The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_dummynet.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
    3  * Portions Copyright (c) 2000 Akamba Corp.
    4  * All rights reserved
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  * $FreeBSD$
   28  */
   29 
   30 #if !defined(KLD_MODULE)
   31 #include "opt_ipfw.h"   /* for IPFW2 definition */
   32 #endif
   33 
   34 #define DEB(x)
   35 #define DDB(x)  x
   36 
   37 /*
   38  * This module implements IP dummynet, a bandwidth limiter/delay emulator
   39  * used in conjunction with the ipfw package.
   40  * Description of the data structures used is in ip_dummynet.h
   41  * Here you mainly find the following blocks of code:
   42  *  + variable declarations;
   43  *  + heap management functions;
   44  *  + scheduler and dummynet functions;
   45  *  + configuration and initialization.
   46  *
   47  * NOTA BENE: critical sections are protected by splimp()/splx()
   48  *    pairs. One would think that splnet() is enough as for most of
   49  *    the netinet code, but it is not so because when used with
   50  *    bridging, dummynet is invoked at splimp().
   51  *
   52  * Most important Changes:
   53  *
   54  * 011004: KLDable
   55  * 010124: Fixed WF2Q behaviour
   56  * 010122: Fixed spl protection.
   57  * 000601: WF2Q support
   58  * 000106: large rewrite, use heaps to handle very many pipes.
   59  * 980513:      initial release
   60  *
   61  * include files marked with XXX are probably not needed
   62  */
   63 
   64 #include <sys/param.h>
   65 #include <sys/systm.h>
   66 #include <sys/malloc.h>
   67 #include <sys/mbuf.h>
   68 #include <sys/kernel.h>
   69 #include <sys/module.h>
   70 #include <sys/proc.h>
   71 #include <sys/socket.h>
   72 #include <sys/socketvar.h>
   73 #include <sys/time.h>
   74 #include <sys/sysctl.h>
   75 #include <net/if.h>
   76 #include <net/route.h>
   77 #include <netinet/in.h>
   78 #include <netinet/in_systm.h>
   79 #include <netinet/in_var.h>
   80 #include <netinet/ip.h>
   81 #include <netinet/ip_fw.h>
   82 #include <netinet/ip_dummynet.h>
   83 #include <netinet/ip_var.h>
   84 
   85 #include <netinet/if_ether.h> /* for struct arpcom */
   86 #include <net/bridge.h>
   87 
   88 /*
   89  * We keep a private variable for the simulation time, but we could
   90  * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
   91  */
   92 static dn_key curr_time = 0 ; /* current simulation time */
   93 
   94 static int dn_hash_size = 64 ;  /* default hash size */
   95 
   96 /* statistics on number of queue searches and search steps */
   97 static int searches, search_steps ;
   98 static int pipe_expire = 1 ;   /* expire queue if empty */
   99 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
  100 
  101 static int red_lookup_depth = 256;      /* RED - default lookup table depth */
  102 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
  103 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
  104 
  105 /*
  106  * Three heaps contain queues and pipes that the scheduler handles:
  107  *
  108  * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
  109  *
  110  * wfq_ready_heap contains the pipes associated with WF2Q flows
  111  *
  112  * extract_heap contains pipes associated with delay lines.
  113  *
  114  */
  115 
  116 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
  117 
  118 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
  119 
  120 static int heap_init(struct dn_heap *h, int size) ;
  121 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
  122 static void heap_extract(struct dn_heap *h, void *obj);
  123 
  124 static void transmit_event(struct dn_pipe *pipe);
  125 static void ready_event(struct dn_flow_queue *q);
  126 
  127 static struct dn_pipe *all_pipes = NULL ;       /* list of all pipes */
  128 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
  129 
  130 static struct callout_handle dn_timeout;
  131 
  132 #ifdef SYSCTL_NODE
  133 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
  134                 CTLFLAG_RW, 0, "Dummynet");
  135 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
  136             CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
  137 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
  138             CTLFLAG_RD, &curr_time, 0, "Current tick");
  139 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
  140             CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
  141 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
  142             CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
  143 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
  144             CTLFLAG_RD, &searches, 0, "Number of queue searches");
  145 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
  146             CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
  147 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
  148             CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
  149 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
  150             CTLFLAG_RW, &dn_max_ratio, 0,
  151         "Max ratio between dynamic queues and buckets");
  152 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
  153         CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
  154 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
  155         CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
  156 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
  157         CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
  158 #endif
  159 
  160 static int config_pipe(struct dn_pipe *p);
  161 static int ip_dn_ctl(struct sockopt *sopt);
  162 
  163 static void rt_unref(struct rtentry *);
  164 static void dummynet(void *);
  165 static void dummynet_flush(void);
  166 void dummynet_drain(void);
  167 static ip_dn_io_t dummynet_io;
  168 static void dn_rule_delete(void *);
  169 
  170 int if_tx_rdy(struct ifnet *ifp);
  171 
  172 static void
  173 rt_unref(struct rtentry *rt)
  174 {
  175     if (rt == NULL)
  176         return ;
  177     if (rt->rt_refcnt <= 0)
  178         printf("dummynet: warning, refcnt now %ld, decreasing\n",
  179             rt->rt_refcnt);
  180     RTFREE(rt);
  181 }
  182 
  183 /*
  184  * Heap management functions.
  185  *
  186  * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
  187  * Some macros help finding parent/children so we can optimize them.
  188  *
  189  * heap_init() is called to expand the heap when needed.
  190  * Increment size in blocks of 16 entries.
  191  * XXX failure to allocate a new element is a pretty bad failure
  192  * as we basically stall a whole queue forever!!
  193  * Returns 1 on error, 0 on success
  194  */
  195 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
  196 #define HEAP_LEFT(x) ( 2*(x) + 1 )
  197 #define HEAP_IS_LEFT(x) ( (x) & 1 )
  198 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
  199 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
  200 #define HEAP_INCREMENT  15
  201 
  202 static int
  203 heap_init(struct dn_heap *h, int new_size)
  204 {
  205     struct dn_heap_entry *p;
  206 
  207     if (h->size >= new_size ) {
  208         printf("dummynet: heap_init, Bogus call, have %d want %d\n",
  209                 h->size, new_size);
  210         return 0 ;
  211     }
  212     new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
  213     p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT);
  214     if (p == NULL) {
  215         printf("dummynet: heap_init, resize %d failed\n", new_size );
  216         return 1 ; /* error */
  217     }
  218     if (h->size > 0) {
  219         bcopy(h->p, p, h->size * sizeof(*p) );
  220         free(h->p, M_DUMMYNET);
  221     }
  222     h->p = p ;
  223     h->size = new_size ;
  224     return 0 ;
  225 }
  226 
  227 /*
  228  * Insert element in heap. Normally, p != NULL, we insert p in
  229  * a new position and bubble up. If p == NULL, then the element is
  230  * already in place, and key is the position where to start the
  231  * bubble-up.
  232  * Returns 1 on failure (cannot allocate new heap entry)
  233  *
  234  * If offset > 0 the position (index, int) of the element in the heap is
  235  * also stored in the element itself at the given offset in bytes.
  236  */
  237 #define SET_OFFSET(heap, node) \
  238     if (heap->offset > 0) \
  239             *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
  240 /*
  241  * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
  242  */
  243 #define RESET_OFFSET(heap, node) \
  244     if (heap->offset > 0) \
  245             *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
  246 static int
  247 heap_insert(struct dn_heap *h, dn_key key1, void *p)
  248 {
  249     int son = h->elements ;
  250 
  251     if (p == NULL)      /* data already there, set starting point */
  252         son = key1 ;
  253     else {              /* insert new element at the end, possibly resize */
  254         son = h->elements ;
  255         if (son == h->size) /* need resize... */
  256             if (heap_init(h, h->elements+1) )
  257                 return 1 ; /* failure... */
  258         h->p[son].object = p ;
  259         h->p[son].key = key1 ;
  260         h->elements++ ;
  261     }
  262     while (son > 0) {                           /* bubble up */
  263         int father = HEAP_FATHER(son) ;
  264         struct dn_heap_entry tmp  ;
  265 
  266         if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
  267             break ; /* found right position */
  268         /* son smaller than father, swap and repeat */
  269         HEAP_SWAP(h->p[son], h->p[father], tmp) ;
  270         SET_OFFSET(h, son);
  271         son = father ;
  272     }
  273     SET_OFFSET(h, son);
  274     return 0 ;
  275 }
  276 
  277 /*
  278  * remove top element from heap, or obj if obj != NULL
  279  */
  280 static void
  281 heap_extract(struct dn_heap *h, void *obj)
  282 {
  283     int child, father, max = h->elements - 1 ;
  284 
  285     if (max < 0) {
  286         printf("dummynet: warning, extract from empty heap 0x%p\n", h);
  287         return ;
  288     }
  289     father = 0 ; /* default: move up smallest child */
  290     if (obj != NULL) { /* extract specific element, index is at offset */
  291         if (h->offset <= 0)
  292             panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
  293         father = *((int *)((char *)obj + h->offset)) ;
  294         if (father < 0 || father >= h->elements) {
  295             printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
  296                 father, h->elements);
  297             panic("dummynet: heap_extract");
  298         }
  299     }
  300     RESET_OFFSET(h, father);
  301     child = HEAP_LEFT(father) ;         /* left child */
  302     while (child <= max) {              /* valid entry */
  303         if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
  304             child = child+1 ;           /* take right child, otherwise left */
  305         h->p[father] = h->p[child] ;
  306         SET_OFFSET(h, father);
  307         father = child ;
  308         child = HEAP_LEFT(child) ;   /* left child for next loop */
  309     }
  310     h->elements-- ;
  311     if (father != max) {
  312         /*
  313          * Fill hole with last entry and bubble up, reusing the insert code
  314          */
  315         h->p[father] = h->p[max] ;
  316         heap_insert(h, father, NULL); /* this one cannot fail */
  317     }
  318 }
  319 
  320 #if 0
  321 /*
  322  * change object position and update references
  323  * XXX this one is never used!
  324  */
  325 static void
  326 heap_move(struct dn_heap *h, dn_key new_key, void *object)
  327 {
  328     int temp;
  329     int i ;
  330     int max = h->elements-1 ;
  331     struct dn_heap_entry buf ;
  332 
  333     if (h->offset <= 0)
  334         panic("cannot move items on this heap");
  335 
  336     i = *((int *)((char *)object + h->offset));
  337     if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
  338         h->p[i].key = new_key ;
  339         for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
  340                  i = temp ) { /* bubble up */
  341             HEAP_SWAP(h->p[i], h->p[temp], buf) ;
  342             SET_OFFSET(h, i);
  343         }
  344     } else {            /* must move down */
  345         h->p[i].key = new_key ;
  346         while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
  347             if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
  348                 temp++ ; /* select child with min key */
  349             if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
  350                 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
  351                 SET_OFFSET(h, i);
  352             } else
  353                 break ;
  354             i = temp ;
  355         }
  356     }
  357     SET_OFFSET(h, i);
  358 }
  359 #endif /* heap_move, unused */
  360 
  361 /*
  362  * heapify() will reorganize data inside an array to maintain the
  363  * heap property. It is needed when we delete a bunch of entries.
  364  */
  365 static void
  366 heapify(struct dn_heap *h)
  367 {
  368     int i ;
  369 
  370     for (i = 0 ; i < h->elements ; i++ )
  371         heap_insert(h, i , NULL) ;
  372 }
  373 
  374 /*
  375  * cleanup the heap and free data structure
  376  */
  377 static void
  378 heap_free(struct dn_heap *h)
  379 {
  380     if (h->size >0 )
  381         free(h->p, M_DUMMYNET);
  382     bzero(h, sizeof(*h) );
  383 }
  384 
  385 /*
  386  * --- end of heap management functions ---
  387  */
  388 
  389 /*
  390  * Scheduler functions:
  391  *
  392  * transmit_event() is called when the delay-line needs to enter
  393  * the scheduler, either because of existing pkts getting ready,
  394  * or new packets entering the queue. The event handled is the delivery
  395  * time of the packet.
  396  *
  397  * ready_event() does something similar with fixed-rate queues, and the
  398  * event handled is the finish time of the head pkt.
  399  *
  400  * wfq_ready_event() does something similar with WF2Q queues, and the
  401  * event handled is the start time of the head pkt.
  402  *
  403  * In all cases, we make sure that the data structures are consistent
  404  * before passing pkts out, because this might trigger recursive
  405  * invocations of the procedures.
  406  */
  407 static void
  408 transmit_event(struct dn_pipe *pipe)
  409 {
  410     struct dn_pkt *pkt ;
  411 
  412     while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
  413         /*
  414          * first unlink, then call procedures, since ip_input() can invoke
  415          * ip_output() and viceversa, thus causing nested calls
  416          */
  417         pipe->head = DN_NEXT(pkt) ;
  418 
  419         /*
  420          * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
  421          * (NOT A REAL one, just a small block of malloc'ed memory) with
  422          *     m_type = MT_TAG, m_flags = PACKET_TAG_DUMMYNET
  423          *     dn_m (m_next) = actual mbuf to be processed by ip_input/output
  424          * and some other fields.
  425          * The block IS FREED HERE because it contains parameters passed
  426          * to the called routine.
  427          */
  428         switch (pkt->dn_dir) {
  429         case DN_TO_IP_OUT:
  430             (void)ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL, NULL);
  431             rt_unref (pkt->ro.ro_rt) ;
  432             break ;
  433 
  434         case DN_TO_IP_IN :
  435             ip_input((struct mbuf *)pkt) ;
  436             break ;
  437 
  438         case DN_TO_BDG_FWD :
  439             if (!BDG_LOADED) {
  440                 /* somebody unloaded the bridge module. Drop pkt */
  441                 printf("dummynet: dropping bridged packet trapped in pipe\n");
  442                 m_freem(pkt->dn_m);
  443                 break;
  444             } /* fallthrough */
  445         case DN_TO_ETH_DEMUX:
  446             {
  447                 struct mbuf *m = (struct mbuf *)pkt ;
  448                 struct ether_header *eh;
  449 
  450                 if (pkt->dn_m->m_len < ETHER_HDR_LEN &&
  451                     (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) {
  452                     printf("dummynet/bridge: pullup fail, dropping pkt\n");
  453                     break;
  454                 }
  455                 /*
  456                  * same as ether_input, make eh be a pointer into the mbuf
  457                  */
  458                 eh = mtod(pkt->dn_m, struct ether_header *);
  459                 m_adj(pkt->dn_m, ETHER_HDR_LEN);
  460                 /*
  461                  * bdg_forward() wants a pointer to the pseudo-mbuf-header, but
  462                  * on return it will supply the pointer to the actual packet
  463                  * (originally pkt->dn_m, but could be something else now) if
  464                  * it has not consumed it.
  465                  */
  466                 if (pkt->dn_dir == DN_TO_BDG_FWD) {
  467                     m = bdg_forward_ptr(m, eh, pkt->ifp);
  468                     if (m)
  469                         m_freem(m);
  470                 } else
  471                     ether_demux(NULL, eh, m); /* which consumes the mbuf */
  472             }
  473             break ;
  474         case DN_TO_ETH_OUT:
  475             ether_output_frame(pkt->ifp, (struct mbuf *)pkt);
  476             break;
  477 
  478         default:
  479             printf("dummynet: bad switch %d!\n", pkt->dn_dir);
  480             m_freem(pkt->dn_m);
  481             break ;
  482         }
  483         free(pkt, M_DUMMYNET);
  484     }
  485     /* if there are leftover packets, put into the heap for next event */
  486     if ( (pkt = pipe->head) )
  487          heap_insert(&extract_heap, pkt->output_time, pipe ) ;
  488     /* XXX should check errors on heap_insert, by draining the
  489      * whole pipe p and hoping in the future we are more successful
  490      */
  491 }
  492 
  493 /*
  494  * the following macro computes how many ticks we have to wait
  495  * before being able to transmit a packet. The credit is taken from
  496  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
  497  */
  498 #define SET_TICKS(pkt, q, p)    \
  499     (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
  500             p->bandwidth ;
  501 
  502 /*
  503  * extract pkt from queue, compute output time (could be now)
  504  * and put into delay line (p_queue)
  505  */
  506 static void
  507 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
  508         struct dn_pipe *p, int len)
  509 {
  510     q->head = DN_NEXT(pkt) ;
  511     q->len-- ;
  512     q->len_bytes -= len ;
  513 
  514     pkt->output_time = curr_time + p->delay ;
  515 
  516     if (p->head == NULL)
  517         p->head = pkt;
  518     else
  519         DN_NEXT(p->tail) = pkt;
  520     p->tail = pkt;
  521     DN_NEXT(p->tail) = NULL;
  522 }
  523 
  524 /*
  525  * ready_event() is invoked every time the queue must enter the
  526  * scheduler, either because the first packet arrives, or because
  527  * a previously scheduled event fired.
  528  * On invokation, drain as many pkts as possible (could be 0) and then
  529  * if there are leftover packets reinsert the pkt in the scheduler.
  530  */
  531 static void
  532 ready_event(struct dn_flow_queue *q)
  533 {
  534     struct dn_pkt *pkt;
  535     struct dn_pipe *p = q->fs->pipe ;
  536     int p_was_empty ;
  537 
  538     if (p == NULL) {
  539         printf("dummynet: ready_event- pipe is gone\n");
  540         return ;
  541     }
  542     p_was_empty = (p->head == NULL) ;
  543 
  544     /*
  545      * schedule fixed-rate queues linked to this pipe:
  546      * Account for the bw accumulated since last scheduling, then
  547      * drain as many pkts as allowed by q->numbytes and move to
  548      * the delay line (in p) computing output time.
  549      * bandwidth==0 (no limit) means we can drain the whole queue,
  550      * setting len_scaled = 0 does the job.
  551      */
  552     q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
  553     while ( (pkt = q->head) != NULL ) {
  554         int len = pkt->dn_m->m_pkthdr.len;
  555         int len_scaled = p->bandwidth ? len*8*hz : 0 ;
  556         if (len_scaled > q->numbytes )
  557             break ;
  558         q->numbytes -= len_scaled ;
  559         move_pkt(pkt, q, p, len);
  560     }
  561     /*
  562      * If we have more packets queued, schedule next ready event
  563      * (can only occur when bandwidth != 0, otherwise we would have
  564      * flushed the whole queue in the previous loop).
  565      * To this purpose we record the current time and compute how many
  566      * ticks to go for the finish time of the packet.
  567      */
  568     if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
  569         dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
  570         q->sched_time = curr_time ;
  571         heap_insert(&ready_heap, curr_time + t, (void *)q );
  572         /* XXX should check errors on heap_insert, and drain the whole
  573          * queue on error hoping next time we are luckier.
  574          */
  575     } else {    /* RED needs to know when the queue becomes empty */
  576         q->q_time = curr_time;
  577         q->numbytes = 0;
  578     }
  579     /*
  580      * If the delay line was empty call transmit_event(p) now.
  581      * Otherwise, the scheduler will take care of it.
  582      */
  583     if (p_was_empty)
  584         transmit_event(p);
  585 }
  586 
  587 /*
  588  * Called when we can transmit packets on WF2Q queues. Take pkts out of
  589  * the queues at their start time, and enqueue into the delay line.
  590  * Packets are drained until p->numbytes < 0. As long as
  591  * len_scaled >= p->numbytes, the packet goes into the delay line
  592  * with a deadline p->delay. For the last packet, if p->numbytes<0,
  593  * there is an additional delay.
  594  */
  595 static void
  596 ready_event_wfq(struct dn_pipe *p)
  597 {
  598     int p_was_empty = (p->head == NULL) ;
  599     struct dn_heap *sch = &(p->scheduler_heap);
  600     struct dn_heap *neh = &(p->not_eligible_heap) ;
  601 
  602     if (p->if_name[0] == 0) /* tx clock is simulated */
  603         p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
  604     else { /* tx clock is for real, the ifq must be empty or this is a NOP */
  605         if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
  606             return ;
  607         else {
  608             DEB(printf("dummynet: pipe %d ready from %s --\n",
  609                 p->pipe_nr, p->if_name);)
  610         }
  611     }
  612 
  613     /*
  614      * While we have backlogged traffic AND credit, we need to do
  615      * something on the queue.
  616      */
  617     while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
  618         if (sch->elements > 0) { /* have some eligible pkts to send out */
  619             struct dn_flow_queue *q = sch->p[0].object ;
  620             struct dn_pkt *pkt = q->head;
  621             struct dn_flow_set *fs = q->fs;
  622             u_int64_t len = pkt->dn_m->m_pkthdr.len;
  623             int len_scaled = p->bandwidth ? len*8*hz : 0 ;
  624 
  625             heap_extract(sch, NULL); /* remove queue from heap */
  626             p->numbytes -= len_scaled ;
  627             move_pkt(pkt, q, p, len);
  628 
  629             p->V += (len<<MY_M) / p->sum ; /* update V */
  630             q->S = q->F ; /* update start time */
  631             if (q->len == 0) { /* Flow not backlogged any more */
  632                 fs->backlogged-- ;
  633                 heap_insert(&(p->idle_heap), q->F, q);
  634             } else { /* still backlogged */
  635                 /*
  636                  * update F and position in backlogged queue, then
  637                  * put flow in not_eligible_heap (we will fix this later).
  638                  */
  639                 len = (q->head)->dn_m->m_pkthdr.len;
  640                 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
  641                 if (DN_KEY_LEQ(q->S, p->V))
  642                     heap_insert(neh, q->S, q);
  643                 else
  644                     heap_insert(sch, q->F, q);
  645             }
  646         }
  647         /*
  648          * now compute V = max(V, min(S_i)). Remember that all elements in sch
  649          * have by definition S_i <= V so if sch is not empty, V is surely
  650          * the max and we must not update it. Conversely, if sch is empty
  651          * we only need to look at neh.
  652          */
  653         if (sch->elements == 0 && neh->elements > 0)
  654             p->V = MAX64 ( p->V, neh->p[0].key );
  655         /* move from neh to sch any packets that have become eligible */
  656         while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
  657             struct dn_flow_queue *q = neh->p[0].object ;
  658             heap_extract(neh, NULL);
  659             heap_insert(sch, q->F, q);
  660         }
  661 
  662         if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
  663             p->numbytes = -1 ; /* mark not ready for I/O */
  664             break ;
  665         }
  666     }
  667     if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
  668             && p->idle_heap.elements > 0) {
  669         /*
  670          * no traffic and no events scheduled. We can get rid of idle-heap.
  671          */
  672         int i ;
  673 
  674         for (i = 0 ; i < p->idle_heap.elements ; i++) {
  675             struct dn_flow_queue *q = p->idle_heap.p[i].object ;
  676 
  677             q->F = 0 ;
  678             q->S = q->F + 1 ;
  679         }
  680         p->sum = 0 ;
  681         p->V = 0 ;
  682         p->idle_heap.elements = 0 ;
  683     }
  684     /*
  685      * If we are getting clocks from dummynet (not a real interface) and
  686      * If we are under credit, schedule the next ready event.
  687      * Also fix the delivery time of the last packet.
  688      */
  689     if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
  690         dn_key t=0 ; /* number of ticks i have to wait */
  691 
  692         if (p->bandwidth > 0)
  693             t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
  694         p->tail->output_time += t ;
  695         p->sched_time = curr_time ;
  696         heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
  697         /* XXX should check errors on heap_insert, and drain the whole
  698          * queue on error hoping next time we are luckier.
  699          */
  700     }
  701     /*
  702      * If the delay line was empty call transmit_event(p) now.
  703      * Otherwise, the scheduler will take care of it.
  704      */
  705     if (p_was_empty)
  706         transmit_event(p);
  707 }
  708 
  709 /*
  710  * This is called once per tick, or HZ times per second. It is used to
  711  * increment the current tick counter and schedule expired events.
  712  */
  713 static void
  714 dummynet(void * __unused unused)
  715 {
  716     void *p ; /* generic parameter to handler */
  717     struct dn_heap *h ;
  718     int s ;
  719     struct dn_heap *heaps[3];
  720     int i;
  721     struct dn_pipe *pe ;
  722 
  723     heaps[0] = &ready_heap ;            /* fixed-rate queues */
  724     heaps[1] = &wfq_ready_heap ;        /* wfq queues */
  725     heaps[2] = &extract_heap ;          /* delay line */
  726     s = splimp(); /* see note on top, splnet() is not enough */
  727     curr_time++ ;
  728     for (i=0; i < 3 ; i++) {
  729         h = heaps[i];
  730         while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
  731             DDB(if (h->p[0].key > curr_time)
  732                 printf("dummynet: warning, heap %d is %d ticks late\n",
  733                     i, (int)(curr_time - h->p[0].key));)
  734             p = h->p[0].object ; /* store a copy before heap_extract */
  735             heap_extract(h, NULL); /* need to extract before processing */
  736             if (i == 0)
  737                 ready_event(p) ;
  738             else if (i == 1) {
  739                 struct dn_pipe *pipe = p;
  740                 if (pipe->if_name[0] != '\0')
  741                     printf("dummynet: bad ready_event_wfq for pipe %s\n",
  742                         pipe->if_name);
  743                 else
  744                     ready_event_wfq(p) ;
  745             } else
  746                 transmit_event(p);
  747         }
  748     }
  749     /* sweep pipes trying to expire idle flow_queues */
  750     for (pe = all_pipes; pe ; pe = pe->next )
  751         if (pe->idle_heap.elements > 0 &&
  752                 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
  753             struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
  754 
  755             heap_extract(&(pe->idle_heap), NULL);
  756             q->S = q->F + 1 ; /* mark timestamp as invalid */
  757             pe->sum -= q->fs->weight ;
  758         }
  759     splx(s);
  760     dn_timeout = timeout(dummynet, NULL, 1);
  761 }
  762 
  763 /*
  764  * called by an interface when tx_rdy occurs.
  765  */
  766 int
  767 if_tx_rdy(struct ifnet *ifp)
  768 {
  769     struct dn_pipe *p;
  770 
  771     for (p = all_pipes; p ; p = p->next )
  772         if (p->ifp == ifp)
  773             break ;
  774     if (p == NULL) {
  775         char buf[32];
  776         sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
  777         for (p = all_pipes; p ; p = p->next )
  778             if (!strcmp(p->if_name, buf) ) {
  779                 p->ifp = ifp ;
  780                 DEB(printf("dummynet: ++ tx rdy from %s (now found)\n", buf);)
  781                 break ;
  782             }
  783     }
  784     if (p != NULL) {
  785         DEB(printf("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
  786                 ifp->if_unit, ifp->if_snd.ifq_len);)
  787         p->numbytes = 0 ; /* mark ready for I/O */
  788         ready_event_wfq(p);
  789     }
  790     return 0;
  791 }
  792 
  793 /*
  794  * Unconditionally expire empty queues in case of shortage.
  795  * Returns the number of queues freed.
  796  */
  797 static int
  798 expire_queues(struct dn_flow_set *fs)
  799 {
  800     struct dn_flow_queue *q, *prev ;
  801     int i, initial_elements = fs->rq_elements ;
  802 
  803     if (fs->last_expired == time_second)
  804         return 0 ;
  805     fs->last_expired = time_second ;
  806     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
  807         for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
  808             if (q->head != NULL || q->S != q->F+1) {
  809                 prev = q ;
  810                 q = q->next ;
  811             } else { /* entry is idle, expire it */
  812                 struct dn_flow_queue *old_q = q ;
  813 
  814                 if (prev != NULL)
  815                     prev->next = q = q->next ;
  816                 else
  817                     fs->rq[i] = q = q->next ;
  818                 fs->rq_elements-- ;
  819                 free(old_q, M_DUMMYNET);
  820             }
  821     return initial_elements - fs->rq_elements ;
  822 }
  823 
  824 /*
  825  * If room, create a new queue and put at head of slot i;
  826  * otherwise, create or use the default queue.
  827  */
  828 static struct dn_flow_queue *
  829 create_queue(struct dn_flow_set *fs, int i)
  830 {
  831     struct dn_flow_queue *q ;
  832 
  833     if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
  834             expire_queues(fs) == 0) {
  835         /*
  836          * No way to get room, use or create overflow queue.
  837          */
  838         i = fs->rq_size ;
  839         if ( fs->rq[i] != NULL )
  840             return fs->rq[i] ;
  841     }
  842     q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO);
  843     if (q == NULL) {
  844         printf("dummynet: sorry, cannot allocate queue for new flow\n");
  845         return NULL ;
  846     }
  847     q->fs = fs ;
  848     q->hash_slot = i ;
  849     q->next = fs->rq[i] ;
  850     q->S = q->F + 1;   /* hack - mark timestamp as invalid */
  851     fs->rq[i] = q ;
  852     fs->rq_elements++ ;
  853     return q ;
  854 }
  855 
  856 /*
  857  * Given a flow_set and a pkt in last_pkt, find a matching queue
  858  * after appropriate masking. The queue is moved to front
  859  * so that further searches take less time.
  860  */
  861 static struct dn_flow_queue *
  862 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
  863 {
  864     int i = 0 ; /* we need i and q for new allocations */
  865     struct dn_flow_queue *q, *prev;
  866 
  867     if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
  868         q = fs->rq[0] ;
  869     else {
  870         /* first, do the masking */
  871         id->dst_ip &= fs->flow_mask.dst_ip ;
  872         id->src_ip &= fs->flow_mask.src_ip ;
  873         id->dst_port &= fs->flow_mask.dst_port ;
  874         id->src_port &= fs->flow_mask.src_port ;
  875         id->proto &= fs->flow_mask.proto ;
  876         id->flags = 0 ; /* we don't care about this one */
  877         /* then, hash function */
  878         i = ( (id->dst_ip) & 0xffff ) ^
  879             ( (id->dst_ip >> 15) & 0xffff ) ^
  880             ( (id->src_ip << 1) & 0xffff ) ^
  881             ( (id->src_ip >> 16 ) & 0xffff ) ^
  882             (id->dst_port << 1) ^ (id->src_port) ^
  883             (id->proto );
  884         i = i % fs->rq_size ;
  885         /* finally, scan the current list for a match */
  886         searches++ ;
  887         for (prev=NULL, q = fs->rq[i] ; q ; ) {
  888             search_steps++;
  889             if (id->dst_ip == q->id.dst_ip &&
  890                     id->src_ip == q->id.src_ip &&
  891                     id->dst_port == q->id.dst_port &&
  892                     id->src_port == q->id.src_port &&
  893                     id->proto == q->id.proto &&
  894                     id->flags == q->id.flags)
  895                 break ; /* found */
  896             else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
  897                 /* entry is idle and not in any heap, expire it */
  898                 struct dn_flow_queue *old_q = q ;
  899 
  900                 if (prev != NULL)
  901                     prev->next = q = q->next ;
  902                 else
  903                     fs->rq[i] = q = q->next ;
  904                 fs->rq_elements-- ;
  905                 free(old_q, M_DUMMYNET);
  906                 continue ;
  907             }
  908             prev = q ;
  909             q = q->next ;
  910         }
  911         if (q && prev != NULL) { /* found and not in front */
  912             prev->next = q->next ;
  913             q->next = fs->rq[i] ;
  914             fs->rq[i] = q ;
  915         }
  916     }
  917     if (q == NULL) { /* no match, need to allocate a new entry */
  918         q = create_queue(fs, i);
  919         if (q != NULL)
  920         q->id = *id ;
  921     }
  922     return q ;
  923 }
  924 
  925 static int
  926 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
  927 {
  928     /*
  929      * RED algorithm
  930      *
  931      * RED calculates the average queue size (avg) using a low-pass filter
  932      * with an exponential weighted (w_q) moving average:
  933      *  avg  <-  (1-w_q) * avg + w_q * q_size
  934      * where q_size is the queue length (measured in bytes or * packets).
  935      *
  936      * If q_size == 0, we compute the idle time for the link, and set
  937      *  avg = (1 - w_q)^(idle/s)
  938      * where s is the time needed for transmitting a medium-sized packet.
  939      *
  940      * Now, if avg < min_th the packet is enqueued.
  941      * If avg > max_th the packet is dropped. Otherwise, the packet is
  942      * dropped with probability P function of avg.
  943      *
  944      */
  945 
  946     int64_t p_b = 0;
  947     /* queue in bytes or packets ? */
  948     u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
  949 
  950     DEB(printf("\ndummynet: %d q: %2u ", (int) curr_time, q_size);)
  951 
  952     /* average queue size estimation */
  953     if (q_size != 0) {
  954         /*
  955          * queue is not empty, avg <- avg + (q_size - avg) * w_q
  956          */
  957         int diff = SCALE(q_size) - q->avg;
  958         int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
  959 
  960         q->avg += (int) v;
  961     } else {
  962         /*
  963          * queue is empty, find for how long the queue has been
  964          * empty and use a lookup table for computing
  965          * (1 - * w_q)^(idle_time/s) where s is the time to send a
  966          * (small) packet.
  967          * XXX check wraps...
  968          */
  969         if (q->avg) {
  970             u_int t = (curr_time - q->q_time) / fs->lookup_step;
  971 
  972             q->avg = (t < fs->lookup_depth) ?
  973                     SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
  974         }
  975     }
  976     DEB(printf("dummynet: avg: %u ", SCALE_VAL(q->avg));)
  977 
  978     /* should i drop ? */
  979 
  980     if (q->avg < fs->min_th) {
  981         q->count = -1;
  982         return 0; /* accept packet ; */
  983     }
  984     if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
  985         if (fs->flags_fs & DN_IS_GENTLE_RED) {
  986             /*
  987              * According to Gentle-RED, if avg is greater than max_th the
  988              * packet is dropped with a probability
  989              *  p_b = c_3 * avg - c_4
  990              * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
  991              */
  992             p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
  993         } else {
  994             q->count = -1;
  995             DEB(printf("dummynet: - drop"););
  996             return 1 ;
  997         }
  998     } else if (q->avg > fs->min_th) {
  999         /*
 1000          * we compute p_b using the linear dropping function p_b = c_1 *
 1001          * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
 1002          * max_p * min_th / (max_th - min_th)
 1003          */
 1004         p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
 1005     }
 1006     if (fs->flags_fs & DN_QSIZE_IS_BYTES)
 1007         p_b = (p_b * len) / fs->max_pkt_size;
 1008     if (++q->count == 0)
 1009         q->random = random() & 0xffff;
 1010     else {
 1011         /*
 1012          * q->count counts packets arrived since last drop, so a greater
 1013          * value of q->count means a greater packet drop probability.
 1014          */
 1015         if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
 1016             q->count = 0;
 1017             DEB(printf("dummynet: - red drop");)
 1018             /* after a drop we calculate a new random value */
 1019             q->random = random() & 0xffff;
 1020             return 1;    /* drop */
 1021         }
 1022     }
 1023     /* end of RED algorithm */
 1024     return 0 ; /* accept */
 1025 }
 1026 
 1027 static __inline
 1028 struct dn_flow_set *
 1029 locate_flowset(int pipe_nr, struct ip_fw *rule)
 1030 {
 1031 #if IPFW2
 1032     struct dn_flow_set *fs;
 1033     ipfw_insn *cmd = rule->cmd + rule->act_ofs;
 1034 
 1035     if (cmd->opcode == O_LOG)
 1036         cmd += F_LEN(cmd);
 1037 #ifdef __i386__
 1038     fs = ((ipfw_insn_pipe *)cmd)->pipe_ptr;
 1039 #else
 1040     bcopy(& ((ipfw_insn_pipe *)cmd)->pipe_ptr, &fs, sizeof(fs));
 1041 #endif
 1042 
 1043     if (fs != NULL)
 1044         return fs;
 1045 
 1046     if (cmd->opcode == O_QUEUE)
 1047 #else /* !IPFW2 */
 1048     struct dn_flow_set *fs = NULL ;
 1049 
 1050     if ( (rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
 1051 #endif /* !IPFW2 */
 1052         for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
 1053             ;
 1054     else {
 1055         struct dn_pipe *p1;
 1056         for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
 1057             ;
 1058         if (p1 != NULL)
 1059             fs = &(p1->fs) ;
 1060     }
 1061     /* record for the future */
 1062 #if IPFW2
 1063 #ifdef __i386__
 1064     ((ipfw_insn_pipe *)cmd)->pipe_ptr = fs;
 1065 #else
 1066     bcopy(&fs, & ((ipfw_insn_pipe *)cmd)->pipe_ptr, sizeof(fs));
 1067 #endif
 1068 #else
 1069     if (fs != NULL)
 1070         rule->pipe_ptr = fs;
 1071 #endif
 1072     return fs ;
 1073 }
 1074 
 1075 /*
 1076  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
 1077  * depending on whether WF2Q or fixed bw is used.
 1078  *
 1079  * pipe_nr      pipe or queue the packet is destined for.
 1080  * dir          where shall we send the packet after dummynet.
 1081  * m            the mbuf with the packet
 1082  * ifp          the 'ifp' parameter from the caller.
 1083  *              NULL in ip_input, destination interface in ip_output,
 1084  *              real_dst in bdg_forward
 1085  * ro           route parameter (only used in ip_output, NULL otherwise)
 1086  * dst          destination address, only used by ip_output
 1087  * rule         matching rule, in case of multiple passes
 1088  * flags        flags from the caller, only used in ip_output
 1089  *
 1090  */
 1091 static int
 1092 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
 1093 {
 1094     struct dn_pkt *pkt;
 1095     struct dn_flow_set *fs;
 1096     struct dn_pipe *pipe ;
 1097     u_int64_t len = m->m_pkthdr.len ;
 1098     struct dn_flow_queue *q = NULL ;
 1099     int s = splimp();
 1100     int is_pipe;
 1101 #if IPFW2
 1102     ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
 1103 
 1104     if (cmd->opcode == O_LOG)
 1105         cmd += F_LEN(cmd);
 1106     is_pipe = (cmd->opcode == O_PIPE);
 1107 #else
 1108     is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
 1109 #endif
 1110 
 1111     pipe_nr &= 0xffff ;
 1112 
 1113     /*
 1114      * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
 1115      */
 1116     fs = locate_flowset(pipe_nr, fwa->rule);
 1117     if (fs == NULL)
 1118         goto dropit ;   /* this queue/pipe does not exist! */
 1119     pipe = fs->pipe ;
 1120     if (pipe == NULL) { /* must be a queue, try find a matching pipe */
 1121         for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
 1122                  pipe = pipe->next)
 1123             ;
 1124         if (pipe != NULL)
 1125             fs->pipe = pipe ;
 1126         else {
 1127             printf("dummynet: no pipe %d for queue %d, drop pkt\n",
 1128                 fs->parent_nr, fs->fs_nr);
 1129             goto dropit ;
 1130         }
 1131     }
 1132     q = find_queue(fs, &(fwa->f_id));
 1133     if ( q == NULL )
 1134         goto dropit ;           /* cannot allocate queue                */
 1135     /*
 1136      * update statistics, then check reasons to drop pkt
 1137      */
 1138     q->tot_bytes += len ;
 1139     q->tot_pkts++ ;
 1140     if ( fs->plr && random() < fs->plr )
 1141         goto dropit ;           /* random pkt drop                      */
 1142     if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
 1143         if (q->len_bytes > fs->qsize)
 1144             goto dropit ;       /* queue size overflow                  */
 1145     } else {
 1146         if (q->len >= fs->qsize)
 1147             goto dropit ;       /* queue count overflow                 */
 1148     }
 1149     if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
 1150         goto dropit ;
 1151 
 1152     /* XXX expensive to zero, see if we can remove it*/
 1153     pkt = (struct dn_pkt *)malloc(sizeof (*pkt), M_DUMMYNET, M_NOWAIT|M_ZERO);
 1154     if ( pkt == NULL )
 1155         goto dropit ;           /* cannot allocate packet header        */
 1156     /* ok, i can handle the pkt now... */
 1157     /* build and enqueue packet + parameters */
 1158     pkt->hdr.mh_type = MT_TAG;
 1159     pkt->hdr.mh_flags = PACKET_TAG_DUMMYNET;
 1160     pkt->rule = fwa->rule ;
 1161     DN_NEXT(pkt) = NULL;
 1162     pkt->dn_m = m;
 1163     pkt->dn_dir = dir ;
 1164 
 1165     pkt->ifp = fwa->oif;
 1166     if (dir == DN_TO_IP_OUT) {
 1167         /*
 1168          * We need to copy *ro because for ICMP pkts (and maybe others)
 1169          * the caller passed a pointer into the stack; dst might also be
 1170          * a pointer into *ro so it needs to be updated.
 1171          */
 1172         pkt->ro = *(fwa->ro);
 1173         if (fwa->ro->ro_rt)
 1174             fwa->ro->ro_rt->rt_refcnt++ ;
 1175         if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
 1176             fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
 1177 
 1178         pkt->dn_dst = fwa->dst;
 1179         pkt->flags = fwa->flags;
 1180     }
 1181     if (q->head == NULL)
 1182         q->head = pkt;
 1183     else
 1184         DN_NEXT(q->tail) = pkt;
 1185     q->tail = pkt;
 1186     q->len++;
 1187     q->len_bytes += len ;
 1188 
 1189     if ( q->head != pkt )       /* flow was not idle, we are done */
 1190         goto done;
 1191     /*
 1192      * If we reach this point the flow was previously idle, so we need
 1193      * to schedule it. This involves different actions for fixed-rate or
 1194      * WF2Q queues.
 1195      */
 1196     if (is_pipe) {
 1197         /*
 1198          * Fixed-rate queue: just insert into the ready_heap.
 1199          */
 1200         dn_key t = 0 ;
 1201         if (pipe->bandwidth)
 1202             t = SET_TICKS(pkt, q, pipe);
 1203         q->sched_time = curr_time ;
 1204         if (t == 0)     /* must process it now */
 1205             ready_event( q );
 1206         else
 1207             heap_insert(&ready_heap, curr_time + t , q );
 1208     } else {
 1209         /*
 1210          * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
 1211          * set S to the virtual time V for the controlling pipe, and update
 1212          * the sum of weights for the pipe; otherwise, remove flow from
 1213          * idle_heap and set S to max(F,V).
 1214          * Second, compute finish time F = S + len/weight.
 1215          * Third, if pipe was idle, update V=max(S, V).
 1216          * Fourth, count one more backlogged flow.
 1217          */
 1218         if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
 1219             q->S = pipe->V ;
 1220             pipe->sum += fs->weight ; /* add weight of new queue */
 1221         } else {
 1222             heap_extract(&(pipe->idle_heap), q);
 1223             q->S = MAX64(q->F, pipe->V ) ;
 1224         }
 1225         q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
 1226 
 1227         if (pipe->not_eligible_heap.elements == 0 &&
 1228                 pipe->scheduler_heap.elements == 0)
 1229             pipe->V = MAX64 ( q->S, pipe->V );
 1230         fs->backlogged++ ;
 1231         /*
 1232          * Look at eligibility. A flow is not eligibile if S>V (when
 1233          * this happens, it means that there is some other flow already
 1234          * scheduled for the same pipe, so the scheduler_heap cannot be
 1235          * empty). If the flow is not eligible we just store it in the
 1236          * not_eligible_heap. Otherwise, we store in the scheduler_heap
 1237          * and possibly invoke ready_event_wfq() right now if there is
 1238          * leftover credit.
 1239          * Note that for all flows in scheduler_heap (SCH), S_i <= V,
 1240          * and for all flows in not_eligible_heap (NEH), S_i > V .
 1241          * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
 1242          * we only need to look into NEH.
 1243          */
 1244         if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
 1245             if (pipe->scheduler_heap.elements == 0)
 1246                 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
 1247             heap_insert(&(pipe->not_eligible_heap), q->S, q);
 1248         } else {
 1249             heap_insert(&(pipe->scheduler_heap), q->F, q);
 1250             if (pipe->numbytes >= 0) { /* pipe is idle */
 1251                 if (pipe->scheduler_heap.elements != 1)
 1252                     printf("dummynet: OUCH! pipe should have been idle!\n");
 1253                 DEB(printf("dummynet: waking up pipe %d at %d\n",
 1254                         pipe->pipe_nr, (int)(q->F >> MY_M)); )
 1255                 pipe->sched_time = curr_time ;
 1256                 ready_event_wfq(pipe);
 1257             }
 1258         }
 1259     }
 1260 done:
 1261     splx(s);
 1262     return 0;
 1263 
 1264 dropit:
 1265     splx(s);
 1266     if (q)
 1267         q->drops++ ;
 1268     m_freem(m);
 1269     return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
 1270 }
 1271 
 1272 /*
 1273  * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
 1274  * Doing this would probably save us the initial bzero of dn_pkt
 1275  */
 1276 #define DN_FREE_PKT(pkt)        {               \
 1277         struct dn_pkt *n = pkt ;                \
 1278         rt_unref ( n->ro.ro_rt ) ;              \
 1279         m_freem(n->dn_m);                       \
 1280         pkt = DN_NEXT(n) ;                      \
 1281         free(n, M_DUMMYNET) ;   }
 1282 
 1283 /*
 1284  * Dispose all packets and flow_queues on a flow_set.
 1285  * If all=1, also remove red lookup table and other storage,
 1286  * including the descriptor itself.
 1287  * For the one in dn_pipe MUST also cleanup ready_heap...
 1288  */
 1289 static void
 1290 purge_flow_set(struct dn_flow_set *fs, int all)
 1291 {
 1292     struct dn_pkt *pkt ;
 1293     struct dn_flow_queue *q, *qn ;
 1294     int i ;
 1295 
 1296     for (i = 0 ; i <= fs->rq_size ; i++ ) {
 1297         for (q = fs->rq[i] ; q ; q = qn ) {
 1298             for (pkt = q->head ; pkt ; )
 1299                 DN_FREE_PKT(pkt) ;
 1300             qn = q->next ;
 1301             free(q, M_DUMMYNET);
 1302         }
 1303         fs->rq[i] = NULL ;
 1304     }
 1305     fs->rq_elements = 0 ;
 1306     if (all) {
 1307         /* RED - free lookup table */
 1308         if (fs->w_q_lookup)
 1309             free(fs->w_q_lookup, M_DUMMYNET);
 1310         if (fs->rq)
 1311             free(fs->rq, M_DUMMYNET);
 1312         /* if this fs is not part of a pipe, free it */
 1313         if (fs->pipe && fs != &(fs->pipe->fs) )
 1314             free(fs, M_DUMMYNET);
 1315     }
 1316 }
 1317 
 1318 /*
 1319  * Dispose all packets queued on a pipe (not a flow_set).
 1320  * Also free all resources associated to a pipe, which is about
 1321  * to be deleted.
 1322  */
 1323 static void
 1324 purge_pipe(struct dn_pipe *pipe)
 1325 {
 1326     struct dn_pkt *pkt ;
 1327 
 1328     purge_flow_set( &(pipe->fs), 1 );
 1329 
 1330     for (pkt = pipe->head ; pkt ; )
 1331         DN_FREE_PKT(pkt) ;
 1332 
 1333     heap_free( &(pipe->scheduler_heap) );
 1334     heap_free( &(pipe->not_eligible_heap) );
 1335     heap_free( &(pipe->idle_heap) );
 1336 }
 1337 
 1338 /*
 1339  * Delete all pipes and heaps returning memory. Must also
 1340  * remove references from all ipfw rules to all pipes.
 1341  */
 1342 static void
 1343 dummynet_flush()
 1344 {
 1345     struct dn_pipe *curr_p, *p ;
 1346     struct dn_flow_set *fs, *curr_fs;
 1347     int s ;
 1348 
 1349     s = splimp() ;
 1350 
 1351     /* remove all references to pipes ...*/
 1352     flush_pipe_ptrs(NULL);
 1353     /* prevent future matches... */
 1354     p = all_pipes ;
 1355     all_pipes = NULL ;
 1356     fs = all_flow_sets ;
 1357     all_flow_sets = NULL ;
 1358     /* and free heaps so we don't have unwanted events */
 1359     heap_free(&ready_heap);
 1360     heap_free(&wfq_ready_heap);
 1361     heap_free(&extract_heap);
 1362     splx(s) ;
 1363     /*
 1364      * Now purge all queued pkts and delete all pipes
 1365      */
 1366     /* scan and purge all flow_sets. */
 1367     for ( ; fs ; ) {
 1368         curr_fs = fs ;
 1369         fs = fs->next ;
 1370         purge_flow_set(curr_fs, 1);
 1371     }
 1372     for ( ; p ; ) {
 1373         purge_pipe(p);
 1374         curr_p = p ;
 1375         p = p->next ;
 1376         free(curr_p, M_DUMMYNET);
 1377     }
 1378 }
 1379 
 1380 
 1381 extern struct ip_fw *ip_fw_default_rule ;
 1382 static void
 1383 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
 1384 {
 1385     int i ;
 1386     struct dn_flow_queue *q ;
 1387     struct dn_pkt *pkt ;
 1388 
 1389     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
 1390         for (q = fs->rq[i] ; q ; q = q->next )
 1391             for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
 1392                 if (pkt->rule == r)
 1393                     pkt->rule = ip_fw_default_rule ;
 1394 }
 1395 /*
 1396  * when a firewall rule is deleted, scan all queues and remove the flow-id
 1397  * from packets matching this rule.
 1398  */
 1399 void
 1400 dn_rule_delete(void *r)
 1401 {
 1402     struct dn_pipe *p ;
 1403     struct dn_pkt *pkt ;
 1404     struct dn_flow_set *fs ;
 1405 
 1406     /*
 1407      * If the rule references a queue (dn_flow_set), then scan
 1408      * the flow set, otherwise scan pipes. Should do either, but doing
 1409      * both does not harm.
 1410      */
 1411     for ( fs = all_flow_sets ; fs ; fs = fs->next )
 1412         dn_rule_delete_fs(fs, r);
 1413     for ( p = all_pipes ; p ; p = p->next ) {
 1414         fs = &(p->fs) ;
 1415         dn_rule_delete_fs(fs, r);
 1416         for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
 1417             if (pkt->rule == r)
 1418                 pkt->rule = ip_fw_default_rule ;
 1419     }
 1420 }
 1421 
 1422 /*
 1423  * setup RED parameters
 1424  */
 1425 static int
 1426 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
 1427 {
 1428     int i;
 1429 
 1430     x->w_q = p->w_q;
 1431     x->min_th = SCALE(p->min_th);
 1432     x->max_th = SCALE(p->max_th);
 1433     x->max_p = p->max_p;
 1434 
 1435     x->c_1 = p->max_p / (p->max_th - p->min_th);
 1436     x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
 1437     if (x->flags_fs & DN_IS_GENTLE_RED) {
 1438         x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
 1439         x->c_4 = (SCALE(1) - 2 * p->max_p);
 1440     }
 1441 
 1442     /* if the lookup table already exist, free and create it again */
 1443     if (x->w_q_lookup) {
 1444         free(x->w_q_lookup, M_DUMMYNET);
 1445         x->w_q_lookup = NULL ;
 1446     }
 1447     if (red_lookup_depth == 0) {
 1448         printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
 1449         free(x, M_DUMMYNET);
 1450         return EINVAL;
 1451     }
 1452     x->lookup_depth = red_lookup_depth;
 1453     x->w_q_lookup = (u_int *) malloc(x->lookup_depth * sizeof(int),
 1454             M_DUMMYNET, M_NOWAIT);
 1455     if (x->w_q_lookup == NULL) {
 1456         printf("dummynet: sorry, cannot allocate red lookup table\n");
 1457         free(x, M_DUMMYNET);
 1458         return ENOSPC;
 1459     }
 1460 
 1461     /* fill the lookup table with (1 - w_q)^x */
 1462     x->lookup_step = p->lookup_step ;
 1463     x->lookup_weight = p->lookup_weight ;
 1464     x->w_q_lookup[0] = SCALE(1) - x->w_q;
 1465     for (i = 1; i < x->lookup_depth; i++)
 1466         x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
 1467     if (red_avg_pkt_size < 1)
 1468         red_avg_pkt_size = 512 ;
 1469     x->avg_pkt_size = red_avg_pkt_size ;
 1470     if (red_max_pkt_size < 1)
 1471         red_max_pkt_size = 1500 ;
 1472     x->max_pkt_size = red_max_pkt_size ;
 1473     return 0 ;
 1474 }
 1475 
 1476 static int
 1477 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
 1478 {
 1479     if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
 1480         int l = pfs->rq_size;
 1481 
 1482         if (l == 0)
 1483             l = dn_hash_size;
 1484         if (l < 4)
 1485             l = 4;
 1486         else if (l > DN_MAX_HASH_SIZE)
 1487             l = DN_MAX_HASH_SIZE;
 1488         x->rq_size = l;
 1489     } else                  /* one is enough for null mask */
 1490         x->rq_size = 1;
 1491     x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
 1492             M_DUMMYNET, M_NOWAIT | M_ZERO);
 1493     if (x->rq == NULL) {
 1494         printf("dummynet: sorry, cannot allocate queue\n");
 1495         return ENOSPC;
 1496     }
 1497     x->rq_elements = 0;
 1498     return 0 ;
 1499 }
 1500 
 1501 static void
 1502 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
 1503 {
 1504     x->flags_fs = src->flags_fs;
 1505     x->qsize = src->qsize;
 1506     x->plr = src->plr;
 1507     x->flow_mask = src->flow_mask;
 1508     if (x->flags_fs & DN_QSIZE_IS_BYTES) {
 1509         if (x->qsize > 1024*1024)
 1510             x->qsize = 1024*1024 ;
 1511     } else {
 1512         if (x->qsize == 0)
 1513             x->qsize = 50 ;
 1514         if (x->qsize > 100)
 1515             x->qsize = 50 ;
 1516     }
 1517     /* configuring RED */
 1518     if ( x->flags_fs & DN_IS_RED )
 1519         config_red(src, x) ;    /* XXX should check errors */
 1520 }
 1521 
 1522 /*
 1523  * setup pipe or queue parameters.
 1524  */
 1525 
 1526 static int
 1527 config_pipe(struct dn_pipe *p)
 1528 {
 1529     int i, r, s;
 1530     struct dn_flow_set *pfs = &(p->fs);
 1531     struct dn_flow_queue *q;
 1532 
 1533     /*
 1534      * The config program passes parameters as follows:
 1535      * bw = bits/second (0 means no limits),
 1536      * delay = ms, must be translated into ticks.
 1537      * qsize = slots/bytes
 1538      */
 1539     p->delay = ( p->delay * hz ) / 1000 ;
 1540     /* We need either a pipe number or a flow_set number */
 1541     if (p->pipe_nr == 0 && pfs->fs_nr == 0)
 1542         return EINVAL ;
 1543     if (p->pipe_nr != 0 && pfs->fs_nr != 0)
 1544         return EINVAL ;
 1545     if (p->pipe_nr != 0) { /* this is a pipe */
 1546         struct dn_pipe *x, *a, *b;
 1547         /* locate pipe */
 1548         for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
 1549                  a = b , b = b->next) ;
 1550 
 1551         if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
 1552             x = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_NOWAIT | M_ZERO);
 1553             if (x == NULL) {
 1554                 printf("dummynet: no memory for new pipe\n");
 1555                 return ENOSPC;
 1556             }
 1557             x->pipe_nr = p->pipe_nr;
 1558             x->fs.pipe = x ;
 1559             /* idle_heap is the only one from which we extract from the middle.
 1560              */
 1561             x->idle_heap.size = x->idle_heap.elements = 0 ;
 1562             x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
 1563         } else {
 1564             x = b;
 1565             s = splimp();
 1566             /* Flush accumulated credit for all queues */
 1567             for (i = 0; i <= x->fs.rq_size; i++)
 1568                 for (q = x->fs.rq[i]; q; q = q->next)
 1569                     q->numbytes = 0;
 1570             splx(s);
 1571         }
 1572 
 1573         s = splimp();
 1574         x->bandwidth = p->bandwidth ;
 1575         x->numbytes = 0; /* just in case... */
 1576         bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
 1577         x->ifp = NULL ; /* reset interface ptr */
 1578         x->delay = p->delay ;
 1579         set_fs_parms(&(x->fs), pfs);
 1580 
 1581 
 1582         if ( x->fs.rq == NULL ) { /* a new pipe */
 1583             r = alloc_hash(&(x->fs), pfs) ;
 1584             if (r) {
 1585                 free(x, M_DUMMYNET);
 1586                 splx(s);
 1587                 return r ;
 1588             }
 1589             x->next = b ;
 1590             if (a == NULL)
 1591                 all_pipes = x ;
 1592             else
 1593                 a->next = x ;
 1594         }
 1595         splx(s);
 1596     } else { /* config queue */
 1597         struct dn_flow_set *x, *a, *b ;
 1598 
 1599         /* locate flow_set */
 1600         for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
 1601                  a = b , b = b->next) ;
 1602 
 1603         if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
 1604             if (pfs->parent_nr == 0)    /* need link to a pipe */
 1605                 return EINVAL ;
 1606             x = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, M_NOWAIT|M_ZERO);
 1607             if (x == NULL) {
 1608                 printf("dummynet: no memory for new flow_set\n");
 1609                 return ENOSPC;
 1610             }
 1611             x->fs_nr = pfs->fs_nr;
 1612             x->parent_nr = pfs->parent_nr;
 1613             x->weight = pfs->weight ;
 1614             if (x->weight == 0)
 1615                 x->weight = 1 ;
 1616             else if (x->weight > 100)
 1617                 x->weight = 100 ;
 1618         } else {
 1619             /* Change parent pipe not allowed; must delete and recreate */
 1620             if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
 1621                 return EINVAL ;
 1622             x = b;
 1623         }
 1624         s = splimp();
 1625         set_fs_parms(x, pfs);
 1626 
 1627         if ( x->rq == NULL ) { /* a new flow_set */
 1628             r = alloc_hash(x, pfs) ;
 1629             if (r) {
 1630                 free(x, M_DUMMYNET);
 1631                 splx(s);
 1632                 return r ;
 1633             }
 1634             x->next = b;
 1635             if (a == NULL)
 1636                 all_flow_sets = x;
 1637             else
 1638                 a->next = x;
 1639         }
 1640         splx(s);
 1641     }
 1642     return 0 ;
 1643 }
 1644 
 1645 /*
 1646  * Helper function to remove from a heap queues which are linked to
 1647  * a flow_set about to be deleted.
 1648  */
 1649 static void
 1650 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
 1651 {
 1652     int i = 0, found = 0 ;
 1653     for (; i < h->elements ;)
 1654         if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
 1655             h->elements-- ;
 1656             h->p[i] = h->p[h->elements] ;
 1657             found++ ;
 1658         } else
 1659             i++ ;
 1660     if (found)
 1661         heapify(h);
 1662 }
 1663 
 1664 /*
 1665  * helper function to remove a pipe from a heap (can be there at most once)
 1666  */
 1667 static void
 1668 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
 1669 {
 1670     if (h->elements > 0) {
 1671         int i = 0 ;
 1672         for (i=0; i < h->elements ; i++ ) {
 1673             if (h->p[i].object == p) { /* found it */
 1674                 h->elements-- ;
 1675                 h->p[i] = h->p[h->elements] ;
 1676                 heapify(h);
 1677                 break ;
 1678             }
 1679         }
 1680     }
 1681 }
 1682 
 1683 /*
 1684  * drain all queues. Called in case of severe mbuf shortage.
 1685  */
 1686 void
 1687 dummynet_drain()
 1688 {
 1689     struct dn_flow_set *fs;
 1690     struct dn_pipe *p;
 1691     struct dn_pkt *pkt;
 1692 
 1693     heap_free(&ready_heap);
 1694     heap_free(&wfq_ready_heap);
 1695     heap_free(&extract_heap);
 1696     /* remove all references to this pipe from flow_sets */
 1697     for (fs = all_flow_sets; fs; fs= fs->next )
 1698         purge_flow_set(fs, 0);
 1699 
 1700     for (p = all_pipes; p; p= p->next ) {
 1701         purge_flow_set(&(p->fs), 0);
 1702         for (pkt = p->head ; pkt ; )
 1703             DN_FREE_PKT(pkt) ;
 1704         p->head = p->tail = NULL ;
 1705     }
 1706 }
 1707 
 1708 /*
 1709  * Fully delete a pipe or a queue, cleaning up associated info.
 1710  */
 1711 static int
 1712 delete_pipe(struct dn_pipe *p)
 1713 {
 1714     int s ;
 1715 
 1716     if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
 1717         return EINVAL ;
 1718     if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
 1719         return EINVAL ;
 1720     if (p->pipe_nr != 0) { /* this is an old-style pipe */
 1721         struct dn_pipe *a, *b;
 1722         struct dn_flow_set *fs;
 1723 
 1724         /* locate pipe */
 1725         for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
 1726                  a = b , b = b->next) ;
 1727         if (b == NULL || (b->pipe_nr != p->pipe_nr) )
 1728             return EINVAL ; /* not found */
 1729 
 1730         s = splimp() ;
 1731 
 1732         /* unlink from list of pipes */
 1733         if (a == NULL)
 1734             all_pipes = b->next ;
 1735         else
 1736             a->next = b->next ;
 1737         /* remove references to this pipe from the ip_fw rules. */
 1738         flush_pipe_ptrs(&(b->fs));
 1739 
 1740         /* remove all references to this pipe from flow_sets */
 1741         for (fs = all_flow_sets; fs; fs= fs->next )
 1742             if (fs->pipe == b) {
 1743                 printf("dummynet: ++ ref to pipe %d from fs %d\n",
 1744                         p->pipe_nr, fs->fs_nr);
 1745                 fs->pipe = NULL ;
 1746                 purge_flow_set(fs, 0);
 1747             }
 1748         fs_remove_from_heap(&ready_heap, &(b->fs));
 1749         purge_pipe(b);  /* remove all data associated to this pipe */
 1750         /* remove reference to here from extract_heap and wfq_ready_heap */
 1751         pipe_remove_from_heap(&extract_heap, b);
 1752         pipe_remove_from_heap(&wfq_ready_heap, b);
 1753         splx(s);
 1754         free(b, M_DUMMYNET);
 1755     } else { /* this is a WF2Q queue (dn_flow_set) */
 1756         struct dn_flow_set *a, *b;
 1757 
 1758         /* locate set */
 1759         for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
 1760                  a = b , b = b->next) ;
 1761         if (b == NULL || (b->fs_nr != p->fs.fs_nr) )
 1762             return EINVAL ; /* not found */
 1763 
 1764         s = splimp() ;
 1765         if (a == NULL)
 1766             all_flow_sets = b->next ;
 1767         else
 1768             a->next = b->next ;
 1769         /* remove references to this flow_set from the ip_fw rules. */
 1770         flush_pipe_ptrs(b);
 1771 
 1772         if (b->pipe != NULL) {
 1773             /* Update total weight on parent pipe and cleanup parent heaps */
 1774             b->pipe->sum -= b->weight * b->backlogged ;
 1775             fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
 1776             fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
 1777 #if 1   /* XXX should i remove from idle_heap as well ? */
 1778             fs_remove_from_heap(&(b->pipe->idle_heap), b);
 1779 #endif
 1780         }
 1781         purge_flow_set(b, 1);
 1782         splx(s);
 1783     }
 1784     return 0 ;
 1785 }
 1786 
 1787 /*
 1788  * helper function used to copy data from kernel in DUMMYNET_GET
 1789  */
 1790 static char *
 1791 dn_copy_set(struct dn_flow_set *set, char *bp)
 1792 {
 1793     int i, copied = 0 ;
 1794     struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
 1795 
 1796     for (i = 0 ; i <= set->rq_size ; i++)
 1797         for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
 1798             if (q->hash_slot != i)
 1799                 printf("dummynet: ++ at %d: wrong slot (have %d, "
 1800                     "should be %d)\n", copied, q->hash_slot, i);
 1801             if (q->fs != set)
 1802                 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
 1803                         i, q->fs, set);
 1804             copied++ ;
 1805             bcopy(q, qp, sizeof( *q ) );
 1806             /* cleanup pointers */
 1807             qp->next = NULL ;
 1808             qp->head = qp->tail = NULL ;
 1809             qp->fs = NULL ;
 1810         }
 1811     if (copied != set->rq_elements)
 1812         printf("dummynet: ++ wrong count, have %d should be %d\n",
 1813             copied, set->rq_elements);
 1814     return (char *)qp ;
 1815 }
 1816 
 1817 static int
 1818 dummynet_get(struct sockopt *sopt)
 1819 {
 1820     char *buf, *bp ; /* bp is the "copy-pointer" */
 1821     size_t size ;
 1822     struct dn_flow_set *set ;
 1823     struct dn_pipe *p ;
 1824     int s, error=0 ;
 1825 
 1826     s = splimp();
 1827     /*
 1828      * compute size of data structures: list of pipes and flow_sets.
 1829      */
 1830     for (p = all_pipes, size = 0 ; p ; p = p->next )
 1831         size += sizeof( *p ) +
 1832             p->fs.rq_elements * sizeof(struct dn_flow_queue);
 1833     for (set = all_flow_sets ; set ; set = set->next )
 1834         size += sizeof ( *set ) +
 1835             set->rq_elements * sizeof(struct dn_flow_queue);
 1836     buf = malloc(size, M_TEMP, M_NOWAIT);
 1837     if (buf == 0) {
 1838         splx(s);
 1839         return ENOBUFS ;
 1840     }
 1841     for (p = all_pipes, bp = buf ; p ; p = p->next ) {
 1842         struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
 1843 
 1844         /*
 1845          * copy pipe descriptor into *bp, convert delay back to ms,
 1846          * then copy the flow_set descriptor(s) one at a time.
 1847          * After each flow_set, copy the queue descriptor it owns.
 1848          */
 1849         bcopy(p, bp, sizeof( *p ) );
 1850         pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
 1851         /*
 1852          * XXX the following is a hack based on ->next being the
 1853          * first field in dn_pipe and dn_flow_set. The correct
 1854          * solution would be to move the dn_flow_set to the beginning
 1855          * of struct dn_pipe.
 1856          */
 1857         pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
 1858         /* clean pointers */
 1859         pipe_bp->head = pipe_bp->tail = NULL ;
 1860         pipe_bp->fs.next = NULL ;
 1861         pipe_bp->fs.pipe = NULL ;
 1862         pipe_bp->fs.rq = NULL ;
 1863 
 1864         bp += sizeof( *p ) ;
 1865         bp = dn_copy_set( &(p->fs), bp );
 1866     }
 1867     for (set = all_flow_sets ; set ; set = set->next ) {
 1868         struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
 1869         bcopy(set, bp, sizeof( *set ) );
 1870         /* XXX same hack as above */
 1871         fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
 1872         fs_bp->pipe = NULL ;
 1873         fs_bp->rq = NULL ;
 1874         bp += sizeof( *set ) ;
 1875         bp = dn_copy_set( set, bp );
 1876     }
 1877     splx(s);
 1878     error = sooptcopyout(sopt, buf, size);
 1879     free(buf, M_TEMP);
 1880     return error ;
 1881 }
 1882 
 1883 /*
 1884  * Handler for the various dummynet socket options (get, flush, config, del)
 1885  */
 1886 static int
 1887 ip_dn_ctl(struct sockopt *sopt)
 1888 {
 1889     int error = 0 ;
 1890     struct dn_pipe *p, tmp_pipe;
 1891 
 1892     /* Disallow sets in really-really secure mode. */
 1893     if (sopt->sopt_dir == SOPT_SET) {
 1894 #if __FreeBSD_version >= 500034
 1895         error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
 1896         if (error)
 1897             return (error);
 1898 #else
 1899         if (securelevel >= 3)
 1900             return (EPERM);
 1901 #endif
 1902     }
 1903 
 1904     switch (sopt->sopt_name) {
 1905     default :
 1906         printf("dummynet: -- unknown option %d", sopt->sopt_name);
 1907         return EINVAL ;
 1908 
 1909     case IP_DUMMYNET_GET :
 1910         error = dummynet_get(sopt);
 1911         break ;
 1912 
 1913     case IP_DUMMYNET_FLUSH :
 1914         dummynet_flush() ;
 1915         break ;
 1916 
 1917     case IP_DUMMYNET_CONFIGURE :
 1918         p = &tmp_pipe ;
 1919         error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
 1920         if (error)
 1921             break ;
 1922         error = config_pipe(p);
 1923         break ;
 1924 
 1925     case IP_DUMMYNET_DEL :      /* remove a pipe or queue */
 1926         p = &tmp_pipe ;
 1927         error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
 1928         if (error)
 1929             break ;
 1930 
 1931         error = delete_pipe(p);
 1932         break ;
 1933     }
 1934     return error ;
 1935 }
 1936 
 1937 static void
 1938 ip_dn_init(void)
 1939 {
 1940     printf("DUMMYNET initialized (011031)\n");
 1941     all_pipes = NULL ;
 1942     all_flow_sets = NULL ;
 1943     ready_heap.size = ready_heap.elements = 0 ;
 1944     ready_heap.offset = 0 ;
 1945 
 1946     wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
 1947     wfq_ready_heap.offset = 0 ;
 1948 
 1949     extract_heap.size = extract_heap.elements = 0 ;
 1950     extract_heap.offset = 0 ;
 1951     ip_dn_ctl_ptr = ip_dn_ctl;
 1952     ip_dn_io_ptr = dummynet_io;
 1953     ip_dn_ruledel_ptr = dn_rule_delete;
 1954     bzero(&dn_timeout, sizeof(struct callout_handle));
 1955     dn_timeout = timeout(dummynet, NULL, 1);
 1956 }
 1957 
 1958 static int
 1959 dummynet_modevent(module_t mod, int type, void *data)
 1960 {
 1961         int s;
 1962         switch (type) {
 1963         case MOD_LOAD:
 1964                 s = splimp();
 1965                 if (DUMMYNET_LOADED) {
 1966                     splx(s);
 1967                     printf("DUMMYNET already loaded\n");
 1968                     return EEXIST ;
 1969                 }
 1970                 ip_dn_init();
 1971                 splx(s);
 1972                 break;
 1973 
 1974         case MOD_UNLOAD:
 1975 #if !defined(KLD_MODULE)
 1976                 printf("dummynet statically compiled, cannot unload\n");
 1977                 return EINVAL ;
 1978 #else
 1979                 s = splimp();
 1980                 untimeout(dummynet, NULL, dn_timeout);
 1981                 dummynet_flush();
 1982                 ip_dn_ctl_ptr = NULL;
 1983                 ip_dn_io_ptr = NULL;
 1984                 ip_dn_ruledel_ptr = NULL;
 1985                 splx(s);
 1986 #endif
 1987                 break ;
 1988         default:
 1989                 break ;
 1990         }
 1991         return 0 ;
 1992 }
 1993 
 1994 static moduledata_t dummynet_mod = {
 1995         "dummynet",
 1996         dummynet_modevent,
 1997         NULL
 1998 };
 1999 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
 2000 MODULE_DEPEND(dummynet, ipfw, 1, 1, 1);
 2001 MODULE_VERSION(dummynet, 1);

Cache object: 053478e90512f7fd10b79cbeb003ab97


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.