The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/in_pcb.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
    3  *      The Regents of the University of California.
    4  * Copyright (c) 2007-2009 Robert N. M. Watson
    5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
    6  * All rights reserved.
    7  *
    8  * Portions of this software were developed by Robert N. M. Watson under
    9  * contract to Juniper Networks, Inc.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 4. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      @(#)in_pcb.c    8.4 (Berkeley) 5/24/95
   36  */
   37 
   38 #include <sys/cdefs.h>
   39 __FBSDID("$FreeBSD: releng/9.2/sys/netinet/in_pcb.c 253281 2013-07-12 18:54:47Z trociny $");
   40 
   41 #include "opt_ddb.h"
   42 #include "opt_ipsec.h"
   43 #include "opt_inet.h"
   44 #include "opt_inet6.h"
   45 #include "opt_pcbgroup.h"
   46 
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/callout.h>
   52 #include <sys/domain.h>
   53 #include <sys/protosw.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/priv.h>
   57 #include <sys/proc.h>
   58 #include <sys/refcount.h>
   59 #include <sys/jail.h>
   60 #include <sys/kernel.h>
   61 #include <sys/sysctl.h>
   62 
   63 #ifdef DDB
   64 #include <ddb/ddb.h>
   65 #endif
   66 
   67 #include <vm/uma.h>
   68 
   69 #include <net/if.h>
   70 #include <net/if_types.h>
   71 #include <net/route.h>
   72 #include <net/vnet.h>
   73 
   74 #if defined(INET) || defined(INET6)
   75 #include <netinet/in.h>
   76 #include <netinet/in_pcb.h>
   77 #include <netinet/ip_var.h>
   78 #include <netinet/tcp_var.h>
   79 #include <netinet/udp.h>
   80 #include <netinet/udp_var.h>
   81 #endif
   82 #ifdef INET
   83 #include <netinet/in_var.h>
   84 #endif
   85 #ifdef INET6
   86 #include <netinet/ip6.h>
   87 #include <netinet6/in6_pcb.h>
   88 #include <netinet6/in6_var.h>
   89 #include <netinet6/ip6_var.h>
   90 #endif /* INET6 */
   91 
   92 
   93 #ifdef IPSEC
   94 #include <netipsec/ipsec.h>
   95 #include <netipsec/key.h>
   96 #endif /* IPSEC */
   97 
   98 #include <security/mac/mac_framework.h>
   99 
  100 static struct callout   ipport_tick_callout;
  101 
  102 /*
  103  * These configure the range of local port addresses assigned to
  104  * "unspecified" outgoing connections/packets/whatever.
  105  */
  106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;    /* 1023 */
  107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;    /* 600 */
  108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;     /* 10000 */
  109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;       /* 65535 */
  110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;      /* 49152 */
  111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;        /* 65535 */
  112 
  113 /*
  114  * Reserved ports accessible only to root. There are significant
  115  * security considerations that must be accounted for when changing these,
  116  * but the security benefits can be great. Please be careful.
  117  */
  118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;    /* 1023 */
  119 VNET_DEFINE(int, ipport_reservedlow);
  120 
  121 /* Variables dealing with random ephemeral port allocation. */
  122 VNET_DEFINE(int, ipport_randomized) = 1;        /* user controlled via sysctl */
  123 VNET_DEFINE(int, ipport_randomcps) = 10;        /* user controlled via sysctl */
  124 VNET_DEFINE(int, ipport_randomtime) = 45;       /* user controlled via sysctl */
  125 VNET_DEFINE(int, ipport_stoprandom);            /* toggled by ipport_tick */
  126 VNET_DEFINE(int, ipport_tcpallocs);
  127 static VNET_DEFINE(int, ipport_tcplastcount);
  128 
  129 #define V_ipport_tcplastcount           VNET(ipport_tcplastcount)
  130 
  131 static void     in_pcbremlists(struct inpcb *inp);
  132 #ifdef INET
  133 static struct inpcb     *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
  134                             struct in_addr faddr, u_int fport_arg,
  135                             struct in_addr laddr, u_int lport_arg,
  136                             int lookupflags, struct ifnet *ifp);
  137 
  138 #define RANGECHK(var, min, max) \
  139         if ((var) < (min)) { (var) = (min); } \
  140         else if ((var) > (max)) { (var) = (max); }
  141 
  142 static int
  143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
  144 {
  145         int error;
  146 
  147 #ifdef VIMAGE
  148         error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
  149 #else
  150         error = sysctl_handle_int(oidp, arg1, arg2, req);
  151 #endif
  152         if (error == 0) {
  153                 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
  154                 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
  155                 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
  156                 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
  157                 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
  158                 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
  159         }
  160         return (error);
  161 }
  162 
  163 #undef RANGECHK
  164 
  165 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
  166     "IP Ports");
  167 
  168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
  169         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
  170         &sysctl_net_ipport_check, "I", "");
  171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
  172         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
  173         &sysctl_net_ipport_check, "I", "");
  174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
  175         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
  176         &sysctl_net_ipport_check, "I", "");
  177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
  178         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
  179         &sysctl_net_ipport_check, "I", "");
  180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
  181         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
  182         &sysctl_net_ipport_check, "I", "");
  183 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
  184         CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
  185         &sysctl_net_ipport_check, "I", "");
  186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
  187         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
  188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
  189         CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
  190 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
  191         &VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
  192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
  193         &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
  194         "allocations before switching to a sequental one");
  195 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
  196         &VNET_NAME(ipport_randomtime), 0,
  197         "Minimum time to keep sequental port "
  198         "allocation before switching to a random one");
  199 #endif
  200 
  201 /*
  202  * in_pcb.c: manage the Protocol Control Blocks.
  203  *
  204  * NOTE: It is assumed that most of these functions will be called with
  205  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
  206  * functions often modify hash chains or addresses in pcbs.
  207  */
  208 
  209 /*
  210  * Initialize an inpcbinfo -- we should be able to reduce the number of
  211  * arguments in time.
  212  */
  213 void
  214 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
  215     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
  216     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
  217     uint32_t inpcbzone_flags, u_int hashfields)
  218 {
  219 
  220         INP_INFO_LOCK_INIT(pcbinfo, name);
  221         INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");     /* XXXRW: argument? */
  222 #ifdef VIMAGE
  223         pcbinfo->ipi_vnet = curvnet;
  224 #endif
  225         pcbinfo->ipi_listhead = listhead;
  226         LIST_INIT(pcbinfo->ipi_listhead);
  227         pcbinfo->ipi_count = 0;
  228         pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
  229             &pcbinfo->ipi_hashmask);
  230         pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
  231             &pcbinfo->ipi_porthashmask);
  232 #ifdef PCBGROUP
  233         in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
  234 #endif
  235         pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
  236             NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
  237             inpcbzone_flags);
  238         uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
  239 }
  240 
  241 /*
  242  * Destroy an inpcbinfo.
  243  */
  244 void
  245 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
  246 {
  247 
  248         KASSERT(pcbinfo->ipi_count == 0,
  249             ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
  250 
  251         hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
  252         hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
  253             pcbinfo->ipi_porthashmask);
  254 #ifdef PCBGROUP
  255         in_pcbgroup_destroy(pcbinfo);
  256 #endif
  257         uma_zdestroy(pcbinfo->ipi_zone);
  258         INP_HASH_LOCK_DESTROY(pcbinfo);
  259         INP_INFO_LOCK_DESTROY(pcbinfo);
  260 }
  261 
  262 /*
  263  * Allocate a PCB and associate it with the socket.
  264  * On success return with the PCB locked.
  265  */
  266 int
  267 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
  268 {
  269         struct inpcb *inp;
  270         int error;
  271 
  272         INP_INFO_WLOCK_ASSERT(pcbinfo);
  273         error = 0;
  274         inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
  275         if (inp == NULL)
  276                 return (ENOBUFS);
  277         bzero(inp, inp_zero_size);
  278         inp->inp_pcbinfo = pcbinfo;
  279         inp->inp_socket = so;
  280         inp->inp_cred = crhold(so->so_cred);
  281         inp->inp_inc.inc_fibnum = so->so_fibnum;
  282 #ifdef MAC
  283         error = mac_inpcb_init(inp, M_NOWAIT);
  284         if (error != 0)
  285                 goto out;
  286         mac_inpcb_create(so, inp);
  287 #endif
  288 #ifdef IPSEC
  289         error = ipsec_init_policy(so, &inp->inp_sp);
  290         if (error != 0) {
  291 #ifdef MAC
  292                 mac_inpcb_destroy(inp);
  293 #endif
  294                 goto out;
  295         }
  296 #endif /*IPSEC*/
  297 #ifdef INET6
  298         if (INP_SOCKAF(so) == AF_INET6) {
  299                 inp->inp_vflag |= INP_IPV6PROTO;
  300                 if (V_ip6_v6only)
  301                         inp->inp_flags |= IN6P_IPV6_V6ONLY;
  302         }
  303 #endif
  304         LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
  305         pcbinfo->ipi_count++;
  306         so->so_pcb = (caddr_t)inp;
  307 #ifdef INET6
  308         if (V_ip6_auto_flowlabel)
  309                 inp->inp_flags |= IN6P_AUTOFLOWLABEL;
  310 #endif
  311         INP_WLOCK(inp);
  312         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
  313         refcount_init(&inp->inp_refcount, 1);   /* Reference from inpcbinfo */
  314 #if defined(IPSEC) || defined(MAC)
  315 out:
  316         if (error != 0) {
  317                 crfree(inp->inp_cred);
  318                 uma_zfree(pcbinfo->ipi_zone, inp);
  319         }
  320 #endif
  321         return (error);
  322 }
  323 
  324 #ifdef INET
  325 int
  326 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  327 {
  328         int anonport, error;
  329 
  330         INP_WLOCK_ASSERT(inp);
  331         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
  332 
  333         if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
  334                 return (EINVAL);
  335         anonport = inp->inp_lport == 0 && (nam == NULL ||
  336             ((struct sockaddr_in *)nam)->sin_port == 0);
  337         error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
  338             &inp->inp_lport, cred);
  339         if (error)
  340                 return (error);
  341         if (in_pcbinshash(inp) != 0) {
  342                 inp->inp_laddr.s_addr = INADDR_ANY;
  343                 inp->inp_lport = 0;
  344                 return (EAGAIN);
  345         }
  346         if (anonport)
  347                 inp->inp_flags |= INP_ANONPORT;
  348         return (0);
  349 }
  350 #endif
  351 
  352 #if defined(INET) || defined(INET6)
  353 int
  354 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
  355     struct ucred *cred, int lookupflags)
  356 {
  357         struct inpcbinfo *pcbinfo;
  358         struct inpcb *tmpinp;
  359         unsigned short *lastport;
  360         int count, dorandom, error;
  361         u_short aux, first, last, lport;
  362 #ifdef INET
  363         struct in_addr laddr;
  364 #endif
  365 
  366         pcbinfo = inp->inp_pcbinfo;
  367 
  368         /*
  369          * Because no actual state changes occur here, a global write lock on
  370          * the pcbinfo isn't required.
  371          */
  372         INP_LOCK_ASSERT(inp);
  373         INP_HASH_LOCK_ASSERT(pcbinfo);
  374 
  375         if (inp->inp_flags & INP_HIGHPORT) {
  376                 first = V_ipport_hifirstauto;   /* sysctl */
  377                 last  = V_ipport_hilastauto;
  378                 lastport = &pcbinfo->ipi_lasthi;
  379         } else if (inp->inp_flags & INP_LOWPORT) {
  380                 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
  381                 if (error)
  382                         return (error);
  383                 first = V_ipport_lowfirstauto;  /* 1023 */
  384                 last  = V_ipport_lowlastauto;   /* 600 */
  385                 lastport = &pcbinfo->ipi_lastlow;
  386         } else {
  387                 first = V_ipport_firstauto;     /* sysctl */
  388                 last  = V_ipport_lastauto;
  389                 lastport = &pcbinfo->ipi_lastport;
  390         }
  391         /*
  392          * For UDP, use random port allocation as long as the user
  393          * allows it.  For TCP (and as of yet unknown) connections,
  394          * use random port allocation only if the user allows it AND
  395          * ipport_tick() allows it.
  396          */
  397         if (V_ipport_randomized &&
  398                 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
  399                 dorandom = 1;
  400         else
  401                 dorandom = 0;
  402         /*
  403          * It makes no sense to do random port allocation if
  404          * we have the only port available.
  405          */
  406         if (first == last)
  407                 dorandom = 0;
  408         /* Make sure to not include UDP packets in the count. */
  409         if (pcbinfo != &V_udbinfo)
  410                 V_ipport_tcpallocs++;
  411         /*
  412          * Instead of having two loops further down counting up or down
  413          * make sure that first is always <= last and go with only one
  414          * code path implementing all logic.
  415          */
  416         if (first > last) {
  417                 aux = first;
  418                 first = last;
  419                 last = aux;
  420         }
  421 
  422 #ifdef INET
  423         /* Make the compiler happy. */
  424         laddr.s_addr = 0;
  425         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
  426                 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
  427                     __func__, inp));
  428                 laddr = *laddrp;
  429         }
  430 #endif
  431         tmpinp = NULL;  /* Make compiler happy. */
  432         lport = *lportp;
  433 
  434         if (dorandom)
  435                 *lastport = first + (arc4random() % (last - first));
  436 
  437         count = last - first;
  438 
  439         do {
  440                 if (count-- < 0)        /* completely used? */
  441                         return (EADDRNOTAVAIL);
  442                 ++*lastport;
  443                 if (*lastport < first || *lastport > last)
  444                         *lastport = first;
  445                 lport = htons(*lastport);
  446 
  447 #ifdef INET6
  448                 if ((inp->inp_vflag & INP_IPV6) != 0)
  449                         tmpinp = in6_pcblookup_local(pcbinfo,
  450                             &inp->in6p_laddr, lport, lookupflags, cred);
  451 #endif
  452 #if defined(INET) && defined(INET6)
  453                 else
  454 #endif
  455 #ifdef INET
  456                         tmpinp = in_pcblookup_local(pcbinfo, laddr,
  457                             lport, lookupflags, cred);
  458 #endif
  459         } while (tmpinp != NULL);
  460 
  461 #ifdef INET
  462         if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
  463                 laddrp->s_addr = laddr.s_addr;
  464 #endif                 
  465         *lportp = lport;
  466 
  467         return (0);
  468 }
  469 
  470 /*
  471  * Return cached socket options.
  472  */
  473 short
  474 inp_so_options(const struct inpcb *inp)
  475 {
  476    short so_options;
  477 
  478    so_options = 0;
  479 
  480    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
  481            so_options |= SO_REUSEPORT;
  482    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
  483            so_options |= SO_REUSEADDR;
  484    return (so_options);
  485 }
  486 #endif /* INET || INET6 */
  487 
  488 #ifdef INET
  489 /*
  490  * Set up a bind operation on a PCB, performing port allocation
  491  * as required, but do not actually modify the PCB. Callers can
  492  * either complete the bind by setting inp_laddr/inp_lport and
  493  * calling in_pcbinshash(), or they can just use the resulting
  494  * port and address to authorise the sending of a once-off packet.
  495  *
  496  * On error, the values of *laddrp and *lportp are not changed.
  497  */
  498 int
  499 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
  500     u_short *lportp, struct ucred *cred)
  501 {
  502         struct socket *so = inp->inp_socket;
  503         struct sockaddr_in *sin;
  504         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
  505         struct in_addr laddr;
  506         u_short lport = 0;
  507         int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
  508         int error;
  509 
  510         /*
  511          * No state changes, so read locks are sufficient here.
  512          */
  513         INP_LOCK_ASSERT(inp);
  514         INP_HASH_LOCK_ASSERT(pcbinfo);
  515 
  516         if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
  517                 return (EADDRNOTAVAIL);
  518         laddr.s_addr = *laddrp;
  519         if (nam != NULL && laddr.s_addr != INADDR_ANY)
  520                 return (EINVAL);
  521         if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
  522                 lookupflags = INPLOOKUP_WILDCARD;
  523         if (nam == NULL) {
  524                 if ((error = prison_local_ip4(cred, &laddr)) != 0)
  525                         return (error);
  526         } else {
  527                 sin = (struct sockaddr_in *)nam;
  528                 if (nam->sa_len != sizeof (*sin))
  529                         return (EINVAL);
  530 #ifdef notdef
  531                 /*
  532                  * We should check the family, but old programs
  533                  * incorrectly fail to initialize it.
  534                  */
  535                 if (sin->sin_family != AF_INET)
  536                         return (EAFNOSUPPORT);
  537 #endif
  538                 error = prison_local_ip4(cred, &sin->sin_addr);
  539                 if (error)
  540                         return (error);
  541                 if (sin->sin_port != *lportp) {
  542                         /* Don't allow the port to change. */
  543                         if (*lportp != 0)
  544                                 return (EINVAL);
  545                         lport = sin->sin_port;
  546                 }
  547                 /* NB: lport is left as 0 if the port isn't being changed. */
  548                 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
  549                         /*
  550                          * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
  551                          * allow complete duplication of binding if
  552                          * SO_REUSEPORT is set, or if SO_REUSEADDR is set
  553                          * and a multicast address is bound on both
  554                          * new and duplicated sockets.
  555                          */
  556                         if (so->so_options & SO_REUSEADDR)
  557                                 reuseport = SO_REUSEADDR|SO_REUSEPORT;
  558                 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
  559                         sin->sin_port = 0;              /* yech... */
  560                         bzero(&sin->sin_zero, sizeof(sin->sin_zero));
  561                         /*
  562                          * Is the address a local IP address? 
  563                          * If INP_BINDANY is set, then the socket may be bound
  564                          * to any endpoint address, local or not.
  565                          */
  566                         if ((inp->inp_flags & INP_BINDANY) == 0 &&
  567                             ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 
  568                                 return (EADDRNOTAVAIL);
  569                 }
  570                 laddr = sin->sin_addr;
  571                 if (lport) {
  572                         struct inpcb *t;
  573                         struct tcptw *tw;
  574 
  575                         /* GROSS */
  576                         if (ntohs(lport) <= V_ipport_reservedhigh &&
  577                             ntohs(lport) >= V_ipport_reservedlow &&
  578                             priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
  579                             0))
  580                                 return (EACCES);
  581                         if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
  582                             priv_check_cred(inp->inp_cred,
  583                             PRIV_NETINET_REUSEPORT, 0) != 0) {
  584                                 t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  585                                     lport, INPLOOKUP_WILDCARD, cred);
  586         /*
  587          * XXX
  588          * This entire block sorely needs a rewrite.
  589          */
  590                                 if (t &&
  591                                     ((t->inp_flags & INP_TIMEWAIT) == 0) &&
  592                                     (so->so_type != SOCK_STREAM ||
  593                                      ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
  594                                     (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
  595                                      ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
  596                                      (t->inp_flags2 & INP_REUSEPORT) == 0) &&
  597                                     (inp->inp_cred->cr_uid !=
  598                                      t->inp_cred->cr_uid))
  599                                         return (EADDRINUSE);
  600                         }
  601                         t = in_pcblookup_local(pcbinfo, sin->sin_addr,
  602                             lport, lookupflags, cred);
  603                         if (t && (t->inp_flags & INP_TIMEWAIT)) {
  604                                 /*
  605                                  * XXXRW: If an incpb has had its timewait
  606                                  * state recycled, we treat the address as
  607                                  * being in use (for now).  This is better
  608                                  * than a panic, but not desirable.
  609                                  */
  610                                 tw = intotw(t);
  611                                 if (tw == NULL ||
  612                                     (reuseport & tw->tw_so_options) == 0)
  613                                         return (EADDRINUSE);
  614                         } else if (t && (reuseport & inp_so_options(t)) == 0) {
  615 #ifdef INET6
  616                                 if (ntohl(sin->sin_addr.s_addr) !=
  617                                     INADDR_ANY ||
  618                                     ntohl(t->inp_laddr.s_addr) !=
  619                                     INADDR_ANY ||
  620                                     (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
  621                                     (t->inp_vflag & INP_IPV6PROTO) == 0)
  622 #endif
  623                                 return (EADDRINUSE);
  624                         }
  625                 }
  626         }
  627         if (*lportp != 0)
  628                 lport = *lportp;
  629         if (lport == 0) {
  630                 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
  631                 if (error != 0)
  632                         return (error);
  633 
  634         }
  635         *laddrp = laddr.s_addr;
  636         *lportp = lport;
  637         return (0);
  638 }
  639 
  640 /*
  641  * Connect from a socket to a specified address.
  642  * Both address and port must be specified in argument sin.
  643  * If don't have a local address for this socket yet,
  644  * then pick one.
  645  */
  646 int
  647 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
  648     struct ucred *cred, struct mbuf *m)
  649 {
  650         u_short lport, fport;
  651         in_addr_t laddr, faddr;
  652         int anonport, error;
  653 
  654         INP_WLOCK_ASSERT(inp);
  655         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
  656 
  657         lport = inp->inp_lport;
  658         laddr = inp->inp_laddr.s_addr;
  659         anonport = (lport == 0);
  660         error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
  661             NULL, cred);
  662         if (error)
  663                 return (error);
  664 
  665         /* Do the initial binding of the local address if required. */
  666         if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
  667                 inp->inp_lport = lport;
  668                 inp->inp_laddr.s_addr = laddr;
  669                 if (in_pcbinshash(inp) != 0) {
  670                         inp->inp_laddr.s_addr = INADDR_ANY;
  671                         inp->inp_lport = 0;
  672                         return (EAGAIN);
  673                 }
  674         }
  675 
  676         /* Commit the remaining changes. */
  677         inp->inp_lport = lport;
  678         inp->inp_laddr.s_addr = laddr;
  679         inp->inp_faddr.s_addr = faddr;
  680         inp->inp_fport = fport;
  681         in_pcbrehash_mbuf(inp, m);
  682 
  683         if (anonport)
  684                 inp->inp_flags |= INP_ANONPORT;
  685         return (0);
  686 }
  687 
  688 int
  689 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
  690 {
  691 
  692         return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
  693 }
  694 
  695 /*
  696  * Do proper source address selection on an unbound socket in case
  697  * of connect. Take jails into account as well.
  698  */
  699 static int
  700 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
  701     struct ucred *cred)
  702 {
  703         struct ifaddr *ifa;
  704         struct sockaddr *sa;
  705         struct sockaddr_in *sin;
  706         struct route sro;
  707         int error;
  708 
  709         KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
  710 
  711         /*
  712          * Bypass source address selection and use the primary jail IP
  713          * if requested.
  714          */
  715         if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
  716                 return (0);
  717 
  718         error = 0;
  719         bzero(&sro, sizeof(sro));
  720 
  721         sin = (struct sockaddr_in *)&sro.ro_dst;
  722         sin->sin_family = AF_INET;
  723         sin->sin_len = sizeof(struct sockaddr_in);
  724         sin->sin_addr.s_addr = faddr->s_addr;
  725 
  726         /*
  727          * If route is known our src addr is taken from the i/f,
  728          * else punt.
  729          *
  730          * Find out route to destination.
  731          */
  732         if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
  733                 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
  734 
  735         /*
  736          * If we found a route, use the address corresponding to
  737          * the outgoing interface.
  738          * 
  739          * Otherwise assume faddr is reachable on a directly connected
  740          * network and try to find a corresponding interface to take
  741          * the source address from.
  742          */
  743         if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
  744                 struct in_ifaddr *ia;
  745                 struct ifnet *ifp;
  746 
  747                 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
  748                 if (ia == NULL)
  749                         ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
  750                 if (ia == NULL) {
  751                         error = ENETUNREACH;
  752                         goto done;
  753                 }
  754 
  755                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  756                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  757                         ifa_free(&ia->ia_ifa);
  758                         goto done;
  759                 }
  760 
  761                 ifp = ia->ia_ifp;
  762                 ifa_free(&ia->ia_ifa);
  763                 ia = NULL;
  764                 IF_ADDR_RLOCK(ifp);
  765                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  766 
  767                         sa = ifa->ifa_addr;
  768                         if (sa->sa_family != AF_INET)
  769                                 continue;
  770                         sin = (struct sockaddr_in *)sa;
  771                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  772                                 ia = (struct in_ifaddr *)ifa;
  773                                 break;
  774                         }
  775                 }
  776                 if (ia != NULL) {
  777                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  778                         IF_ADDR_RUNLOCK(ifp);
  779                         goto done;
  780                 }
  781                 IF_ADDR_RUNLOCK(ifp);
  782 
  783                 /* 3. As a last resort return the 'default' jail address. */
  784                 error = prison_get_ip4(cred, laddr);
  785                 goto done;
  786         }
  787 
  788         /*
  789          * If the outgoing interface on the route found is not
  790          * a loopback interface, use the address from that interface.
  791          * In case of jails do those three steps:
  792          * 1. check if the interface address belongs to the jail. If so use it.
  793          * 2. check if we have any address on the outgoing interface
  794          *    belonging to this jail. If so use it.
  795          * 3. as a last resort return the 'default' jail address.
  796          */
  797         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
  798                 struct in_ifaddr *ia;
  799                 struct ifnet *ifp;
  800 
  801                 /* If not jailed, use the default returned. */
  802                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  803                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  804                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  805                         goto done;
  806                 }
  807 
  808                 /* Jailed. */
  809                 /* 1. Check if the iface address belongs to the jail. */
  810                 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
  811                 if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  812                         ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
  813                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  814                         goto done;
  815                 }
  816 
  817                 /*
  818                  * 2. Check if we have any address on the outgoing interface
  819                  *    belonging to this jail.
  820                  */
  821                 ia = NULL;
  822                 ifp = sro.ro_rt->rt_ifp;
  823                 IF_ADDR_RLOCK(ifp);
  824                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  825                         sa = ifa->ifa_addr;
  826                         if (sa->sa_family != AF_INET)
  827                                 continue;
  828                         sin = (struct sockaddr_in *)sa;
  829                         if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
  830                                 ia = (struct in_ifaddr *)ifa;
  831                                 break;
  832                         }
  833                 }
  834                 if (ia != NULL) {
  835                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  836                         IF_ADDR_RUNLOCK(ifp);
  837                         goto done;
  838                 }
  839                 IF_ADDR_RUNLOCK(ifp);
  840 
  841                 /* 3. As a last resort return the 'default' jail address. */
  842                 error = prison_get_ip4(cred, laddr);
  843                 goto done;
  844         }
  845 
  846         /*
  847          * The outgoing interface is marked with 'loopback net', so a route
  848          * to ourselves is here.
  849          * Try to find the interface of the destination address and then
  850          * take the address from there. That interface is not necessarily
  851          * a loopback interface.
  852          * In case of jails, check that it is an address of the jail
  853          * and if we cannot find, fall back to the 'default' jail address.
  854          */
  855         if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
  856                 struct sockaddr_in sain;
  857                 struct in_ifaddr *ia;
  858 
  859                 bzero(&sain, sizeof(struct sockaddr_in));
  860                 sain.sin_family = AF_INET;
  861                 sain.sin_len = sizeof(struct sockaddr_in);
  862                 sain.sin_addr.s_addr = faddr->s_addr;
  863 
  864                 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
  865                 if (ia == NULL)
  866                         ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
  867                 if (ia == NULL)
  868                         ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
  869 
  870                 if (cred == NULL || !prison_flag(cred, PR_IP4)) {
  871                         if (ia == NULL) {
  872                                 error = ENETUNREACH;
  873                                 goto done;
  874                         }
  875                         laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  876                         ifa_free(&ia->ia_ifa);
  877                         goto done;
  878                 }
  879 
  880                 /* Jailed. */
  881                 if (ia != NULL) {
  882                         struct ifnet *ifp;
  883 
  884                         ifp = ia->ia_ifp;
  885                         ifa_free(&ia->ia_ifa);
  886                         ia = NULL;
  887                         IF_ADDR_RLOCK(ifp);
  888                         TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  889 
  890                                 sa = ifa->ifa_addr;
  891                                 if (sa->sa_family != AF_INET)
  892                                         continue;
  893                                 sin = (struct sockaddr_in *)sa;
  894                                 if (prison_check_ip4(cred,
  895                                     &sin->sin_addr) == 0) {
  896                                         ia = (struct in_ifaddr *)ifa;
  897                                         break;
  898                                 }
  899                         }
  900                         if (ia != NULL) {
  901                                 laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
  902                                 IF_ADDR_RUNLOCK(ifp);
  903                                 goto done;
  904                         }
  905                         IF_ADDR_RUNLOCK(ifp);
  906                 }
  907 
  908                 /* 3. As a last resort return the 'default' jail address. */
  909                 error = prison_get_ip4(cred, laddr);
  910                 goto done;
  911         }
  912 
  913 done:
  914         if (sro.ro_rt != NULL)
  915                 RTFREE(sro.ro_rt);
  916         return (error);
  917 }
  918 
  919 /*
  920  * Set up for a connect from a socket to the specified address.
  921  * On entry, *laddrp and *lportp should contain the current local
  922  * address and port for the PCB; these are updated to the values
  923  * that should be placed in inp_laddr and inp_lport to complete
  924  * the connect.
  925  *
  926  * On success, *faddrp and *fportp will be set to the remote address
  927  * and port. These are not updated in the error case.
  928  *
  929  * If the operation fails because the connection already exists,
  930  * *oinpp will be set to the PCB of that connection so that the
  931  * caller can decide to override it. In all other cases, *oinpp
  932  * is set to NULL.
  933  */
  934 int
  935 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
  936     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
  937     struct inpcb **oinpp, struct ucred *cred)
  938 {
  939         struct sockaddr_in *sin = (struct sockaddr_in *)nam;
  940         struct in_ifaddr *ia;
  941         struct inpcb *oinp;
  942         struct in_addr laddr, faddr;
  943         u_short lport, fport;
  944         int error;
  945 
  946         /*
  947          * Because a global state change doesn't actually occur here, a read
  948          * lock is sufficient.
  949          */
  950         INP_LOCK_ASSERT(inp);
  951         INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
  952 
  953         if (oinpp != NULL)
  954                 *oinpp = NULL;
  955         if (nam->sa_len != sizeof (*sin))
  956                 return (EINVAL);
  957         if (sin->sin_family != AF_INET)
  958                 return (EAFNOSUPPORT);
  959         if (sin->sin_port == 0)
  960                 return (EADDRNOTAVAIL);
  961         laddr.s_addr = *laddrp;
  962         lport = *lportp;
  963         faddr = sin->sin_addr;
  964         fport = sin->sin_port;
  965 
  966         if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
  967                 /*
  968                  * If the destination address is INADDR_ANY,
  969                  * use the primary local address.
  970                  * If the supplied address is INADDR_BROADCAST,
  971                  * and the primary interface supports broadcast,
  972                  * choose the broadcast address for that interface.
  973                  */
  974                 if (faddr.s_addr == INADDR_ANY) {
  975                         IN_IFADDR_RLOCK();
  976                         faddr =
  977                             IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
  978                         IN_IFADDR_RUNLOCK();
  979                         if (cred != NULL &&
  980                             (error = prison_get_ip4(cred, &faddr)) != 0)
  981                                 return (error);
  982                 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
  983                         IN_IFADDR_RLOCK();
  984                         if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
  985                             IFF_BROADCAST)
  986                                 faddr = satosin(&TAILQ_FIRST(
  987                                     &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
  988                         IN_IFADDR_RUNLOCK();
  989                 }
  990         }
  991         if (laddr.s_addr == INADDR_ANY) {
  992                 error = in_pcbladdr(inp, &faddr, &laddr, cred);
  993                 /*
  994                  * If the destination address is multicast and an outgoing
  995                  * interface has been set as a multicast option, prefer the
  996                  * address of that interface as our source address.
  997                  */
  998                 if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
  999                     inp->inp_moptions != NULL) {
 1000                         struct ip_moptions *imo;
 1001                         struct ifnet *ifp;
 1002 
 1003                         imo = inp->inp_moptions;
 1004                         if (imo->imo_multicast_ifp != NULL) {
 1005                                 ifp = imo->imo_multicast_ifp;
 1006                                 IN_IFADDR_RLOCK();
 1007                                 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
 1008                                         if ((ia->ia_ifp == ifp) &&
 1009                                             (cred == NULL ||
 1010                                             prison_check_ip4(cred,
 1011                                             &ia->ia_addr.sin_addr) == 0))
 1012                                                 break;
 1013                                 }
 1014                                 if (ia == NULL)
 1015                                         error = EADDRNOTAVAIL;
 1016                                 else {
 1017                                         laddr = ia->ia_addr.sin_addr;
 1018                                         error = 0;
 1019                                 }
 1020                                 IN_IFADDR_RUNLOCK();
 1021                         }
 1022                 }
 1023                 if (error)
 1024                         return (error);
 1025         }
 1026         oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
 1027             laddr, lport, 0, NULL);
 1028         if (oinp != NULL) {
 1029                 if (oinpp != NULL)
 1030                         *oinpp = oinp;
 1031                 return (EADDRINUSE);
 1032         }
 1033         if (lport == 0) {
 1034                 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
 1035                     cred);
 1036                 if (error)
 1037                         return (error);
 1038         }
 1039         *laddrp = laddr.s_addr;
 1040         *lportp = lport;
 1041         *faddrp = faddr.s_addr;
 1042         *fportp = fport;
 1043         return (0);
 1044 }
 1045 
 1046 void
 1047 in_pcbdisconnect(struct inpcb *inp)
 1048 {
 1049 
 1050         INP_WLOCK_ASSERT(inp);
 1051         INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
 1052 
 1053         inp->inp_faddr.s_addr = INADDR_ANY;
 1054         inp->inp_fport = 0;
 1055         in_pcbrehash(inp);
 1056 }
 1057 #endif
 1058 
 1059 /*
 1060  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
 1061  * For most protocols, this will be invoked immediately prior to calling
 1062  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
 1063  * socket, in which case in_pcbfree() is deferred.
 1064  */
 1065 void
 1066 in_pcbdetach(struct inpcb *inp)
 1067 {
 1068 
 1069         KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
 1070 
 1071         inp->inp_socket->so_pcb = NULL;
 1072         inp->inp_socket = NULL;
 1073 }
 1074 
 1075 /*
 1076  * in_pcbref() bumps the reference count on an inpcb in order to maintain
 1077  * stability of an inpcb pointer despite the inpcb lock being released.  This
 1078  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
 1079  * but where the inpcb lock may already held, or when acquiring a reference
 1080  * via a pcbgroup.
 1081  *
 1082  * in_pcbref() should be used only to provide brief memory stability, and
 1083  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
 1084  * garbage collect the inpcb if it has been in_pcbfree()'d from another
 1085  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
 1086  * lock and rele are the *only* safe operations that may be performed on the
 1087  * inpcb.
 1088  *
 1089  * While the inpcb will not be freed, releasing the inpcb lock means that the
 1090  * connection's state may change, so the caller should be careful to
 1091  * revalidate any cached state on reacquiring the lock.  Drop the reference
 1092  * using in_pcbrele().
 1093  */
 1094 void
 1095 in_pcbref(struct inpcb *inp)
 1096 {
 1097 
 1098         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1099 
 1100         refcount_acquire(&inp->inp_refcount);
 1101 }
 1102 
 1103 /*
 1104  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
 1105  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
 1106  * return a flag indicating whether or not the inpcb remains valid.  If it is
 1107  * valid, we return with the inpcb lock held.
 1108  *
 1109  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
 1110  * reference on an inpcb.  Historically more work was done here (actually, in
 1111  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
 1112  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
 1113  * about memory stability (and continued use of the write lock).
 1114  */
 1115 int
 1116 in_pcbrele_rlocked(struct inpcb *inp)
 1117 {
 1118         struct inpcbinfo *pcbinfo;
 1119 
 1120         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1121 
 1122         INP_RLOCK_ASSERT(inp);
 1123 
 1124         if (refcount_release(&inp->inp_refcount) == 0) {
 1125                 /*
 1126                  * If the inpcb has been freed, let the caller know, even if
 1127                  * this isn't the last reference.
 1128                  */
 1129                 if (inp->inp_flags2 & INP_FREED) {
 1130                         INP_RUNLOCK(inp);
 1131                         return (1);
 1132                 }
 1133                 return (0);
 1134         }
 1135 
 1136         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1137 
 1138         INP_RUNLOCK(inp);
 1139         pcbinfo = inp->inp_pcbinfo;
 1140         uma_zfree(pcbinfo->ipi_zone, inp);
 1141         return (1);
 1142 }
 1143 
 1144 int
 1145 in_pcbrele_wlocked(struct inpcb *inp)
 1146 {
 1147         struct inpcbinfo *pcbinfo;
 1148 
 1149         KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
 1150 
 1151         INP_WLOCK_ASSERT(inp);
 1152 
 1153         if (refcount_release(&inp->inp_refcount) == 0)
 1154                 return (0);
 1155 
 1156         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1157 
 1158         INP_WUNLOCK(inp);
 1159         pcbinfo = inp->inp_pcbinfo;
 1160         uma_zfree(pcbinfo->ipi_zone, inp);
 1161         return (1);
 1162 }
 1163 
 1164 /*
 1165  * Temporary wrapper.
 1166  */
 1167 int
 1168 in_pcbrele(struct inpcb *inp)
 1169 {
 1170 
 1171         return (in_pcbrele_wlocked(inp));
 1172 }
 1173 
 1174 /*
 1175  * Unconditionally schedule an inpcb to be freed by decrementing its
 1176  * reference count, which should occur only after the inpcb has been detached
 1177  * from its socket.  If another thread holds a temporary reference (acquired
 1178  * using in_pcbref()) then the free is deferred until that reference is
 1179  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
 1180  * work, including removal from global lists, is done in this context, where
 1181  * the pcbinfo lock is held.
 1182  */
 1183 void
 1184 in_pcbfree(struct inpcb *inp)
 1185 {
 1186         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1187 
 1188         KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
 1189 
 1190         INP_INFO_WLOCK_ASSERT(pcbinfo);
 1191         INP_WLOCK_ASSERT(inp);
 1192 
 1193         /* XXXRW: Do as much as possible here. */
 1194 #ifdef IPSEC
 1195         if (inp->inp_sp != NULL)
 1196                 ipsec_delete_pcbpolicy(inp);
 1197 #endif /* IPSEC */
 1198         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 1199         in_pcbremlists(inp);
 1200 #ifdef INET6
 1201         if (inp->inp_vflag & INP_IPV6PROTO) {
 1202                 ip6_freepcbopts(inp->in6p_outputopts);
 1203                 if (inp->in6p_moptions != NULL)
 1204                         ip6_freemoptions(inp->in6p_moptions);
 1205         }
 1206 #endif
 1207         if (inp->inp_options)
 1208                 (void)m_free(inp->inp_options);
 1209 #ifdef INET
 1210         if (inp->inp_moptions != NULL)
 1211                 inp_freemoptions(inp->inp_moptions);
 1212 #endif
 1213         inp->inp_vflag = 0;
 1214         inp->inp_flags2 |= INP_FREED;
 1215         crfree(inp->inp_cred);
 1216 #ifdef MAC
 1217         mac_inpcb_destroy(inp);
 1218 #endif
 1219         if (!in_pcbrele_wlocked(inp))
 1220                 INP_WUNLOCK(inp);
 1221 }
 1222 
 1223 /*
 1224  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
 1225  * port reservation, and preventing it from being returned by inpcb lookups.
 1226  *
 1227  * It is used by TCP to mark an inpcb as unused and avoid future packet
 1228  * delivery or event notification when a socket remains open but TCP has
 1229  * closed.  This might occur as a result of a shutdown()-initiated TCP close
 1230  * or a RST on the wire, and allows the port binding to be reused while still
 1231  * maintaining the invariant that so_pcb always points to a valid inpcb until
 1232  * in_pcbdetach().
 1233  *
 1234  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
 1235  * in_pcbnotifyall() and in_pcbpurgeif0()?
 1236  */
 1237 void
 1238 in_pcbdrop(struct inpcb *inp)
 1239 {
 1240 
 1241         INP_WLOCK_ASSERT(inp);
 1242 
 1243         /*
 1244          * XXXRW: Possibly we should protect the setting of INP_DROPPED with
 1245          * the hash lock...?
 1246          */
 1247         inp->inp_flags |= INP_DROPPED;
 1248         if (inp->inp_flags & INP_INHASHLIST) {
 1249                 struct inpcbport *phd = inp->inp_phd;
 1250 
 1251                 INP_HASH_WLOCK(inp->inp_pcbinfo);
 1252                 LIST_REMOVE(inp, inp_hash);
 1253                 LIST_REMOVE(inp, inp_portlist);
 1254                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 1255                         LIST_REMOVE(phd, phd_hash);
 1256                         free(phd, M_PCB);
 1257                 }
 1258                 INP_HASH_WUNLOCK(inp->inp_pcbinfo);
 1259                 inp->inp_flags &= ~INP_INHASHLIST;
 1260 #ifdef PCBGROUP
 1261                 in_pcbgroup_remove(inp);
 1262 #endif
 1263         }
 1264 }
 1265 
 1266 #ifdef INET
 1267 /*
 1268  * Common routines to return the socket addresses associated with inpcbs.
 1269  */
 1270 struct sockaddr *
 1271 in_sockaddr(in_port_t port, struct in_addr *addr_p)
 1272 {
 1273         struct sockaddr_in *sin;
 1274 
 1275         sin = malloc(sizeof *sin, M_SONAME,
 1276                 M_WAITOK | M_ZERO);
 1277         sin->sin_family = AF_INET;
 1278         sin->sin_len = sizeof(*sin);
 1279         sin->sin_addr = *addr_p;
 1280         sin->sin_port = port;
 1281 
 1282         return (struct sockaddr *)sin;
 1283 }
 1284 
 1285 int
 1286 in_getsockaddr(struct socket *so, struct sockaddr **nam)
 1287 {
 1288         struct inpcb *inp;
 1289         struct in_addr addr;
 1290         in_port_t port;
 1291 
 1292         inp = sotoinpcb(so);
 1293         KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
 1294 
 1295         INP_RLOCK(inp);
 1296         port = inp->inp_lport;
 1297         addr = inp->inp_laddr;
 1298         INP_RUNLOCK(inp);
 1299 
 1300         *nam = in_sockaddr(port, &addr);
 1301         return 0;
 1302 }
 1303 
 1304 int
 1305 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
 1306 {
 1307         struct inpcb *inp;
 1308         struct in_addr addr;
 1309         in_port_t port;
 1310 
 1311         inp = sotoinpcb(so);
 1312         KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
 1313 
 1314         INP_RLOCK(inp);
 1315         port = inp->inp_fport;
 1316         addr = inp->inp_faddr;
 1317         INP_RUNLOCK(inp);
 1318 
 1319         *nam = in_sockaddr(port, &addr);
 1320         return 0;
 1321 }
 1322 
 1323 void
 1324 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
 1325     struct inpcb *(*notify)(struct inpcb *, int))
 1326 {
 1327         struct inpcb *inp, *inp_temp;
 1328 
 1329         INP_INFO_WLOCK(pcbinfo);
 1330         LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
 1331                 INP_WLOCK(inp);
 1332 #ifdef INET6
 1333                 if ((inp->inp_vflag & INP_IPV4) == 0) {
 1334                         INP_WUNLOCK(inp);
 1335                         continue;
 1336                 }
 1337 #endif
 1338                 if (inp->inp_faddr.s_addr != faddr.s_addr ||
 1339                     inp->inp_socket == NULL) {
 1340                         INP_WUNLOCK(inp);
 1341                         continue;
 1342                 }
 1343                 if ((*notify)(inp, errno))
 1344                         INP_WUNLOCK(inp);
 1345         }
 1346         INP_INFO_WUNLOCK(pcbinfo);
 1347 }
 1348 
 1349 void
 1350 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
 1351 {
 1352         struct inpcb *inp;
 1353         struct ip_moptions *imo;
 1354         int i, gap;
 1355 
 1356         INP_INFO_RLOCK(pcbinfo);
 1357         LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
 1358                 INP_WLOCK(inp);
 1359                 imo = inp->inp_moptions;
 1360                 if ((inp->inp_vflag & INP_IPV4) &&
 1361                     imo != NULL) {
 1362                         /*
 1363                          * Unselect the outgoing interface if it is being
 1364                          * detached.
 1365                          */
 1366                         if (imo->imo_multicast_ifp == ifp)
 1367                                 imo->imo_multicast_ifp = NULL;
 1368 
 1369                         /*
 1370                          * Drop multicast group membership if we joined
 1371                          * through the interface being detached.
 1372                          */
 1373                         for (i = 0, gap = 0; i < imo->imo_num_memberships;
 1374                             i++) {
 1375                                 if (imo->imo_membership[i]->inm_ifp == ifp) {
 1376                                         in_delmulti(imo->imo_membership[i]);
 1377                                         gap++;
 1378                                 } else if (gap != 0)
 1379                                         imo->imo_membership[i - gap] =
 1380                                             imo->imo_membership[i];
 1381                         }
 1382                         imo->imo_num_memberships -= gap;
 1383                 }
 1384                 INP_WUNLOCK(inp);
 1385         }
 1386         INP_INFO_RUNLOCK(pcbinfo);
 1387 }
 1388 
 1389 /*
 1390  * Lookup a PCB based on the local address and port.  Caller must hold the
 1391  * hash lock.  No inpcb locks or references are acquired.
 1392  */
 1393 #define INP_LOOKUP_MAPPED_PCB_COST      3
 1394 struct inpcb *
 1395 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
 1396     u_short lport, int lookupflags, struct ucred *cred)
 1397 {
 1398         struct inpcb *inp;
 1399 #ifdef INET6
 1400         int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
 1401 #else
 1402         int matchwild = 3;
 1403 #endif
 1404         int wildcard;
 1405 
 1406         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 1407             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1408 
 1409         INP_HASH_LOCK_ASSERT(pcbinfo);
 1410 
 1411         if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
 1412                 struct inpcbhead *head;
 1413                 /*
 1414                  * Look for an unconnected (wildcard foreign addr) PCB that
 1415                  * matches the local address and port we're looking for.
 1416                  */
 1417                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1418                     0, pcbinfo->ipi_hashmask)];
 1419                 LIST_FOREACH(inp, head, inp_hash) {
 1420 #ifdef INET6
 1421                         /* XXX inp locking */
 1422                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1423                                 continue;
 1424 #endif
 1425                         if (inp->inp_faddr.s_addr == INADDR_ANY &&
 1426                             inp->inp_laddr.s_addr == laddr.s_addr &&
 1427                             inp->inp_lport == lport) {
 1428                                 /*
 1429                                  * Found?
 1430                                  */
 1431                                 if (cred == NULL ||
 1432                                     prison_equal_ip4(cred->cr_prison,
 1433                                         inp->inp_cred->cr_prison))
 1434                                         return (inp);
 1435                         }
 1436                 }
 1437                 /*
 1438                  * Not found.
 1439                  */
 1440                 return (NULL);
 1441         } else {
 1442                 struct inpcbporthead *porthash;
 1443                 struct inpcbport *phd;
 1444                 struct inpcb *match = NULL;
 1445                 /*
 1446                  * Best fit PCB lookup.
 1447                  *
 1448                  * First see if this local port is in use by looking on the
 1449                  * port hash list.
 1450                  */
 1451                 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
 1452                     pcbinfo->ipi_porthashmask)];
 1453                 LIST_FOREACH(phd, porthash, phd_hash) {
 1454                         if (phd->phd_port == lport)
 1455                                 break;
 1456                 }
 1457                 if (phd != NULL) {
 1458                         /*
 1459                          * Port is in use by one or more PCBs. Look for best
 1460                          * fit.
 1461                          */
 1462                         LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
 1463                                 wildcard = 0;
 1464                                 if (cred != NULL &&
 1465                                     !prison_equal_ip4(inp->inp_cred->cr_prison,
 1466                                         cred->cr_prison))
 1467                                         continue;
 1468 #ifdef INET6
 1469                                 /* XXX inp locking */
 1470                                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1471                                         continue;
 1472                                 /*
 1473                                  * We never select the PCB that has
 1474                                  * INP_IPV6 flag and is bound to :: if
 1475                                  * we have another PCB which is bound
 1476                                  * to 0.0.0.0.  If a PCB has the
 1477                                  * INP_IPV6 flag, then we set its cost
 1478                                  * higher than IPv4 only PCBs.
 1479                                  *
 1480                                  * Note that the case only happens
 1481                                  * when a socket is bound to ::, under
 1482                                  * the condition that the use of the
 1483                                  * mapped address is allowed.
 1484                                  */
 1485                                 if ((inp->inp_vflag & INP_IPV6) != 0)
 1486                                         wildcard += INP_LOOKUP_MAPPED_PCB_COST;
 1487 #endif
 1488                                 if (inp->inp_faddr.s_addr != INADDR_ANY)
 1489                                         wildcard++;
 1490                                 if (inp->inp_laddr.s_addr != INADDR_ANY) {
 1491                                         if (laddr.s_addr == INADDR_ANY)
 1492                                                 wildcard++;
 1493                                         else if (inp->inp_laddr.s_addr != laddr.s_addr)
 1494                                                 continue;
 1495                                 } else {
 1496                                         if (laddr.s_addr != INADDR_ANY)
 1497                                                 wildcard++;
 1498                                 }
 1499                                 if (wildcard < matchwild) {
 1500                                         match = inp;
 1501                                         matchwild = wildcard;
 1502                                         if (matchwild == 0)
 1503                                                 break;
 1504                                 }
 1505                         }
 1506                 }
 1507                 return (match);
 1508         }
 1509 }
 1510 #undef INP_LOOKUP_MAPPED_PCB_COST
 1511 
 1512 #ifdef PCBGROUP
 1513 /*
 1514  * Lookup PCB in hash list, using pcbgroup tables.
 1515  */
 1516 static struct inpcb *
 1517 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
 1518     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
 1519     u_int lport_arg, int lookupflags, struct ifnet *ifp)
 1520 {
 1521         struct inpcbhead *head;
 1522         struct inpcb *inp, *tmpinp;
 1523         u_short fport = fport_arg, lport = lport_arg;
 1524 
 1525         /*
 1526          * First look for an exact match.
 1527          */
 1528         tmpinp = NULL;
 1529         INP_GROUP_LOCK(pcbgroup);
 1530         head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1531             pcbgroup->ipg_hashmask)];
 1532         LIST_FOREACH(inp, head, inp_pcbgrouphash) {
 1533 #ifdef INET6
 1534                 /* XXX inp locking */
 1535                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1536                         continue;
 1537 #endif
 1538                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1539                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1540                     inp->inp_fport == fport &&
 1541                     inp->inp_lport == lport) {
 1542                         /*
 1543                          * XXX We should be able to directly return
 1544                          * the inp here, without any checks.
 1545                          * Well unless both bound with SO_REUSEPORT?
 1546                          */
 1547                         if (prison_flag(inp->inp_cred, PR_IP4))
 1548                                 goto found;
 1549                         if (tmpinp == NULL)
 1550                                 tmpinp = inp;
 1551                 }
 1552         }
 1553         if (tmpinp != NULL) {
 1554                 inp = tmpinp;
 1555                 goto found;
 1556         }
 1557 
 1558         /*
 1559          * Then look for a wildcard match, if requested.
 1560          */
 1561         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 1562                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1563 #ifdef INET6
 1564                 struct inpcb *local_wild_mapped = NULL;
 1565 #endif
 1566                 struct inpcb *jail_wild = NULL;
 1567                 struct inpcbhead *head;
 1568                 int injail;
 1569 
 1570                 /*
 1571                  * Order of socket selection - we always prefer jails.
 1572                  *      1. jailed, non-wild.
 1573                  *      2. jailed, wild.
 1574                  *      3. non-jailed, non-wild.
 1575                  *      4. non-jailed, wild.
 1576                  */
 1577                 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
 1578                     0, pcbinfo->ipi_wildmask)];
 1579                 LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
 1580 #ifdef INET6
 1581                         /* XXX inp locking */
 1582                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1583                                 continue;
 1584 #endif
 1585                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1586                             inp->inp_lport != lport)
 1587                                 continue;
 1588 
 1589                         /* XXX inp locking */
 1590                         if (ifp && ifp->if_type == IFT_FAITH &&
 1591                             (inp->inp_flags & INP_FAITH) == 0)
 1592                                 continue;
 1593 
 1594                         injail = prison_flag(inp->inp_cred, PR_IP4);
 1595                         if (injail) {
 1596                                 if (prison_check_ip4(inp->inp_cred,
 1597                                     &laddr) != 0)
 1598                                         continue;
 1599                         } else {
 1600                                 if (local_exact != NULL)
 1601                                         continue;
 1602                         }
 1603 
 1604                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1605                                 if (injail)
 1606                                         goto found;
 1607                                 else
 1608                                         local_exact = inp;
 1609                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1610 #ifdef INET6
 1611                                 /* XXX inp locking, NULL check */
 1612                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1613                                         local_wild_mapped = inp;
 1614                                 else
 1615 #endif /* INET6 */
 1616                                         if (injail)
 1617                                                 jail_wild = inp;
 1618                                         else
 1619                                                 local_wild = inp;
 1620                         }
 1621                 } /* LIST_FOREACH */
 1622                 inp = jail_wild;
 1623                 if (inp == NULL)
 1624                         inp = local_exact;
 1625                 if (inp == NULL)
 1626                         inp = local_wild;
 1627 #ifdef INET6
 1628                 if (inp == NULL)
 1629                         inp = local_wild_mapped;
 1630 #endif /* defined(INET6) */
 1631                 if (inp != NULL)
 1632                         goto found;
 1633         } /* if (lookupflags & INPLOOKUP_WILDCARD) */
 1634         INP_GROUP_UNLOCK(pcbgroup);
 1635         return (NULL);
 1636 
 1637 found:
 1638         in_pcbref(inp);
 1639         INP_GROUP_UNLOCK(pcbgroup);
 1640         if (lookupflags & INPLOOKUP_WLOCKPCB) {
 1641                 INP_WLOCK(inp);
 1642                 if (in_pcbrele_wlocked(inp))
 1643                         return (NULL);
 1644         } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 1645                 INP_RLOCK(inp);
 1646                 if (in_pcbrele_rlocked(inp))
 1647                         return (NULL);
 1648         } else
 1649                 panic("%s: locking bug", __func__);
 1650         return (inp);
 1651 }
 1652 #endif /* PCBGROUP */
 1653 
 1654 /*
 1655  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
 1656  * that the caller has locked the hash list, and will not perform any further
 1657  * locking or reference operations on either the hash list or the connection.
 1658  */
 1659 static struct inpcb *
 1660 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1661     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
 1662     struct ifnet *ifp)
 1663 {
 1664         struct inpcbhead *head;
 1665         struct inpcb *inp, *tmpinp;
 1666         u_short fport = fport_arg, lport = lport_arg;
 1667 
 1668         KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
 1669             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1670 
 1671         INP_HASH_LOCK_ASSERT(pcbinfo);
 1672 
 1673         /*
 1674          * First look for an exact match.
 1675          */
 1676         tmpinp = NULL;
 1677         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
 1678             pcbinfo->ipi_hashmask)];
 1679         LIST_FOREACH(inp, head, inp_hash) {
 1680 #ifdef INET6
 1681                 /* XXX inp locking */
 1682                 if ((inp->inp_vflag & INP_IPV4) == 0)
 1683                         continue;
 1684 #endif
 1685                 if (inp->inp_faddr.s_addr == faddr.s_addr &&
 1686                     inp->inp_laddr.s_addr == laddr.s_addr &&
 1687                     inp->inp_fport == fport &&
 1688                     inp->inp_lport == lport) {
 1689                         /*
 1690                          * XXX We should be able to directly return
 1691                          * the inp here, without any checks.
 1692                          * Well unless both bound with SO_REUSEPORT?
 1693                          */
 1694                         if (prison_flag(inp->inp_cred, PR_IP4))
 1695                                 return (inp);
 1696                         if (tmpinp == NULL)
 1697                                 tmpinp = inp;
 1698                 }
 1699         }
 1700         if (tmpinp != NULL)
 1701                 return (tmpinp);
 1702 
 1703         /*
 1704          * Then look for a wildcard match, if requested.
 1705          */
 1706         if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
 1707                 struct inpcb *local_wild = NULL, *local_exact = NULL;
 1708 #ifdef INET6
 1709                 struct inpcb *local_wild_mapped = NULL;
 1710 #endif
 1711                 struct inpcb *jail_wild = NULL;
 1712                 int injail;
 1713 
 1714                 /*
 1715                  * Order of socket selection - we always prefer jails.
 1716                  *      1. jailed, non-wild.
 1717                  *      2. jailed, wild.
 1718                  *      3. non-jailed, non-wild.
 1719                  *      4. non-jailed, wild.
 1720                  */
 1721 
 1722                 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
 1723                     0, pcbinfo->ipi_hashmask)];
 1724                 LIST_FOREACH(inp, head, inp_hash) {
 1725 #ifdef INET6
 1726                         /* XXX inp locking */
 1727                         if ((inp->inp_vflag & INP_IPV4) == 0)
 1728                                 continue;
 1729 #endif
 1730                         if (inp->inp_faddr.s_addr != INADDR_ANY ||
 1731                             inp->inp_lport != lport)
 1732                                 continue;
 1733 
 1734                         /* XXX inp locking */
 1735                         if (ifp && ifp->if_type == IFT_FAITH &&
 1736                             (inp->inp_flags & INP_FAITH) == 0)
 1737                                 continue;
 1738 
 1739                         injail = prison_flag(inp->inp_cred, PR_IP4);
 1740                         if (injail) {
 1741                                 if (prison_check_ip4(inp->inp_cred,
 1742                                     &laddr) != 0)
 1743                                         continue;
 1744                         } else {
 1745                                 if (local_exact != NULL)
 1746                                         continue;
 1747                         }
 1748 
 1749                         if (inp->inp_laddr.s_addr == laddr.s_addr) {
 1750                                 if (injail)
 1751                                         return (inp);
 1752                                 else
 1753                                         local_exact = inp;
 1754                         } else if (inp->inp_laddr.s_addr == INADDR_ANY) {
 1755 #ifdef INET6
 1756                                 /* XXX inp locking, NULL check */
 1757                                 if (inp->inp_vflag & INP_IPV6PROTO)
 1758                                         local_wild_mapped = inp;
 1759                                 else
 1760 #endif /* INET6 */
 1761                                         if (injail)
 1762                                                 jail_wild = inp;
 1763                                         else
 1764                                                 local_wild = inp;
 1765                         }
 1766                 } /* LIST_FOREACH */
 1767                 if (jail_wild != NULL)
 1768                         return (jail_wild);
 1769                 if (local_exact != NULL)
 1770                         return (local_exact);
 1771                 if (local_wild != NULL)
 1772                         return (local_wild);
 1773 #ifdef INET6
 1774                 if (local_wild_mapped != NULL)
 1775                         return (local_wild_mapped);
 1776 #endif /* defined(INET6) */
 1777         } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
 1778 
 1779         return (NULL);
 1780 }
 1781 
 1782 /*
 1783  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
 1784  * hash list lock, and will return the inpcb locked (i.e., requires
 1785  * INPLOOKUP_LOCKPCB).
 1786  */
 1787 static struct inpcb *
 1788 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1789     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
 1790     struct ifnet *ifp)
 1791 {
 1792         struct inpcb *inp;
 1793 
 1794         INP_HASH_RLOCK(pcbinfo);
 1795         inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
 1796             (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
 1797         if (inp != NULL) {
 1798                 in_pcbref(inp);
 1799                 INP_HASH_RUNLOCK(pcbinfo);
 1800                 if (lookupflags & INPLOOKUP_WLOCKPCB) {
 1801                         INP_WLOCK(inp);
 1802                         if (in_pcbrele_wlocked(inp))
 1803                                 return (NULL);
 1804                 } else if (lookupflags & INPLOOKUP_RLOCKPCB) {
 1805                         INP_RLOCK(inp);
 1806                         if (in_pcbrele_rlocked(inp))
 1807                                 return (NULL);
 1808                 } else
 1809                         panic("%s: locking bug", __func__);
 1810         } else
 1811                 INP_HASH_RUNLOCK(pcbinfo);
 1812         return (inp);
 1813 }
 1814 
 1815 /*
 1816  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
 1817  * from which a pre-calculated hash value may be extracted.
 1818  *
 1819  * Possibly more of this logic should be in in_pcbgroup.c.
 1820  */
 1821 struct inpcb *
 1822 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
 1823     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
 1824 {
 1825 #if defined(PCBGROUP)
 1826         struct inpcbgroup *pcbgroup;
 1827 #endif
 1828 
 1829         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 1830             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1831         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 1832             ("%s: LOCKPCB not set", __func__));
 1833 
 1834 #if defined(PCBGROUP)
 1835         if (in_pcbgroup_enabled(pcbinfo)) {
 1836                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 1837                     fport);
 1838                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 1839                     laddr, lport, lookupflags, ifp));
 1840         }
 1841 #endif
 1842         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 1843             lookupflags, ifp));
 1844 }
 1845 
 1846 struct inpcb *
 1847 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
 1848     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
 1849     struct ifnet *ifp, struct mbuf *m)
 1850 {
 1851 #ifdef PCBGROUP
 1852         struct inpcbgroup *pcbgroup;
 1853 #endif
 1854 
 1855         KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
 1856             ("%s: invalid lookup flags %d", __func__, lookupflags));
 1857         KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
 1858             ("%s: LOCKPCB not set", __func__));
 1859 
 1860 #ifdef PCBGROUP
 1861         if (in_pcbgroup_enabled(pcbinfo)) {
 1862                 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
 1863                     m->m_pkthdr.flowid);
 1864                 if (pcbgroup != NULL)
 1865                         return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
 1866                             fport, laddr, lport, lookupflags, ifp));
 1867                 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
 1868                     fport);
 1869                 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
 1870                     laddr, lport, lookupflags, ifp));
 1871         }
 1872 #endif
 1873         return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
 1874             lookupflags, ifp));
 1875 }
 1876 #endif /* INET */
 1877 
 1878 /*
 1879  * Insert PCB onto various hash lists.
 1880  */
 1881 static int
 1882 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
 1883 {
 1884         struct inpcbhead *pcbhash;
 1885         struct inpcbporthead *pcbporthash;
 1886         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1887         struct inpcbport *phd;
 1888         u_int32_t hashkey_faddr;
 1889 
 1890         INP_WLOCK_ASSERT(inp);
 1891         INP_HASH_WLOCK_ASSERT(pcbinfo);
 1892 
 1893         KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
 1894             ("in_pcbinshash: INP_INHASHLIST"));
 1895 
 1896 #ifdef INET6
 1897         if (inp->inp_vflag & INP_IPV6)
 1898                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1899         else
 1900 #endif /* INET6 */
 1901         hashkey_faddr = inp->inp_faddr.s_addr;
 1902 
 1903         pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1904                  inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1905 
 1906         pcbporthash = &pcbinfo->ipi_porthashbase[
 1907             INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
 1908 
 1909         /*
 1910          * Go through port list and look for a head for this lport.
 1911          */
 1912         LIST_FOREACH(phd, pcbporthash, phd_hash) {
 1913                 if (phd->phd_port == inp->inp_lport)
 1914                         break;
 1915         }
 1916         /*
 1917          * If none exists, malloc one and tack it on.
 1918          */
 1919         if (phd == NULL) {
 1920                 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
 1921                 if (phd == NULL) {
 1922                         return (ENOBUFS); /* XXX */
 1923                 }
 1924                 phd->phd_port = inp->inp_lport;
 1925                 LIST_INIT(&phd->phd_pcblist);
 1926                 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
 1927         }
 1928         inp->inp_phd = phd;
 1929         LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
 1930         LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
 1931         inp->inp_flags |= INP_INHASHLIST;
 1932 #ifdef PCBGROUP
 1933         if (do_pcbgroup_update)
 1934                 in_pcbgroup_update(inp);
 1935 #endif
 1936         return (0);
 1937 }
 1938 
 1939 /*
 1940  * For now, there are two public interfaces to insert an inpcb into the hash
 1941  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
 1942  * is used only in the TCP syncache, where in_pcbinshash is called before the
 1943  * full 4-tuple is set for the inpcb, and we don't want to install in the
 1944  * pcbgroup until later.
 1945  *
 1946  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
 1947  * connection groups, and partially initialised inpcbs should not be exposed
 1948  * to either reservation hash tables or pcbgroups.
 1949  */
 1950 int
 1951 in_pcbinshash(struct inpcb *inp)
 1952 {
 1953 
 1954         return (in_pcbinshash_internal(inp, 1));
 1955 }
 1956 
 1957 int
 1958 in_pcbinshash_nopcbgroup(struct inpcb *inp)
 1959 {
 1960 
 1961         return (in_pcbinshash_internal(inp, 0));
 1962 }
 1963 
 1964 /*
 1965  * Move PCB to the proper hash bucket when { faddr, fport } have  been
 1966  * changed. NOTE: This does not handle the case of the lport changing (the
 1967  * hashed port list would have to be updated as well), so the lport must
 1968  * not change after in_pcbinshash() has been called.
 1969  */
 1970 void
 1971 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
 1972 {
 1973         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 1974         struct inpcbhead *head;
 1975         u_int32_t hashkey_faddr;
 1976 
 1977         INP_WLOCK_ASSERT(inp);
 1978         INP_HASH_WLOCK_ASSERT(pcbinfo);
 1979 
 1980         KASSERT(inp->inp_flags & INP_INHASHLIST,
 1981             ("in_pcbrehash: !INP_INHASHLIST"));
 1982 
 1983 #ifdef INET6
 1984         if (inp->inp_vflag & INP_IPV6)
 1985                 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
 1986         else
 1987 #endif /* INET6 */
 1988         hashkey_faddr = inp->inp_faddr.s_addr;
 1989 
 1990         head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
 1991                 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
 1992 
 1993         LIST_REMOVE(inp, inp_hash);
 1994         LIST_INSERT_HEAD(head, inp, inp_hash);
 1995 
 1996 #ifdef PCBGROUP
 1997         if (m != NULL)
 1998                 in_pcbgroup_update_mbuf(inp, m);
 1999         else
 2000                 in_pcbgroup_update(inp);
 2001 #endif
 2002 }
 2003 
 2004 void
 2005 in_pcbrehash(struct inpcb *inp)
 2006 {
 2007 
 2008         in_pcbrehash_mbuf(inp, NULL);
 2009 }
 2010 
 2011 /*
 2012  * Remove PCB from various lists.
 2013  */
 2014 static void
 2015 in_pcbremlists(struct inpcb *inp)
 2016 {
 2017         struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
 2018 
 2019         INP_INFO_WLOCK_ASSERT(pcbinfo);
 2020         INP_WLOCK_ASSERT(inp);
 2021 
 2022         inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
 2023         if (inp->inp_flags & INP_INHASHLIST) {
 2024                 struct inpcbport *phd = inp->inp_phd;
 2025 
 2026                 INP_HASH_WLOCK(pcbinfo);
 2027                 LIST_REMOVE(inp, inp_hash);
 2028                 LIST_REMOVE(inp, inp_portlist);
 2029                 if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
 2030                         LIST_REMOVE(phd, phd_hash);
 2031                         free(phd, M_PCB);
 2032                 }
 2033                 INP_HASH_WUNLOCK(pcbinfo);
 2034                 inp->inp_flags &= ~INP_INHASHLIST;
 2035         }
 2036         LIST_REMOVE(inp, inp_list);
 2037         pcbinfo->ipi_count--;
 2038 #ifdef PCBGROUP
 2039         in_pcbgroup_remove(inp);
 2040 #endif
 2041 }
 2042 
 2043 /*
 2044  * A set label operation has occurred at the socket layer, propagate the
 2045  * label change into the in_pcb for the socket.
 2046  */
 2047 void
 2048 in_pcbsosetlabel(struct socket *so)
 2049 {
 2050 #ifdef MAC
 2051         struct inpcb *inp;
 2052 
 2053         inp = sotoinpcb(so);
 2054         KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
 2055 
 2056         INP_WLOCK(inp);
 2057         SOCK_LOCK(so);
 2058         mac_inpcb_sosetlabel(so, inp);
 2059         SOCK_UNLOCK(so);
 2060         INP_WUNLOCK(inp);
 2061 #endif
 2062 }
 2063 
 2064 /*
 2065  * ipport_tick runs once per second, determining if random port allocation
 2066  * should be continued.  If more than ipport_randomcps ports have been
 2067  * allocated in the last second, then we return to sequential port
 2068  * allocation. We return to random allocation only once we drop below
 2069  * ipport_randomcps for at least ipport_randomtime seconds.
 2070  */
 2071 static void
 2072 ipport_tick(void *xtp)
 2073 {
 2074         VNET_ITERATOR_DECL(vnet_iter);
 2075 
 2076         VNET_LIST_RLOCK_NOSLEEP();
 2077         VNET_FOREACH(vnet_iter) {
 2078                 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
 2079                 if (V_ipport_tcpallocs <=
 2080                     V_ipport_tcplastcount + V_ipport_randomcps) {
 2081                         if (V_ipport_stoprandom > 0)
 2082                                 V_ipport_stoprandom--;
 2083                 } else
 2084                         V_ipport_stoprandom = V_ipport_randomtime;
 2085                 V_ipport_tcplastcount = V_ipport_tcpallocs;
 2086                 CURVNET_RESTORE();
 2087         }
 2088         VNET_LIST_RUNLOCK_NOSLEEP();
 2089         callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
 2090 }
 2091 
 2092 static void
 2093 ip_fini(void *xtp)
 2094 {
 2095 
 2096         callout_stop(&ipport_tick_callout);
 2097 }
 2098 
 2099 /* 
 2100  * The ipport_callout should start running at about the time we attach the
 2101  * inet or inet6 domains.
 2102  */
 2103 static void
 2104 ipport_tick_init(const void *unused __unused)
 2105 {
 2106 
 2107         /* Start ipport_tick. */
 2108         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
 2109         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
 2110         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
 2111                 SHUTDOWN_PRI_DEFAULT);
 2112 }
 2113 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 
 2114     ipport_tick_init, NULL);
 2115 
 2116 void
 2117 inp_wlock(struct inpcb *inp)
 2118 {
 2119 
 2120         INP_WLOCK(inp);
 2121 }
 2122 
 2123 void
 2124 inp_wunlock(struct inpcb *inp)
 2125 {
 2126 
 2127         INP_WUNLOCK(inp);
 2128 }
 2129 
 2130 void
 2131 inp_rlock(struct inpcb *inp)
 2132 {
 2133 
 2134         INP_RLOCK(inp);
 2135 }
 2136 
 2137 void
 2138 inp_runlock(struct inpcb *inp)
 2139 {
 2140 
 2141         INP_RUNLOCK(inp);
 2142 }
 2143 
 2144 #ifdef INVARIANTS
 2145 void
 2146 inp_lock_assert(struct inpcb *inp)
 2147 {
 2148 
 2149         INP_WLOCK_ASSERT(inp);
 2150 }
 2151 
 2152 void
 2153 inp_unlock_assert(struct inpcb *inp)
 2154 {
 2155 
 2156         INP_UNLOCK_ASSERT(inp);
 2157 }
 2158 #endif
 2159 
 2160 void
 2161 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
 2162 {
 2163         struct inpcb *inp;
 2164 
 2165         INP_INFO_RLOCK(&V_tcbinfo);
 2166         LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
 2167                 INP_WLOCK(inp);
 2168                 func(inp, arg);
 2169                 INP_WUNLOCK(inp);
 2170         }
 2171         INP_INFO_RUNLOCK(&V_tcbinfo);
 2172 }
 2173 
 2174 struct socket *
 2175 inp_inpcbtosocket(struct inpcb *inp)
 2176 {
 2177 
 2178         INP_WLOCK_ASSERT(inp);
 2179         return (inp->inp_socket);
 2180 }
 2181 
 2182 struct tcpcb *
 2183 inp_inpcbtotcpcb(struct inpcb *inp)
 2184 {
 2185 
 2186         INP_WLOCK_ASSERT(inp);
 2187         return ((struct tcpcb *)inp->inp_ppcb);
 2188 }
 2189 
 2190 int
 2191 inp_ip_tos_get(const struct inpcb *inp)
 2192 {
 2193 
 2194         return (inp->inp_ip_tos);
 2195 }
 2196 
 2197 void
 2198 inp_ip_tos_set(struct inpcb *inp, int val)
 2199 {
 2200 
 2201         inp->inp_ip_tos = val;
 2202 }
 2203 
 2204 void
 2205 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
 2206     uint32_t *faddr, uint16_t *fp)
 2207 {
 2208 
 2209         INP_LOCK_ASSERT(inp);
 2210         *laddr = inp->inp_laddr.s_addr;
 2211         *faddr = inp->inp_faddr.s_addr;
 2212         *lp = inp->inp_lport;
 2213         *fp = inp->inp_fport;
 2214 }
 2215 
 2216 struct inpcb *
 2217 so_sotoinpcb(struct socket *so)
 2218 {
 2219 
 2220         return (sotoinpcb(so));
 2221 }
 2222 
 2223 struct tcpcb *
 2224 so_sototcpcb(struct socket *so)
 2225 {
 2226 
 2227         return (sototcpcb(so));
 2228 }
 2229 
 2230 #ifdef DDB
 2231 static void
 2232 db_print_indent(int indent)
 2233 {
 2234         int i;
 2235 
 2236         for (i = 0; i < indent; i++)
 2237                 db_printf(" ");
 2238 }
 2239 
 2240 static void
 2241 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
 2242 {
 2243         char faddr_str[48], laddr_str[48];
 2244 
 2245         db_print_indent(indent);
 2246         db_printf("%s at %p\n", name, inc);
 2247 
 2248         indent += 2;
 2249 
 2250 #ifdef INET6
 2251         if (inc->inc_flags & INC_ISIPV6) {
 2252                 /* IPv6. */
 2253                 ip6_sprintf(laddr_str, &inc->inc6_laddr);
 2254                 ip6_sprintf(faddr_str, &inc->inc6_faddr);
 2255         } else {
 2256 #endif
 2257                 /* IPv4. */
 2258                 inet_ntoa_r(inc->inc_laddr, laddr_str);
 2259                 inet_ntoa_r(inc->inc_faddr, faddr_str);
 2260 #ifdef INET6
 2261         }
 2262 #endif
 2263         db_print_indent(indent);
 2264         db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
 2265             ntohs(inc->inc_lport));
 2266         db_print_indent(indent);
 2267         db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
 2268             ntohs(inc->inc_fport));
 2269 }
 2270 
 2271 static void
 2272 db_print_inpflags(int inp_flags)
 2273 {
 2274         int comma;
 2275 
 2276         comma = 0;
 2277         if (inp_flags & INP_RECVOPTS) {
 2278                 db_printf("%sINP_RECVOPTS", comma ? ", " : "");
 2279                 comma = 1;
 2280         }
 2281         if (inp_flags & INP_RECVRETOPTS) {
 2282                 db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
 2283                 comma = 1;
 2284         }
 2285         if (inp_flags & INP_RECVDSTADDR) {
 2286                 db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
 2287                 comma = 1;
 2288         }
 2289         if (inp_flags & INP_HDRINCL) {
 2290                 db_printf("%sINP_HDRINCL", comma ? ", " : "");
 2291                 comma = 1;
 2292         }
 2293         if (inp_flags & INP_HIGHPORT) {
 2294                 db_printf("%sINP_HIGHPORT", comma ? ", " : "");
 2295                 comma = 1;
 2296         }
 2297         if (inp_flags & INP_LOWPORT) {
 2298                 db_printf("%sINP_LOWPORT", comma ? ", " : "");
 2299                 comma = 1;
 2300         }
 2301         if (inp_flags & INP_ANONPORT) {
 2302                 db_printf("%sINP_ANONPORT", comma ? ", " : "");
 2303                 comma = 1;
 2304         }
 2305         if (inp_flags & INP_RECVIF) {
 2306                 db_printf("%sINP_RECVIF", comma ? ", " : "");
 2307                 comma = 1;
 2308         }
 2309         if (inp_flags & INP_MTUDISC) {
 2310                 db_printf("%sINP_MTUDISC", comma ? ", " : "");
 2311                 comma = 1;
 2312         }
 2313         if (inp_flags & INP_FAITH) {
 2314                 db_printf("%sINP_FAITH", comma ? ", " : "");
 2315                 comma = 1;
 2316         }
 2317         if (inp_flags & INP_RECVTTL) {
 2318                 db_printf("%sINP_RECVTTL", comma ? ", " : "");
 2319                 comma = 1;
 2320         }
 2321         if (inp_flags & INP_DONTFRAG) {
 2322                 db_printf("%sINP_DONTFRAG", comma ? ", " : "");
 2323                 comma = 1;
 2324         }
 2325         if (inp_flags & INP_RECVTOS) {
 2326                 db_printf("%sINP_RECVTOS", comma ? ", " : "");
 2327                 comma = 1;
 2328         }
 2329         if (inp_flags & IN6P_IPV6_V6ONLY) {
 2330                 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
 2331                 comma = 1;
 2332         }
 2333         if (inp_flags & IN6P_PKTINFO) {
 2334                 db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
 2335                 comma = 1;
 2336         }
 2337         if (inp_flags & IN6P_HOPLIMIT) {
 2338                 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
 2339                 comma = 1;
 2340         }
 2341         if (inp_flags & IN6P_HOPOPTS) {
 2342                 db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
 2343                 comma = 1;
 2344         }
 2345         if (inp_flags & IN6P_DSTOPTS) {
 2346                 db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
 2347                 comma = 1;
 2348         }
 2349         if (inp_flags & IN6P_RTHDR) {
 2350                 db_printf("%sIN6P_RTHDR", comma ? ", " : "");
 2351                 comma = 1;
 2352         }
 2353         if (inp_flags & IN6P_RTHDRDSTOPTS) {
 2354                 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
 2355                 comma = 1;
 2356         }
 2357         if (inp_flags & IN6P_TCLASS) {
 2358                 db_printf("%sIN6P_TCLASS", comma ? ", " : "");
 2359                 comma = 1;
 2360         }
 2361         if (inp_flags & IN6P_AUTOFLOWLABEL) {
 2362                 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
 2363                 comma = 1;
 2364         }
 2365         if (inp_flags & INP_TIMEWAIT) {
 2366                 db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
 2367                 comma  = 1;
 2368         }
 2369         if (inp_flags & INP_ONESBCAST) {
 2370                 db_printf("%sINP_ONESBCAST", comma ? ", " : "");
 2371                 comma  = 1;
 2372         }
 2373         if (inp_flags & INP_DROPPED) {
 2374                 db_printf("%sINP_DROPPED", comma ? ", " : "");
 2375                 comma  = 1;
 2376         }
 2377         if (inp_flags & INP_SOCKREF) {
 2378                 db_printf("%sINP_SOCKREF", comma ? ", " : "");
 2379                 comma  = 1;
 2380         }
 2381         if (inp_flags & IN6P_RFC2292) {
 2382                 db_printf("%sIN6P_RFC2292", comma ? ", " : "");
 2383                 comma = 1;
 2384         }
 2385         if (inp_flags & IN6P_MTU) {
 2386                 db_printf("IN6P_MTU%s", comma ? ", " : "");
 2387                 comma = 1;
 2388         }
 2389 }
 2390 
 2391 static void
 2392 db_print_inpvflag(u_char inp_vflag)
 2393 {
 2394         int comma;
 2395 
 2396         comma = 0;
 2397         if (inp_vflag & INP_IPV4) {
 2398                 db_printf("%sINP_IPV4", comma ? ", " : "");
 2399                 comma  = 1;
 2400         }
 2401         if (inp_vflag & INP_IPV6) {
 2402                 db_printf("%sINP_IPV6", comma ? ", " : "");
 2403                 comma  = 1;
 2404         }
 2405         if (inp_vflag & INP_IPV6PROTO) {
 2406                 db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
 2407                 comma  = 1;
 2408         }
 2409 }
 2410 
 2411 static void
 2412 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
 2413 {
 2414 
 2415         db_print_indent(indent);
 2416         db_printf("%s at %p\n", name, inp);
 2417 
 2418         indent += 2;
 2419 
 2420         db_print_indent(indent);
 2421         db_printf("inp_flow: 0x%x\n", inp->inp_flow);
 2422 
 2423         db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
 2424 
 2425         db_print_indent(indent);
 2426         db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
 2427             inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
 2428 
 2429         db_print_indent(indent);
 2430         db_printf("inp_label: %p   inp_flags: 0x%x (",
 2431            inp->inp_label, inp->inp_flags);
 2432         db_print_inpflags(inp->inp_flags);
 2433         db_printf(")\n");
 2434 
 2435         db_print_indent(indent);
 2436         db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
 2437             inp->inp_vflag);
 2438         db_print_inpvflag(inp->inp_vflag);
 2439         db_printf(")\n");
 2440 
 2441         db_print_indent(indent);
 2442         db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
 2443             inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
 2444 
 2445         db_print_indent(indent);
 2446 #ifdef INET6
 2447         if (inp->inp_vflag & INP_IPV6) {
 2448                 db_printf("in6p_options: %p   in6p_outputopts: %p   "
 2449                     "in6p_moptions: %p\n", inp->in6p_options,
 2450                     inp->in6p_outputopts, inp->in6p_moptions);
 2451                 db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
 2452                     "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
 2453                     inp->in6p_hops);
 2454         } else
 2455 #endif
 2456         {
 2457                 db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
 2458                     "inp_ip_moptions: %p\n", inp->inp_ip_tos,
 2459                     inp->inp_options, inp->inp_moptions);
 2460         }
 2461 
 2462         db_print_indent(indent);
 2463         db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
 2464             (uintmax_t)inp->inp_gencnt);
 2465 }
 2466 
 2467 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
 2468 {
 2469         struct inpcb *inp;
 2470 
 2471         if (!have_addr) {
 2472                 db_printf("usage: show inpcb <addr>\n");
 2473                 return;
 2474         }
 2475         inp = (struct inpcb *)addr;
 2476 
 2477         db_print_inpcb(inp, "inpcb", 0);
 2478 }
 2479 #endif

Cache object: e8bb319adffc789dbf0003e4f841f1bf


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.