The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/in_pcb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2007 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ddb.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_inet6.h"
   40 #include "opt_mac.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/domain.h>
   47 #include <sys/protosw.h>
   48 #include <sys/socket.h>
   49 #include <sys/socketvar.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/jail.h>
   53 #include <sys/kernel.h>
   54 #include <sys/sysctl.h>
   55 
   56 #ifdef DDB
   57 #include <ddb/ddb.h>
   58 #endif
   59 
   60 #include <vm/uma.h>
   61 
   62 #include <net/if.h>
   63 #include <net/if_types.h>
   64 #include <net/route.h>
   65 
   66 #include <netinet/in.h>
   67 #include <netinet/in_pcb.h>
   68 #include <netinet/in_var.h>
   69 #include <netinet/ip_var.h>
   70 #include <netinet/tcp_var.h>
   71 #include <netinet/udp.h>
   72 #include <netinet/udp_var.h>
   73 #ifdef INET6
   74 #include <netinet/ip6.h>
   75 #include <netinet6/ip6_var.h>
   76 #endif /* INET6 */
   77 
   78 
   79 #ifdef IPSEC
   80 #include <netipsec/ipsec.h>
   81 #include <netipsec/key.h>
   82 #endif /* IPSEC */
   83 
   84 #include <security/mac/mac_framework.h>
   85 
   86 /*
   87  * These configure the range of local port addresses assigned to
   88  * "unspecified" outgoing connections/packets/whatever.
   89  */
   90 int     ipport_lowfirstauto  = IPPORT_RESERVED - 1;     /* 1023 */
   91 int     ipport_lowlastauto = IPPORT_RESERVEDSTART;      /* 600 */
   92 int     ipport_firstauto = IPPORT_HIFIRSTAUTO;          /* 49152 */
   93 int     ipport_lastauto  = IPPORT_HILASTAUTO;           /* 65535 */
   94 int     ipport_hifirstauto = IPPORT_HIFIRSTAUTO;        /* 49152 */
   95 int     ipport_hilastauto  = IPPORT_HILASTAUTO;         /* 65535 */
   96 
   97 /*
   98  * Reserved ports accessible only to root. There are significant
   99  * security considerations that must be accounted for when changing these,
  100  * but the security benefits can be great. Please be careful.
  101  */
  102 int     ipport_reservedhigh = IPPORT_RESERVED - 1;      /* 1023 */
  103 int     ipport_reservedlow = 0;
  104 
  105 /* Variables dealing with random ephemeral port allocation. */
  106 int     ipport_randomized = 1;  /* user controlled via sysctl */
  107 int     ipport_randomcps = 10;  /* user controlled via sysctl */
  108 int     ipport_randomtime = 45; /* user controlled via sysctl */
  109 int     ipport_stoprandom = 0;  /* toggled by ipport_tick */
  110 int     ipport_tcpallocs;
  111 int     ipport_tcplastcount;
  112 
  113 #define RANGECHK(var, min, max) \
  114         if ((var) < (min)) { (var) = (min); } \
  115         else if ((var) > (max)) { (var) = (max); }
  116 
  117 static int
  118 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
  119 {
  120         int error;
  121 
  122         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
  123         if (error == 0) {
  124                 RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
  125                 RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
  126                 RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
  127                 RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
  128                 RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
  129                 RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
  130         }
  131         return (error);
  132 }
  133 
  134 #undef RANGECHK
  135 
  136 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
  137 
  138 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
  139            &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
  140 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
  141            &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
  142 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
  143            &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
  144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
  145            &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
  146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
  147            &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
  148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
  149            &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
  150 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
  151            CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
  152 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
  153            CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
  154 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
  155            &ipport_randomized, 0, "Enable random port allocation");
  156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
  157            &ipport_randomcps, 0, "Maximum number of random port "
  158            "allocations before switching to a sequental one");
  159 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
  160            &ipport_randomtime, 0, "Minimum time to keep sequental port "
  161            "allocation before switching to a random one");
  162 
  163 /*
  164  * in_pcb.c: manage the Protocol Control Blocks.
  165  *
  166  * NOTE: It is assumed that most of these functions will be called with
  167  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
  168  * functions often modify hash chains or addresses in pcbs.
  169  */
  170 
  171 /*
  172  * Allocate a PCB and associate it with the socket.
  173  * On success return with the PCB locked.
  174  */
  175 int
  176 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
  177 {
  178         struct inpcb *inp;
  179         int error;
  180 
  181         INP_INFO_WLOCK_ASSERT(pcbinfo);
  182         error = 0;
  183         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
  184         if (inp == NULL)
  185                 return (ENOBUFS);
  186         bzero(inp, inp_zero_size);
  187         inp->inp_pcbinfo = pcbinfo;
  188         inp->inp_socket = so;
  189 #ifdef MAC
  190         error = mac_init_inpcb(inp, M_NOWAIT);
  191         if (error != 0)
  192                 goto out;
  193         SOCK_LOCK(so);
  194         mac_create_inpcb_from_socket(so, inp);
  195         SOCK_UNLOCK(so);
  196 #endif
  197 
  198 #ifdef IPSEC
  199         error = ipsec_init_policy(so, &inp->inp_sp);
  200         if (error != 0) {
  201 #ifdef MAC
  202                 mac_destroy_inpcb(inp);
  203 #endif
  204                 goto out;
  205 }
  206 #endif /*IPSEC*/
  207 #ifdef INET6
  208         if (INP_SOCKAF(so) == AF_INET6) {
  209                 inp->inp_vflag |= INP_IPV6PROTO;
  210                 if (ip6_v6only)
  211                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
  212         }
  213 #endif
  214         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
  215         pcbinfo->ipi_count++;
  216         so->so_pcb = (caddr_t)inp;
  217 #ifdef INET6
  218         if (ip6_auto_flowlabel)
  219                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
  220 #endif
  221         INP_LOCK(inp);
  222         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
  223         
  224 #if defined(IPSEC) || defined(MAC)
  225 out:
  226         if (error != 0)
  227                 uma_zfree(pcbinfo->ipi_zone, inp);
  228 #endif
  229         return (error);
  230 }
  231 
  232 int
  233 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  234 {
  235         int anonport, error;
  236 
  237         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  238         INP_LOCK_ASSERT(inp);
  239 
  240         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
  241                 return (EINVAL);
  242         anonport = inp->inp_lport == 0 && (nam == NULL ||
  243             ((struct sockaddr_in *)nam)->sin_port == 0);
  244         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
  245             &inp->inp_lport, cred);
  246         if (error)
  247                 return (error);
  248         if (in_pcbinshash(inp) != 0) {
  249                 inp->inp_laddr.s_addr = INADDR_ANY;
  250                 inp->inp_lport = 0;
  251                 return (EAGAIN);
  252         }
  253         if (anonport)
  254                 inp->inp_flags |= INP_ANONPORT;
  255         return (0);
  256 }
  257 
  258 /*
  259  * Set up a bind operation on a PCB, performing port allocation
  260  * as required, but do not actually modify the PCB. Callers can
  261  * either complete the bind by setting inp_laddr/inp_lport and
  262  * calling in_pcbinshash(), or they can just use the resulting
  263  * port and address to authorise the sending of a once-off packet.
  264  *
  265  * On error, the values of *laddrp and *lportp are not changed.
  266  */
  267 int
  268 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
  269     u_short *lportp, struct ucred *cred)
  270 {
  271         struct socket *so = inp->inp_socket;
  272         unsigned short *lastport;
  273         struct sockaddr_in *sin;
  274         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
  275         struct in_addr laddr;
  276         u_short lport = 0;
  277         int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
  278         int error, prison = 0;
  279         int dorandom;
  280 
  281         INP_INFO_WLOCK_ASSERT(pcbinfo);
  282         INP_LOCK_ASSERT(inp);
  283 
  284         if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
  285                 return (EADDRNOTAVAIL);
  286         laddr.s_addr = *laddrp;
  287         if (nam != NULL && laddr.s_addr != INADDR_ANY)
  288                 return (EINVAL);
  289         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
  290                 wild = INPLOOKUP_WILDCARD;
  291         if (nam) {
  292                 sin = (struct sockaddr_in *)nam;
  293                 if (nam->sa_len != sizeof (*sin))
  294                         return (EINVAL);
  295 #ifdef notdef
  296                 /*
  297                  * We should check the family, but old programs
  298                  * incorrectly fail to initialize it.
  299                  */
  300                 if (sin->sin_family != AF_INET)
  301                         return (EAFNOSUPPORT);
  302 #endif
  303                 if (sin->sin_addr.s_addr != INADDR_ANY)
  304                         if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
  305                                 return(EINVAL);
  306                 if (sin->sin_port != *lportp) {
  307                         /* Don't allow the port to change. */
  308                         if (*lportp != 0)
  309                                 return (EINVAL);
  310                         lport = sin->sin_port;
  311                 }
  312                 /* NB: lport is left as 0 if the port isn't being changed. */
  313                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
  314                         /*
  315                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
  316                          * allow complete duplication of binding if
  317                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
  318                          * and a multicast address is bound on both
  319                          * new and duplicated sockets.
  320                          */
  321                         if (so->so_options & SO_REUSEADDR)
  322                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
  323                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
  324                         sin->sin_port = 0;              /* yech... */
  325                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
  326                         if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
  327                                 return (EADDRNOTAVAIL);
  328                 }
  329                 laddr = sin->sin_addr;
  330                 if (lport) {
  331                         struct inpcb *t;
  332                         struct tcptw *tw;
  333 
  334                         /* GROSS */
  335                         if (ntohs(lport) <= ipport_reservedhigh &&
  336                             ntohs(lport) >= ipport_reservedlow &&
  337                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
  338                             0))
  339                                 return (EACCES);
  340                         if (jailed(cred))
  341                                 prison = 1;
  342                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
  343                             priv_check_cred(so->so_cred,
  344                             PRIV_NETINET_REUSEPORT, 0) != 0) {
  345                                 t = in_pcblookup_local(inp->inp_pcbinfo,
  346                                     sin->sin_addr, lport,
  347                                     prison ? 0 :  INPLOOKUP_WILDCARD);
  348         /*
  349          * XXX
  350          * This entire block sorely needs a rewrite.
  351          */
  352                                 if (t &&
  353                                     ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
  354                                     (so->so_type != SOCK_STREAM ||
  355                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
  356                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
  357                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
  358                                      (t->inp_socket->so_options &
  359                                          SO_REUSEPORT) == 0) &&
  360                                     (so->so_cred->cr_uid !=
  361                                      t->inp_socket->so_cred->cr_uid))
  362                                         return (EADDRINUSE);
  363                         }
  364                         if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
  365                                 return (EADDRNOTAVAIL);
  366                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  367                             lport, prison ? 0 : wild);
  368                         if (t && (t->inp_vflag & INP_TIMEWAIT)) {
  369                                 /*
  370                                  * XXXRW: If an incpb has had its timewait
  371                                  * state recycled, we treat the address as
  372                                  * being in use (for now).  This is better
  373                                  * than a panic, but not desirable.
  374                                  */
  375                                 tw = intotw(inp);
  376                                 if (tw == NULL ||
  377                                     (reuseport & tw->tw_so_options) == 0)
  378                                         return (EADDRINUSE);
  379                         } else if (t &&
  380                             (reuseport & t->inp_socket->so_options) == 0) {
  381 #ifdef INET6
  382                                 if (ntohl(sin->sin_addr.s_addr) !=
  383                                     INADDR_ANY ||
  384                                     ntohl(t->inp_laddr.s_addr) !=
  385                                     INADDR_ANY ||
  386                                     INP_SOCKAF(so) ==
  387                                     INP_SOCKAF(t->inp_socket))
  388 #endif
  389                                 return (EADDRINUSE);
  390                         }
  391                 }
  392         }
  393         if (*lportp != 0)
  394                 lport = *lportp;
  395         if (lport == 0) {
  396                 u_short first, last;
  397                 int count;
  398 
  399                 if (laddr.s_addr != INADDR_ANY)
  400                         if (prison_ip(cred, 0, &laddr.s_addr))
  401                                 return (EINVAL);
  402 
  403                 if (inp->inp_flags & INP_HIGHPORT) {
  404                         first = ipport_hifirstauto;     /* sysctl */
  405                         last  = ipport_hilastauto;
  406                         lastport = &pcbinfo->ipi_lasthi;
  407                 } else if (inp->inp_flags & INP_LOWPORT) {
  408                         error = priv_check_cred(cred,
  409                             PRIV_NETINET_RESERVEDPORT, 0);
  410                         if (error)
  411                                 return error;
  412                         first = ipport_lowfirstauto;    /* 1023 */
  413                         last  = ipport_lowlastauto;     /* 600 */
  414                         lastport = &pcbinfo->ipi_lastlow;
  415                 } else {
  416                         first = ipport_firstauto;       /* sysctl */
  417                         last  = ipport_lastauto;
  418                         lastport = &pcbinfo->ipi_lastport;
  419                 }
  420                 /*
  421                  * For UDP, use random port allocation as long as the user
  422                  * allows it.  For TCP (and as of yet unknown) connections,
  423                  * use random port allocation only if the user allows it AND
  424                  * ipport_tick() allows it.
  425                  */
  426                 if (ipport_randomized &&
  427                         (!ipport_stoprandom || pcbinfo == &udbinfo))
  428                         dorandom = 1;
  429                 else
  430                         dorandom = 0;
  431                 /*
  432                  * It makes no sense to do random port allocation if
  433                  * we have the only port available.
  434                  */
  435                 if (first == last)
  436                         dorandom = 0;
  437                 /* Make sure to not include UDP packets in the count. */
  438                 if (pcbinfo != &udbinfo)
  439                         ipport_tcpallocs++;
  440                 /*
  441                  * Simple check to ensure all ports are not used up causing
  442                  * a deadlock here.
  443                  *
  444                  * We split the two cases (up and down) so that the direction
  445                  * is not being tested on each round of the loop.
  446                  */
  447                 if (first > last) {
  448                         /*
  449                          * counting down
  450                          */
  451                         if (dorandom)
  452                                 *lastport = first -
  453                                             (arc4random() % (first - last));
  454                         count = first - last;
  455 
  456                         do {
  457                                 if (count-- < 0)        /* completely used? */
  458                                         return (EADDRNOTAVAIL);
  459                                 --*lastport;
  460                                 if (*lastport > first || *lastport < last)
  461                                         *lastport = first;
  462                                 lport = htons(*lastport);
  463                         } while (in_pcblookup_local(pcbinfo, laddr, lport,
  464                             wild));
  465                 } else {
  466                         /*
  467                          * counting up
  468                          */
  469                         if (dorandom)
  470                                 *lastport = first +
  471                                             (arc4random() % (last - first));
  472                         count = last - first;
  473 
  474                         do {
  475                                 if (count-- < 0)        /* completely used? */
  476                                         return (EADDRNOTAVAIL);
  477                                 ++*lastport;
  478                                 if (*lastport < first || *lastport > last)
  479                                         *lastport = first;
  480                                 lport = htons(*lastport);
  481                         } while (in_pcblookup_local(pcbinfo, laddr, lport,
  482                             wild));
  483                 }
  484         }
  485         if (prison_ip(cred, 0, &laddr.s_addr))
  486                 return (EINVAL);
  487         *laddrp = laddr.s_addr;
  488         *lportp = lport;
  489         return (0);
  490 }
  491 
  492 /*
  493  * Connect from a socket to a specified address.
  494  * Both address and port must be specified in argument sin.
  495  * If don't have a local address for this socket yet,
  496  * then pick one.
  497  */
  498 int
  499 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  500 {
  501         u_short lport, fport;
  502         in_addr_t laddr, faddr;
  503         int anonport, error;
  504 
  505         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  506         INP_LOCK_ASSERT(inp);
  507 
  508         lport = inp->inp_lport;
  509         laddr = inp->inp_laddr.s_addr;
  510         anonport = (lport == 0);
  511         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
  512             NULL, cred);
  513         if (error)
  514                 return (error);
  515 
  516         /* Do the initial binding of the local address if required. */
  517         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
  518                 inp->inp_lport = lport;
  519                 inp->inp_laddr.s_addr = laddr;
  520                 if (in_pcbinshash(inp) != 0) {
  521                         inp->inp_laddr.s_addr = INADDR_ANY;
  522                         inp->inp_lport = 0;
  523                         return (EAGAIN);
  524                 }
  525         }
  526 
  527         /* Commit the remaining changes. */
  528         inp->inp_lport = lport;
  529         inp->inp_laddr.s_addr = laddr;
  530         inp->inp_faddr.s_addr = faddr;
  531         inp->inp_fport = fport;
  532         in_pcbrehash(inp);
  533 
  534         if (anonport)
  535                 inp->inp_flags |= INP_ANONPORT;
  536         return (0);
  537 }
  538 
  539 /*
  540  * Set up for a connect from a socket to the specified address.
  541  * On entry, *laddrp and *lportp should contain the current local
  542  * address and port for the PCB; these are updated to the values
  543  * that should be placed in inp_laddr and inp_lport to complete
  544  * the connect.
  545  *
  546  * On success, *faddrp and *fportp will be set to the remote address
  547  * and port. These are not updated in the error case.
  548  *
  549  * If the operation fails because the connection already exists,
  550  * *oinpp will be set to the PCB of that connection so that the
  551  * caller can decide to override it. In all other cases, *oinpp
  552  * is set to NULL.
  553  */
  554 int
  555 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
  556     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
  557     struct inpcb **oinpp, struct ucred *cred)
  558 {
  559         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
  560         struct in_ifaddr *ia;
  561         struct sockaddr_in sa;
  562         struct ucred *socred;
  563         struct inpcb *oinp;
  564         struct in_addr laddr, faddr;
  565         u_short lport, fport;
  566         int error;
  567 
  568         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  569         INP_LOCK_ASSERT(inp);
  570 
  571         if (oinpp != NULL)
  572                 *oinpp = NULL;
  573         if (nam->sa_len != sizeof (*sin))
  574                 return (EINVAL);
  575         if (sin->sin_family != AF_INET)
  576                 return (EAFNOSUPPORT);
  577         if (sin->sin_port == 0)
  578                 return (EADDRNOTAVAIL);
  579         laddr.s_addr = *laddrp;
  580         lport = *lportp;
  581         faddr = sin->sin_addr;
  582         fport = sin->sin_port;
  583         socred = inp->inp_socket->so_cred;
  584         if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
  585                 bzero(&sa, sizeof(sa));
  586                 sa.sin_addr.s_addr = htonl(prison_getip(socred));
  587                 sa.sin_len = sizeof(sa);
  588                 sa.sin_family = AF_INET;
  589                 error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
  590                     &laddr.s_addr, &lport, cred);
  591                 if (error)
  592                         return (error);
  593         }
  594         if (!TAILQ_EMPTY(&in_ifaddrhead)) {
  595                 /*
  596                  * If the destination address is INADDR_ANY,
  597                  * use the primary local address.
  598                  * If the supplied address is INADDR_BROADCAST,
  599                  * and the primary interface supports broadcast,
  600                  * choose the broadcast address for that interface.
  601                  */
  602                 if (faddr.s_addr == INADDR_ANY)
  603                         faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
  604                 else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
  605                     (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
  606                     IFF_BROADCAST))
  607                         faddr = satosin(&TAILQ_FIRST(
  608                             &in_ifaddrhead)->ia_broadaddr)->sin_addr;
  609         }
  610         if (laddr.s_addr == INADDR_ANY) {
  611                 ia = (struct in_ifaddr *)0;
  612                 /*
  613                  * If route is known our src addr is taken from the i/f,
  614                  * else punt.
  615                  *
  616                  * Find out route to destination
  617                  */
  618                 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
  619                         ia = ip_rtaddr(faddr);
  620                 /*
  621                  * If we found a route, use the address corresponding to
  622                  * the outgoing interface.
  623                  * 
  624                  * Otherwise assume faddr is reachable on a directly connected
  625                  * network and try to find a corresponding interface to take
  626                  * the source address from.
  627                  */
  628                 if (ia == 0) {
  629                         bzero(&sa, sizeof(sa));
  630                         sa.sin_addr = faddr;
  631                         sa.sin_len = sizeof(sa);
  632                         sa.sin_family = AF_INET;
  633 
  634                         ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
  635                         if (ia == 0)
  636                                 ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
  637                         if (ia == 0)
  638                                 return (ENETUNREACH);
  639                 }
  640                 /*
  641                  * If the destination address is multicast and an outgoing
  642                  * interface has been set as a multicast option, use the
  643                  * address of that interface as our source address.
  644                  */
  645                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
  646                     inp->inp_moptions != NULL) {
  647                         struct ip_moptions *imo;
  648                         struct ifnet *ifp;
  649 
  650                         imo = inp->inp_moptions;
  651                         if (imo->imo_multicast_ifp != NULL) {
  652                                 ifp = imo->imo_multicast_ifp;
  653                                 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
  654                                         if (ia->ia_ifp == ifp)
  655                                                 break;
  656                                 if (ia == 0)
  657                                         return (EADDRNOTAVAIL);
  658                         }
  659                 }
  660                 laddr = ia->ia_addr.sin_addr;
  661         }
  662 
  663         oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
  664             0, NULL);
  665         if (oinp != NULL) {
  666                 if (oinpp != NULL)
  667                         *oinpp = oinp;
  668                 return (EADDRINUSE);
  669         }
  670         if (lport == 0) {
  671                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
  672                     cred);
  673                 if (error)
  674                         return (error);
  675         }
  676         *laddrp = laddr.s_addr;
  677         *lportp = lport;
  678         *faddrp = faddr.s_addr;
  679         *fportp = fport;
  680         return (0);
  681 }
  682 
  683 void
  684 in_pcbdisconnect(struct inpcb *inp)
  685 {
  686 
  687         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  688         INP_LOCK_ASSERT(inp);
  689 
  690         inp->inp_faddr.s_addr = INADDR_ANY;
  691         inp->inp_fport = 0;
  692         in_pcbrehash(inp);
  693 }
  694 
  695 /*
  696  * In the old world order, in_pcbdetach() served two functions: to detach the
  697  * pcb from the socket/potentially free the socket, and to free the pcb
  698  * itself.  In the new world order, the protocol code is responsible for
  699  * managing the relationship with the socket, and this code simply frees the
  700  * pcb.
  701  */
  702 void
  703 in_pcbdetach(struct inpcb *inp)
  704 {
  705 
  706         KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL"));
  707         inp->inp_socket->so_pcb = NULL;
  708         inp->inp_socket = NULL;
  709 }
  710 
  711 void
  712 in_pcbfree(struct inpcb *inp)
  713 {
  714         struct inpcbinfo *ipi = inp->inp_pcbinfo;
  715 
  716         KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL"));
  717         INP_INFO_WLOCK_ASSERT(ipi);
  718         INP_LOCK_ASSERT(inp);
  719 
  720 #ifdef IPSEC
  721         ipsec4_delete_pcbpolicy(inp);
  722 #endif /*IPSEC*/
  723         inp->inp_gencnt = ++ipi->ipi_gencnt;
  724         in_pcbremlists(inp);
  725         if (inp->inp_options)
  726                 (void)m_free(inp->inp_options);
  727         if (inp->inp_moptions != NULL)
  728                 inp_freemoptions(inp->inp_moptions);
  729         inp->inp_vflag = 0;
  730         
  731 #ifdef MAC
  732         mac_destroy_inpcb(inp);
  733 #endif
  734         INP_UNLOCK(inp);
  735         uma_zfree(ipi->ipi_zone, inp);
  736 }
  737 
  738 /*
  739  * TCP needs to maintain its inpcb structure after the TCP connection has
  740  * been torn down.  However, it must be disconnected from the inpcb hashes as
  741  * it must not prevent binding of future connections to the same port/ip
  742  * combination by other inpcbs.
  743  */
  744 void
  745 in_pcbdrop(struct inpcb *inp)
  746 {
  747 
  748         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  749         INP_LOCK_ASSERT(inp);
  750 
  751         inp->inp_vflag |= INP_DROPPED;
  752         if (inp->inp_lport) {
  753                 struct inpcbport *phd = inp->inp_phd;
  754 
  755                 LIST_REMOVE(inp, inp_hash);
  756                 LIST_REMOVE(inp, inp_portlist);
  757                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
  758                         LIST_REMOVE(phd, phd_hash);
  759                         free(phd, M_PCB);
  760                 }
  761                 inp->inp_lport = 0;
  762         }
  763 }
  764 
  765 /*
  766  * Common routines to return the socket addresses associated with inpcbs.
  767  */
  768 struct sockaddr *
  769 in_sockaddr(in_port_t port, struct in_addr *addr_p)
  770 {
  771         struct sockaddr_in *sin;
  772 
  773         MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
  774                 M_WAITOK | M_ZERO);
  775         sin->sin_family = AF_INET;
  776         sin->sin_len = sizeof(*sin);
  777         sin->sin_addr = *addr_p;
  778         sin->sin_port = port;
  779 
  780         return (struct sockaddr *)sin;
  781 }
  782 
  783 int
  784 in_getsockaddr(struct socket *so, struct sockaddr **nam)
  785 {
  786         struct inpcb *inp;
  787         struct in_addr addr;
  788         in_port_t port;
  789 
  790         inp = sotoinpcb(so);
  791         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
  792 
  793         INP_LOCK(inp);
  794         port = inp->inp_lport;
  795         addr = inp->inp_laddr;
  796         INP_UNLOCK(inp);
  797 
  798         *nam = in_sockaddr(port, &addr);
  799         return 0;
  800 }
  801 
  802 int
  803 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
  804 {
  805         struct inpcb *inp;
  806         struct in_addr addr;
  807         in_port_t port;
  808 
  809         inp = sotoinpcb(so);
  810         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
  811 
  812         INP_LOCK(inp);
  813         port = inp->inp_fport;
  814         addr = inp->inp_faddr;
  815         INP_UNLOCK(inp);
  816 
  817         *nam = in_sockaddr(port, &addr);
  818         return 0;
  819 }
  820 
  821 void
  822 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
  823     struct inpcb *(*notify)(struct inpcb *, int))
  824 {
  825         struct inpcb *inp, *ninp;
  826         struct inpcbhead *head;
  827 
  828         INP_INFO_WLOCK(pcbinfo);
  829         head = pcbinfo->ipi_listhead;
  830         for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
  831                 INP_LOCK(inp);
  832                 ninp = LIST_NEXT(inp, inp_list);
  833 #ifdef INET6
  834                 if ((inp->inp_vflag & INP_IPV4) == 0) {
  835                         INP_UNLOCK(inp);
  836                         continue;
  837                 }
  838 #endif
  839                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
  840                     inp->inp_socket == NULL) {
  841                         INP_UNLOCK(inp);
  842                         continue;
  843                 }
  844                 if ((*notify)(inp, errno))
  845                         INP_UNLOCK(inp);
  846         }
  847         INP_INFO_WUNLOCK(pcbinfo);
  848 }
  849 
  850 void
  851 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
  852 {
  853         struct inpcb *inp;
  854         struct ip_moptions *imo;
  855         int i, gap;
  856 
  857         INP_INFO_RLOCK(pcbinfo);
  858         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
  859                 INP_LOCK(inp);
  860                 imo = inp->inp_moptions;
  861                 if ((inp->inp_vflag & INP_IPV4) &&
  862                     imo != NULL) {
  863                         /*
  864                          * Unselect the outgoing interface if it is being
  865                          * detached.
  866                          */
  867                         if (imo->imo_multicast_ifp == ifp)
  868                                 imo->imo_multicast_ifp = NULL;
  869 
  870                         /*
  871                          * Drop multicast group membership if we joined
  872                          * through the interface being detached.
  873                          */
  874                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
  875                             i++) {
  876                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
  877                                         in_delmulti(imo->imo_membership[i]);
  878                                         gap++;
  879                                 } else if (gap != 0)
  880                                         imo->imo_membership[i - gap] =
  881                                             imo->imo_membership[i];
  882                         }
  883                         imo->imo_num_memberships -= gap;
  884                 }
  885                 INP_UNLOCK(inp);
  886         }
  887         INP_INFO_RUNLOCK(pcbinfo);
  888 }
  889 
  890 /*
  891  * Lookup a PCB based on the local address and port.
  892  */
  893 #define INP_LOOKUP_MAPPED_PCB_COST      3
  894 struct inpcb *
  895 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
  896     u_int lport_arg, int wild_okay)
  897 {
  898         struct inpcb *inp;
  899 #ifdef INET6
  900         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
  901 #else
  902         int matchwild = 3;
  903 #endif
  904         int wildcard;
  905         u_short lport = lport_arg;
  906 
  907         INP_INFO_WLOCK_ASSERT(pcbinfo);
  908 
  909         if (!wild_okay) {
  910                 struct inpcbhead *head;
  911                 /*
  912                  * Look for an unconnected (wildcard foreign addr) PCB that
  913                  * matches the local address and port we're looking for.
  914                  */
  915                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
  916                     0, pcbinfo->ipi_hashmask)];
  917                 LIST_FOREACH(inp, head, inp_hash) {
  918 #ifdef INET6
  919                         if ((inp->inp_vflag & INP_IPV4) == 0)
  920                                 continue;
  921 #endif
  922                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
  923                             inp->inp_laddr.s_addr == laddr.s_addr &&
  924                             inp->inp_lport == lport) {
  925                                 /*
  926                                  * Found.
  927                                  */
  928                                 return (inp);
  929                         }
  930                 }
  931                 /*
  932                  * Not found.
  933                  */
  934                 return (NULL);
  935         } else {
  936                 struct inpcbporthead *porthash;
  937                 struct inpcbport *phd;
  938                 struct inpcb *match = NULL;
  939                 /*
  940                  * Best fit PCB lookup.
  941                  *
  942                  * First see if this local port is in use by looking on the
  943                  * port hash list.
  944                  */
  945                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
  946                     pcbinfo->ipi_porthashmask)];
  947                 LIST_FOREACH(phd, porthash, phd_hash) {
  948                         if (phd->phd_port == lport)
  949                                 break;
  950                 }
  951                 if (phd != NULL) {
  952                         /*
  953                          * Port is in use by one or more PCBs. Look for best
  954                          * fit.
  955                          */
  956                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
  957                                 wildcard = 0;
  958 #ifdef INET6
  959                                 if ((inp->inp_vflag & INP_IPV4) == 0)
  960                                         continue;
  961                                 /*
  962                                  * We never select the PCB that has
  963                                  * INP_IPV6 flag and is bound to :: if
  964                                  * we have another PCB which is bound
  965                                  * to 0.0.0.0.  If a PCB has the
  966                                  * INP_IPV6 flag, then we set its cost
  967                                  * higher than IPv4 only PCBs.
  968                                  *
  969                                  * Note that the case only happens
  970                                  * when a socket is bound to ::, under
  971                                  * the condition that the use of the
  972                                  * mapped address is allowed.
  973                                  */
  974                                 if ((inp->inp_vflag & INP_IPV6) != 0)
  975                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
  976 #endif
  977                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
  978                                         wildcard++;
  979                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
  980                                         if (laddr.s_addr == INADDR_ANY)
  981                                                 wildcard++;
  982                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
  983                                                 continue;
  984                                 } else {
  985                                         if (laddr.s_addr != INADDR_ANY)
  986                                                 wildcard++;
  987                                 }
  988                                 if (wildcard < matchwild) {
  989                                         match = inp;
  990                                         matchwild = wildcard;
  991                                         if (matchwild == 0) {
  992                                                 break;
  993                                         }
  994                                 }
  995                         }
  996                 }
  997                 return (match);
  998         }
  999 }
 1000 #undef INP_LOOKUP_MAPPED_PCB_COST
 1001 
 1002 /*
 1003  * Lookup PCB in hash list.
 1004  */
 1005 struct inpcb *
 1006 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1007     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
 1008     struct ifnet *ifp)
 1009 {
 1010         struct inpcbhead *head;
 1011         struct inpcb *inp;
 1012         u_short fport = fport_arg, lport = lport_arg;
 1013 
 1014         INP_INFO_RLOCK_ASSERT(pcbinfo);
 1015 
 1016         /*
 1017          * First look for an exact match.
 1018          */
 1019         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1020             pcbinfo->ipi_hashmask)];
 1021         LIST_FOREACH(inp, head, inp_hash) {
 1022 #ifdef INET6
 1023                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1024                         continue;
 1025 #endif
 1026                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1027                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1028                     inp->inp_fport == fport &&
 1029                     inp->inp_lport == lport)
 1030                         return (inp);
 1031         }
 1032 
 1033         /*
 1034          * Then look for a wildcard match, if requested.
 1035          */
 1036         if (wildcard) {
 1037                 struct inpcb *local_wild = NULL;
 1038 #ifdef INET6
 1039                 struct inpcb *local_wild_mapped = NULL;
 1040 #endif
 1041 
 1042                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1043                     0, pcbinfo->ipi_hashmask)];
 1044                 LIST_FOREACH(inp, head, inp_hash) {
 1045 #ifdef INET6
 1046                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1047                                 continue;
 1048 #endif
 1049                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
 1050                             inp->inp_lport == lport) {
 1051                                 if (ifp && ifp->if_type == IFT_FAITH &&
 1052                                     (inp->inp_flags & INP_FAITH) == 0)
 1053                                         continue;
 1054                                 if (inp->inp_laddr.s_addr == laddr.s_addr)
 1055                                         return (inp);
 1056                                 else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1057 #ifdef INET6
 1058                                         if (INP_CHECK_SOCKAF(inp->inp_socket,
 1059                                                              AF_INET6))
 1060                                                 local_wild_mapped = inp;
 1061                                         else
 1062 #endif
 1063                                                 local_wild = inp;
 1064                                 }
 1065                         }
 1066                 }
 1067 #ifdef INET6
 1068                 if (local_wild == NULL)
 1069                         return (local_wild_mapped);
 1070 #endif
 1071                 return (local_wild);
 1072         }
 1073         return (NULL);
 1074 }
 1075 
 1076 /*
 1077  * Insert PCB onto various hash lists.
 1078  */
 1079 int
 1080 in_pcbinshash(struct inpcb *inp)
 1081 {
 1082         struct inpcbhead *pcbhash;
 1083         struct inpcbporthead *pcbporthash;
 1084         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1085         struct inpcbport *phd;
 1086         u_int32_t hashkey_faddr;
 1087 
 1088         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1089         INP_LOCK_ASSERT(inp);
 1090 
 1091 #ifdef INET6
 1092         if (inp->inp_vflag & INP_IPV6)
 1093                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1094         else
 1095 #endif /* INET6 */
 1096         hashkey_faddr = inp->inp_faddr.s_addr;
 1097 
 1098         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1099                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1100 
 1101         pcbporthash = &pcbinfo->ipi_porthashbase[
 1102             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
 1103 
 1104         /*
 1105          * Go through port list and look for a head for this lport.
 1106          */
 1107         LIST_FOREACH(phd, pcbporthash, phd_hash) {
 1108                 if (phd->phd_port == inp->inp_lport)
 1109                         break;
 1110         }
 1111         /*
 1112          * If none exists, malloc one and tack it on.
 1113          */
 1114         if (phd == NULL) {
 1115                 MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
 1116                 if (phd == NULL) {
 1117                         return (ENOBUFS); /* XXX */
 1118                 }
 1119                 phd->phd_port = inp->inp_lport;
 1120                 LIST_INIT(&phd->phd_pcblist);
 1121                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
 1122         }
 1123         inp->inp_phd = phd;
 1124         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
 1125         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
 1126         return (0);
 1127 }
 1128 
 1129 /*
 1130  * Move PCB to the proper hash bucket when { faddr, fport } have  been
 1131  * changed. NOTE: This does not handle the case of the lport changing (the
 1132  * hashed port list would have to be updated as well), so the lport must
 1133  * not change after in_pcbinshash() has been called.
 1134  */
 1135 void
 1136 in_pcbrehash(struct inpcb *inp)
 1137 {
 1138         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1139         struct inpcbhead *head;
 1140         u_int32_t hashkey_faddr;
 1141 
 1142         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1143         INP_LOCK_ASSERT(inp);
 1144 
 1145 #ifdef INET6
 1146         if (inp->inp_vflag & INP_IPV6)
 1147                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1148         else
 1149 #endif /* INET6 */
 1150         hashkey_faddr = inp->inp_faddr.s_addr;
 1151 
 1152         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1153                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1154 
 1155         LIST_REMOVE(inp, inp_hash);
 1156         LIST_INSERT_HEAD(head, inp, inp_hash);
 1157 }
 1158 
 1159 /*
 1160  * Remove PCB from various lists.
 1161  */
 1162 void
 1163 in_pcbremlists(struct inpcb *inp)
 1164 {
 1165         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1166 
 1167         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1168         INP_LOCK_ASSERT(inp);
 1169 
 1170         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 1171         if (inp->inp_lport) {
 1172                 struct inpcbport *phd = inp->inp_phd;
 1173 
 1174                 LIST_REMOVE(inp, inp_hash);
 1175                 LIST_REMOVE(inp, inp_portlist);
 1176                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 1177                         LIST_REMOVE(phd, phd_hash);
 1178                         free(phd, M_PCB);
 1179                 }
 1180         }
 1181         LIST_REMOVE(inp, inp_list);
 1182         pcbinfo->ipi_count--;
 1183 }
 1184 
 1185 /*
 1186  * A set label operation has occurred at the socket layer, propagate the
 1187  * label change into the in_pcb for the socket.
 1188  */
 1189 void
 1190 in_pcbsosetlabel(struct socket *so)
 1191 {
 1192 #ifdef MAC
 1193         struct inpcb *inp;
 1194 
 1195         inp = sotoinpcb(so);
 1196         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
 1197 
 1198         INP_LOCK(inp);
 1199         SOCK_LOCK(so);
 1200         mac_inpcb_sosetlabel(so, inp);
 1201         SOCK_UNLOCK(so);
 1202         INP_UNLOCK(inp);
 1203 #endif
 1204 }
 1205 
 1206 /*
 1207  * ipport_tick runs once per second, determining if random port allocation
 1208  * should be continued.  If more than ipport_randomcps ports have been
 1209  * allocated in the last second, then we return to sequential port
 1210  * allocation. We return to random allocation only once we drop below
 1211  * ipport_randomcps for at least ipport_randomtime seconds.
 1212  */
 1213 void
 1214 ipport_tick(void *xtp)
 1215 {
 1216 
 1217         if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) {
 1218                 if (ipport_stoprandom > 0)
 1219                         ipport_stoprandom--;
 1220         } else
 1221                 ipport_stoprandom = ipport_randomtime;
 1222         ipport_tcplastcount = ipport_tcpallocs;
 1223         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
 1224 }
 1225 
 1226 #ifdef DDB
 1227 static void
 1228 db_print_indent(int indent)
 1229 {
 1230         int i;
 1231 
 1232         for (i = 0; i < indent; i++)
 1233                 db_printf(" ");
 1234 }
 1235 
 1236 static void
 1237 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
 1238 {
 1239         char faddr_str[48], laddr_str[48];
 1240 
 1241         db_print_indent(indent);
 1242         db_printf("%s at %p\n", name, inc);
 1243 
 1244         indent += 2;
 1245 
 1246 #ifdef INET6
 1247         if (inc->inc_flags == 1) {
 1248                 /* IPv6. */
 1249                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
 1250                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
 1251         } else {
 1252 #endif
 1253                 /* IPv4. */
 1254                 inet_ntoa_r(inc->inc_laddr, laddr_str);
 1255                 inet_ntoa_r(inc->inc_faddr, faddr_str);
 1256 #ifdef INET6
 1257         }
 1258 #endif
 1259         db_print_indent(indent);
 1260         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
 1261             ntohs(inc->inc_lport));
 1262         db_print_indent(indent);
 1263         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
 1264             ntohs(inc->inc_fport));
 1265 }
 1266 
 1267 static void
 1268 db_print_inpflags(int inp_flags)
 1269 {
 1270         int comma;
 1271 
 1272         comma = 0;
 1273         if (inp_flags & INP_RECVOPTS) {
 1274                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
 1275                 comma = 1;
 1276         }
 1277         if (inp_flags & INP_RECVRETOPTS) {
 1278                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
 1279                 comma = 1;
 1280         }
 1281         if (inp_flags & INP_RECVDSTADDR) {
 1282                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
 1283                 comma = 1;
 1284         }
 1285         if (inp_flags & INP_HDRINCL) {
 1286                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
 1287                 comma = 1;
 1288         }
 1289         if (inp_flags & INP_HIGHPORT) {
 1290                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
 1291                 comma = 1;
 1292         }
 1293         if (inp_flags & INP_LOWPORT) {
 1294                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
 1295                 comma = 1;
 1296         }
 1297         if (inp_flags & INP_ANONPORT) {
 1298                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
 1299                 comma = 1;
 1300         }
 1301         if (inp_flags & INP_RECVIF) {
 1302                 db_printf("%sINP_RECVIF", comma ? ", " : "");
 1303                 comma = 1;
 1304         }
 1305         if (inp_flags & INP_MTUDISC) {
 1306                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
 1307                 comma = 1;
 1308         }
 1309         if (inp_flags & INP_FAITH) {
 1310                 db_printf("%sINP_FAITH", comma ? ", " : "");
 1311                 comma = 1;
 1312         }
 1313         if (inp_flags & INP_RECVTTL) {
 1314                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
 1315                 comma = 1;
 1316         }
 1317         if (inp_flags & INP_DONTFRAG) {
 1318                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
 1319                 comma = 1;
 1320         }
 1321         if (inp_flags & IN6P_IPV6_V6ONLY) {
 1322                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
 1323                 comma = 1;
 1324         }
 1325         if (inp_flags & IN6P_PKTINFO) {
 1326                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
 1327                 comma = 1;
 1328         }
 1329         if (inp_flags & IN6P_HOPLIMIT) {
 1330                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
 1331                 comma = 1;
 1332         }
 1333         if (inp_flags & IN6P_HOPOPTS) {
 1334                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
 1335                 comma = 1;
 1336         }
 1337         if (inp_flags & IN6P_DSTOPTS) {
 1338                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
 1339                 comma = 1;
 1340         }
 1341         if (inp_flags & IN6P_RTHDR) {
 1342                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
 1343                 comma = 1;
 1344         }
 1345         if (inp_flags & IN6P_RTHDRDSTOPTS) {
 1346                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
 1347                 comma = 1;
 1348         }
 1349         if (inp_flags & IN6P_TCLASS) {
 1350                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
 1351                 comma = 1;
 1352         }
 1353         if (inp_flags & IN6P_AUTOFLOWLABEL) {
 1354                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
 1355                 comma = 1;
 1356         }
 1357         if (inp_flags & IN6P_RFC2292) {
 1358                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
 1359                 comma = 1;
 1360         }
 1361         if (inp_flags & IN6P_MTU) {
 1362                 db_printf("IN6P_MTU%s", comma ? ", " : "");
 1363                 comma = 1;
 1364         }
 1365 }
 1366 
 1367 static void
 1368 db_print_inpvflag(u_char inp_vflag)
 1369 {
 1370         int comma;
 1371 
 1372         comma = 0;
 1373         if (inp_vflag & INP_IPV4) {
 1374                 db_printf("%sINP_IPV4", comma ? ", " : "");
 1375                 comma  = 1;
 1376         }
 1377         if (inp_vflag & INP_IPV6) {
 1378                 db_printf("%sINP_IPV6", comma ? ", " : "");
 1379                 comma  = 1;
 1380         }
 1381         if (inp_vflag & INP_IPV6PROTO) {
 1382                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
 1383                 comma  = 1;
 1384         }
 1385         if (inp_vflag & INP_TIMEWAIT) {
 1386                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
 1387                 comma  = 1;
 1388         }
 1389         if (inp_vflag & INP_ONESBCAST) {
 1390                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
 1391                 comma  = 1;
 1392         }
 1393         if (inp_vflag & INP_DROPPED) {
 1394                 db_printf("%sINP_DROPPED", comma ? ", " : "");
 1395                 comma  = 1;
 1396         }
 1397         if (inp_vflag & INP_SOCKREF) {
 1398                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
 1399                 comma  = 1;
 1400         }
 1401 }
 1402 
 1403 void
 1404 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
 1405 {
 1406 
 1407         db_print_indent(indent);
 1408         db_printf("%s at %p\n", name, inp);
 1409 
 1410         indent += 2;
 1411 
 1412         db_print_indent(indent);
 1413         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
 1414 
 1415         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
 1416 
 1417         db_print_indent(indent);
 1418         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
 1419             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
 1420 
 1421         db_print_indent(indent);
 1422         db_printf("inp_label: %p   inp_flags: 0x%x (",
 1423            inp->inp_label, inp->inp_flags);
 1424         db_print_inpflags(inp->inp_flags);
 1425         db_printf(")\n");
 1426 
 1427         db_print_indent(indent);
 1428         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
 1429             inp->inp_vflag);
 1430         db_print_inpvflag(inp->inp_vflag);
 1431         db_printf(")\n");
 1432 
 1433         db_print_indent(indent);
 1434         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
 1435             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
 1436 
 1437         db_print_indent(indent);
 1438 #ifdef INET6
 1439         if (inp->inp_vflag & INP_IPV6) {
 1440                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
 1441                     "in6p_moptions: %p\n", inp->in6p_options,
 1442                     inp->in6p_outputopts, inp->in6p_moptions);
 1443                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
 1444                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
 1445                     inp->in6p_hops);
 1446         } else
 1447 #endif
 1448         {
 1449                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
 1450                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
 1451                     inp->inp_options, inp->inp_moptions);
 1452         }
 1453 
 1454         db_print_indent(indent);
 1455         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
 1456             (uintmax_t)inp->inp_gencnt);
 1457 }
 1458 
 1459 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
 1460 {
 1461         struct inpcb *inp;
 1462 
 1463         if (!have_addr) {
 1464                 db_printf("usage: show inpcb <addr>\n");
 1465                 return;
 1466         }
 1467         inp = (struct inpcb *)addr;
 1468 
 1469         db_print_inpcb(inp, "inpcb", 0);
 1470 }
 1471 #endif

Cache object: b0cdde4a3cb9adc3258a73fc6a10c0a2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.