The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/in_pcb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2007-2009 Robert N. M. Watson
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_ddb.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_inet6.h"
   40 #include "opt_mac.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/malloc.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/domain.h>
   47 #include <sys/protosw.h>
   48 #include <sys/socket.h>
   49 #include <sys/socketvar.h>
   50 #include <sys/priv.h>
   51 #include <sys/proc.h>
   52 #include <sys/jail.h>
   53 #include <sys/kernel.h>
   54 #include <sys/sysctl.h>
   55 
   56 #ifdef DDB
   57 #include <ddb/ddb.h>
   58 #endif
   59 
   60 #include <vm/uma.h>
   61 
   62 #include <net/if.h>
   63 #include <net/if_types.h>
   64 #include <net/route.h>
   65 
   66 #include <netinet/in.h>
   67 #include <netinet/in_pcb.h>
   68 #include <netinet/in_var.h>
   69 #include <netinet/ip_var.h>
   70 #include <netinet/tcp_var.h>
   71 #include <netinet/udp.h>
   72 #include <netinet/udp_var.h>
   73 #ifdef INET6
   74 #include <netinet/ip6.h>
   75 #include <netinet6/ip6_var.h>
   76 #endif /* INET6 */
   77 
   78 
   79 #ifdef IPSEC
   80 #include <netipsec/ipsec.h>
   81 #include <netipsec/key.h>
   82 #endif /* IPSEC */
   83 
   84 #include <security/mac/mac_framework.h>
   85 
   86 /*
   87  * These configure the range of local port addresses assigned to
   88  * "unspecified" outgoing connections/packets/whatever.
   89  */
   90 int     ipport_lowfirstauto  = IPPORT_RESERVED - 1;     /* 1023 */
   91 int     ipport_lowlastauto = IPPORT_RESERVEDSTART;      /* 600 */
   92 int     ipport_firstauto = IPPORT_HIFIRSTAUTO;          /* 49152 */
   93 int     ipport_lastauto  = IPPORT_HILASTAUTO;           /* 65535 */
   94 int     ipport_hifirstauto = IPPORT_HIFIRSTAUTO;        /* 49152 */
   95 int     ipport_hilastauto  = IPPORT_HILASTAUTO;         /* 65535 */
   96 
   97 /*
   98  * Reserved ports accessible only to root. There are significant
   99  * security considerations that must be accounted for when changing these,
  100  * but the security benefits can be great. Please be careful.
  101  */
  102 int     ipport_reservedhigh = IPPORT_RESERVED - 1;      /* 1023 */
  103 int     ipport_reservedlow = 0;
  104 
  105 /* Variables dealing with random ephemeral port allocation. */
  106 int     ipport_randomized = 1;  /* user controlled via sysctl */
  107 int     ipport_randomcps = 10;  /* user controlled via sysctl */
  108 int     ipport_randomtime = 45; /* user controlled via sysctl */
  109 int     ipport_stoprandom = 0;  /* toggled by ipport_tick */
  110 int     ipport_tcpallocs;
  111 int     ipport_tcplastcount;
  112 
  113 #define RANGECHK(var, min, max) \
  114         if ((var) < (min)) { (var) = (min); } \
  115         else if ((var) > (max)) { (var) = (max); }
  116 
  117 static int
  118 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
  119 {
  120         int error;
  121 
  122         error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
  123         if (error == 0) {
  124                 RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
  125                 RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
  126                 RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
  127                 RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
  128                 RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
  129                 RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
  130         }
  131         return (error);
  132 }
  133 
  134 #undef RANGECHK
  135 
  136 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
  137 
  138 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
  139            &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
  140 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
  141            &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
  142 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
  143            &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
  144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
  145            &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
  146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
  147            &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
  148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
  149            &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
  150 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
  151            CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
  152 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
  153            CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
  154 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
  155            &ipport_randomized, 0, "Enable random port allocation");
  156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
  157            &ipport_randomcps, 0, "Maximum number of random port "
  158            "allocations before switching to a sequental one");
  159 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
  160            &ipport_randomtime, 0, "Minimum time to keep sequental port "
  161            "allocation before switching to a random one");
  162 
  163 /*
  164  * in_pcb.c: manage the Protocol Control Blocks.
  165  *
  166  * NOTE: It is assumed that most of these functions will be called with
  167  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
  168  * functions often modify hash chains or addresses in pcbs.
  169  */
  170 
  171 /*
  172  * Allocate a PCB and associate it with the socket.
  173  * On success return with the PCB locked.
  174  */
  175 int
  176 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
  177 {
  178         struct inpcb *inp;
  179         int error;
  180 
  181         INP_INFO_WLOCK_ASSERT(pcbinfo);
  182         error = 0;
  183         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
  184         if (inp == NULL)
  185                 return (ENOBUFS);
  186         bzero(inp, inp_zero_size);
  187         inp->inp_pcbinfo = pcbinfo;
  188         inp->inp_socket = so;
  189         inp->inp_cred = crhold(so->so_cred);
  190         inp->inp_inc.inc_fibnum = so->so_fibnum;
  191 #ifdef MAC
  192         error = mac_init_inpcb(inp, M_NOWAIT);
  193         if (error != 0)
  194                 goto out;
  195         SOCK_LOCK(so);
  196         mac_create_inpcb_from_socket(so, inp);
  197         SOCK_UNLOCK(so);
  198 #endif
  199 #ifdef IPSEC
  200         error = ipsec_init_policy(so, &inp->inp_sp);
  201         if (error != 0) {
  202 #ifdef MAC
  203                 mac_destroy_inpcb(inp);
  204 #endif
  205                 goto out;
  206         }
  207 #endif /*IPSEC*/
  208 #ifdef INET6
  209         if (INP_SOCKAF(so) == AF_INET6) {
  210                 inp->inp_vflag |= INP_IPV6PROTO;
  211                 if (ip6_v6only)
  212                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
  213         }
  214 #endif
  215         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
  216         pcbinfo->ipi_count++;
  217         so->so_pcb = (caddr_t)inp;
  218 #ifdef INET6
  219         if (ip6_auto_flowlabel)
  220                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
  221 #endif
  222         INP_WLOCK(inp);
  223         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
  224 #if defined(IPSEC) || defined(MAC)
  225 out:
  226         if (error != 0) {
  227                 crfree(inp->inp_cred);
  228                 uma_zfree(pcbinfo->ipi_zone, inp);
  229         }
  230 #endif
  231         return (error);
  232 }
  233 
  234 int
  235 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  236 {
  237         int anonport, error;
  238 
  239         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  240         INP_WLOCK_ASSERT(inp);
  241 
  242         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
  243                 return (EINVAL);
  244         anonport = inp->inp_lport == 0 && (nam == NULL ||
  245             ((struct sockaddr_in *)nam)->sin_port == 0);
  246         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
  247             &inp->inp_lport, cred);
  248         if (error)
  249                 return (error);
  250         if (in_pcbinshash(inp) != 0) {
  251                 inp->inp_laddr.s_addr = INADDR_ANY;
  252                 inp->inp_lport = 0;
  253                 return (EAGAIN);
  254         }
  255         if (anonport)
  256                 inp->inp_flags |= INP_ANONPORT;
  257         return (0);
  258 }
  259 
  260 /*
  261  * Set up a bind operation on a PCB, performing port allocation
  262  * as required, but do not actually modify the PCB. Callers can
  263  * either complete the bind by setting inp_laddr/inp_lport and
  264  * calling in_pcbinshash(), or they can just use the resulting
  265  * port and address to authorise the sending of a once-off packet.
  266  *
  267  * On error, the values of *laddrp and *lportp are not changed.
  268  */
  269 int
  270 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
  271     u_short *lportp, struct ucred *cred)
  272 {
  273         struct socket *so = inp->inp_socket;
  274         unsigned short *lastport;
  275         struct sockaddr_in *sin;
  276         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
  277         struct in_addr laddr;
  278         u_short lport = 0;
  279         int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
  280         int error;
  281         int dorandom;
  282 
  283         /*
  284          * Because no actual state changes occur here, a global write lock on
  285          * the pcbinfo isn't required.
  286          */
  287         INP_INFO_LOCK_ASSERT(pcbinfo);
  288         INP_LOCK_ASSERT(inp);
  289 
  290         if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
  291                 return (EADDRNOTAVAIL);
  292         laddr.s_addr = *laddrp;
  293         if (nam != NULL && laddr.s_addr != INADDR_ANY)
  294                 return (EINVAL);
  295         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
  296                 wild = INPLOOKUP_WILDCARD;
  297         if (nam == NULL) {
  298                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
  299                         return (error);
  300         } else {
  301                 sin = (struct sockaddr_in *)nam;
  302                 if (nam->sa_len != sizeof (*sin))
  303                         return (EINVAL);
  304 #ifdef notdef
  305                 /*
  306                  * We should check the family, but old programs
  307                  * incorrectly fail to initialize it.
  308                  */
  309                 if (sin->sin_family != AF_INET)
  310                         return (EAFNOSUPPORT);
  311 #endif
  312                 error = prison_local_ip4(cred, &sin->sin_addr);
  313                 if (error)
  314                         return (error);
  315                 if (sin->sin_port != *lportp) {
  316                         /* Don't allow the port to change. */
  317                         if (*lportp != 0)
  318                                 return (EINVAL);
  319                         lport = sin->sin_port;
  320                 }
  321                 /* NB: lport is left as 0 if the port isn't being changed. */
  322                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
  323                         /*
  324                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
  325                          * allow complete duplication of binding if
  326                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
  327                          * and a multicast address is bound on both
  328                          * new and duplicated sockets.
  329                          */
  330                         if (so->so_options & SO_REUSEADDR)
  331                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
  332                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
  333                         sin->sin_port = 0;              /* yech... */
  334                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
  335                         if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
  336                                 return (EADDRNOTAVAIL);
  337                 }
  338                 laddr = sin->sin_addr;
  339                 if (lport) {
  340                         struct inpcb *t;
  341                         struct tcptw *tw;
  342 
  343                         /* GROSS */
  344                         if (ntohs(lport) <= ipport_reservedhigh &&
  345                             ntohs(lport) >= ipport_reservedlow &&
  346                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
  347                             0))
  348                                 return (EACCES);
  349                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
  350                             priv_check_cred(inp->inp_cred,
  351                             PRIV_NETINET_REUSEPORT, 0) != 0) {
  352                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  353                                     lport, INPLOOKUP_WILDCARD, cred);
  354         /*
  355          * XXX
  356          * This entire block sorely needs a rewrite.
  357          */
  358                                 if (t &&
  359                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
  360                                     (so->so_type != SOCK_STREAM ||
  361                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
  362                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
  363                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
  364                                      (t->inp_socket->so_options &
  365                                          SO_REUSEPORT) == 0) &&
  366                                     (inp->inp_cred->cr_uid !=
  367                                      t->inp_cred->cr_uid))
  368                                         return (EADDRINUSE);
  369                         }
  370                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  371                             lport, wild, cred);
  372                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
  373                                 /*
  374                                  * XXXRW: If an incpb has had its timewait
  375                                  * state recycled, we treat the address as
  376                                  * being in use (for now).  This is better
  377                                  * than a panic, but not desirable.
  378                                  */
  379                                 tw = intotw(inp);
  380                                 if (tw == NULL ||
  381                                     (reuseport & tw->tw_so_options) == 0)
  382                                         return (EADDRINUSE);
  383                         } else if (t &&
  384                             (reuseport & t->inp_socket->so_options) == 0) {
  385 #ifdef INET6
  386                                 if (ntohl(sin->sin_addr.s_addr) !=
  387                                     INADDR_ANY ||
  388                                     ntohl(t->inp_laddr.s_addr) !=
  389                                     INADDR_ANY ||
  390                                     INP_SOCKAF(so) ==
  391                                     INP_SOCKAF(t->inp_socket))
  392 #endif
  393                                 return (EADDRINUSE);
  394                         }
  395                 }
  396         }
  397         if (*lportp != 0)
  398                 lport = *lportp;
  399         if (lport == 0) {
  400                 u_short first, last;
  401                 int count;
  402 
  403                 if (inp->inp_flags & INP_HIGHPORT) {
  404                         first = ipport_hifirstauto;     /* sysctl */
  405                         last  = ipport_hilastauto;
  406                         lastport = &pcbinfo->ipi_lasthi;
  407                 } else if (inp->inp_flags & INP_LOWPORT) {
  408                         error = priv_check_cred(cred,
  409                             PRIV_NETINET_RESERVEDPORT, 0);
  410                         if (error)
  411                                 return error;
  412                         first = ipport_lowfirstauto;    /* 1023 */
  413                         last  = ipport_lowlastauto;     /* 600 */
  414                         lastport = &pcbinfo->ipi_lastlow;
  415                 } else {
  416                         first = ipport_firstauto;       /* sysctl */
  417                         last  = ipport_lastauto;
  418                         lastport = &pcbinfo->ipi_lastport;
  419                 }
  420                 /*
  421                  * For UDP, use random port allocation as long as the user
  422                  * allows it.  For TCP (and as of yet unknown) connections,
  423                  * use random port allocation only if the user allows it AND
  424                  * ipport_tick() allows it.
  425                  */
  426                 if (ipport_randomized &&
  427                         (!ipport_stoprandom || pcbinfo == &udbinfo))
  428                         dorandom = 1;
  429                 else
  430                         dorandom = 0;
  431                 /*
  432                  * It makes no sense to do random port allocation if
  433                  * we have the only port available.
  434                  */
  435                 if (first == last)
  436                         dorandom = 0;
  437                 /* Make sure to not include UDP packets in the count. */
  438                 if (pcbinfo != &udbinfo)
  439                         ipport_tcpallocs++;
  440                 /*
  441                  * Instead of having two loops further down counting up or down
  442                  * make sure that first is always <= last and go with only one
  443                  * code path implementing all logic.
  444                  *
  445                  * We split the two cases (up and down) so that the direction
  446                  * is not being tested on each round of the loop.
  447                  */
  448                 if (first > last) {
  449                         /*
  450                          * counting down
  451                          */
  452                         if (dorandom)
  453                                 *lastport = first -
  454                                             (arc4random() % (first - last));
  455                         count = first - last;
  456 
  457                         do {
  458                                 if (count-- < 0)        /* completely used? */
  459                                         return (EADDRNOTAVAIL);
  460                                 --*lastport;
  461                                 if (*lastport > first || *lastport < last)
  462                                         *lastport = first;
  463                                 lport = htons(*lastport);
  464                         } while (in_pcblookup_local(pcbinfo, laddr, lport,
  465                             wild, cred));
  466                 } else {
  467                         /*
  468                          * counting up
  469                          */
  470                         if (dorandom)
  471                                 *lastport = first +
  472                                             (arc4random() % (last - first));
  473                         count = last - first;
  474 
  475                         do {
  476                                 if (count-- < 0)        /* completely used? */
  477                                         return (EADDRNOTAVAIL);
  478                                 ++*lastport;
  479                                 if (*lastport < first || *lastport > last)
  480                                         *lastport = first;
  481                                 lport = htons(*lastport);
  482                         } while (in_pcblookup_local(pcbinfo, laddr, lport,
  483                             wild, cred));
  484                 }
  485         }
  486         *laddrp = laddr.s_addr;
  487         *lportp = lport;
  488         return (0);
  489 }
  490 
  491 /*
  492  * Connect from a socket to a specified address.
  493  * Both address and port must be specified in argument sin.
  494  * If don't have a local address for this socket yet,
  495  * then pick one.
  496  */
  497 int
  498 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  499 {
  500         u_short lport, fport;
  501         in_addr_t laddr, faddr;
  502         int anonport, error;
  503 
  504         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  505         INP_WLOCK_ASSERT(inp);
  506 
  507         lport = inp->inp_lport;
  508         laddr = inp->inp_laddr.s_addr;
  509         anonport = (lport == 0);
  510         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
  511             NULL, cred);
  512         if (error)
  513                 return (error);
  514 
  515         /* Do the initial binding of the local address if required. */
  516         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
  517                 inp->inp_lport = lport;
  518                 inp->inp_laddr.s_addr = laddr;
  519                 if (in_pcbinshash(inp) != 0) {
  520                         inp->inp_laddr.s_addr = INADDR_ANY;
  521                         inp->inp_lport = 0;
  522                         return (EAGAIN);
  523                 }
  524         }
  525 
  526         /* Commit the remaining changes. */
  527         inp->inp_lport = lport;
  528         inp->inp_laddr.s_addr = laddr;
  529         inp->inp_faddr.s_addr = faddr;
  530         inp->inp_fport = fport;
  531         in_pcbrehash(inp);
  532 
  533         if (anonport)
  534                 inp->inp_flags |= INP_ANONPORT;
  535         return (0);
  536 }
  537 
  538 /*
  539  * Do proper source address selection on an unbound socket in case
  540  * of connect. Take jails into account as well.
  541  */
  542 static int
  543 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
  544     struct ucred *cred)
  545 {
  546         struct in_ifaddr *ia;
  547         struct ifaddr *ifa;
  548         struct sockaddr *sa;
  549         struct sockaddr_in *sin;
  550         struct route sro;
  551         int error;
  552 
  553         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
  554 
  555         error = 0;
  556         ia = NULL;
  557         bzero(&sro, sizeof(sro));
  558 
  559         sin = (struct sockaddr_in *)&sro.ro_dst;
  560         sin->sin_family = AF_INET;
  561         sin->sin_len = sizeof(struct sockaddr_in);
  562         sin->sin_addr.s_addr = faddr->s_addr;
  563 
  564         /*
  565          * If route is known our src addr is taken from the i/f,
  566          * else punt.
  567          *
  568          * Find out route to destination.
  569          */
  570         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
  571                 in_rtalloc_ign(&sro, RTF_CLONING, inp->inp_inc.inc_fibnum);
  572 
  573         /*
  574          * If we found a route, use the address corresponding to
  575          * the outgoing interface.
  576          * 
  577          * Otherwise assume faddr is reachable on a directly connected
  578          * network and try to find a corresponding interface to take
  579          * the source address from.
  580          */
  581         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
  582                 struct ifnet *ifp;
  583 
  584                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
  585                 if (ia == NULL)
  586                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
  587                 if (ia == NULL) {
  588                         error = ENETUNREACH;
  589                         goto done;
  590                 }
  591 
  592                 if (cred == NULL || !jailed(cred)) {
  593                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  594                         goto done;
  595                 }
  596 
  597                 ifp = ia->ia_ifp;
  598                 ia = NULL;
  599                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  600 
  601                         sa = ifa->ifa_addr;
  602                         if (sa->sa_family != AF_INET)
  603                                 continue;
  604                         sin = (struct sockaddr_in *)sa;
  605                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  606                                 ia = (struct in_ifaddr *)ifa;
  607                                 break;
  608                         }
  609                 }
  610                 if (ia != NULL) {
  611                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  612                         goto done;
  613                 }
  614 
  615                 /* 3. As a last resort return the 'default' jail address. */
  616                 error = prison_get_ip4(cred, laddr);
  617                 goto done;
  618         }
  619 
  620         /*
  621          * If the outgoing interface on the route found is not
  622          * a loopback interface, use the address from that interface.
  623          * In case of jails do those three steps:
  624          * 1. check if the interface address belongs to the jail. If so use it.
  625          * 2. check if we have any address on the outgoing interface
  626          *    belonging to this jail. If so use it.
  627          * 3. as a last resort return the 'default' jail address.
  628          */
  629         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
  630 
  631                 /* If not jailed, use the default returned. */
  632                 if (cred == NULL || !jailed(cred)) {
  633                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  634                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  635                         goto done;
  636                 }
  637 
  638                 /* Jailed. */
  639                 /* 1. Check if the iface address belongs to the jail. */
  640                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
  641                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  642                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  643                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  644                         goto done;
  645                 }
  646 
  647                 /*
  648                  * 2. Check if we have any address on the outgoing interface
  649                  *    belonging to this jail.
  650                  */
  651                 TAILQ_FOREACH(ifa, &sro.ro_rt->rt_ifp->if_addrhead, ifa_link) {
  652 
  653                         sa = ifa->ifa_addr;
  654                         if (sa->sa_family != AF_INET)
  655                                 continue;
  656                         sin = (struct sockaddr_in *)sa;
  657                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  658                                 ia = (struct in_ifaddr *)ifa;
  659                                 break;
  660                         }
  661                 }
  662                 if (ia != NULL) {
  663                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  664                         goto done;
  665                 }
  666 
  667                 /* 3. As a last resort return the 'default' jail address. */
  668                 error = prison_get_ip4(cred, laddr);
  669                 goto done;
  670         }
  671 
  672         /*
  673          * The outgoing interface is marked with 'loopback net', so a route
  674          * to ourselves is here.
  675          * Try to find the interface of the destination address and then
  676          * take the address from there. That interface is not necessarily
  677          * a loopback interface.
  678          * In case of jails, check that it is an address of the jail
  679          * and if we cannot find, fall back to the 'default' jail address.
  680          */
  681         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
  682                 struct sockaddr_in sain;
  683 
  684                 bzero(&sain, sizeof(struct sockaddr_in));
  685                 sain.sin_family = AF_INET;
  686                 sain.sin_len = sizeof(struct sockaddr_in);
  687                 sain.sin_addr.s_addr = faddr->s_addr;
  688 
  689                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
  690                 if (ia == NULL)
  691                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
  692 
  693                 if (cred == NULL || !jailed(cred)) {
  694 #if __FreeBSD_version < 800000
  695                         if (ia == NULL)
  696                                 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  697 #endif
  698                         if (ia == NULL) {
  699                                 error = ENETUNREACH;
  700                                 goto done;
  701                         }
  702                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  703                         goto done;
  704                 }
  705 
  706                 /* Jailed. */
  707                 if (ia != NULL) {
  708                         struct ifnet *ifp;
  709 
  710                         ifp = ia->ia_ifp;
  711                         ia = NULL;
  712                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  713 
  714                                 sa = ifa->ifa_addr;
  715                                 if (sa->sa_family != AF_INET)
  716                                         continue;
  717                                 sin = (struct sockaddr_in *)sa;
  718                                 if (prison_check_ip4(cred,
  719                                     &sin->sin_addr) == 0) {
  720                                         ia = (struct in_ifaddr *)ifa;
  721                                         break;
  722                                 }
  723                         }
  724                         if (ia != NULL) {
  725                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  726                                 goto done;
  727                         }
  728                 }
  729 
  730                 /* 3. As a last resort return the 'default' jail address. */
  731                 error = prison_get_ip4(cred, laddr);
  732                 goto done;
  733         }
  734 
  735 done:
  736         if (sro.ro_rt != NULL)
  737                 RTFREE(sro.ro_rt);
  738         return (error);
  739 }
  740 
  741 /*
  742  * Set up for a connect from a socket to the specified address.
  743  * On entry, *laddrp and *lportp should contain the current local
  744  * address and port for the PCB; these are updated to the values
  745  * that should be placed in inp_laddr and inp_lport to complete
  746  * the connect.
  747  *
  748  * On success, *faddrp and *fportp will be set to the remote address
  749  * and port. These are not updated in the error case.
  750  *
  751  * If the operation fails because the connection already exists,
  752  * *oinpp will be set to the PCB of that connection so that the
  753  * caller can decide to override it. In all other cases, *oinpp
  754  * is set to NULL.
  755  */
  756 int
  757 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
  758     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
  759     struct inpcb **oinpp, struct ucred *cred)
  760 {
  761         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
  762         struct in_ifaddr *ia;
  763         struct inpcb *oinp;
  764         struct in_addr laddr, faddr;
  765         u_short lport, fport;
  766         int error;
  767 
  768         /*
  769          * Because a global state change doesn't actually occur here, a read
  770          * lock is sufficient.
  771          */
  772         INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
  773         INP_LOCK_ASSERT(inp);
  774 
  775         if (oinpp != NULL)
  776                 *oinpp = NULL;
  777         if (nam->sa_len != sizeof (*sin))
  778                 return (EINVAL);
  779         if (sin->sin_family != AF_INET)
  780                 return (EAFNOSUPPORT);
  781         if (sin->sin_port == 0)
  782                 return (EADDRNOTAVAIL);
  783         laddr.s_addr = *laddrp;
  784         lport = *lportp;
  785         faddr = sin->sin_addr;
  786         fport = sin->sin_port;
  787 
  788         if (!TAILQ_EMPTY(&in_ifaddrhead)) {
  789                 /*
  790                  * If the destination address is INADDR_ANY,
  791                  * use the primary local address.
  792                  * If the supplied address is INADDR_BROADCAST,
  793                  * and the primary interface supports broadcast,
  794                  * choose the broadcast address for that interface.
  795                  */
  796                 if (faddr.s_addr == INADDR_ANY) {
  797                         faddr =
  798                             IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
  799                         if (cred != NULL &&
  800                             (error = prison_get_ip4(cred, &faddr)) != 0)
  801                                 return (error);
  802                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
  803                     (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
  804                     IFF_BROADCAST))
  805                         faddr = satosin(&TAILQ_FIRST(
  806                             &in_ifaddrhead)->ia_broadaddr)->sin_addr;
  807         }
  808         if (laddr.s_addr == INADDR_ANY) {
  809                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
  810                 if (error)
  811                         return (error);
  812 
  813                 /*
  814                  * If the destination address is multicast and an outgoing
  815                  * interface has been set as a multicast option, use the
  816                  * address of that interface as our source address.
  817                  */
  818                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
  819                     inp->inp_moptions != NULL) {
  820                         struct ip_moptions *imo;
  821                         struct ifnet *ifp;
  822 
  823                         imo = inp->inp_moptions;
  824                         if (imo->imo_multicast_ifp != NULL) {
  825                                 ifp = imo->imo_multicast_ifp;
  826                                 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
  827                                         if (ia->ia_ifp == ifp)
  828                                                 break;
  829                                 if (ia == NULL)
  830                                         return (EADDRNOTAVAIL);
  831                                 laddr = ia->ia_addr.sin_addr;
  832                         }
  833                 }
  834         }
  835 
  836         oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
  837             0, NULL);
  838         if (oinp != NULL) {
  839                 if (oinpp != NULL)
  840                         *oinpp = oinp;
  841                 return (EADDRINUSE);
  842         }
  843         if (lport == 0) {
  844                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
  845                     cred);
  846                 if (error)
  847                         return (error);
  848         }
  849         *laddrp = laddr.s_addr;
  850         *lportp = lport;
  851         *faddrp = faddr.s_addr;
  852         *fportp = fport;
  853         return (0);
  854 }
  855 
  856 void
  857 in_pcbdisconnect(struct inpcb *inp)
  858 {
  859 
  860         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  861         INP_WLOCK_ASSERT(inp);
  862 
  863         inp->inp_faddr.s_addr = INADDR_ANY;
  864         inp->inp_fport = 0;
  865         in_pcbrehash(inp);
  866 }
  867 
  868 /*
  869  * Historically, in_pcbdetach() included the functionality now found in
  870  * in_pcbfree() and in_pcbdrop().  They are now broken out to reflect the
  871  * more complex life cycle of TCP.
  872  *
  873  * in_pcbdetach() is responsibe for disconnecting the socket from an inpcb.
  874  * For most protocols, this will be invoked immediately prior to calling
  875  * in_pcbfree().  However, for TCP the inpcb may significantly outlive the
  876  * socket, in which case in_pcbfree() may be deferred.
  877  */
  878 void
  879 in_pcbdetach(struct inpcb *inp)
  880 {
  881 
  882         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
  883 
  884         inp->inp_socket->so_pcb = NULL;
  885         inp->inp_socket = NULL;
  886 }
  887 
  888 /*
  889  * in_pcbfree() is responsible for freeing an already-detached inpcb, as well
  890  * as removing it from any global inpcb lists it might be on.
  891  */
  892 void
  893 in_pcbfree(struct inpcb *inp)
  894 {
  895         struct inpcbinfo *ipi = inp->inp_pcbinfo;
  896 
  897         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
  898 
  899         INP_INFO_WLOCK_ASSERT(ipi);
  900         INP_WLOCK_ASSERT(inp);
  901 
  902 #ifdef IPSEC
  903         if (inp->inp_sp != NULL)
  904                 ipsec_delete_pcbpolicy(inp);
  905 #endif /* IPSEC */
  906         inp->inp_gencnt = ++ipi->ipi_gencnt;
  907         in_pcbremlists(inp);
  908 #ifdef INET6
  909         if (inp->inp_vflag & INP_IPV6PROTO) {
  910                 ip6_freepcbopts(inp->in6p_outputopts);
  911                 ip6_freemoptions(inp->in6p_moptions);
  912         }
  913 #endif
  914         if (inp->inp_options)
  915                 (void)m_free(inp->inp_options);
  916         if (inp->inp_moptions != NULL)
  917                 inp_freemoptions(inp->inp_moptions);
  918         inp->inp_vflag = 0;
  919         crfree(inp->inp_cred);
  920 
  921 #ifdef MAC
  922         mac_destroy_inpcb(inp);
  923 #endif
  924         INP_WUNLOCK(inp);
  925         uma_zfree(ipi->ipi_zone, inp);
  926 }
  927 
  928 /*
  929  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
  930  * port reservation, and preventing it from being returned by inpcb lookups.
  931  *
  932  * It is used by TCP to mark an inpcb as unused and avoid future packet
  933  * delivery or event notification when a socket remains open but TCP has
  934  * closed.  This might occur as a result of a shutdown()-initiated TCP close
  935  * or a RST on the wire, and allows the port binding to be reused while still
  936  * maintaining the invariant that so_pcb always points to a valid inpcb until
  937  * in_pcbdetach().
  938  *
  939  * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
  940  * lists, but can lead to confusing netstat output, as open sockets with
  941  * closed TCP connections will no longer appear to have their bound port
  942  * number.  An explicit flag would be better, as it would allow us to leave
  943  * the port number intact after the connection is dropped.
  944  *
  945  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
  946  * in_pcbnotifyall() and in_pcbpurgeif0()?
  947  */
  948 void
  949 in_pcbdrop(struct inpcb *inp)
  950 {
  951 
  952         INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
  953         INP_WLOCK_ASSERT(inp);
  954 
  955         inp->inp_flags |= INP_DROPPED;
  956         if (inp->inp_flags & INP_INHASHLIST) {
  957                 struct inpcbport *phd = inp->inp_phd;
  958 
  959                 LIST_REMOVE(inp, inp_hash);
  960                 LIST_REMOVE(inp, inp_portlist);
  961                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
  962                         LIST_REMOVE(phd, phd_hash);
  963                         free(phd, M_PCB);
  964                 }
  965                 inp->inp_flags &= ~INP_INHASHLIST;
  966         }
  967 }
  968 
  969 /*
  970  * Common routines to return the socket addresses associated with inpcbs.
  971  */
  972 struct sockaddr *
  973 in_sockaddr(in_port_t port, struct in_addr *addr_p)
  974 {
  975         struct sockaddr_in *sin;
  976 
  977         MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
  978                 M_WAITOK | M_ZERO);
  979         sin->sin_family = AF_INET;
  980         sin->sin_len = sizeof(*sin);
  981         sin->sin_addr = *addr_p;
  982         sin->sin_port = port;
  983 
  984         return (struct sockaddr *)sin;
  985 }
  986 
  987 int
  988 in_getsockaddr(struct socket *so, struct sockaddr **nam)
  989 {
  990         struct inpcb *inp;
  991         struct in_addr addr;
  992         in_port_t port;
  993 
  994         inp = sotoinpcb(so);
  995         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
  996 
  997         INP_RLOCK(inp);
  998         port = inp->inp_lport;
  999         addr = inp->inp_laddr;
 1000         INP_RUNLOCK(inp);
 1001 
 1002         *nam = in_sockaddr(port, &addr);
 1003         return 0;
 1004 }
 1005 
 1006 int
 1007 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
 1008 {
 1009         struct inpcb *inp;
 1010         struct in_addr addr;
 1011         in_port_t port;
 1012 
 1013         inp = sotoinpcb(so);
 1014         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
 1015 
 1016         INP_RLOCK(inp);
 1017         port = inp->inp_fport;
 1018         addr = inp->inp_faddr;
 1019         INP_RUNLOCK(inp);
 1020 
 1021         *nam = in_sockaddr(port, &addr);
 1022         return 0;
 1023 }
 1024 
 1025 void
 1026 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
 1027     struct inpcb *(*notify)(struct inpcb *, int))
 1028 {
 1029         struct inpcb *inp, *inp_temp;
 1030 
 1031         INP_INFO_WLOCK(pcbinfo);
 1032         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
 1033                 INP_WLOCK(inp);
 1034 #ifdef INET6
 1035                 if ((inp->inp_vflag & INP_IPV4) == 0) {
 1036                         INP_WUNLOCK(inp);
 1037                         continue;
 1038                 }
 1039 #endif
 1040                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
 1041                     inp->inp_socket == NULL) {
 1042                         INP_WUNLOCK(inp);
 1043                         continue;
 1044                 }
 1045                 if ((*notify)(inp, errno))
 1046                         INP_WUNLOCK(inp);
 1047         }
 1048         INP_INFO_WUNLOCK(pcbinfo);
 1049 }
 1050 
 1051 void
 1052 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
 1053 {
 1054         struct inpcb *inp;
 1055         struct ip_moptions *imo;
 1056         int i, gap;
 1057 
 1058         INP_INFO_RLOCK(pcbinfo);
 1059         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
 1060                 INP_WLOCK(inp);
 1061                 imo = inp->inp_moptions;
 1062                 if ((inp->inp_vflag & INP_IPV4) &&
 1063                     imo != NULL) {
 1064                         /*
 1065                          * Unselect the outgoing interface if it is being
 1066                          * detached.
 1067                          */
 1068                         if (imo->imo_multicast_ifp == ifp)
 1069                                 imo->imo_multicast_ifp = NULL;
 1070 
 1071                         /*
 1072                          * Drop multicast group membership if we joined
 1073                          * through the interface being detached.
 1074                          */
 1075                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
 1076                             i++) {
 1077                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
 1078                                         in_delmulti(imo->imo_membership[i]);
 1079                                         gap++;
 1080                                 } else if (gap != 0)
 1081                                         imo->imo_membership[i - gap] =
 1082                                             imo->imo_membership[i];
 1083                         }
 1084                         imo->imo_num_memberships -= gap;
 1085                 }
 1086                 INP_WUNLOCK(inp);
 1087         }
 1088         INP_INFO_RUNLOCK(pcbinfo);
 1089 }
 1090 
 1091 /*
 1092  * Lookup a PCB based on the local address and port.
 1093  */
 1094 #define INP_LOOKUP_MAPPED_PCB_COST      3
 1095 struct inpcb *
 1096 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
 1097     u_short lport, int wild_okay, struct ucred *cred)
 1098 {
 1099         struct inpcb *inp;
 1100 #ifdef INET6
 1101         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
 1102 #else
 1103         int matchwild = 3;
 1104 #endif
 1105         int wildcard;
 1106 
 1107         INP_INFO_LOCK_ASSERT(pcbinfo);
 1108 
 1109         if (!wild_okay) {
 1110                 struct inpcbhead *head;
 1111                 /*
 1112                  * Look for an unconnected (wildcard foreign addr) PCB that
 1113                  * matches the local address and port we're looking for.
 1114                  */
 1115                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1116                     0, pcbinfo->ipi_hashmask)];
 1117                 LIST_FOREACH(inp, head, inp_hash) {
 1118 #ifdef INET6
 1119                         /* XXX inp locking */
 1120                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1121                                 continue;
 1122 #endif
 1123                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
 1124                             inp->inp_laddr.s_addr == laddr.s_addr &&
 1125                             inp->inp_lport == lport) {
 1126                                 /*
 1127                                  * Found?
 1128                                  */
 1129                                 if (cred == NULL ||
 1130                                     inp->inp_cred->cr_prison == cred->cr_prison)
 1131                                         return (inp);
 1132                         }
 1133                 }
 1134                 /*
 1135                  * Not found.
 1136                  */
 1137                 return (NULL);
 1138         } else {
 1139                 struct inpcbporthead *porthash;
 1140                 struct inpcbport *phd;
 1141                 struct inpcb *match = NULL;
 1142                 /*
 1143                  * Best fit PCB lookup.
 1144                  *
 1145                  * First see if this local port is in use by looking on the
 1146                  * port hash list.
 1147                  */
 1148                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
 1149                     pcbinfo->ipi_porthashmask)];
 1150                 LIST_FOREACH(phd, porthash, phd_hash) {
 1151                         if (phd->phd_port == lport)
 1152                                 break;
 1153                 }
 1154                 if (phd != NULL) {
 1155                         /*
 1156                          * Port is in use by one or more PCBs. Look for best
 1157                          * fit.
 1158                          */
 1159                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
 1160                                 wildcard = 0;
 1161                                 if (cred != NULL &&
 1162                                     inp->inp_cred->cr_prison != cred->cr_prison)
 1163                                         continue;
 1164 #ifdef INET6
 1165                                 /* XXX inp locking */
 1166                                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1167                                         continue;
 1168                                 /*
 1169                                  * We never select the PCB that has
 1170                                  * INP_IPV6 flag and is bound to :: if
 1171                                  * we have another PCB which is bound
 1172                                  * to 0.0.0.0.  If a PCB has the
 1173                                  * INP_IPV6 flag, then we set its cost
 1174                                  * higher than IPv4 only PCBs.
 1175                                  *
 1176                                  * Note that the case only happens
 1177                                  * when a socket is bound to ::, under
 1178                                  * the condition that the use of the
 1179                                  * mapped address is allowed.
 1180                                  */
 1181                                 if ((inp->inp_vflag & INP_IPV6) != 0)
 1182                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
 1183 #endif
 1184                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
 1185                                         wildcard++;
 1186                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
 1187                                         if (laddr.s_addr == INADDR_ANY)
 1188                                                 wildcard++;
 1189                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
 1190                                                 continue;
 1191                                 } else {
 1192                                         if (laddr.s_addr != INADDR_ANY)
 1193                                                 wildcard++;
 1194                                 }
 1195                                 if (wildcard < matchwild) {
 1196                                         match = inp;
 1197                                         matchwild = wildcard;
 1198                                         if (matchwild == 0)
 1199                                                 break;
 1200                                 }
 1201                         }
 1202                 }
 1203                 return (match);
 1204         }
 1205 }
 1206 #undef INP_LOOKUP_MAPPED_PCB_COST
 1207 
 1208 /*
 1209  * Lookup PCB in hash list.
 1210  */
 1211 struct inpcb *
 1212 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1213     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
 1214     struct ifnet *ifp)
 1215 {
 1216         struct inpcbhead *head;
 1217         struct inpcb *inp, *tmpinp;
 1218         u_short fport = fport_arg, lport = lport_arg;
 1219 
 1220         INP_INFO_LOCK_ASSERT(pcbinfo);
 1221 
 1222         /*
 1223          * First look for an exact match.
 1224          */
 1225         tmpinp = NULL;
 1226         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1227             pcbinfo->ipi_hashmask)];
 1228         LIST_FOREACH(inp, head, inp_hash) {
 1229 #ifdef INET6
 1230                 /* XXX inp locking */
 1231                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1232                         continue;
 1233 #endif
 1234                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1235                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1236                     inp->inp_fport == fport &&
 1237                     inp->inp_lport == lport) {
 1238                         /*
 1239                          * XXX We should be able to directly return
 1240                          * the inp here, without any checks.
 1241                          * Well unless both bound with SO_REUSEPORT?
 1242                          */
 1243                         if (jailed(inp->inp_cred))
 1244                                 return (inp);
 1245                         if (tmpinp == NULL)
 1246                                 tmpinp = inp;
 1247                 }
 1248         }
 1249         if (tmpinp != NULL)
 1250                 return (tmpinp);
 1251 
 1252         /*
 1253          * Then look for a wildcard match, if requested.
 1254          */
 1255         if (wildcard == INPLOOKUP_WILDCARD) {
 1256                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1257 #ifdef INET6
 1258                 struct inpcb *local_wild_mapped = NULL;
 1259 #endif
 1260                 struct inpcb *jail_wild = NULL;
 1261                 int injail;
 1262 
 1263                 /*
 1264                  * Order of socket selection - we always prefer jails.
 1265                  *      1. jailed, non-wild.
 1266                  *      2. jailed, wild.
 1267                  *      3. non-jailed, non-wild.
 1268                  *      4. non-jailed, wild.
 1269                  */
 1270 
 1271                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1272                     0, pcbinfo->ipi_hashmask)];
 1273                 LIST_FOREACH(inp, head, inp_hash) {
 1274 #ifdef INET6
 1275                         /* XXX inp locking */
 1276                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1277                                 continue;
 1278 #endif
 1279                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1280                             inp->inp_lport != lport)
 1281                                 continue;
 1282 
 1283                         /* XXX inp locking */
 1284                         if (ifp && ifp->if_type == IFT_FAITH &&
 1285                             (inp->inp_flags & INP_FAITH) == 0)
 1286                                 continue;
 1287 
 1288                         injail = jailed(inp->inp_cred);
 1289                         if (injail) {
 1290                                 if (prison_check_ip4(inp->inp_cred,
 1291                                     &laddr) != 0)
 1292                                         continue;
 1293                         } else {
 1294                                 if (local_exact != NULL)
 1295                                         continue;
 1296                         }
 1297 
 1298                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1299                                 if (injail)
 1300                                         return (inp);
 1301                                 else
 1302                                         local_exact = inp;
 1303                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1304 #ifdef INET6
 1305                                 /* XXX inp locking, NULL check */
 1306                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1307                                         local_wild_mapped = inp;
 1308                                 else
 1309 #endif /* INET6 */
 1310                                         if (injail)
 1311                                                 jail_wild = inp;
 1312                                         else
 1313                                                 local_wild = inp;
 1314                         }
 1315                 } /* LIST_FOREACH */
 1316                 if (jail_wild != NULL)
 1317                         return (jail_wild);
 1318                 if (local_exact != NULL)
 1319                         return (local_exact);
 1320                 if (local_wild != NULL)
 1321                         return (local_wild);
 1322 #ifdef INET6
 1323                 if (local_wild_mapped != NULL)
 1324                         return (local_wild_mapped);
 1325 #endif /* defined(INET6) */
 1326         } /* if (wildcard == INPLOOKUP_WILDCARD) */
 1327 
 1328         return (NULL);
 1329 }
 1330 
 1331 /*
 1332  * Insert PCB onto various hash lists.
 1333  */
 1334 int
 1335 in_pcbinshash(struct inpcb *inp)
 1336 {
 1337         struct inpcbhead *pcbhash;
 1338         struct inpcbporthead *pcbporthash;
 1339         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1340         struct inpcbport *phd;
 1341         u_int32_t hashkey_faddr;
 1342 
 1343         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1344         INP_WLOCK_ASSERT(inp);
 1345         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
 1346             ("in_pcbinshash: INP_INHASHLIST"));
 1347 
 1348 #ifdef INET6
 1349         if (inp->inp_vflag & INP_IPV6)
 1350                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1351         else
 1352 #endif /* INET6 */
 1353         hashkey_faddr = inp->inp_faddr.s_addr;
 1354 
 1355         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1356                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1357 
 1358         pcbporthash = &pcbinfo->ipi_porthashbase[
 1359             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
 1360 
 1361         /*
 1362          * Go through port list and look for a head for this lport.
 1363          */
 1364         LIST_FOREACH(phd, pcbporthash, phd_hash) {
 1365                 if (phd->phd_port == inp->inp_lport)
 1366                         break;
 1367         }
 1368         /*
 1369          * If none exists, malloc one and tack it on.
 1370          */
 1371         if (phd == NULL) {
 1372                 MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
 1373                 if (phd == NULL) {
 1374                         return (ENOBUFS); /* XXX */
 1375                 }
 1376                 phd->phd_port = inp->inp_lport;
 1377                 LIST_INIT(&phd->phd_pcblist);
 1378                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
 1379         }
 1380         inp->inp_phd = phd;
 1381         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
 1382         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
 1383         inp->inp_flags |= INP_INHASHLIST;
 1384         return (0);
 1385 }
 1386 
 1387 /*
 1388  * Move PCB to the proper hash bucket when { faddr, fport } have  been
 1389  * changed. NOTE: This does not handle the case of the lport changing (the
 1390  * hashed port list would have to be updated as well), so the lport must
 1391  * not change after in_pcbinshash() has been called.
 1392  */
 1393 void
 1394 in_pcbrehash(struct inpcb *inp)
 1395 {
 1396         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1397         struct inpcbhead *head;
 1398         u_int32_t hashkey_faddr;
 1399 
 1400         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1401         INP_WLOCK_ASSERT(inp);
 1402         KASSERT(inp->inp_flags & INP_INHASHLIST,
 1403             ("in_pcbrehash: !INP_INHASHLIST"));
 1404 
 1405 #ifdef INET6
 1406         if (inp->inp_vflag & INP_IPV6)
 1407                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1408         else
 1409 #endif /* INET6 */
 1410         hashkey_faddr = inp->inp_faddr.s_addr;
 1411 
 1412         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1413                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1414 
 1415         LIST_REMOVE(inp, inp_hash);
 1416         LIST_INSERT_HEAD(head, inp, inp_hash);
 1417 }
 1418 
 1419 /*
 1420  * Remove PCB from various lists.
 1421  */
 1422 void
 1423 in_pcbremlists(struct inpcb *inp)
 1424 {
 1425         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1426 
 1427         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1428         INP_WLOCK_ASSERT(inp);
 1429 
 1430         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 1431         if (inp->inp_flags & INP_INHASHLIST) {
 1432                 struct inpcbport *phd = inp->inp_phd;
 1433 
 1434                 LIST_REMOVE(inp, inp_hash);
 1435                 LIST_REMOVE(inp, inp_portlist);
 1436                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 1437                         LIST_REMOVE(phd, phd_hash);
 1438                         free(phd, M_PCB);
 1439                 }
 1440                 inp->inp_flags &= ~INP_INHASHLIST;
 1441         }
 1442         LIST_REMOVE(inp, inp_list);
 1443         pcbinfo->ipi_count--;
 1444 }
 1445 
 1446 /*
 1447  * A set label operation has occurred at the socket layer, propagate the
 1448  * label change into the in_pcb for the socket.
 1449  */
 1450 void
 1451 in_pcbsosetlabel(struct socket *so)
 1452 {
 1453 #ifdef MAC
 1454         struct inpcb *inp;
 1455 
 1456         inp = sotoinpcb(so);
 1457         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
 1458 
 1459         INP_WLOCK(inp);
 1460         SOCK_LOCK(so);
 1461         mac_inpcb_sosetlabel(so, inp);
 1462         SOCK_UNLOCK(so);
 1463         INP_WUNLOCK(inp);
 1464 #endif
 1465 }
 1466 
 1467 /*
 1468  * ipport_tick runs once per second, determining if random port allocation
 1469  * should be continued.  If more than ipport_randomcps ports have been
 1470  * allocated in the last second, then we return to sequential port
 1471  * allocation. We return to random allocation only once we drop below
 1472  * ipport_randomcps for at least ipport_randomtime seconds.
 1473  */
 1474 void
 1475 ipport_tick(void *xtp)
 1476 {
 1477 
 1478         if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) {
 1479                 if (ipport_stoprandom > 0)
 1480                         ipport_stoprandom--;
 1481         } else
 1482                 ipport_stoprandom = ipport_randomtime;
 1483         ipport_tcplastcount = ipport_tcpallocs;
 1484         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
 1485 }
 1486 
 1487 void
 1488 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
 1489 {
 1490         struct inpcb *inp;
 1491 
 1492         INP_INFO_RLOCK(&tcbinfo);
 1493         LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
 1494                 INP_WLOCK(inp);
 1495                 func(inp, arg);
 1496                 INP_WUNLOCK(inp);
 1497         }
 1498         INP_INFO_RUNLOCK(&tcbinfo);
 1499 }
 1500 
 1501 struct socket *
 1502 inp_inpcbtosocket(struct inpcb *inp)
 1503 {
 1504 
 1505         INP_WLOCK_ASSERT(inp);
 1506         return (inp->inp_socket);
 1507 }
 1508 
 1509 struct tcpcb *
 1510 inp_inpcbtotcpcb(struct inpcb *inp)
 1511 {
 1512 
 1513         INP_WLOCK_ASSERT(inp);
 1514         return ((struct tcpcb *)inp->inp_ppcb);
 1515 }
 1516 
 1517 int
 1518 inp_ip_tos_get(const struct inpcb *inp)
 1519 {
 1520 
 1521         return (inp->inp_ip_tos);
 1522 }
 1523 
 1524 void
 1525 inp_ip_tos_set(struct inpcb *inp, int val)
 1526 {
 1527 
 1528         inp->inp_ip_tos = val;
 1529 }
 1530 
 1531 void
 1532 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
 1533     uint32_t *faddr, uint16_t *fp)
 1534 {
 1535 
 1536         INP_LOCK_ASSERT(inp);
 1537         *laddr = inp->inp_laddr.s_addr;
 1538         *faddr = inp->inp_faddr.s_addr;
 1539         *lp = inp->inp_lport;
 1540         *fp = inp->inp_fport;
 1541 }
 1542 
 1543 struct inpcb *
 1544 so_sotoinpcb(struct socket *so)
 1545 {
 1546 
 1547         return (sotoinpcb(so));
 1548 }
 1549 
 1550 struct tcpcb *
 1551 so_sototcpcb(struct socket *so)
 1552 {
 1553 
 1554         return (sototcpcb(so));
 1555 }
 1556 
 1557 void
 1558 inp_wlock(struct inpcb *inp)
 1559 {
 1560 
 1561         INP_WLOCK(inp);
 1562 }
 1563 
 1564 void
 1565 inp_wunlock(struct inpcb *inp)
 1566 {
 1567 
 1568         INP_WUNLOCK(inp);
 1569 }
 1570 
 1571 void
 1572 inp_rlock(struct inpcb *inp)
 1573 {
 1574 
 1575         INP_RLOCK(inp);
 1576 }
 1577 
 1578 void
 1579 inp_runlock(struct inpcb *inp)
 1580 {
 1581 
 1582         INP_RUNLOCK(inp);
 1583 }
 1584 
 1585 #ifdef INVARIANTS
 1586 void
 1587 inp_wlock_assert(struct inpcb *inp)
 1588 {
 1589 
 1590         INP_WLOCK_ASSERT(inp);
 1591 }
 1592 
 1593 void
 1594 inp_rlock_assert(struct inpcb *inp)
 1595 {
 1596 
 1597         INP_RLOCK_ASSERT(inp);
 1598 }
 1599 
 1600 void
 1601 inp_lock_assert(struct inpcb *inp)
 1602 {
 1603 
 1604         INP_LOCK_ASSERT(inp);
 1605 }
 1606 
 1607 void
 1608 inp_unlock_assert(struct inpcb *inp)
 1609 {
 1610 
 1611         INP_UNLOCK_ASSERT(inp);
 1612 }
 1613 
 1614 #endif
 1615 
 1616 #ifdef DDB
 1617 static void
 1618 db_print_indent(int indent)
 1619 {
 1620         int i;
 1621 
 1622         for (i = 0; i < indent; i++)
 1623                 db_printf(" ");
 1624 }
 1625 
 1626 static void
 1627 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
 1628 {
 1629         char faddr_str[48], laddr_str[48];
 1630 
 1631         db_print_indent(indent);
 1632         db_printf("%s at %p\n", name, inc);
 1633 
 1634         indent += 2;
 1635 
 1636 #ifdef INET6
 1637         if (inc->inc_flags & INC_ISIPV6) {
 1638                 /* IPv6. */
 1639                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
 1640                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
 1641         } else {
 1642 #endif
 1643                 /* IPv4. */
 1644                 inet_ntoa_r(inc->inc_laddr, laddr_str);
 1645                 inet_ntoa_r(inc->inc_faddr, faddr_str);
 1646 #ifdef INET6
 1647         }
 1648 #endif
 1649         db_print_indent(indent);
 1650         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
 1651             ntohs(inc->inc_lport));
 1652         db_print_indent(indent);
 1653         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
 1654             ntohs(inc->inc_fport));
 1655 }
 1656 
 1657 static void
 1658 db_print_inpflags(int inp_flags)
 1659 {
 1660         int comma;
 1661 
 1662         comma = 0;
 1663         if (inp_flags & INP_RECVOPTS) {
 1664                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
 1665                 comma = 1;
 1666         }
 1667         if (inp_flags & INP_RECVRETOPTS) {
 1668                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
 1669                 comma = 1;
 1670         }
 1671         if (inp_flags & INP_RECVDSTADDR) {
 1672                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
 1673                 comma = 1;
 1674         }
 1675         if (inp_flags & INP_HDRINCL) {
 1676                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
 1677                 comma = 1;
 1678         }
 1679         if (inp_flags & INP_HIGHPORT) {
 1680                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
 1681                 comma = 1;
 1682         }
 1683         if (inp_flags & INP_LOWPORT) {
 1684                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
 1685                 comma = 1;
 1686         }
 1687         if (inp_flags & INP_ANONPORT) {
 1688                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
 1689                 comma = 1;
 1690         }
 1691         if (inp_flags & INP_RECVIF) {
 1692                 db_printf("%sINP_RECVIF", comma ? ", " : "");
 1693                 comma = 1;
 1694         }
 1695         if (inp_flags & INP_MTUDISC) {
 1696                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
 1697                 comma = 1;
 1698         }
 1699         if (inp_flags & INP_FAITH) {
 1700                 db_printf("%sINP_FAITH", comma ? ", " : "");
 1701                 comma = 1;
 1702         }
 1703         if (inp_flags & INP_RECVTTL) {
 1704                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
 1705                 comma = 1;
 1706         }
 1707         if (inp_flags & INP_DONTFRAG) {
 1708                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
 1709                 comma = 1;
 1710         }
 1711         if (inp_flags & IN6P_IPV6_V6ONLY) {
 1712                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
 1713                 comma = 1;
 1714         }
 1715         if (inp_flags & IN6P_PKTINFO) {
 1716                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
 1717                 comma = 1;
 1718         }
 1719         if (inp_flags & IN6P_HOPLIMIT) {
 1720                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
 1721                 comma = 1;
 1722         }
 1723         if (inp_flags & IN6P_HOPOPTS) {
 1724                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
 1725                 comma = 1;
 1726         }
 1727         if (inp_flags & IN6P_DSTOPTS) {
 1728                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
 1729                 comma = 1;
 1730         }
 1731         if (inp_flags & IN6P_RTHDR) {
 1732                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
 1733                 comma = 1;
 1734         }
 1735         if (inp_flags & IN6P_RTHDRDSTOPTS) {
 1736                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
 1737                 comma = 1;
 1738         }
 1739         if (inp_flags & IN6P_TCLASS) {
 1740                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
 1741                 comma = 1;
 1742         }
 1743         if (inp_flags & IN6P_AUTOFLOWLABEL) {
 1744                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
 1745                 comma = 1;
 1746         }
 1747         if (inp_flags & INP_TIMEWAIT) {
 1748                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
 1749                 comma  = 1;
 1750         }
 1751         if (inp_flags & INP_ONESBCAST) {
 1752                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
 1753                 comma  = 1;
 1754         }
 1755         if (inp_flags & INP_DROPPED) {
 1756                 db_printf("%sINP_DROPPED", comma ? ", " : "");
 1757                 comma  = 1;
 1758         }
 1759         if (inp_flags & INP_SOCKREF) {
 1760                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
 1761                 comma  = 1;
 1762         }
 1763         if (inp_flags & IN6P_RFC2292) {
 1764                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
 1765                 comma = 1;
 1766         }
 1767         if (inp_flags & IN6P_MTU) {
 1768                 db_printf("IN6P_MTU%s", comma ? ", " : "");
 1769                 comma = 1;
 1770         }
 1771 }
 1772 
 1773 static void
 1774 db_print_inpvflag(u_char inp_vflag)
 1775 {
 1776         int comma;
 1777 
 1778         comma = 0;
 1779         if (inp_vflag & INP_IPV4) {
 1780                 db_printf("%sINP_IPV4", comma ? ", " : "");
 1781                 comma  = 1;
 1782         }
 1783         if (inp_vflag & INP_IPV6) {
 1784                 db_printf("%sINP_IPV6", comma ? ", " : "");
 1785                 comma  = 1;
 1786         }
 1787         if (inp_vflag & INP_IPV6PROTO) {
 1788                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
 1789                 comma  = 1;
 1790         }
 1791 }
 1792 
 1793 void
 1794 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
 1795 {
 1796 
 1797         db_print_indent(indent);
 1798         db_printf("%s at %p\n", name, inp);
 1799 
 1800         indent += 2;
 1801 
 1802         db_print_indent(indent);
 1803         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
 1804 
 1805         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
 1806 
 1807         db_print_indent(indent);
 1808         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
 1809             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
 1810 
 1811         db_print_indent(indent);
 1812         db_printf("inp_label: %p   inp_flags: 0x%x (",
 1813            inp->inp_label, inp->inp_flags);
 1814         db_print_inpflags(inp->inp_flags);
 1815         db_printf(")\n");
 1816 
 1817         db_print_indent(indent);
 1818         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
 1819             inp->inp_vflag);
 1820         db_print_inpvflag(inp->inp_vflag);
 1821         db_printf(")\n");
 1822 
 1823         db_print_indent(indent);
 1824         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
 1825             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
 1826 
 1827         db_print_indent(indent);
 1828 #ifdef INET6
 1829         if (inp->inp_vflag & INP_IPV6) {
 1830                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
 1831                     "in6p_moptions: %p\n", inp->in6p_options,
 1832                     inp->in6p_outputopts, inp->in6p_moptions);
 1833                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
 1834                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
 1835                     inp->in6p_hops);
 1836         } else
 1837 #endif
 1838         {
 1839                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
 1840                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
 1841                     inp->inp_options, inp->inp_moptions);
 1842         }
 1843 
 1844         db_print_indent(indent);
 1845         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
 1846             (uintmax_t)inp->inp_gencnt);
 1847 }
 1848 
 1849 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
 1850 {
 1851         struct inpcb *inp;
 1852 
 1853         if (!have_addr) {
 1854                 db_printf("usage: show inpcb <addr>\n");
 1855                 return;
 1856         }
 1857         inp = (struct inpcb *)addr;
 1858 
 1859         db_print_inpcb(inp, "inpcb", 0);
 1860 }
 1861 #endif

Cache object: 73a6d9c25c716a826aa3d4fd30c87e15


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.