshash(inp) != 0) {
  339                 inp->inp_laddr.s_addr = INADDR_ANY;
  340                 inp->inp_lport = 0;
  341                 return (EAGAIN);
  342         }
  343         if (anonport)
  344                 inp->inp_flags |= INP_ANONPORT;
  345         return (0);
  346 }
  347 #endif
  348 
  349 #if defined(INET) || defined(INET6)
  350 int
  351 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
  352     struct ucred *cred, int lookupflags)
  353 {
  354         struct inpcbinfo *pcbinfo;
  355         struct inpcb *tmpinp;
  356         unsigned short *lastport;
  357         int count, dorandom, error;
  358         u_short aux, first, last, lport;
  359 #ifdef INET
  360         struct in_addr laddr;
  361 #endif
  362 
  363         pcbinfo = inp->inp_pcbinfo;
  364 
  365         /*
  366          * Because no actual state changes occur here, a global write lock on
  367          * the pcbinfo isn't required.
  368          */
  369         INP_LOCK_ASSERT(inp);
  370         INP_HASH_LOCK_ASSERT(pcbinfo);
  371 
  372         if (inp->inp_flags & INP_HIGHPORT) {
  373                 first = V_ipport_hifirstauto;   /* sysctl */
  374                 last  = V_ipport_hilastauto;
  375                 lastport = &pcbinfo->ipi_lasthi;
  376         } else if (inp->inp_flags & INP_LOWPORT) {
  377                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
  378                 if (error)
  379                         return (error);
  380                 first = V_ipport_lowfirstauto;  /* 1023 */
  381                 last  = V_ipport_lowlastauto;   /* 600 */
  382                 lastport = &pcbinfo->ipi_lastlow;
  383         } else {
  384                 first = V_ipport_firstauto;     /* sysctl */
  385                 last  = V_ipport_lastauto;
  386                 lastport = &pcbinfo->ipi_lastport;
  387         }
  388         /*
  389          * For UDP(-Lite), use random port allocation as long as the user
  390          * allows it.  For TCP (and as of yet unknown) connections,
  391          * use random port allocation only if the user allows it AND
  392          * ipport_tick() allows it.
  393          */
  394         if (V_ipport_randomized &&
  395                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
  396                 pcbinfo == &V_ulitecbinfo))
  397                 dorandom = 1;
  398         else
  399                 dorandom = 0;
  400         /*
  401          * It makes no sense to do random port allocation if
  402          * we have the only port available.
  403          */
  404         if (first == last)
  405                 dorandom = 0;
  406         /* Make sure to not include UDP(-Lite) packets in the count. */
  407         if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
  408                 V_ipport_tcpallocs++;
  409         /*
  410          * Instead of having two loops further down counting up or down
  411          * make sure that first is always <= last and go with only one
  412          * code path implementing all logic.
  413          */
  414         if (first > last) {
  415                 aux = first;
  416                 first = last;
  417                 last = aux;
  418         }
  419 
  420 #ifdef INET
  421         /* Make the compiler happy. */
  422         laddr.s_addr = 0;
  423         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
  424                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
  425                     __func__, inp));
  426                 laddr = *laddrp;
  427         }
  428 #endif
  429         tmpinp = NULL;  /* Make compiler happy. */
  430         lport = *lportp;
  431 
  432         if (dorandom)
  433                 *lastport = first + (arc4random() % (last - first));
  434 
  435         count = last - first;
  436 
  437         do {
  438                 if (count-- < 0)        /* completely used? */
  439                         return (EADDRNOTAVAIL);
  440                 ++*lastport;
  441                 if (*lastport < first || *lastport > last)
  442                         *lastport = first;
  443                 lport = htons(*lastport);
  444 
  445 #ifdef INET6
  446                 if ((inp->inp_vflag & INP_IPV6) != 0)
  447                         tmpinp = in6_pcblookup_local(pcbinfo,
  448                             &inp->in6p_laddr, lport, lookupflags, cred);
  449 #endif
  450 #if defined(INET) && defined(INET6)
  451                 else
  452 #endif
  453 #ifdef INET
  454                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
  455                             lport, lookupflags, cred);
  456 #endif
  457         } while (tmpinp != NULL);
  458 
  459 #ifdef INET
  460         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
  461                 laddrp->s_addr = laddr.s_addr;
  462 #endif                 
  463         *lportp = lport;
  464 
  465         return (0);
  466 }
  467 
  468 /*
  469  * Return cached socket options.
  470  */
  471 short
  472 inp_so_options(const struct inpcb *inp)
  473 {
  474    short so_options;
  475 
  476    so_options = 0;
  477 
  478    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
  479            so_options |= SO_REUSEPORT;
  480    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
  481            so_options |= SO_REUSEADDR;
  482    return (so_options);
  483 }
  484 #endif /* INET || INET6 */
  485 
  486 #ifdef INET
  487 /*
  488  * Set up a bind operation on a PCB, performing port allocation
  489  * as required, but do not actually modify the PCB. Callers can
  490  * either complete the bind by setting inp_laddr/inp_lport and
  491  * calling in_pcbinshash(), or they can just use the resulting
  492  * port and address to authorise the sending of a once-off packet.
  493  *
  494  * On error, the values of *laddrp and *lportp are not changed.
  495  */
  496 int
  497 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
  498     u_short *lportp, struct ucred *cred)
  499 {
  500         struct socket *so = inp->inp_socket;
  501         struct sockaddr_in *sin;
  502         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
  503         struct in_addr laddr;
  504         u_short lport = 0;
  505         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
  506         int error;
  507 
  508         /*
  509          * No state changes, so read locks are sufficient here.
  510          */
  511         INP_LOCK_ASSERT(inp);
  512         INP_HASH_LOCK_ASSERT(pcbinfo);
  513 
  514         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
  515                 return (EADDRNOTAVAIL);
  516         laddr.s_addr = *laddrp;
  517         if (nam != NULL && laddr.s_addr != INADDR_ANY)
  518                 return (EINVAL);
  519         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
  520                 lookupflags = INPLOOKUP_WILDCARD;
  521         if (nam == NULL) {
  522                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
  523                         return (error);
  524         } else {
  525                 sin = (struct sockaddr_in *)nam;
  526                 if (nam->sa_len != sizeof (*sin))
  527                         return (EINVAL);
  528 #ifdef notdef
  529                 /*
  530                  * We should check the family, but old programs
  531                  * incorrectly fail to initialize it.
  532                  */
  533                 if (sin->sin_family != AF_INET)
  534                         return (EAFNOSUPPORT);
  535 #endif
  536                 error = prison_local_ip4(cred, &sin->sin_addr);
  537                 if (error)
  538                         return (error);
  539                 if (sin->sin_port != *lportp) {
  540                         /* Don't allow the port to change. */
  541                         if (*lportp != 0)
  542                                 return (EINVAL);
  543                         lport = sin->sin_port;
  544                 }
  545                 /* NB: lport is left as 0 if the port isn't being changed. */
  546                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
  547                         /*
  548                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
  549                          * allow complete duplication of binding if
  550                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
  551                          * and a multicast address is bound on both
  552                          * new and duplicated sockets.
  553                          */
  554                         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
  555                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
  556                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
  557                         sin->sin_port = 0;              /* yech... */
  558                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
  559                         /*
  560                          * Is the address a local IP address? 
  561                          * If INP_BINDANY is set, then the socket may be bound
  562                          * to any endpoint address, local or not.
  563                          */
  564                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
  565                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
  566                                 return (EADDRNOTAVAIL);
  567                 }
  568                 laddr = sin->sin_addr;
  569                 if (lport) {
  570                         struct inpcb *t;
  571                         struct tcptw *tw;
  572 
  573                         /* GROSS */
  574                         if (ntohs(lport) <= V_ipport_reservedhigh &&
  575                             ntohs(lport) >= V_ipport_reservedlow &&
  576                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
  577                             0))
  578                                 return (EACCES);
  579                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
  580                             priv_check_cred(inp->inp_cred,
  581                             PRIV_NETINET_REUSEPORT, 0) != 0) {
  582                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  583                                     lport, INPLOOKUP_WILDCARD, cred);
  584         /*
  585          * XXX
  586          * This entire block sorely needs a rewrite.
  587          */
  588                                 if (t &&
  589                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
  590                                     (so->so_type != SOCK_STREAM ||
  591                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
  592                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
  593                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
  594                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
  595                                     (inp->inp_cred->cr_uid !=
  596                                      t->inp_cred->cr_uid))
  597                                         return (EADDRINUSE);
  598                         }
  599                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  600                             lport, lookupflags, cred);
  601                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
  602                                 /*
  603                                  * XXXRW: If an incpb has had its timewait
  604                                  * state recycled, we treat the address as
  605                                  * being in use (for now).  This is better
  606                                  * than a panic, but not desirable.
  607                                  */
  608                                 tw = intotw(t);
  609                                 if (tw == NULL ||
  610                                     (reuseport & tw->tw_so_options) == 0)
  611                                         return (EADDRINUSE);
  612                         } else if (t && (reuseport & inp_so_options(t)) == 0) {
  613 #ifdef INET6
  614                                 if (ntohl(sin->sin_addr.s_addr) !=
  615                                     INADDR_ANY ||
  616                                     ntohl(t->inp_laddr.s_addr) !=
  617                                     INADDR_ANY ||
  618                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
  619                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
  620 #endif
  621                                 return (EADDRINUSE);
  622                         }
  623                 }
  624         }
  625         if (*lportp != 0)
  626                 lport = *lportp;
  627         if (lport == 0) {
  628                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
  629                 if (error != 0)
  630                         return (error);
  631 
  632         }
  633         *laddrp = laddr.s_addr;
  634         *lportp = lport;
  635         return (0);
  636 }
  637 
  638 /*
  639  * Connect from a socket to a specified address.
  640  * Both address and port must be specified in argument sin.
  641  * If don't have a local address for this socket yet,
  642  * then pick one.
  643  */
  644 int
  645 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
  646     struct ucred *cred, struct mbuf *m)
  647 {
  648         u_short lport, fport;
  649         in_addr_t laddr, faddr;
  650         int anonport, error;
  651 
  652         INP_WLOCK_ASSERT(inp);
  653         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
  654 
  655         lport = inp->inp_lport;
  656         laddr = inp->inp_laddr.s_addr;
  657         anonport = (lport == 0);
  658         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
  659             NULL, cred);
  660         if (error)
  661                 return (error);
  662 
  663         /* Do the initial binding of the local address if required. */
  664         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
  665                 inp->inp_lport = lport;
  666                 inp->inp_laddr.s_addr = laddr;
  667                 if (in_pcbinshash(inp) != 0) {
  668                         inp->inp_laddr.s_addr = INADDR_ANY;
  669                         inp->inp_lport = 0;
  670                         return (EAGAIN);
  671                 }
  672         }
  673 
  674         /* Commit the remaining changes. */
  675         inp->inp_lport = lport;
  676         inp->inp_laddr.s_addr = laddr;
  677         inp->inp_faddr.s_addr = faddr;
  678         inp->inp_fport = fport;
  679         in_pcbrehash_mbuf(inp, m);
  680 
  681         if (anonport)
  682                 inp->inp_flags |= INP_ANONPORT;
  683         return (0);
  684 }
  685 
  686 int
  687 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  688 {
  689 
  690         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
  691 }
  692 
  693 /*
  694  * Do proper source address selection on an unbound socket in case
  695  * of connect. Take jails into account as well.
  696  */
  697 int
  698 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
  699     struct ucred *cred)
  700 {
  701         struct ifaddr *ifa;
  702         struct sockaddr *sa;
  703         struct sockaddr_in *sin;
  704         struct route sro;
  705         int error;
  706 
  707         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
  708 
  709         /*
  710          * Bypass source address selection and use the primary jail IP
  711          * if requested.
  712          */
  713         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
  714                 return (0);
  715 
  716         error = 0;
  717         bzero(&sro, sizeof(sro));
  718 
  719         sin = (struct sockaddr_in *)&sro.ro_dst;
  720         sin->sin_family = AF_INET;
  721         sin->sin_len = sizeof(struct sockaddr_in);
  722         sin->sin_addr.s_addr = faddr->s_addr;
  723 
  724         /*
  725          * If route is known our src addr is taken from the i/f,
  726          * else punt.
  727          *
  728          * Find out route to destination.
  729          */
  730         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
  731                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
  732 
  733         /*
  734          * If we found a route, use the address corresponding to
  735          * the outgoing interface.
  736          * 
  737          * Otherwise assume faddr is reachable on a directly connected
  738          * network and try to find a corresponding interface to take
  739          * the source address from.
  740          */
  741         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
  742                 struct in_ifaddr *ia;
  743                 struct ifnet *ifp;
  744 
  745                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
  746                 if (ia == NULL)
  747                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
  748                 if (ia == NULL) {
  749                         error = ENETUNREACH;
  750                         goto done;
  751                 }
  752 
  753                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  754                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  755                         ifa_free(&ia->ia_ifa);
  756                         goto done;
  757                 }
  758 
  759                 ifp = ia->ia_ifp;
  760                 ifa_free(&ia->ia_ifa);
  761                 ia = NULL;
  762                 IF_ADDR_RLOCK(ifp);
  763                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  764 
  765                         sa = ifa->ifa_addr;
  766                         if (sa->sa_family != AF_INET)
  767                                 continue;
  768                         sin = (struct sockaddr_in *)sa;
  769                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  770                                 ia = (struct in_ifaddr *)ifa;
  771                                 break;
  772                         }
  773                 }
  774                 if (ia != NULL) {
  775                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  776                         IF_ADDR_RUNLOCK(ifp);
  777                         goto done;
  778                 }
  779                 IF_ADDR_RUNLOCK(ifp);
  780 
  781                 /* 3. As a last resort return the 'default' jail address. */
  782                 error = prison_get_ip4(cred, laddr);
  783                 goto done;
  784         }
  785 
  786         /*
  787          * If the outgoing interface on the route found is not
  788          * a loopback interface, use the address from that interface.
  789          * In case of jails do those three steps:
  790          * 1. check if the interface address belongs to the jail. If so use it.
  791          * 2. check if we have any address on the outgoing interface
  792          *    belonging to this jail. If so use it.
  793          * 3. as a last resort return the 'default' jail address.
  794          */
  795         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
  796                 struct in_ifaddr *ia;
  797                 struct ifnet *ifp;
  798 
  799                 /* If not jailed, use the default returned. */
  800                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  801                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  802                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  803                         goto done;
  804                 }
  805 
  806                 /* Jailed. */
  807                 /* 1. Check if the iface address belongs to the jail. */
  808                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
  809                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  810                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  811                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  812                         goto done;
  813                 }
  814 
  815                 /*
  816                  * 2. Check if we have any address on the outgoing interface
  817                  *    belonging to this jail.
  818                  */
  819                 ia = NULL;
  820                 ifp = sro.ro_rt->rt_ifp;
  821                 IF_ADDR_RLOCK(ifp);
  822                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  823                         sa = ifa->ifa_addr;
  824                         if (sa->sa_family != AF_INET)
  825                                 continue;
  826                         sin = (struct sockaddr_in *)sa;
  827                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  828                                 ia = (struct in_ifaddr *)ifa;
  829                                 break;
  830                         }
  831                 }
  832                 if (ia != NULL) {
  833                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  834                         IF_ADDR_RUNLOCK(ifp);
  835                         goto done;
  836                 }
  837                 IF_ADDR_RUNLOCK(ifp);
  838 
  839                 /* 3. As a last resort return the 'default' jail address. */
  840                 error = prison_get_ip4(cred, laddr);
  841                 goto done;
  842         }
  843 
  844         /*
  845          * The outgoing interface is marked with 'loopback net', so a route
  846          * to ourselves is here.
  847          * Try to find the interface of the destination address and then
  848          * take the address from there. That interface is not necessarily
  849          * a loopback interface.
  850          * In case of jails, check that it is an address of the jail
  851          * and if we cannot find, fall back to the 'default' jail address.
  852          */
  853         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
  854                 struct sockaddr_in sain;
  855                 struct in_ifaddr *ia;
  856 
  857                 bzero(&sain, sizeof(struct sockaddr_in));
  858                 sain.sin_family = AF_INET;
  859                 sain.sin_len = sizeof(struct sockaddr_in);
  860                 sain.sin_addr.s_addr = faddr->s_addr;
  861 
  862                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
  863                 if (ia == NULL)
  864                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
  865                 if (ia == NULL)
  866                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
  867 
  868                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  869                         if (ia == NULL) {
  870                                 error = ENETUNREACH;
  871                                 goto done;
  872                         }
  873                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  874                         ifa_free(&ia->ia_ifa);
  875                         goto done;
  876                 }
  877 
  878                 /* Jailed. */
  879                 if (ia != NULL) {
  880                         struct ifnet *ifp;
  881 
  882                         ifp = ia->ia_ifp;
  883                         ifa_free(&ia->ia_ifa);
  884                         ia = NULL;
  885                         IF_ADDR_RLOCK(ifp);
  886                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  887 
  888                                 sa = ifa->ifa_addr;
  889                                 if (sa->sa_family != AF_INET)
  890                                         continue;
  891                                 sin = (struct sockaddr_in *)sa;
  892                                 if (prison_check_ip4(cred,
  893                                     &sin->sin_addr) == 0) {
  894                                         ia = (struct in_ifaddr *)ifa;
  895                                         break;
  896                                 }
  897                         }
  898                         if (ia != NULL) {
  899                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  900                                 IF_ADDR_RUNLOCK(ifp);
  901                                 goto done;
  902                         }
  903                         IF_ADDR_RUNLOCK(ifp);
  904                 }
  905 
  906                 /* 3. As a last resort return the 'default' jail address. */
  907                 error = prison_get_ip4(cred, laddr);
  908                 goto done;
  909         }
  910 
  911 done:
  912         if (sro.ro_rt != NULL)
  913                 RTFREE(sro.ro_rt);
  914         return (error);
  915 }
  916 
  917 /*
  918  * Set up for a connect from a socket to the specified address.
  919  * On entry, *laddrp and *lportp should contain the current local
  920  * address and port for the PCB; these are updated to the values
  921  * that should be placed in inp_laddr and inp_lport to complete
  922  * the connect.
  923  *
  924  * On success, *faddrp and *fportp will be set to the remote address
  925  * and port. These are not updated in the error case.
  926  *
  927  * If the operation fails because the connection already exists,
  928  * *oinpp will be set to the PCB of that connection so that the
  929  * caller can decide to override it. In all other cases, *oinpp
  930  * is set to NULL.
  931  */
  932 int
  933 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
  934     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
  935     struct inpcb **oinpp, struct ucred *cred)
  936 {
  937         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
  938         struct in_ifaddr *ia;
  939         struct inpcb *oinp;
  940         struct in_addr laddr, faddr;
  941         u_short lport, fport;
  942         int error;
  943 
  944         /*
  945          * Because a global state change doesn't actually occur here, a read
  946          * lock is sufficient.
  947          */
  948         INP_LOCK_ASSERT(inp);
  949         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
  950 
  951         if (oinpp != NULL)
  952                 *oinpp = NULL;
  953         if (nam->sa_len != sizeof (*sin))
  954                 return (EINVAL);
  955         if (sin->sin_family != AF_INET)
  956                 return (EAFNOSUPPORT);
  957         if (sin->sin_port == 0)
  958                 return (EADDRNOTAVAIL);
  959         laddr.s_addr = *laddrp;
  960         lport = *lportp;
  961         faddr = sin->sin_addr;
  962         fport = sin->sin_port;
  963 
  964         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
  965                 /*
  966                  * If the destination address is INADDR_ANY,
  967                  * use the primary local address.
  968                  * If the supplied address is INADDR_BROADCAST,
  969                  * and the primary interface supports broadcast,
  970                  * choose the broadcast address for that interface.
  971                  */
  972                 if (faddr.s_addr == INADDR_ANY) {
  973                         IN_IFADDR_RLOCK();
  974                         faddr =
  975                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
  976                         IN_IFADDR_RUNLOCK();
  977                         if (cred != NULL &&
  978                             (error = prison_get_ip4(cred, &faddr)) != 0)
  979                                 return (error);
  980                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
  981                         IN_IFADDR_RLOCK();
  982                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
  983                             IFF_BROADCAST)
  984                                 faddr = satosin(&TAILQ_FIRST(
  985                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
  986                         IN_IFADDR_RUNLOCK();
  987                 }
  988         }
  989         if (laddr.s_addr == INADDR_ANY) {
  990                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
  991                 /*
  992                  * If the destination address is multicast and an outgoing
  993                  * interface has been set as a multicast option, prefer the
  994                  * address of that interface as our source address.
  995                  */
  996                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
  997                     inp->inp_moptions != NULL) {
  998                         struct ip_moptions *imo;
  999                         struct ifnet *ifp;
 1000 
 1001                         imo = inp->inp_moptions;
 1002                         if (imo->imo_multicast_ifp != NULL) {
 1003                                 ifp = imo->imo_multicast_ifp;
 1004                                 IN_IFADDR_RLOCK();
 1005                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
 1006                                         if ((ia->ia_ifp == ifp) &&
 1007                                             (cred == NULL ||
 1008                                             prison_check_ip4(cred,
 1009                                             &ia->ia_addr.sin_addr) == 0))
 1010                                                 break;
 1011                                 }
 1012                                 if (ia == NULL)
 1013                                         error = EADDRNOTAVAIL;
 1014                                 else {
 1015                                         laddr = ia->ia_addr.sin_addr;
 1016                                         error = 0;
 1017                                 }
 1018                                 IN_IFADDR_RUNLOCK();
 1019                         }
 1020                 }
 1021                 if (error)
 1022                         return (error);
 1023         }
 1024         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
 1025             laddr, lport, 0, NULL);
 1026         if (oinp != NULL) {
 1027                 if (oinpp != NULL)
 1028                         *oinpp = oinp;
 1029                 return (EADDRINUSE);
 1030         }
 1031         if (lport == 0) {
 1032                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
 1033                     cred);
 1034                 if (error)
 1035                         return (error);
 1036         }
 1037         *laddrp = laddr.s_addr;
 1038         *lportp = lport;
 1039         *faddrp = faddr.s_addr;
 1040         *fportp = fport;
 1041         return (0);
 1042 }
 1043 
 1044 void
 1045 in_pcbdisconnect(struct inpcb *inp)
 1046 {
 1047 
 1048         INP_WLOCK_ASSERT(inp);
 1049         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
 1050 
 1051         inp->inp_faddr.s_addr = INADDR_ANY;
 1052         inp->inp_fport = 0;
 1053         in_pcbrehash(inp);
 1054 }
 1055 #endif /* INET */
 1056 
 1057 /*
 1058  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
 1059  * For most protocols, this will be invoked immediately prior to calling
 1060  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
 1061  * socket, in which case in_pcbfree() is deferred.
 1062  */
 1063 void
 1064 in_pcbdetach(struct inpcb *inp)
 1065 {
 1066 
 1067         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
 1068 
 1069         inp->inp_socket->so_pcb = NULL;
 1070         inp->inp_socket = NULL;
 1071 }
 1072 
 1073 /*
 1074  * in_pcbref() bumps the reference count on an inpcb in order to maintain
 1075  * stability of an inpcb pointer despite the inpcb lock being released.  This
 1076  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
 1077  * but where the inpcb lock may already held, or when acquiring a reference
 1078  * via a pcbgroup.
 1079  *
 1080  * in_pcbref() should be used only to provide brief memory stability, and
 1081  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
 1082  * garbage collect the inpcb if it has been in_pcbfree()'d from another
 1083  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
 1084  * lock and rele are the *only* safe operations that may be performed on the
 1085  * inpcb.
 1086  *
 1087  * While the inpcb will not be freed, releasing the inpcb lock means that the
 1088  * connection's state may change, so the caller should be careful to
 1089  * revalidate any cached state on reacquiring the lock.  Drop the reference
 1090  * using in_pcbrele().
 1091  */
 1092 void
 1093 in_pcbref(struct inpcb *inp)
 1094 {
 1095 
 1096         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1097 
 1098         refcount_acquire(&inp->inp_refcount);
 1099 }
 1100 
 1101 /*
 1102  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
 1103  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
 1104  * return a flag indicating whether or not the inpcb remains valid.  If it is
 1105  * valid, we return with the inpcb lock held.
 1106  *
 1107  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
 1108  * reference on an inpcb.  Historically more work was done here (actually, in
 1109  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
 1110  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
 1111  * about memory stability (and continued use of the write lock).
 1112  */
 1113 int
 1114 in_pcbrele_rlocked(struct inpcb *inp)
 1115 {
 1116         struct inpcbinfo *pcbinfo;
 1117 
 1118         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1119 
 1120         INP_RLOCK_ASSERT(inp);
 1121 
 1122         if (refcount_release(&inp->inp_refcount) == 0) {
 1123                 /*
 1124                  * If the inpcb has been freed, let the caller know, even if
 1125                  * this isn't the last reference.
 1126                  */
 1127                 if (inp->inp_flags2 & INP_FREED) {
 1128                         INP_RUNLOCK(inp);
 1129                         return (1);
 1130                 }
 1131                 return (0);
 1132         }
 1133 
 1134         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1135 
 1136         INP_RUNLOCK(inp);
 1137         pcbinfo = inp->inp_pcbinfo;
 1138         uma_zfree(pcbinfo->ipi_zone, inp);
 1139         return (1);
 1140 }
 1141 
 1142 int
 1143 in_pcbrele_wlocked(struct inpcb *inp)
 1144 {
 1145         struct inpcbinfo *pcbinfo;
 1146 
 1147         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1148 
 1149         INP_WLOCK_ASSERT(inp);
 1150 
 1151         if (refcount_release(&inp->inp_refcount) == 0) {
 1152                 /*
 1153                  * If the inpcb has been freed, let the caller know, even if
 1154                  * this isn't the last reference.
 1155                  */
 1156                 if (inp->inp_flags2 & INP_FREED) {
 1157                         INP_WUNLOCK(inp);
 1158                         return (1);
 1159                 }
 1160                 return (0);
 1161         }
 1162 
 1163         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1164 
 1165         INP_WUNLOCK(inp);
 1166         pcbinfo = inp->inp_pcbinfo;
 1167         uma_zfree(pcbinfo->ipi_zone, inp);
 1168         return (1);
 1169 }
 1170 
 1171 /*
 1172  * Temporary wrapper.
 1173  */
 1174 int
 1175 in_pcbrele(struct inpcb *inp)
 1176 {
 1177 
 1178         return (in_pcbrele_wlocked(inp));
 1179 }
 1180 
 1181 /*
 1182  * Unconditionally schedule an inpcb to be freed by decrementing its
 1183  * reference count, which should occur only after the inpcb has been detached
 1184  * from its socket.  If another thread holds a temporary reference (acquired
 1185  * using in_pcbref()) then the free is deferred until that reference is
 1186  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
 1187  * work, including removal from global lists, is done in this context, where
 1188  * the pcbinfo lock is held.
 1189  */
 1190 void
 1191 in_pcbfree(struct inpcb *inp)
 1192 {
 1193         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1194 
 1195         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1196 
 1197         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1198         INP_WLOCK_ASSERT(inp);
 1199 
 1200         /* XXXRW: Do as much as possible here. */
 1201 #ifdef IPSEC
 1202         if (inp->inp_sp != NULL)
 1203                 ipsec_delete_pcbpolicy(inp);
 1204 #endif
 1205         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 1206         in_pcbremlists(inp);
 1207 #ifdef INET6
 1208         if (inp->inp_vflag & INP_IPV6PROTO) {
 1209                 ip6_freepcbopts(inp->in6p_outputopts);
 1210                 if (inp->in6p_moptions != NULL)
 1211                         ip6_freemoptions(inp->in6p_moptions);
 1212         }
 1213 #endif
 1214         if (inp->inp_options)
 1215                 (void)m_free(inp->inp_options);
 1216 #ifdef INET
 1217         if (inp->inp_moptions != NULL)
 1218                 inp_freemoptions(inp->inp_moptions);
 1219 #endif
 1220         inp->inp_vflag = 0;
 1221         inp->inp_flags2 |= INP_FREED;
 1222         crfree(inp->inp_cred);
 1223 #ifdef MAC
 1224         mac_inpcb_destroy(inp);
 1225 #endif
 1226         if (!in_pcbrele_wlocked(inp))
 1227                 INP_WUNLOCK(inp);
 1228 }
 1229 
 1230 /*
 1231  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
 1232  * port reservation, and preventing it from being returned by inpcb lookups.
 1233  *
 1234  * It is used by TCP to mark an inpcb as unused and avoid future packet
 1235  * delivery or event notification when a socket remains open but TCP has
 1236  * closed.  This might occur as a result of a shutdown()-initiated TCP close
 1237  * or a RST on the wire, and allows the port binding to be reused while still
 1238  * maintaining the invariant that so_pcb always points to a valid inpcb until
 1239  * in_pcbdetach().
 1240  *
 1241  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
 1242  * in_pcbnotifyall() and in_pcbpurgeif0()?
 1243  */
 1244 void
 1245 in_pcbdrop(struct inpcb *inp)
 1246 {
 1247 
 1248         INP_WLOCK_ASSERT(inp);
 1249 
 1250         /*
 1251          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
 1252          * the hash lock...?
 1253          */
 1254         inp->inp_flags |= INP_DROPPED;
 1255         if (inp->inp_flags & INP_INHASHLIST) {
 1256                 struct inpcbport *phd = inp->inp_phd;
 1257 
 1258                 INP_HASH_WLOCK(inp->inp_pcbinfo);
 1259                 LIST_REMOVE(inp, inp_hash);
 1260                 LIST_REMOVE(inp, inp_portlist);
 1261                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 1262                         LIST_REMOVE(phd, phd_hash);
 1263                         free(phd, M_PCB);
 1264                 }
 1265                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
 1266                 inp->inp_flags &= ~INP_INHASHLIST;
 1267 #ifdef PCBGROUP
 1268                 in_pcbgroup_remove(inp);
 1269 #endif
 1270         }
 1271 }
 1272 
 1273 #ifdef INET
 1274 /*
 1275  * Common routines to return the socket addresses associated with inpcbs.
 1276  */
 1277 struct sockaddr *
 1278 in_sockaddr(in_port_t port, struct in_addr *addr_p)
 1279 {
 1280         struct sockaddr_in *sin;
 1281 
 1282         sin = malloc(sizeof *sin, M_SONAME,
 1283                 M_WAITOK | M_ZERO);
 1284         sin->sin_family = AF_INET;
 1285         sin->sin_len = sizeof(*sin);
 1286         sin->sin_addr = *addr_p;
 1287         sin->sin_port = port;
 1288 
 1289         return (struct sockaddr *)sin;
 1290 }
 1291 
 1292 int
 1293 in_getsockaddr(struct socket *so, struct sockaddr **nam)
 1294 {
 1295         struct inpcb *inp;
 1296         struct in_addr addr;
 1297         in_port_t port;
 1298 
 1299         inp = sotoinpcb(so);
 1300         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
 1301 
 1302         INP_RLOCK(inp);
 1303         port = inp->inp_lport;
 1304         addr = inp->inp_laddr;
 1305         INP_RUNLOCK(inp);
 1306 
 1307         *nam = in_sockaddr(port, &addr);
 1308         return 0;
 1309 }
 1310 
 1311 int
 1312 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
 1313 {
 1314         struct inpcb *inp;
 1315         struct in_addr addr;
 1316         in_port_t port;
 1317 
 1318         inp = sotoinpcb(so);
 1319         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
 1320 
 1321         INP_RLOCK(inp);
 1322         port = inp->inp_fport;
 1323         addr = inp->inp_faddr;
 1324         INP_RUNLOCK(inp);
 1325 
 1326         *nam = in_sockaddr(port, &addr);
 1327         return 0;
 1328 }
 1329 
 1330 void
 1331 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
 1332     struct inpcb *(*notify)(struct inpcb *, int))
 1333 {
 1334         struct inpcb *inp, *inp_temp;
 1335 
 1336         INP_INFO_WLOCK(pcbinfo);
 1337         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
 1338                 INP_WLOCK(inp);
 1339 #ifdef INET6
 1340                 if ((inp->inp_vflag & INP_IPV4) == 0) {
 1341                         INP_WUNLOCK(inp);
 1342                         continue;
 1343                 }
 1344 #endif
 1345                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
 1346                     inp->inp_socket == NULL) {
 1347                         INP_WUNLOCK(inp);
 1348                         continue;
 1349                 }
 1350                 if ((*notify)(inp, errno))
 1351                         INP_WUNLOCK(inp);
 1352         }
 1353         INP_INFO_WUNLOCK(pcbinfo);
 1354 }
 1355 
 1356 void
 1357 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
 1358 {
 1359         struct inpcb *inp;
 1360         struct ip_moptions *imo;
 1361         int i, gap;
 1362 
 1363         INP_INFO_RLOCK(pcbinfo);
 1364         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
 1365                 INP_WLOCK(inp);
 1366                 imo = inp->inp_moptions;
 1367                 if ((inp->inp_vflag & INP_IPV4) &&
 1368                     imo != NULL) {
 1369                         /*
 1370                          * Unselect the outgoing interface if it is being
 1371                          * detached.
 1372                          */
 1373                         if (imo->imo_multicast_ifp == ifp)
 1374                                 imo->imo_multicast_ifp = NULL;
 1375 
 1376                         /*
 1377                          * Drop multicast group membership if we joined
 1378                          * through the interface being detached.
 1379                          */
 1380                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
 1381                             i++) {
 1382                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
 1383                                         in_delmulti(imo->imo_membership[i]);
 1384                                         gap++;
 1385                                 } else if (gap != 0)
 1386                                         imo->imo_membership[i - gap] =
 1387                                             imo->imo_membership[i];
 1388                         }
 1389                         imo->imo_num_memberships -= gap;
 1390                 }
 1391                 INP_WUNLOCK(inp);
 1392         }
 1393         INP_INFO_RUNLOCK(pcbinfo);
 1394 }
 1395 
 1396 /*
 1397  * Lookup a PCB based on the local address and port.  Caller must hold the
 1398  * hash lock.  No inpcb locks or references are acquired.
 1399  */
 1400 #define INP_LOOKUP_MAPPED_PCB_COST      3
 1401 struct inpcb *
 1402 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
 1403     u_short lport, int lookupflags, struct ucred *cred)
 1404 {
 1405         struct inpcb *inp;
 1406 #ifdef INET6
 1407         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
 1408 #else
 1409         int matchwild = 3;
 1410 #endif
 1411         int wildcard;
 1412 
 1413         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 1414             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1415 
 1416         INP_HASH_LOCK_ASSERT(pcbinfo);
 1417 
 1418         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
 1419                 struct inpcbhead *head;
 1420                 /*
 1421                  * Look for an unconnected (wildcard foreign addr) PCB that
 1422                  * matches the local address and port we're looking for.
 1423                  */
 1424                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1425                     0, pcbinfo->ipi_hashmask)];
 1426                 LIST_FOREACH(inp, head, inp_hash) {
 1427 #ifdef INET6
 1428                         /* XXX inp locking */
 1429                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1430                                 continue;
 1431 #endif
 1432                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
 1433                             inp->inp_laddr.s_addr == laddr.s_addr &&
 1434                             inp->inp_lport == lport) {
 1435                                 /*
 1436                                  * Found?
 1437                                  */
 1438                                 if (cred == NULL ||
 1439                                     prison_equal_ip4(cred->cr_prison,
 1440                                         inp->inp_cred->cr_prison))
 1441                                         return (inp);
 1442                         }
 1443                 }
 1444                 /*
 1445                  * Not found.
 1446                  */
 1447                 return (NULL);
 1448         } else {
 1449                 struct inpcbporthead *porthash;
 1450                 struct inpcbport *phd;
 1451                 struct inpcb *match = NULL;
 1452                 /*
 1453                  * Best fit PCB lookup.
 1454                  *
 1455                  * First see if this local port is in use by looking on the
 1456                  * port hash list.
 1457                  */
 1458                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
 1459                     pcbinfo->ipi_porthashmask)];
 1460                 LIST_FOREACH(phd, porthash, phd_hash) {
 1461                         if (phd->phd_port == lport)
 1462                                 break;
 1463                 }
 1464                 if (phd != NULL) {
 1465                         /*
 1466                          * Port is in use by one or more PCBs. Look for best
 1467                          * fit.
 1468                          */
 1469                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
 1470                                 wildcard = 0;
 1471                                 if (cred != NULL &&
 1472                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
 1473                                         cred->cr_prison))
 1474                                         continue;
 1475 #ifdef INET6
 1476                                 /* XXX inp locking */
 1477                                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1478                                         continue;
 1479                                 /*
 1480                                  * We never select the PCB that has
 1481                                  * INP_IPV6 flag and is bound to :: if
 1482                                  * we have another PCB which is bound
 1483                                  * to 0.0.0.0.  If a PCB has the
 1484                                  * INP_IPV6 flag, then we set its cost
 1485                                  * higher than IPv4 only PCBs.
 1486                                  *
 1487                                  * Note that the case only happens
 1488                                  * when a socket is bound to ::, under
 1489                                  * the condition that the use of the
 1490                                  * mapped address is allowed.
 1491                                  */
 1492                                 if ((inp->inp_vflag & INP_IPV6) != 0)
 1493                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
 1494 #endif
 1495                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
 1496                                         wildcard++;
 1497                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
 1498                                         if (laddr.s_addr == INADDR_ANY)
 1499                                                 wildcard++;
 1500                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
 1501                                                 continue;
 1502                                 } else {
 1503                                         if (laddr.s_addr != INADDR_ANY)
 1504                                                 wildcard++;
 1505                                 }
 1506                                 if (wildcard < matchwild) {
 1507                                         match = inp;
 1508                                         matchwild = wildcard;
 1509                                         if (matchwild == 0)
 1510                                                 break;
 1511                                 }
 1512                         }
 1513                 }
 1514                 return (match);
 1515         }
 1516 }
 1517 #undef INP_LOOKUP_MAPPED_PCB_COST
 1518 
 1519 #ifdef PCBGROUP
 1520 /*
 1521  * Lookup PCB in hash list, using pcbgroup tables.
 1522  */
 1523 static struct inpcb *
 1524 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
 1525     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
 1526     u_int lport_arg, int lookupflags, struct ifnet *ifp)
 1527 {
 1528         struct inpcbhead *head;
 1529         struct inpcb *inp, *tmpinp;
 1530         u_short fport = fport_arg, lport = lport_arg;
 1531 
 1532         /*
 1533          * First look for an exact match.
 1534          */
 1535         tmpinp = NULL;
 1536         INP_GROUP_LOCK(pcbgroup);
 1537         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1538             pcbgroup->ipg_hashmask)];
 1539         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
 1540 #ifdef INET6
 1541                 /* XXX inp locking */
 1542                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1543                         continue;
 1544 #endif
 1545                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1546                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1547                     inp->inp_fport == fport &&
 1548                     inp->inp_lport == lport) {
 1549                         /*
 1550                          * XXX We should be able to directly return
 1551                          * the inp here, without any checks.
 1552                          * Well unless both bound with SO_REUSEPORT?
 1553                          */
 1554                         if (prison_flag(inp->inp_cred, PR_IP4))
 1555                                 goto found;
 1556                         if (tmpinp == NULL)
 1557                                 tmpinp = inp;
 1558                 }
 1559         }
 1560         if (tmpinp != NULL) {
 1561                 inp = tmpinp;
 1562                 goto found;
 1563         }
 1564 
 1565         /*
 1566          * Then look for a wildcard match, if requested.
 1567          */
 1568         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 1569                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1570 #ifdef INET6
 1571                 struct inpcb *local_wild_mapped = NULL;
 1572 #endif
 1573                 struct inpcb *jail_wild = NULL;
 1574                 struct inpcbhead *head;
 1575                 int injail;
 1576 
 1577                 /*
 1578                  * Order of socket selection - we always prefer jails.
 1579                  *      1. jailed, non-wild.
 1580                  *      2. jailed, wild.
 1581                  *      3. non-jailed, non-wild.
 1582                  *      4. non-jailed, wild.
 1583                  */
 1584                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
 1585                     0, pcbinfo->ipi_wildmask)];
 1586                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
 1587 #ifdef INET6
 1588                         /* XXX inp locking */
 1589                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1590                                 continue;
 1591 #endif
 1592                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1593                             inp->inp_lport != lport)
 1594                                 continue;
 1595 
 1596                         /* XXX inp locking */
 1597                         if (ifp && ifp->if_type == IFT_FAITH &&
 1598                             (inp->inp_flags & INP_FAITH) == 0)
 1599                                 continue;
 1600 
 1601                         injail = prison_flag(inp->inp_cred, PR_IP4);
 1602                         if (injail) {
 1603                                 if (prison_check_ip4(inp->inp_cred,
 1604                                     &laddr) != 0)
 1605                                         continue;
 1606                         } else {
 1607                                 if (local_exact != NULL)
 1608                                         continue;
 1609                         }
 1610 
 1611                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1612                                 if (injail)
 1613                                         goto found;
 1614                                 else
 1615                                         local_exact = inp;
 1616                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1617 #ifdef INET6
 1618                                 /* XXX inp locking, NULL check */
 1619                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1620                                         local_wild_mapped = inp;
 1621                                 else
 1622 #endif
 1623                                         if (injail)
 1624                                                 jail_wild = inp;
 1625                                         else
 1626                                                 local_wild = inp;
 1627                         }
 1628                 } /* LIST_FOREACH */
 1629                 inp = jail_wild;
 1630                 if (inp == NULL)
 1631                         inp = local_exact;
 1632                 if (inp == NULL)
 1633                         inp = local_wild;
 1634 #ifdef INET6
 1635                 if (inp == NULL)
 1636                         inp = local_wild_mapped;
 1637 #endif
 1638                 if (inp != NULL)
 1639                         goto found;
 1640         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
 1641         INP_GROUP_UNLOCK(pcbgroup);
 1642         return (NULL);
 1643 
 1644 found:
 1645         in_pcbref(inp);
 1646         INP_GROUP_UNLOCK(pcbgroup);
 1647         if (lookupflags & INPLOOKUP_WLOCKPCB) {
 1648                 INP_WLOCK(inp);
 1649                 if (in_pcbrele_wlocked(inp))
 1650                         return (NULL);
 1651         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 1652                 INP_RLOCK(inp);
 1653                 if (in_pcbrele_rlocked(inp))
 1654                         return (NULL);
 1655         } else
 1656                 panic("%s: locking bug", __func__);
 1657         return (inp);
 1658 }
 1659 #endif /* PCBGROUP */
 1660 
 1661 /*
 1662  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
 1663  * that the caller has locked the hash list, and will not perform any further
 1664  * locking or reference operations on either the hash list or the connection.
 1665  */
 1666 static struct inpcb *
 1667 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1668     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
 1669     struct ifnet *ifp)
 1670 {
 1671         struct inpcbhead *head;
 1672         struct inpcb *inp, *tmpinp;
 1673         u_short fport = fport_arg, lport = lport_arg;
 1674 
 1675         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 1676             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1677 
 1678         INP_HASH_LOCK_ASSERT(pcbinfo);
 1679 
 1680         /*
 1681          * First look for an exact match.
 1682          */
 1683         tmpinp = NULL;
 1684         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1685             pcbinfo->ipi_hashmask)];
 1686         LIST_FOREACH(inp, head, inp_hash) {
 1687 #ifdef INET6
 1688                 /* XXX inp locking */
 1689                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1690                         continue;
 1691 #endif
 1692                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1693                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1694                     inp->inp_fport == fport &&
 1695                     inp->inp_lport == lport) {
 1696                         /*
 1697                          * XXX We should be able to directly return
 1698                          * the inp here, without any checks.
 1699                          * Well unless both bound with SO_REUSEPORT?
 1700                          */
 1701                         if (prison_flag(inp->inp_cred, PR_IP4))
 1702                                 return (inp);
 1703                         if (tmpinp == NULL)
 1704                                 tmpinp = inp;
 1705                 }
 1706         }
 1707         if (tmpinp != NULL)
 1708                 return (tmpinp);
 1709 
 1710         /*
 1711          * Then look for a wildcard match, if requested.
 1712          */
 1713         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 1714                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1715 #ifdef INET6
 1716                 struct inpcb *local_wild_mapped = NULL;
 1717 #endif
 1718                 struct inpcb *jail_wild = NULL;
 1719                 int injail;
 1720 
 1721                 /*
 1722                  * Order of socket selection - we always prefer jails.
 1723                  *      1. jailed, non-wild.
 1724                  *      2. jailed, wild.
 1725                  *      3. non-jailed, non-wild.
 1726                  *      4. non-jailed, wild.
 1727                  */
 1728 
 1729                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1730                     0, pcbinfo->ipi_hashmask)];
 1731                 LIST_FOREACH(inp, head, inp_hash) {
 1732 #ifdef INET6
 1733                         /* XXX inp locking */
 1734                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1735                                 continue;
 1736 #endif
 1737                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1738                             inp->inp_lport != lport)
 1739                                 continue;
 1740 
 1741                         /* XXX inp locking */
 1742                         if (ifp && ifp->if_type == IFT_FAITH &&
 1743                             (inp->inp_flags & INP_FAITH) == 0)
 1744                                 continue;
 1745 
 1746                         injail = prison_flag(inp->inp_cred, PR_IP4);
 1747                         if (injail) {
 1748                                 if (prison_check_ip4(inp->inp_cred,
 1749                                     &laddr) != 0)
 1750                                         continue;
 1751                         } else {
 1752                                 if (local_exact != NULL)
 1753                                         continue;
 1754                         }
 1755 
 1756                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1757                                 if (injail)
 1758                                         return (inp);
 1759                                 else
 1760                                         local_exact = inp;
 1761                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1762 #ifdef INET6
 1763                                 /* XXX inp locking, NULL check */
 1764                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1765                                         local_wild_mapped = inp;
 1766                                 else
 1767 #endif
 1768                                         if (injail)
 1769                                                 jail_wild = inp;
 1770                                         else
 1771                                                 local_wild = inp;
 1772                         }
 1773                 } /* LIST_FOREACH */
 1774                 if (jail_wild != NULL)
 1775                         return (jail_wild);
 1776                 if (local_exact != NULL)
 1777                         return (local_exact);
 1778                 if (local_wild != NULL)
 1779                         return (local_wild);
 1780 #ifdef INET6
 1781                 if (local_wild_mapped != NULL)
 1782                         return (local_wild_mapped);
 1783 #endif
 1784         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
 1785 
 1786         return (NULL);
 1787 }
 1788 
 1789 /*
 1790  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
 1791  * hash list lock, and will return the inpcb locked (i.e., requires
 1792  * INPLOOKUP_LOCKPCB).
 1793  */
 1794 static struct inpcb *
 1795 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1796     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
 1797     struct ifnet *ifp)
 1798 {
 1799         struct inpcb *inp;
 1800 
 1801         INP_HASH_RLOCK(pcbinfo);
 1802         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
 1803             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
 1804         if (inp != NULL) {
 1805                 in_pcbref(inp);
 1806                 INP_HASH_RUNLOCK(pcbinfo);
 1807                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
 1808                         INP_WLOCK(inp);
 1809                         if (in_pcbrele_wlocked(inp))
 1810                                 return (NULL);
 1811                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 1812                         INP_RLOCK(inp);
 1813                         if (in_pcbrele_rlocked(inp))
 1814                                 return (NULL);
 1815                 } else
 1816                         panic("%s: locking bug", __func__);
 1817         } else
 1818                 INP_HASH_RUNLOCK(pcbinfo);
 1819         return (inp);
 1820 }
 1821 
 1822 /*
 1823  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
 1824  * from which a pre-calculated hash value may be extracted.
 1825  *
 1826  * Possibly more of this logic should be in in_pcbgroup.c.
 1827  */
 1828 struct inpcb *
 1829 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
 1830     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
 1831 {
 1832 #if defined(PCBGROUP)
 1833         struct inpcbgroup *pcbgroup;
 1834 #endif
 1835 
 1836         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 1837             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1838         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 1839             ("%s: LOCKPCB not set", __func__));
 1840 
 1841 #if defined(PCBGROUP)
 1842         if (in_pcbgroup_enabled(pcbinfo)) {
 1843                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 1844                     fport);
 1845                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 1846                     laddr, lport, lookupflags, ifp));
 1847         }
 1848 #endif
 1849         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 1850             lookupflags, ifp));
 1851 }
 1852 
 1853 struct inpcb *
 1854 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1855     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
 1856     struct ifnet *ifp, struct mbuf *m)
 1857 {
 1858 #ifdef PCBGROUP
 1859         struct inpcbgroup *pcbgroup;
 1860 #endif
 1861 
 1862         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 1863             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1864         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 1865             ("%s: LOCKPCB not set", __func__));
 1866 
 1867 #ifdef PCBGROUP
 1868         if (in_pcbgroup_enabled(pcbinfo)) {
 1869                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
 1870                     m->m_pkthdr.flowid);
 1871                 if (pcbgroup != NULL)
 1872                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
 1873                             fport, laddr, lport, lookupflags, ifp));
 1874                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 1875                     fport);
 1876                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 1877                     laddr, lport, lookupflags, ifp));
 1878         }
 1879 #endif
 1880         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 1881             lookupflags, ifp));
 1882 }
 1883 #endif /* INET */
 1884 
 1885 /*
 1886  * Insert PCB onto various hash lists.
 1887  */
 1888 static int
 1889 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
 1890 {
 1891         struct inpcbhead *pcbhash;
 1892         struct inpcbporthead *pcbporthash;
 1893         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1894         struct inpcbport *phd;
 1895         u_int32_t hashkey_faddr;
 1896 
 1897         INP_WLOCK_ASSERT(inp);
 1898         INP_HASH_WLOCK_ASSERT(pcbinfo);
 1899 
 1900         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
 1901             ("in_pcbinshash: INP_INHASHLIST"));
 1902 
 1903 #ifdef INET6
 1904         if (inp->inp_vflag & INP_IPV6)
 1905                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1906         else
 1907 #endif
 1908         hashkey_faddr = inp->inp_faddr.s_addr;
 1909 
 1910         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1911                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1912 
 1913         pcbporthash = &pcbinfo->ipi_porthashbase[
 1914             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
 1915 
 1916         /*
 1917          * Go through port list and look for a head for this lport.
 1918          */
 1919         LIST_FOREACH(phd, pcbporthash, phd_hash) {
 1920                 if (phd->phd_port == inp->inp_lport)
 1921                         break;
 1922         }
 1923         /*
 1924          * If none exists, malloc one and tack it on.
 1925          */
 1926         if (phd == NULL) {
 1927                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
 1928                 if (phd == NULL) {
 1929                         return (ENOBUFS); /* XXX */
 1930                 }
 1931                 phd->phd_port = inp->inp_lport;
 1932                 LIST_INIT(&phd->phd_pcblist);
 1933                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
 1934         }
 1935         inp->inp_phd = phd;
 1936         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
 1937         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
 1938         inp->inp_flags |= INP_INHASHLIST;
 1939 #ifdef PCBGROUP
 1940         if (do_pcbgroup_update)
 1941                 in_pcbgroup_update(inp);
 1942 #endif
 1943         return (0);
 1944 }
 1945 
 1946 /*
 1947  * For now, there are two public interfaces to insert an inpcb into the hash
 1948  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
 1949  * is used only in the TCP syncache, where in_pcbinshash is called before the
 1950  * full 4-tuple is set for the inpcb, and we don't want to install in the
 1951  * pcbgroup until later.
 1952  *
 1953  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
 1954  * connection groups, and partially initialised inpcbs should not be exposed
 1955  * to either reservation hash tables or pcbgroups.
 1956  */
 1957 int
 1958 in_pcbinshash(struct inpcb *inp)
 1959 {
 1960 
 1961         return (in_pcbinshash_internal(inp, 1));
 1962 }
 1963 
 1964 int
 1965 in_pcbinshash_nopcbgroup(struct inpcb *inp)
 1966 {
 1967 
 1968         return (in_pcbinshash_internal(inp, 0));
 1969 }
 1970 
 1971 /*
 1972  * Move PCB to the proper hash bucket when { faddr, fport } have  been
 1973  * changed. NOTE: This does not handle the case of the lport changing (the
 1974  * hashed port list would have to be updated as well), so the lport must
 1975  * not change after in_pcbinshash() has been called.
 1976  */
 1977 void
 1978 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
 1979 {
 1980         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1981         struct inpcbhead *head;
 1982         u_int32_t hashkey_faddr;
 1983 
 1984         INP_WLOCK_ASSERT(inp);
 1985         INP_HASH_WLOCK_ASSERT(pcbinfo);
 1986 
 1987         KASSERT(inp->inp_flags & INP_INHASHLIST,
 1988             ("in_pcbrehash: !INP_INHASHLIST"));
 1989 
 1990 #ifdef INET6
 1991         if (inp->inp_vflag & INP_IPV6)
 1992                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1993         else
 1994 #endif
 1995         hashkey_faddr = inp->inp_faddr.s_addr;
 1996 
 1997         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1998                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1999 
 2000         LIST_REMOVE(inp, inp_hash);
 2001         LIST_INSERT_HEAD(head, inp, inp_hash);
 2002 
 2003 #ifdef PCBGROUP
 2004         if (m != NULL)
 2005                 in_pcbgroup_update_mbuf(inp, m);
 2006         else
 2007                 in_pcbgroup_update(inp);
 2008 #endif
 2009 }
 2010 
 2011 void
 2012 in_pcbrehash(struct inpcb *inp)
 2013 {
 2014 
 2015         in_pcbrehash_mbuf(inp, NULL);
 2016 }
 2017 
 2018 /*
 2019  * Remove PCB from various lists.
 2020  */
 2021 static void
 2022 in_pcbremlists(struct inpcb *inp)
 2023 {
 2024         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 2025 
 2026         INP_INFO_WLOCK_ASSERT(pcbinfo);
 2027         INP_WLOCK_ASSERT(inp);
 2028 
 2029         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 2030         if (inp->inp_flags & INP_INHASHLIST) {
 2031                 struct inpcbport *phd = inp->inp_phd;
 2032 
 2033                 INP_HASH_WLOCK(pcbinfo);
 2034                 LIST_REMOVE(inp, inp_hash);
 2035                 LIST_REMOVE(inp, inp_portlist);
 2036                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 2037                         LIST_REMOVE(phd, phd_hash);
 2038                         free(phd, M_PCB);
 2039                 }
 2040                 INP_HASH_WUNLOCK(pcbinfo);
 2041                 inp->inp_flags &= ~INP_INHASHLIST;
 2042         }
 2043         LIST_REMOVE(inp, inp_list);
 2044         pcbinfo->ipi_count--;
 2045 #ifdef PCBGROUP
 2046         in_pcbgroup_remove(inp);
 2047 #endif
 2048 }
 2049 
 2050 /*
 2051  * A set label operation has occurred at the socket layer, propagate the
 2052  * label change into the in_pcb for the socket.
 2053  */
 2054 void
 2055 in_pcbsosetlabel(struct socket *so)
 2056 {
 2057 #ifdef MAC
 2058         struct inpcb *inp;
 2059 
 2060         inp = sotoinpcb(so);
 2061         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
 2062 
 2063         INP_WLOCK(inp);
 2064         SOCK_LOCK(so);
 2065         mac_inpcb_sosetlabel(so, inp);
 2066         SOCK_UNLOCK(so);
 2067         INP_WUNLOCK(inp);
 2068 #endif
 2069 }
 2070 
 2071 /*
 2072  * ipport_tick runs once per second, determining if random port allocation
 2073  * should be continued.  If more than ipport_randomcps ports have been
 2074  * allocated in the last second, then we return to sequential port
 2075  * allocation. We return to random allocation only once we drop below
 2076  * ipport_randomcps for at least ipport_randomtime seconds.
 2077  */
 2078 static void
 2079 ipport_tick(void *xtp)
 2080 {
 2081         VNET_ITERATOR_DECL(vnet_iter);
 2082 
 2083         VNET_LIST_RLOCK_NOSLEEP();
 2084         VNET_FOREACH(vnet_iter) {
 2085                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
 2086                 if (V_ipport_tcpallocs <=
 2087                     V_ipport_tcplastcount + V_ipport_randomcps) {
 2088                         if (V_ipport_stoprandom > 0)
 2089                                 V_ipport_stoprandom--;
 2090                 } else
 2091                         V_ipport_stoprandom = V_ipport_randomtime;
 2092                 V_ipport_tcplastcount = V_ipport_tcpallocs;
 2093                 CURVNET_RESTORE();
 2094         }
 2095         VNET_LIST_RUNLOCK_NOSLEEP();
 2096         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
 2097 }
 2098 
 2099 static void
 2100 ip_fini(void *xtp)
 2101 {
 2102 
 2103         callout_stop(&ipport_tick_callout);
 2104 }
 2105 
 2106 /* 
 2107  * The ipport_callout should start running at about the time we attach the
 2108  * inet or inet6 domains.
 2109  */
 2110 static void
 2111 ipport_tick_init(const void *unused __unused)
 2112 {
 2113 
 2114         /* Start ipport_tick. */
 2115         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
 2116         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
 2117         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
 2118                 SHUTDOWN_PRI_DEFAULT);
 2119 }
 2120 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
 2121     ipport_tick_init, NULL);
 2122 
 2123 void
 2124 inp_wlock(struct inpcb *inp)
 2125 {
 2126 
 2127         INP_WLOCK(inp);
 2128 }
 2129 
 2130 void
 2131 inp_wunlock(struct inpcb *inp)
 2132 {
 2133 
 2134         INP_WUNLOCK(inp);
 2135 }
 2136 
 2137 void
 2138 inp_rlock(struct inpcb *inp)
 2139 {
 2140 
 2141         INP_RLOCK(inp);
 2142 }
 2143 
 2144 void
 2145 inp_runlock(struct inpcb *inp)
 2146 {
 2147 
 2148         INP_RUNLOCK(inp);
 2149 }
 2150 
 2151 #ifdef INVARIANTS
 2152 void
 2153 inp_lock_assert(struct inpcb *inp)
 2154 {
 2155 
 2156         INP_WLOCK_ASSERT(inp);
 2157 }
 2158 
 2159 void
 2160 inp_unlock_assert(struct inpcb *inp)
 2161 {
 2162 
 2163         INP_UNLOCK_ASSERT(inp);
 2164 }
 2165 #endif
 2166 
 2167 void
 2168 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
 2169 {
 2170         struct inpcb *inp;
 2171 
 2172         INP_INFO_RLOCK(&V_tcbinfo);
 2173         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
 2174                 INP_WLOCK(inp);
 2175                 func(inp, arg);
 2176                 INP_WUNLOCK(inp);
 2177         }
 2178         INP_INFO_RUNLOCK(&V_tcbinfo);
 2179 }
 2180 
 2181 struct socket *
 2182 inp_inpcbtosocket(struct inpcb *inp)
 2183 {
 2184 
 2185         INP_WLOCK_ASSERT(inp);
 2186         return (inp->inp_socket);
 2187 }
 2188 
 2189 struct tcpcb *
 2190 inp_inpcbtotcpcb(struct inpcb *inp)
 2191 {
 2192 
 2193         INP_WLOCK_ASSERT(inp);
 2194         return ((struct tcpcb *)inp->inp_ppcb);
 2195 }
 2196 
 2197 int
 2198 inp_ip_tos_get(const struct inpcb *inp)
 2199 {
 2200 
 2201         return (inp->inp_ip_tos);
 2202 }
 2203 
 2204 void
 2205 inp_ip_tos_set(struct inpcb *inp, int val)
 2206 {
 2207 
 2208         inp->inp_ip_tos = val;
 2209 }
 2210 
 2211 void
 2212 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
 2213     uint32_t *faddr, uint16_t *fp)
 2214 {
 2215 
 2216         INP_LOCK_ASSERT(inp);
 2217         *laddr = inp->inp_laddr.s_addr;
 2218         *faddr = inp->inp_faddr.s_addr;
 2219         *lp = inp->inp_lport;
 2220         *fp = inp->inp_fport;
 2221 }
 2222 
 2223 struct inpcb *
 2224 so_sotoinpcb(struct socket *so)
 2225 {
 2226 
 2227         return (sotoinpcb(so));
 2228 }
 2229 
 2230 struct tcpcb *
 2231 so_sototcpcb(struct socket *so)
 2232 {
 2233 
 2234         return (sototcpcb(so));
 2235 }
 2236 
 2237 #ifdef DDB
 2238 static void
 2239 db_print_indent(int indent)
 2240 {
 2241         int i;
 2242 
 2243         for (i = 0; i < indent; i++)
 2244                 db_printf(" ");
 2245 }
 2246 
 2247 static void
 2248 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
 2249 {
 2250         char faddr_str[48], laddr_str[48];
 2251 
 2252         db_print_indent(indent);
 2253         db_printf("%s at %p\n", name, inc);
 2254 
 2255         indent += 2;
 2256 
 2257 #ifdef INET6
 2258         if (inc->inc_flags & INC_ISIPV6) {
 2259                 /* IPv6. */
 2260                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
 2261                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
 2262         } else
 2263 #endif
 2264         {
 2265                 /* IPv4. */
 2266                 inet_ntoa_r(inc->inc_laddr, laddr_str);
 2267                 inet_ntoa_r(inc->inc_faddr, faddr_str);
 2268         }
 2269         db_print_indent(indent);
 2270         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
 2271             ntohs(inc->inc_lport));
 2272         db_print_indent(indent);
 2273         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
 2274             ntohs(inc->inc_fport));
 2275 }
 2276 
 2277 static void
 2278 db_print_inpflags(int inp_flags)
 2279 {
 2280         int comma;
 2281 
 2282         comma = 0;
 2283         if (inp_flags & INP_RECVOPTS) {
 2284                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
 2285                 comma = 1;
 2286         }
 2287         if (inp_flags & INP_RECVRETOPTS) {
 2288                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
 2289                 comma = 1;
 2290         }
 2291         if (inp_flags & INP_RECVDSTADDR) {
 2292                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
 2293                 comma = 1;
 2294         }
 2295         if (inp_flags & INP_HDRINCL) {
 2296                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
 2297                 comma = 1;
 2298         }
 2299         if (inp_flags & INP_HIGHPORT) {
 2300                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
 2301                 comma = 1;
 2302         }
 2303         if (inp_flags & INP_LOWPORT) {
 2304                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
 2305                 comma = 1;
 2306         }
 2307         if (inp_flags & INP_ANONPORT) {
 2308                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
 2309                 comma = 1;
 2310         }
 2311         if (inp_flags & INP_RECVIF) {
 2312                 db_printf("%sINP_RECVIF", comma ? ", " : "");
 2313                 comma = 1;
 2314         }
 2315         if (inp_flags & INP_MTUDISC) {
 2316                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
 2317                 comma = 1;
 2318         }
 2319         if (inp_flags & INP_FAITH) {
 2320                 db_printf("%sINP_FAITH", comma ? ", " : "");
 2321                 comma = 1;
 2322         }
 2323         if (inp_flags & INP_RECVTTL) {
 2324                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
 2325                 comma = 1;
 2326         }
 2327         if (inp_flags & INP_DONTFRAG) {
 2328                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
 2329                 comma = 1;
 2330         }
 2331         if (inp_flags & INP_RECVTOS) {
 2332                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
 2333                 comma = 1;
 2334         }
 2335         if (inp_flags & IN6P_IPV6_V6ONLY) {
 2336                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
 2337                 comma = 1;
 2338         }
 2339         if (inp_flags & IN6P_PKTINFO) {
 2340                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
 2341                 comma = 1;
 2342         }
 2343         if (inp_flags & IN6P_HOPLIMIT) {
 2344                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
 2345                 comma = 1;
 2346         }
 2347         if (inp_flags & IN6P_HOPOPTS) {
 2348                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
 2349                 comma = 1;
 2350         }
 2351         if (inp_flags & IN6P_DSTOPTS) {
 2352                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
 2353                 comma = 1;
 2354         }
 2355         if (inp_flags & IN6P_RTHDR) {
 2356                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
 2357                 comma = 1;
 2358         }
 2359         if (inp_flags & IN6P_RTHDRDSTOPTS) {
 2360                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
 2361                 comma = 1;
 2362         }
 2363         if (inp_flags & IN6P_TCLASS) {
 2364                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
 2365                 comma = 1;
 2366         }
 2367         if (inp_flags & IN6P_AUTOFLOWLABEL) {
 2368                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
 2369                 comma = 1;
 2370         }
 2371         if (inp_flags & INP_TIMEWAIT) {
 2372                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
 2373                 comma  = 1;
 2374         }
 2375         if (inp_flags & INP_ONESBCAST) {
 2376                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
 2377                 comma  = 1;
 2378         }
 2379         if (inp_flags & INP_DROPPED) {
 2380                 db_printf("%sINP_DROPPED", comma ? ", " : "");
 2381                 comma  = 1;
 2382         }
 2383         if (inp_flags & INP_SOCKREF) {
 2384                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
 2385                 comma  = 1;
 2386         }
 2387         if (inp_flags & IN6P_RFC2292) {
 2388                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
 2389                 comma = 1;
 2390         }
 2391         if (inp_flags & IN6P_MTU) {
 2392                 db_printf("IN6P_MTU%s", comma ? ", " : "");
 2393                 comma = 1;
 2394         }
 2395 }
 2396 
 2397 static void
 2398 db_print_inpvflag(u_char inp_vflag)
 2399 {
 2400         int comma;
 2401 
 2402         comma = 0;
 2403         if (inp_vflag & INP_IPV4) {
 2404                 db_printf("%sINP_IPV4", comma ? ", " : "");
 2405                 comma  = 1;
 2406         }
 2407         if (inp_vflag & INP_IPV6) {
 2408                 db_printf("%sINP_IPV6", comma ? ", " : "");
 2409                 comma  = 1;
 2410         }
 2411         if (inp_vflag & INP_IPV6PROTO) {
 2412                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
 2413                 comma  = 1;
 2414         }
 2415 }
 2416 
 2417 static void
 2418 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
 2419 {
 2420 
 2421         db_print_indent(indent);
 2422         db_printf("%s at %p\n", name, inp);
 2423 
 2424         indent += 2;
 2425 
 2426         db_print_indent(indent);
 2427         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
 2428 
 2429         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
 2430 
 2431         db_print_indent(indent);
 2432         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
 2433             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
 2434 
 2435         db_print_indent(indent);
 2436         db_printf("inp_label: %p   inp_flags: 0x%x (",
 2437            inp->inp_label, inp->inp_flags);
 2438         db_print_inpflags(inp->inp_flags);
 2439         db_printf(")\n");
 2440 
 2441         db_print_indent(indent);
 2442         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
 2443             inp->inp_vflag);
 2444         db_print_inpvflag(inp->inp_vflag);
 2445         db_printf(")\n");
 2446 
 2447         db_print_indent(indent);
 2448         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
 2449             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
 2450 
 2451         db_print_indent(indent);
 2452 #ifdef INET6
 2453         if (inp->inp_vflag & INP_IPV6) {
 2454                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
 2455                     "in6p_moptions: %p\n", inp->in6p_options,
 2456                     inp->in6p_outputopts, inp->in6p_moptions);
 2457                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
 2458                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
 2459                     inp->in6p_hops);
 2460         } else
 2461 #endif
 2462         {
 2463                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
 2464                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
 2465                     inp->inp_options, inp->inp_moptions);
 2466         }
 2467 
 2468         db_print_indent(indent);
 2469         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
 2470             (uintmax_t)inp->inp_gencnt);
 2471 }
 2472 
 2473 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
 2474 {
 2475         struct inpcb *inp;
 2476 
 2477         if (!have_addr) {
 2478                 db_printf("usage: show inpcb <addr>\n");
 2479                 return;
 2480         }
 2481         inp = (struct inpcb *)addr;
 2482 
 2483         db_print_inpcb(inp, "inpcb", 0);
 2484 }
 2485 #endif /* DDB */

Cache object: 2908b7a515c5459486e3032c71e468e2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.