The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_dummynet.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
    3  * Portions Copyright (c) 2000 Akamba Corp.
    4  * All rights reserved
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  * $FreeBSD: releng/5.0/sys/netinet/ip_dummynet.c 106935 2002-11-14 23:46:04Z sam $
   28  */
   29 
   30 #define DEB(x)
   31 #define DDB(x)  x
   32 
   33 /*
   34  * This module implements IP dummynet, a bandwidth limiter/delay emulator
   35  * used in conjunction with the ipfw package.
   36  * Description of the data structures used is in ip_dummynet.h
   37  * Here you mainly find the following blocks of code:
   38  *  + variable declarations;
   39  *  + heap management functions;
   40  *  + scheduler and dummynet functions;
   41  *  + configuration and initialization.
   42  *
   43  * NOTA BENE: critical sections are protected by splimp()/splx()
   44  *    pairs. One would think that splnet() is enough as for most of
   45  *    the netinet code, but it is not so because when used with
   46  *    bridging, dummynet is invoked at splimp().
   47  *
   48  * Most important Changes:
   49  *
   50  * 011004: KLDable
   51  * 010124: Fixed WF2Q behaviour
   52  * 010122: Fixed spl protection.
   53  * 000601: WF2Q support
   54  * 000106: large rewrite, use heaps to handle very many pipes.
   55  * 980513:      initial release
   56  *
   57  * include files marked with XXX are probably not needed
   58  */
   59 
   60 #include <sys/param.h>
   61 #include <sys/systm.h>
   62 #include <sys/malloc.h>
   63 #include <sys/mbuf.h>
   64 #include <sys/kernel.h>
   65 #include <sys/module.h>
   66 #include <sys/proc.h>
   67 #include <sys/socket.h>
   68 #include <sys/socketvar.h>
   69 #include <sys/time.h>
   70 #include <sys/sysctl.h>
   71 #include <net/if.h>
   72 #include <net/route.h>
   73 #include <netinet/in.h>
   74 #include <netinet/in_systm.h>
   75 #include <netinet/in_var.h>
   76 #include <netinet/ip.h>
   77 #include <netinet/ip_fw.h>
   78 #include <netinet/ip_dummynet.h>
   79 #include <netinet/ip_var.h>
   80 
   81 #include <netinet/if_ether.h> /* for struct arpcom */
   82 #include <net/bridge.h>
   83 
   84 /*
   85  * We keep a private variable for the simulation time, but we could
   86  * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
   87  */
   88 static dn_key curr_time = 0 ; /* current simulation time */
   89 
   90 static int dn_hash_size = 64 ;  /* default hash size */
   91 
   92 /* statistics on number of queue searches and search steps */
   93 static int searches, search_steps ;
   94 static int pipe_expire = 1 ;   /* expire queue if empty */
   95 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
   96 
   97 static int red_lookup_depth = 256;      /* RED - default lookup table depth */
   98 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
   99 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
  100 
  101 /*
  102  * Three heaps contain queues and pipes that the scheduler handles:
  103  *
  104  * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
  105  *
  106  * wfq_ready_heap contains the pipes associated with WF2Q flows
  107  *
  108  * extract_heap contains pipes associated with delay lines.
  109  *
  110  */
  111 
  112 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
  113 
  114 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
  115 
  116 static int heap_init(struct dn_heap *h, int size) ;
  117 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
  118 static void heap_extract(struct dn_heap *h, void *obj);
  119 
  120 static void transmit_event(struct dn_pipe *pipe);
  121 static void ready_event(struct dn_flow_queue *q);
  122 
  123 static struct dn_pipe *all_pipes = NULL ;       /* list of all pipes */
  124 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
  125 
  126 static struct callout_handle dn_timeout;
  127 
  128 #ifdef SYSCTL_NODE
  129 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
  130                 CTLFLAG_RW, 0, "Dummynet");
  131 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
  132             CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
  133 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
  134             CTLFLAG_RD, &curr_time, 0, "Current tick");
  135 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
  136             CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
  137 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
  138             CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
  139 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
  140             CTLFLAG_RD, &searches, 0, "Number of queue searches");
  141 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
  142             CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
  143 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
  144             CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
  145 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
  146             CTLFLAG_RW, &dn_max_ratio, 0, 
  147         "Max ratio between dynamic queues and buckets");
  148 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
  149         CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
  150 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
  151         CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
  152 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
  153         CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
  154 #endif
  155 
  156 static int config_pipe(struct dn_pipe *p);
  157 static int ip_dn_ctl(struct sockopt *sopt);
  158 
  159 static void rt_unref(struct rtentry *);
  160 static void dummynet(void *);
  161 static void dummynet_flush(void);
  162 void dummynet_drain(void);
  163 static ip_dn_io_t dummynet_io;
  164 static void dn_rule_delete(void *);
  165 
  166 int if_tx_rdy(struct ifnet *ifp);
  167 
  168 static void
  169 rt_unref(struct rtentry *rt)
  170 {
  171     if (rt == NULL)
  172         return ;
  173     if (rt->rt_refcnt <= 0)
  174         printf("-- warning, refcnt now %ld, decreasing\n", rt->rt_refcnt);
  175     RTFREE(rt);
  176 }
  177 
  178 /*
  179  * Heap management functions.
  180  *
  181  * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
  182  * Some macros help finding parent/children so we can optimize them.
  183  *
  184  * heap_init() is called to expand the heap when needed.
  185  * Increment size in blocks of 16 entries.
  186  * XXX failure to allocate a new element is a pretty bad failure
  187  * as we basically stall a whole queue forever!!
  188  * Returns 1 on error, 0 on success
  189  */
  190 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
  191 #define HEAP_LEFT(x) ( 2*(x) + 1 )
  192 #define HEAP_IS_LEFT(x) ( (x) & 1 )
  193 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
  194 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
  195 #define HEAP_INCREMENT  15
  196 
  197 static int
  198 heap_init(struct dn_heap *h, int new_size)
  199 {       
  200     struct dn_heap_entry *p;
  201 
  202     if (h->size >= new_size ) {
  203         printf("heap_init, Bogus call, have %d want %d\n",
  204                 h->size, new_size);
  205         return 0 ;
  206     }   
  207     new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
  208     p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
  209     if (p == NULL) {
  210         printf(" heap_init, resize %d failed\n", new_size );
  211         return 1 ; /* error */
  212     }
  213     if (h->size > 0) {
  214         bcopy(h->p, p, h->size * sizeof(*p) );
  215         free(h->p, M_DUMMYNET);
  216     }
  217     h->p = p ;
  218     h->size = new_size ;
  219     return 0 ;
  220 }
  221 
  222 /*
  223  * Insert element in heap. Normally, p != NULL, we insert p in
  224  * a new position and bubble up. If p == NULL, then the element is
  225  * already in place, and key is the position where to start the
  226  * bubble-up.
  227  * Returns 1 on failure (cannot allocate new heap entry)
  228  *
  229  * If offset > 0 the position (index, int) of the element in the heap is
  230  * also stored in the element itself at the given offset in bytes.
  231  */
  232 #define SET_OFFSET(heap, node) \
  233     if (heap->offset > 0) \
  234             *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
  235 /*
  236  * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
  237  */
  238 #define RESET_OFFSET(heap, node) \
  239     if (heap->offset > 0) \
  240             *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
  241 static int
  242 heap_insert(struct dn_heap *h, dn_key key1, void *p)
  243 {   
  244     int son = h->elements ;
  245 
  246     if (p == NULL)      /* data already there, set starting point */
  247         son = key1 ;
  248     else {              /* insert new element at the end, possibly resize */
  249         son = h->elements ;
  250         if (son == h->size) /* need resize... */
  251             if (heap_init(h, h->elements+1) )
  252                 return 1 ; /* failure... */
  253         h->p[son].object = p ;
  254         h->p[son].key = key1 ;
  255         h->elements++ ;
  256     }
  257     while (son > 0) {                           /* bubble up */
  258         int father = HEAP_FATHER(son) ;
  259         struct dn_heap_entry tmp  ;
  260 
  261         if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
  262             break ; /* found right position */ 
  263         /* son smaller than father, swap and repeat */
  264         HEAP_SWAP(h->p[son], h->p[father], tmp) ;
  265         SET_OFFSET(h, son);
  266         son = father ;
  267     }
  268     SET_OFFSET(h, son);
  269     return 0 ;
  270 }
  271 
  272 /*
  273  * remove top element from heap, or obj if obj != NULL
  274  */
  275 static void
  276 heap_extract(struct dn_heap *h, void *obj)
  277 {  
  278     int child, father, max = h->elements - 1 ;
  279 
  280     if (max < 0) {
  281         printf("warning, extract from empty heap 0x%p\n", h);
  282         return ;
  283     }
  284     father = 0 ; /* default: move up smallest child */
  285     if (obj != NULL) { /* extract specific element, index is at offset */
  286         if (h->offset <= 0)
  287             panic("*** heap_extract from middle not supported on this heap!!!\n");
  288         father = *((int *)((char *)obj + h->offset)) ;
  289         if (father < 0 || father >= h->elements) {
  290             printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
  291                 father, h->elements);
  292             panic("heap_extract");
  293         }
  294     }
  295     RESET_OFFSET(h, father);
  296     child = HEAP_LEFT(father) ;         /* left child */
  297     while (child <= max) {              /* valid entry */
  298         if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
  299             child = child+1 ;           /* take right child, otherwise left */
  300         h->p[father] = h->p[child] ;
  301         SET_OFFSET(h, father);
  302         father = child ;
  303         child = HEAP_LEFT(child) ;   /* left child for next loop */
  304     }   
  305     h->elements-- ;
  306     if (father != max) {
  307         /*
  308          * Fill hole with last entry and bubble up, reusing the insert code
  309          */
  310         h->p[father] = h->p[max] ;
  311         heap_insert(h, father, NULL); /* this one cannot fail */
  312     }
  313 }           
  314 
  315 #if 0
  316 /*
  317  * change object position and update references
  318  * XXX this one is never used!
  319  */
  320 static void
  321 heap_move(struct dn_heap *h, dn_key new_key, void *object)
  322 {
  323     int temp;
  324     int i ;
  325     int max = h->elements-1 ;
  326     struct dn_heap_entry buf ;
  327 
  328     if (h->offset <= 0)
  329         panic("cannot move items on this heap");
  330 
  331     i = *((int *)((char *)object + h->offset));
  332     if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
  333         h->p[i].key = new_key ;
  334         for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
  335                  i = temp ) { /* bubble up */
  336             HEAP_SWAP(h->p[i], h->p[temp], buf) ;
  337             SET_OFFSET(h, i);
  338         }
  339     } else {            /* must move down */
  340         h->p[i].key = new_key ;
  341         while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
  342             if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
  343                 temp++ ; /* select child with min key */
  344             if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
  345                 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
  346                 SET_OFFSET(h, i);
  347             } else
  348                 break ;
  349             i = temp ;
  350         }
  351     }
  352     SET_OFFSET(h, i);
  353 }
  354 #endif /* heap_move, unused */
  355 
  356 /*
  357  * heapify() will reorganize data inside an array to maintain the
  358  * heap property. It is needed when we delete a bunch of entries.
  359  */
  360 static void
  361 heapify(struct dn_heap *h)
  362 {
  363     int i ;
  364 
  365     for (i = 0 ; i < h->elements ; i++ )
  366         heap_insert(h, i , NULL) ;
  367 }
  368 
  369 /*
  370  * cleanup the heap and free data structure
  371  */
  372 static void
  373 heap_free(struct dn_heap *h)
  374 {
  375     if (h->size >0 )
  376         free(h->p, M_DUMMYNET);
  377     bzero(h, sizeof(*h) );
  378 }
  379 
  380 /*
  381  * --- end of heap management functions ---
  382  */
  383 
  384 /*
  385  * Scheduler functions:
  386  *
  387  * transmit_event() is called when the delay-line needs to enter
  388  * the scheduler, either because of existing pkts getting ready,
  389  * or new packets entering the queue. The event handled is the delivery
  390  * time of the packet.
  391  *
  392  * ready_event() does something similar with fixed-rate queues, and the
  393  * event handled is the finish time of the head pkt.
  394  *
  395  * wfq_ready_event() does something similar with WF2Q queues, and the
  396  * event handled is the start time of the head pkt.
  397  *
  398  * In all cases, we make sure that the data structures are consistent
  399  * before passing pkts out, because this might trigger recursive
  400  * invocations of the procedures.
  401  */
  402 static void
  403 transmit_event(struct dn_pipe *pipe)
  404 {
  405     struct dn_pkt *pkt ;
  406 
  407     while ( (pkt = pipe->head) && DN_KEY_LEQ(pkt->output_time, curr_time) ) {
  408         /*
  409          * first unlink, then call procedures, since ip_input() can invoke
  410          * ip_output() and viceversa, thus causing nested calls
  411          */
  412         pipe->head = DN_NEXT(pkt) ;
  413 
  414         /*
  415          * The actual mbuf is preceded by a struct dn_pkt, resembling an mbuf
  416          * (NOT A REAL one, just a small block of malloc'ed memory) with
  417          *     m_type = MT_TAG, m_flags = PACKET_TAG_DUMMYNET
  418          *     dn_m (m_next) = actual mbuf to be processed by ip_input/output
  419          * and some other fields.
  420          * The block IS FREED HERE because it contains parameters passed
  421          * to the called routine.
  422          */
  423         switch (pkt->dn_dir) {
  424         case DN_TO_IP_OUT:
  425             (void)ip_output((struct mbuf *)pkt, NULL, NULL, 0, NULL, NULL);
  426             rt_unref (pkt->ro.ro_rt) ;
  427             break ;
  428 
  429         case DN_TO_IP_IN :
  430             ip_input((struct mbuf *)pkt) ;
  431             break ;
  432 
  433         case DN_TO_BDG_FWD :
  434             if (!BDG_LOADED) {
  435                 /* somebody unloaded the bridge module. Drop pkt */
  436                 printf("-- dropping bridged packet trapped in pipe--\n");
  437                 m_freem(pkt->dn_m);
  438                 break;
  439             } /* fallthrough */
  440         case DN_TO_ETH_DEMUX:
  441             {
  442                 struct mbuf *m = (struct mbuf *)pkt ;
  443 
  444                 if (pkt->dn_m->m_len < ETHER_HDR_LEN &&
  445                     (pkt->dn_m = m_pullup(pkt->dn_m, ETHER_HDR_LEN)) == NULL) {
  446                     printf("dummynet/bridge: pullup fail, dropping pkt\n");
  447                     break;
  448                 }
  449                 /*
  450                  * bdg_forward() wants a pointer to the pseudo-mbuf-header, but
  451                  * on return it will supply the pointer to the actual packet
  452                  * (originally pkt->dn_m, but could be something else now) if
  453                  * it has not consumed it.
  454                  */
  455                 if (pkt->dn_dir == DN_TO_BDG_FWD) {
  456                     /*
  457                      * same as ether_input, make eh be a pointer into the mbuf
  458                      */
  459                     m = bdg_forward_ptr(m, pkt->ifp);
  460                     if (m)
  461                         m_freem(m);
  462                 } else
  463                     ether_demux(NULL, m); /* which consumes the mbuf */
  464             }
  465             break ;
  466         case DN_TO_ETH_OUT:
  467             ether_output_frame(pkt->ifp, (struct mbuf *)pkt);
  468             break;
  469 
  470         default:
  471             printf("dummynet: bad switch %d!\n", pkt->dn_dir);
  472             m_freem(pkt->dn_m);
  473             break ;
  474         }
  475         free(pkt, M_DUMMYNET);
  476     }
  477     /* if there are leftover packets, put into the heap for next event */
  478     if ( (pkt = pipe->head) )
  479          heap_insert(&extract_heap, pkt->output_time, pipe ) ;
  480     /* XXX should check errors on heap_insert, by draining the
  481      * whole pipe p and hoping in the future we are more successful
  482      */
  483 }
  484 
  485 /*
  486  * the following macro computes how many ticks we have to wait
  487  * before being able to transmit a packet. The credit is taken from
  488  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
  489  */
  490 #define SET_TICKS(pkt, q, p)    \
  491     (pkt->dn_m->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
  492             p->bandwidth ;
  493 
  494 /*
  495  * extract pkt from queue, compute output time (could be now)
  496  * and put into delay line (p_queue)
  497  */
  498 static void
  499 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
  500         struct dn_pipe *p, int len)
  501 {
  502     q->head = DN_NEXT(pkt) ;
  503     q->len-- ;
  504     q->len_bytes -= len ;
  505 
  506     pkt->output_time = curr_time + p->delay ;
  507 
  508     if (p->head == NULL)
  509         p->head = pkt;
  510     else
  511         DN_NEXT(p->tail) = pkt;
  512     p->tail = pkt;
  513     DN_NEXT(p->tail) = NULL;
  514 }
  515 
  516 /*
  517  * ready_event() is invoked every time the queue must enter the
  518  * scheduler, either because the first packet arrives, or because
  519  * a previously scheduled event fired.
  520  * On invokation, drain as many pkts as possible (could be 0) and then
  521  * if there are leftover packets reinsert the pkt in the scheduler.
  522  */
  523 static void
  524 ready_event(struct dn_flow_queue *q)
  525 {
  526     struct dn_pkt *pkt;
  527     struct dn_pipe *p = q->fs->pipe ;
  528     int p_was_empty ;
  529 
  530     if (p == NULL) {
  531         printf("ready_event- pipe is gone\n");
  532         return ;
  533     }
  534     p_was_empty = (p->head == NULL) ;
  535 
  536     /*
  537      * schedule fixed-rate queues linked to this pipe:
  538      * Account for the bw accumulated since last scheduling, then
  539      * drain as many pkts as allowed by q->numbytes and move to
  540      * the delay line (in p) computing output time.
  541      * bandwidth==0 (no limit) means we can drain the whole queue,
  542      * setting len_scaled = 0 does the job.
  543      */
  544     q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
  545     while ( (pkt = q->head) != NULL ) {
  546         int len = pkt->dn_m->m_pkthdr.len;
  547         int len_scaled = p->bandwidth ? len*8*hz : 0 ;
  548         if (len_scaled > q->numbytes )
  549             break ;
  550         q->numbytes -= len_scaled ;
  551         move_pkt(pkt, q, p, len);
  552     }
  553     /*
  554      * If we have more packets queued, schedule next ready event
  555      * (can only occur when bandwidth != 0, otherwise we would have
  556      * flushed the whole queue in the previous loop).
  557      * To this purpose we record the current time and compute how many
  558      * ticks to go for the finish time of the packet.
  559      */
  560     if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
  561         dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
  562         q->sched_time = curr_time ;
  563         heap_insert(&ready_heap, curr_time + t, (void *)q );
  564         /* XXX should check errors on heap_insert, and drain the whole
  565          * queue on error hoping next time we are luckier.
  566          */
  567     } else      /* RED needs to know when the queue becomes empty */
  568         q->q_time = curr_time;
  569     /*
  570      * If the delay line was empty call transmit_event(p) now.
  571      * Otherwise, the scheduler will take care of it.
  572      */
  573     if (p_was_empty)
  574         transmit_event(p);
  575 }
  576 
  577 /*
  578  * Called when we can transmit packets on WF2Q queues. Take pkts out of
  579  * the queues at their start time, and enqueue into the delay line.
  580  * Packets are drained until p->numbytes < 0. As long as
  581  * len_scaled >= p->numbytes, the packet goes into the delay line
  582  * with a deadline p->delay. For the last packet, if p->numbytes<0,
  583  * there is an additional delay.
  584  */
  585 static void
  586 ready_event_wfq(struct dn_pipe *p)
  587 {
  588     int p_was_empty = (p->head == NULL) ;
  589     struct dn_heap *sch = &(p->scheduler_heap);
  590     struct dn_heap *neh = &(p->not_eligible_heap) ;
  591 
  592     if (p->if_name[0] == 0) /* tx clock is simulated */
  593         p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
  594     else { /* tx clock is for real, the ifq must be empty or this is a NOP */
  595         if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
  596             return ;
  597         else {
  598             DEB(printf("pipe %d ready from %s --\n",
  599                 p->pipe_nr, p->if_name);)
  600         }
  601     }
  602 
  603     /*
  604      * While we have backlogged traffic AND credit, we need to do
  605      * something on the queue.
  606      */
  607     while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
  608         if (sch->elements > 0) { /* have some eligible pkts to send out */
  609             struct dn_flow_queue *q = sch->p[0].object ;
  610             struct dn_pkt *pkt = q->head;  
  611             struct dn_flow_set *fs = q->fs;   
  612             u_int64_t len = pkt->dn_m->m_pkthdr.len;
  613             int len_scaled = p->bandwidth ? len*8*hz : 0 ;
  614 
  615             heap_extract(sch, NULL); /* remove queue from heap */
  616             p->numbytes -= len_scaled ;
  617             move_pkt(pkt, q, p, len);
  618 
  619             p->V += (len<<MY_M) / p->sum ; /* update V */
  620             q->S = q->F ; /* update start time */
  621             if (q->len == 0) { /* Flow not backlogged any more */
  622                 fs->backlogged-- ;
  623                 heap_insert(&(p->idle_heap), q->F, q);
  624             } else { /* still backlogged */
  625                 /*
  626                  * update F and position in backlogged queue, then
  627                  * put flow in not_eligible_heap (we will fix this later).
  628                  */
  629                 len = (q->head)->dn_m->m_pkthdr.len;
  630                 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
  631                 if (DN_KEY_LEQ(q->S, p->V))
  632                     heap_insert(neh, q->S, q);
  633                 else
  634                     heap_insert(sch, q->F, q);
  635             }
  636         }
  637         /*
  638          * now compute V = max(V, min(S_i)). Remember that all elements in sch
  639          * have by definition S_i <= V so if sch is not empty, V is surely
  640          * the max and we must not update it. Conversely, if sch is empty
  641          * we only need to look at neh.
  642          */
  643         if (sch->elements == 0 && neh->elements > 0)
  644             p->V = MAX64 ( p->V, neh->p[0].key );
  645         /* move from neh to sch any packets that have become eligible */
  646         while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
  647             struct dn_flow_queue *q = neh->p[0].object ;
  648             heap_extract(neh, NULL);
  649             heap_insert(sch, q->F, q);
  650         }
  651 
  652         if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
  653             p->numbytes = -1 ; /* mark not ready for I/O */
  654             break ;
  655         }
  656     }
  657     if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
  658             && p->idle_heap.elements > 0) {
  659         /*
  660          * no traffic and no events scheduled. We can get rid of idle-heap.
  661          */
  662         int i ;
  663 
  664         for (i = 0 ; i < p->idle_heap.elements ; i++) {
  665             struct dn_flow_queue *q = p->idle_heap.p[i].object ;
  666 
  667             q->F = 0 ;
  668             q->S = q->F + 1 ;
  669         }
  670         p->sum = 0 ;
  671         p->V = 0 ;
  672         p->idle_heap.elements = 0 ;
  673     }
  674     /*
  675      * If we are getting clocks from dummynet (not a real interface) and
  676      * If we are under credit, schedule the next ready event.
  677      * Also fix the delivery time of the last packet.
  678      */
  679     if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
  680         dn_key t=0 ; /* number of ticks i have to wait */
  681 
  682         if (p->bandwidth > 0)
  683             t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
  684         p->tail->output_time += t ;
  685         p->sched_time = curr_time ;
  686         heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
  687         /* XXX should check errors on heap_insert, and drain the whole
  688          * queue on error hoping next time we are luckier.
  689          */
  690     }
  691     /*
  692      * If the delay line was empty call transmit_event(p) now.
  693      * Otherwise, the scheduler will take care of it.
  694      */
  695     if (p_was_empty)
  696         transmit_event(p);
  697 }
  698 
  699 /*
  700  * This is called once per tick, or HZ times per second. It is used to
  701  * increment the current tick counter and schedule expired events.
  702  */
  703 static void
  704 dummynet(void * __unused unused)
  705 {
  706     void *p ; /* generic parameter to handler */
  707     struct dn_heap *h ;
  708     int s ;
  709     struct dn_heap *heaps[3];
  710     int i;
  711     struct dn_pipe *pe ;
  712 
  713     heaps[0] = &ready_heap ;            /* fixed-rate queues */
  714     heaps[1] = &wfq_ready_heap ;        /* wfq queues */
  715     heaps[2] = &extract_heap ;          /* delay line */
  716     s = splimp(); /* see note on top, splnet() is not enough */
  717     curr_time++ ;
  718     for (i=0; i < 3 ; i++) {
  719         h = heaps[i];
  720         while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
  721             DDB(if (h->p[0].key > curr_time)
  722                 printf("-- dummynet: warning, heap %d is %d ticks late\n",
  723                     i, (int)(curr_time - h->p[0].key));)
  724             p = h->p[0].object ; /* store a copy before heap_extract */
  725             heap_extract(h, NULL); /* need to extract before processing */
  726             if (i == 0)
  727                 ready_event(p) ;
  728             else if (i == 1) {
  729                 struct dn_pipe *pipe = p;
  730                 if (pipe->if_name[0] != '\0')
  731                     printf("*** bad ready_event_wfq for pipe %s\n",
  732                         pipe->if_name);
  733                 else
  734                     ready_event_wfq(p) ;
  735             } else
  736                 transmit_event(p);
  737         }
  738     }
  739     /* sweep pipes trying to expire idle flow_queues */
  740     for (pe = all_pipes; pe ; pe = pe->next )
  741         if (pe->idle_heap.elements > 0 &&
  742                 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
  743             struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
  744 
  745             heap_extract(&(pe->idle_heap), NULL);
  746             q->S = q->F + 1 ; /* mark timestamp as invalid */
  747             pe->sum -= q->fs->weight ;
  748         }
  749     splx(s);
  750     dn_timeout = timeout(dummynet, NULL, 1);
  751 }
  752  
  753 /*
  754  * called by an interface when tx_rdy occurs.
  755  */
  756 int
  757 if_tx_rdy(struct ifnet *ifp)
  758 {
  759     struct dn_pipe *p;
  760 
  761     for (p = all_pipes; p ; p = p->next )
  762         if (p->ifp == ifp)
  763             break ;
  764     if (p == NULL) {
  765         char buf[32];
  766         sprintf(buf, "%s%d",ifp->if_name, ifp->if_unit);
  767         for (p = all_pipes; p ; p = p->next )
  768             if (!strcmp(p->if_name, buf) ) {
  769                 p->ifp = ifp ;
  770                 DEB(printf("++ tx rdy from %s (now found)\n", buf);)
  771                 break ;
  772             }
  773     }
  774     if (p != NULL) {
  775         DEB(printf("++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
  776                 ifp->if_unit, ifp->if_snd.ifq_len);)
  777         p->numbytes = 0 ; /* mark ready for I/O */
  778         ready_event_wfq(p);
  779     }
  780     return 0;
  781 }
  782 
  783 /*
  784  * Unconditionally expire empty queues in case of shortage.
  785  * Returns the number of queues freed.
  786  */
  787 static int
  788 expire_queues(struct dn_flow_set *fs)
  789 {
  790     struct dn_flow_queue *q, *prev ;
  791     int i, initial_elements = fs->rq_elements ;
  792 
  793     if (fs->last_expired == time_second)
  794         return 0 ;
  795     fs->last_expired = time_second ;
  796     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
  797         for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
  798             if (q->head != NULL || q->S != q->F+1) {
  799                 prev = q ;
  800                 q = q->next ;
  801             } else { /* entry is idle, expire it */
  802                 struct dn_flow_queue *old_q = q ;
  803 
  804                 if (prev != NULL)
  805                     prev->next = q = q->next ;
  806                 else
  807                     fs->rq[i] = q = q->next ;
  808                 fs->rq_elements-- ;
  809                 free(old_q, M_DUMMYNET);
  810             }
  811     return initial_elements - fs->rq_elements ;
  812 }
  813 
  814 /*
  815  * If room, create a new queue and put at head of slot i;
  816  * otherwise, create or use the default queue.
  817  */
  818 static struct dn_flow_queue *
  819 create_queue(struct dn_flow_set *fs, int i)
  820 {
  821     struct dn_flow_queue *q ;
  822 
  823     if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
  824             expire_queues(fs) == 0) {
  825         /*
  826          * No way to get room, use or create overflow queue.
  827          */
  828         i = fs->rq_size ;
  829         if ( fs->rq[i] != NULL )
  830             return fs->rq[i] ;
  831     }
  832     q = malloc(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
  833     if (q == NULL) {
  834         printf("sorry, cannot allocate queue for new flow\n");
  835         return NULL ;
  836     }
  837     q->fs = fs ;
  838     q->hash_slot = i ;
  839     q->next = fs->rq[i] ;
  840     q->S = q->F + 1;   /* hack - mark timestamp as invalid */
  841     fs->rq[i] = q ;
  842     fs->rq_elements++ ;
  843     return q ;
  844 }
  845 
  846 /*
  847  * Given a flow_set and a pkt in last_pkt, find a matching queue
  848  * after appropriate masking. The queue is moved to front
  849  * so that further searches take less time.
  850  */
  851 static struct dn_flow_queue *
  852 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
  853 {
  854     int i = 0 ; /* we need i and q for new allocations */
  855     struct dn_flow_queue *q, *prev;
  856 
  857     if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
  858         q = fs->rq[0] ;
  859     else {
  860         /* first, do the masking */
  861         id->dst_ip &= fs->flow_mask.dst_ip ;
  862         id->src_ip &= fs->flow_mask.src_ip ;
  863         id->dst_port &= fs->flow_mask.dst_port ;
  864         id->src_port &= fs->flow_mask.src_port ;
  865         id->proto &= fs->flow_mask.proto ;
  866         id->flags = 0 ; /* we don't care about this one */
  867         /* then, hash function */
  868         i = ( (id->dst_ip) & 0xffff ) ^
  869             ( (id->dst_ip >> 15) & 0xffff ) ^
  870             ( (id->src_ip << 1) & 0xffff ) ^
  871             ( (id->src_ip >> 16 ) & 0xffff ) ^
  872             (id->dst_port << 1) ^ (id->src_port) ^
  873             (id->proto );
  874         i = i % fs->rq_size ;
  875         /* finally, scan the current list for a match */
  876         searches++ ;
  877         for (prev=NULL, q = fs->rq[i] ; q ; ) {
  878             search_steps++;
  879             if (id->dst_ip == q->id.dst_ip &&
  880                 id->src_ip == q->id.src_ip &&
  881                 id->dst_port == q->id.dst_port &&
  882                 id->src_port == q->id.src_port &&
  883                 id->proto == q->id.proto &&
  884                 id->flags == q->id.flags)
  885                 break ; /* found */
  886             else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
  887                 /* entry is idle and not in any heap, expire it */
  888                 struct dn_flow_queue *old_q = q ;
  889 
  890                 if (prev != NULL)
  891                     prev->next = q = q->next ;
  892                 else
  893                     fs->rq[i] = q = q->next ;
  894                 fs->rq_elements-- ;
  895                 free(old_q, M_DUMMYNET);
  896                 continue ;
  897             }
  898             prev = q ;
  899             q = q->next ;
  900         }
  901         if (q && prev != NULL) { /* found and not in front */
  902             prev->next = q->next ;
  903             q->next = fs->rq[i] ;
  904             fs->rq[i] = q ;
  905         }
  906     }
  907     if (q == NULL) { /* no match, need to allocate a new entry */
  908         q = create_queue(fs, i);
  909         if (q != NULL)
  910         q->id = *id ;
  911     }
  912     return q ;
  913 }
  914 
  915 static int
  916 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
  917 {
  918     /*
  919      * RED algorithm
  920      * 
  921      * RED calculates the average queue size (avg) using a low-pass filter
  922      * with an exponential weighted (w_q) moving average:
  923      *  avg  <-  (1-w_q) * avg + w_q * q_size
  924      * where q_size is the queue length (measured in bytes or * packets).
  925      * 
  926      * If q_size == 0, we compute the idle time for the link, and set
  927      *  avg = (1 - w_q)^(idle/s)
  928      * where s is the time needed for transmitting a medium-sized packet.
  929      * 
  930      * Now, if avg < min_th the packet is enqueued.
  931      * If avg > max_th the packet is dropped. Otherwise, the packet is
  932      * dropped with probability P function of avg.
  933      * 
  934      */
  935 
  936     int64_t p_b = 0;
  937     /* queue in bytes or packets ? */
  938     u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
  939 
  940     DEB(printf("\n%d q: %2u ", (int) curr_time, q_size);)
  941 
  942     /* average queue size estimation */
  943     if (q_size != 0) {
  944         /*
  945          * queue is not empty, avg <- avg + (q_size - avg) * w_q
  946          */
  947         int diff = SCALE(q_size) - q->avg;
  948         int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
  949 
  950         q->avg += (int) v;
  951     } else {
  952         /*
  953          * queue is empty, find for how long the queue has been
  954          * empty and use a lookup table for computing
  955          * (1 - * w_q)^(idle_time/s) where s is the time to send a
  956          * (small) packet.
  957          * XXX check wraps...
  958          */
  959         if (q->avg) {
  960             u_int t = (curr_time - q->q_time) / fs->lookup_step;
  961 
  962             q->avg = (t < fs->lookup_depth) ?
  963                     SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
  964         }
  965     }
  966     DEB(printf("avg: %u ", SCALE_VAL(q->avg));)
  967 
  968     /* should i drop ? */
  969 
  970     if (q->avg < fs->min_th) {
  971         q->count = -1;
  972         return 0; /* accept packet ; */
  973     }
  974     if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
  975         if (fs->flags_fs & DN_IS_GENTLE_RED) {
  976             /*
  977              * According to Gentle-RED, if avg is greater than max_th the
  978              * packet is dropped with a probability
  979              *  p_b = c_3 * avg - c_4
  980              * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
  981              */
  982             p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
  983         } else {
  984             q->count = -1;
  985             printf("- drop");
  986             return 1 ;
  987         }
  988     } else if (q->avg > fs->min_th) {
  989         /*
  990          * we compute p_b using the linear dropping function p_b = c_1 *
  991          * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
  992          * max_p * min_th / (max_th - min_th)
  993          */
  994         p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
  995     }
  996     if (fs->flags_fs & DN_QSIZE_IS_BYTES)
  997         p_b = (p_b * len) / fs->max_pkt_size;
  998     if (++q->count == 0)
  999         q->random = random() & 0xffff;
 1000     else {
 1001         /*
 1002          * q->count counts packets arrived since last drop, so a greater
 1003          * value of q->count means a greater packet drop probability.
 1004          */
 1005         if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
 1006             q->count = 0;
 1007             DEB(printf("- red drop");)
 1008             /* after a drop we calculate a new random value */
 1009             q->random = random() & 0xffff;
 1010             return 1;    /* drop */
 1011         }
 1012     }
 1013     /* end of RED algorithm */
 1014     return 0 ; /* accept */
 1015 }
 1016 
 1017 static __inline
 1018 struct dn_flow_set *
 1019 locate_flowset(int pipe_nr, struct ip_fw *rule)
 1020 {
 1021 #if IPFW2
 1022     struct dn_flow_set *fs;
 1023     ipfw_insn *cmd = rule->cmd + rule->act_ofs;
 1024 
 1025     if (cmd->opcode == O_LOG)
 1026         cmd += F_LEN(cmd);
 1027     fs = ((ipfw_insn_pipe *)cmd)->pipe_ptr;
 1028 
 1029     if (fs != NULL)
 1030         return fs;
 1031 
 1032     if (cmd->opcode == O_QUEUE)
 1033 #else /* !IPFW2 */
 1034     struct dn_flow_set *fs = NULL ;
 1035 
 1036     if ( (rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
 1037 #endif /* !IPFW2 */
 1038         for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
 1039             ;
 1040     else {
 1041         struct dn_pipe *p1;
 1042         for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
 1043             ;
 1044         if (p1 != NULL)
 1045             fs = &(p1->fs) ;
 1046     }
 1047     /* record for the future */
 1048 #if IPFW2
 1049     ((ipfw_insn_pipe *)cmd)->pipe_ptr = fs;
 1050 #else
 1051     if (fs != NULL)
 1052         rule->pipe_ptr = fs;
 1053 #endif
 1054     return fs ;
 1055 }
 1056 
 1057 /*
 1058  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
 1059  * depending on whether WF2Q or fixed bw is used.
 1060  *
 1061  * pipe_nr      pipe or queue the packet is destined for.
 1062  * dir          where shall we send the packet after dummynet.
 1063  * m            the mbuf with the packet
 1064  * ifp          the 'ifp' parameter from the caller.
 1065  *              NULL in ip_input, destination interface in ip_output,
 1066  *              real_dst in bdg_forward
 1067  * ro           route parameter (only used in ip_output, NULL otherwise)
 1068  * dst          destination address, only used by ip_output
 1069  * rule         matching rule, in case of multiple passes
 1070  * flags        flags from the caller, only used in ip_output
 1071  * 
 1072  */
 1073 static int
 1074 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
 1075 {
 1076     struct dn_pkt *pkt;
 1077     struct dn_flow_set *fs;
 1078     struct dn_pipe *pipe ;
 1079     u_int64_t len = m->m_pkthdr.len ;
 1080     struct dn_flow_queue *q = NULL ;
 1081     int s = splimp();
 1082     int is_pipe;
 1083 #if IPFW2
 1084     ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
 1085 
 1086     if (cmd->opcode == O_LOG)
 1087         cmd += F_LEN(cmd);
 1088     is_pipe = (cmd->opcode == O_PIPE);
 1089 #else
 1090     is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
 1091 #endif
 1092 
 1093     pipe_nr &= 0xffff ;
 1094 
 1095     /*
 1096      * this is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
 1097      */
 1098     fs = locate_flowset(pipe_nr, fwa->rule);
 1099     if (fs == NULL)
 1100         goto dropit ;   /* this queue/pipe does not exist! */
 1101     pipe = fs->pipe ;
 1102     if (pipe == NULL) { /* must be a queue, try find a matching pipe */
 1103         for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
 1104                  pipe = pipe->next)
 1105             ;
 1106         if (pipe != NULL)
 1107             fs->pipe = pipe ;
 1108         else {
 1109             printf("No pipe %d for queue %d, drop pkt\n",
 1110                 fs->parent_nr, fs->fs_nr);
 1111             goto dropit ;
 1112         }
 1113     }
 1114     q = find_queue(fs, &(fwa->f_id));
 1115     if ( q == NULL )
 1116         goto dropit ;           /* cannot allocate queue                */
 1117     /*
 1118      * update statistics, then check reasons to drop pkt
 1119      */
 1120     q->tot_bytes += len ;
 1121     q->tot_pkts++ ;
 1122     if ( fs->plr && random() < fs->plr )
 1123         goto dropit ;           /* random pkt drop                      */
 1124     if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
 1125         if (q->len_bytes > fs->qsize)
 1126             goto dropit ;       /* queue size overflow                  */
 1127     } else {
 1128         if (q->len >= fs->qsize)
 1129             goto dropit ;       /* queue count overflow                 */
 1130     }
 1131     if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
 1132         goto dropit ;
 1133 
 1134     /* XXX expensive to zero, see if we can remove it*/
 1135     pkt = (struct dn_pkt *)malloc(sizeof (*pkt), M_DUMMYNET, M_NOWAIT|M_ZERO);
 1136     if ( pkt == NULL )
 1137         goto dropit ;           /* cannot allocate packet header        */
 1138     /* ok, i can handle the pkt now... */
 1139     /* build and enqueue packet + parameters */
 1140     pkt->hdr.mh_type = MT_TAG;
 1141     pkt->hdr.mh_flags = PACKET_TAG_DUMMYNET;
 1142     pkt->rule = fwa->rule ;
 1143     DN_NEXT(pkt) = NULL;
 1144     pkt->dn_m = m;
 1145     pkt->dn_dir = dir ;
 1146 
 1147     pkt->ifp = fwa->oif;
 1148     if (dir == DN_TO_IP_OUT) {
 1149         /*
 1150          * We need to copy *ro because for ICMP pkts (and maybe others)
 1151          * the caller passed a pointer into the stack; dst might also be
 1152          * a pointer into *ro so it needs to be updated.
 1153          */
 1154         pkt->ro = *(fwa->ro);
 1155         if (fwa->ro->ro_rt)
 1156             fwa->ro->ro_rt->rt_refcnt++ ;
 1157         if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
 1158             fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
 1159 
 1160         pkt->dn_dst = fwa->dst;
 1161         pkt->flags = fwa->flags;
 1162     }
 1163     if (q->head == NULL)
 1164         q->head = pkt;
 1165     else
 1166         DN_NEXT(q->tail) = pkt;
 1167     q->tail = pkt;
 1168     q->len++;
 1169     q->len_bytes += len ;
 1170 
 1171     if ( q->head != pkt )       /* flow was not idle, we are done */
 1172         goto done;
 1173     /*
 1174      * If we reach this point the flow was previously idle, so we need
 1175      * to schedule it. This involves different actions for fixed-rate or
 1176      * WF2Q queues.
 1177      */
 1178     if (is_pipe) {
 1179         /*
 1180          * Fixed-rate queue: just insert into the ready_heap.
 1181          */
 1182         dn_key t = 0 ;
 1183         if (pipe->bandwidth) 
 1184             t = SET_TICKS(pkt, q, pipe);
 1185         q->sched_time = curr_time ;
 1186         if (t == 0)     /* must process it now */
 1187             ready_event( q );
 1188         else
 1189             heap_insert(&ready_heap, curr_time + t , q );
 1190     } else {
 1191         /*
 1192          * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
 1193          * set S to the virtual time V for the controlling pipe, and update
 1194          * the sum of weights for the pipe; otherwise, remove flow from
 1195          * idle_heap and set S to max(F,V).
 1196          * Second, compute finish time F = S + len/weight.
 1197          * Third, if pipe was idle, update V=max(S, V).
 1198          * Fourth, count one more backlogged flow.
 1199          */
 1200         if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
 1201             q->S = pipe->V ;
 1202             pipe->sum += fs->weight ; /* add weight of new queue */
 1203         } else {
 1204             heap_extract(&(pipe->idle_heap), q);
 1205             q->S = MAX64(q->F, pipe->V ) ;
 1206         }
 1207         q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
 1208 
 1209         if (pipe->not_eligible_heap.elements == 0 &&
 1210                 pipe->scheduler_heap.elements == 0)
 1211             pipe->V = MAX64 ( q->S, pipe->V );
 1212         fs->backlogged++ ;
 1213         /*
 1214          * Look at eligibility. A flow is not eligibile if S>V (when
 1215          * this happens, it means that there is some other flow already
 1216          * scheduled for the same pipe, so the scheduler_heap cannot be
 1217          * empty). If the flow is not eligible we just store it in the
 1218          * not_eligible_heap. Otherwise, we store in the scheduler_heap
 1219          * and possibly invoke ready_event_wfq() right now if there is
 1220          * leftover credit.
 1221          * Note that for all flows in scheduler_heap (SCH), S_i <= V,
 1222          * and for all flows in not_eligible_heap (NEH), S_i > V .
 1223          * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
 1224          * we only need to look into NEH.
 1225          */
 1226         if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
 1227             if (pipe->scheduler_heap.elements == 0)
 1228                 printf("++ ouch! not eligible but empty scheduler!\n");
 1229             heap_insert(&(pipe->not_eligible_heap), q->S, q);
 1230         } else {
 1231             heap_insert(&(pipe->scheduler_heap), q->F, q);
 1232             if (pipe->numbytes >= 0) { /* pipe is idle */
 1233                 if (pipe->scheduler_heap.elements != 1)
 1234                     printf("*** OUCH! pipe should have been idle!\n");
 1235                 DEB(printf("Waking up pipe %d at %d\n",
 1236                         pipe->pipe_nr, (int)(q->F >> MY_M)); )
 1237                 pipe->sched_time = curr_time ;
 1238                 ready_event_wfq(pipe);
 1239             }
 1240         }
 1241     }
 1242 done:
 1243     splx(s);
 1244     return 0;
 1245 
 1246 dropit:
 1247     splx(s);
 1248     if (q)
 1249         q->drops++ ;
 1250     m_freem(m);
 1251     return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
 1252 }
 1253 
 1254 /*
 1255  * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
 1256  * Doing this would probably save us the initial bzero of dn_pkt
 1257  */
 1258 #define DN_FREE_PKT(pkt)        {               \
 1259         struct dn_pkt *n = pkt ;                \
 1260         rt_unref ( n->ro.ro_rt ) ;              \
 1261         m_freem(n->dn_m);                       \
 1262         pkt = DN_NEXT(n) ;                      \
 1263         free(n, M_DUMMYNET) ;   }
 1264 
 1265 /*
 1266  * Dispose all packets and flow_queues on a flow_set.
 1267  * If all=1, also remove red lookup table and other storage,
 1268  * including the descriptor itself.
 1269  * For the one in dn_pipe MUST also cleanup ready_heap...
 1270  */
 1271 static void
 1272 purge_flow_set(struct dn_flow_set *fs, int all)
 1273 {
 1274     struct dn_pkt *pkt ;
 1275     struct dn_flow_queue *q, *qn ;
 1276     int i ;
 1277 
 1278     for (i = 0 ; i <= fs->rq_size ; i++ ) {
 1279         for (q = fs->rq[i] ; q ; q = qn ) {
 1280             for (pkt = q->head ; pkt ; )
 1281                 DN_FREE_PKT(pkt) ;
 1282             qn = q->next ;
 1283             free(q, M_DUMMYNET);
 1284         }
 1285         fs->rq[i] = NULL ;
 1286     }
 1287     fs->rq_elements = 0 ;
 1288     if (all) {
 1289         /* RED - free lookup table */
 1290         if (fs->w_q_lookup)
 1291             free(fs->w_q_lookup, M_DUMMYNET);
 1292         if (fs->rq)
 1293             free(fs->rq, M_DUMMYNET);
 1294         /* if this fs is not part of a pipe, free it */
 1295         if (fs->pipe && fs != &(fs->pipe->fs) )
 1296             free(fs, M_DUMMYNET);
 1297     }
 1298 }
 1299 
 1300 /*
 1301  * Dispose all packets queued on a pipe (not a flow_set).
 1302  * Also free all resources associated to a pipe, which is about
 1303  * to be deleted.
 1304  */
 1305 static void
 1306 purge_pipe(struct dn_pipe *pipe)
 1307 {
 1308     struct dn_pkt *pkt ;
 1309 
 1310     purge_flow_set( &(pipe->fs), 1 );
 1311 
 1312     for (pkt = pipe->head ; pkt ; )
 1313         DN_FREE_PKT(pkt) ;
 1314 
 1315     heap_free( &(pipe->scheduler_heap) );
 1316     heap_free( &(pipe->not_eligible_heap) );
 1317     heap_free( &(pipe->idle_heap) );
 1318 }
 1319 
 1320 /*
 1321  * Delete all pipes and heaps returning memory. Must also
 1322  * remove references from all ipfw rules to all pipes.
 1323  */
 1324 static void
 1325 dummynet_flush()
 1326 {
 1327     struct dn_pipe *curr_p, *p ;
 1328     struct dn_flow_set *fs, *curr_fs;
 1329     int s ;
 1330 
 1331     s = splimp() ;
 1332 
 1333     /* remove all references to pipes ...*/
 1334     flush_pipe_ptrs(NULL);
 1335     /* prevent future matches... */
 1336     p = all_pipes ;
 1337     all_pipes = NULL ; 
 1338     fs = all_flow_sets ;
 1339     all_flow_sets = NULL ;
 1340     /* and free heaps so we don't have unwanted events */
 1341     heap_free(&ready_heap);
 1342     heap_free(&wfq_ready_heap);
 1343     heap_free(&extract_heap);
 1344     splx(s) ;
 1345     /*
 1346      * Now purge all queued pkts and delete all pipes
 1347      */
 1348     /* scan and purge all flow_sets. */
 1349     for ( ; fs ; ) {
 1350         curr_fs = fs ;
 1351         fs = fs->next ;
 1352         purge_flow_set(curr_fs, 1);
 1353     }
 1354     for ( ; p ; ) {
 1355         purge_pipe(p);
 1356         curr_p = p ;
 1357         p = p->next ;   
 1358         free(curr_p, M_DUMMYNET);
 1359     }
 1360 }
 1361 
 1362 
 1363 extern struct ip_fw *ip_fw_default_rule ;
 1364 static void
 1365 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
 1366 {
 1367     int i ;
 1368     struct dn_flow_queue *q ;
 1369     struct dn_pkt *pkt ;
 1370 
 1371     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
 1372         for (q = fs->rq[i] ; q ; q = q->next )
 1373             for (pkt = q->head ; pkt ; pkt = DN_NEXT(pkt) )
 1374                 if (pkt->rule == r)
 1375                     pkt->rule = ip_fw_default_rule ;
 1376 }
 1377 /*
 1378  * when a firewall rule is deleted, scan all queues and remove the flow-id
 1379  * from packets matching this rule.
 1380  */
 1381 void
 1382 dn_rule_delete(void *r)
 1383 {
 1384     struct dn_pipe *p ;
 1385     struct dn_pkt *pkt ;
 1386     struct dn_flow_set *fs ;
 1387 
 1388     /*
 1389      * If the rule references a queue (dn_flow_set), then scan
 1390      * the flow set, otherwise scan pipes. Should do either, but doing
 1391      * both does not harm.
 1392      */
 1393     for ( fs = all_flow_sets ; fs ; fs = fs->next )
 1394         dn_rule_delete_fs(fs, r);
 1395     for ( p = all_pipes ; p ; p = p->next ) {
 1396         fs = &(p->fs) ;
 1397         dn_rule_delete_fs(fs, r);
 1398         for (pkt = p->head ; pkt ; pkt = DN_NEXT(pkt) )
 1399             if (pkt->rule == r)
 1400                 pkt->rule = ip_fw_default_rule ;
 1401     }
 1402 }
 1403 
 1404 /*
 1405  * setup RED parameters
 1406  */
 1407 static int
 1408 config_red(struct dn_flow_set *p, struct dn_flow_set * x) 
 1409 {
 1410     int i;
 1411 
 1412     x->w_q = p->w_q;
 1413     x->min_th = SCALE(p->min_th);
 1414     x->max_th = SCALE(p->max_th);
 1415     x->max_p = p->max_p;
 1416 
 1417     x->c_1 = p->max_p / (p->max_th - p->min_th);
 1418     x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
 1419     if (x->flags_fs & DN_IS_GENTLE_RED) {
 1420         x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
 1421         x->c_4 = (SCALE(1) - 2 * p->max_p);
 1422     }
 1423 
 1424     /* if the lookup table already exist, free and create it again */
 1425     if (x->w_q_lookup) {
 1426         free(x->w_q_lookup, M_DUMMYNET);
 1427         x->w_q_lookup = NULL ;
 1428     }
 1429     if (red_lookup_depth == 0) {
 1430         printf("\nnet.inet.ip.dummynet.red_lookup_depth must be > 0");
 1431         free(x, M_DUMMYNET);
 1432         return EINVAL;
 1433     }
 1434     x->lookup_depth = red_lookup_depth;
 1435     x->w_q_lookup = (u_int *) malloc(x->lookup_depth * sizeof(int),
 1436             M_DUMMYNET, M_DONTWAIT);
 1437     if (x->w_q_lookup == NULL) {
 1438         printf("sorry, cannot allocate red lookup table\n");
 1439         free(x, M_DUMMYNET);
 1440         return ENOSPC;
 1441     }
 1442 
 1443     /* fill the lookup table with (1 - w_q)^x */
 1444     x->lookup_step = p->lookup_step ;
 1445     x->lookup_weight = p->lookup_weight ;
 1446     x->w_q_lookup[0] = SCALE(1) - x->w_q;
 1447     for (i = 1; i < x->lookup_depth; i++)
 1448         x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
 1449     if (red_avg_pkt_size < 1)
 1450         red_avg_pkt_size = 512 ;
 1451     x->avg_pkt_size = red_avg_pkt_size ;
 1452     if (red_max_pkt_size < 1)
 1453         red_max_pkt_size = 1500 ;
 1454     x->max_pkt_size = red_max_pkt_size ;
 1455     return 0 ;
 1456 }
 1457 
 1458 static int
 1459 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
 1460 {
 1461     if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
 1462         int l = pfs->rq_size;
 1463 
 1464         if (l == 0)
 1465             l = dn_hash_size;
 1466         if (l < 4)
 1467             l = 4;
 1468         else if (l > DN_MAX_HASH_SIZE)
 1469             l = DN_MAX_HASH_SIZE;
 1470         x->rq_size = l;
 1471     } else                  /* one is enough for null mask */
 1472         x->rq_size = 1;
 1473     x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
 1474             M_DUMMYNET, M_DONTWAIT | M_ZERO);
 1475     if (x->rq == NULL) {
 1476         printf("sorry, cannot allocate queue\n");
 1477         return ENOSPC;
 1478     }
 1479     x->rq_elements = 0;
 1480     return 0 ;
 1481 }
 1482 
 1483 static void
 1484 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
 1485 {
 1486     x->flags_fs = src->flags_fs;
 1487     x->qsize = src->qsize;
 1488     x->plr = src->plr;
 1489     x->flow_mask = src->flow_mask;
 1490     if (x->flags_fs & DN_QSIZE_IS_BYTES) {
 1491         if (x->qsize > 1024*1024)
 1492             x->qsize = 1024*1024 ;
 1493     } else {
 1494         if (x->qsize == 0)
 1495             x->qsize = 50 ;
 1496         if (x->qsize > 100)
 1497             x->qsize = 50 ;
 1498     }
 1499     /* configuring RED */
 1500     if ( x->flags_fs & DN_IS_RED )
 1501         config_red(src, x) ;    /* XXX should check errors */
 1502 }
 1503 
 1504 /*
 1505  * setup pipe or queue parameters.
 1506  */
 1507 
 1508 static int 
 1509 config_pipe(struct dn_pipe *p)
 1510 {
 1511     int s ;
 1512     struct dn_flow_set *pfs = &(p->fs);
 1513 
 1514     /*
 1515      * The config program passes parameters as follows:
 1516      * bw = bits/second (0 means no limits),
 1517      * delay = ms, must be translated into ticks.
 1518      * qsize = slots/bytes
 1519      */
 1520     p->delay = ( p->delay * hz ) / 1000 ;
 1521     /* We need either a pipe number or a flow_set number */
 1522     if (p->pipe_nr == 0 && pfs->fs_nr == 0)
 1523         return EINVAL ;
 1524     if (p->pipe_nr != 0 && pfs->fs_nr != 0)
 1525         return EINVAL ;
 1526     if (p->pipe_nr != 0) { /* this is a pipe */
 1527         struct dn_pipe *x, *a, *b;
 1528         /* locate pipe */
 1529         for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
 1530                  a = b , b = b->next) ;
 1531 
 1532         if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
 1533             x = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO);
 1534             if (x == NULL) {
 1535                 printf("ip_dummynet.c: no memory for new pipe\n");
 1536                 return ENOSPC;
 1537             }
 1538             x->pipe_nr = p->pipe_nr;
 1539             x->fs.pipe = x ;
 1540             /* idle_heap is the only one from which we extract from the middle.
 1541              */
 1542             x->idle_heap.size = x->idle_heap.elements = 0 ;
 1543             x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
 1544         } else
 1545             x = b;
 1546 
 1547             x->bandwidth = p->bandwidth ;
 1548         x->numbytes = 0; /* just in case... */
 1549         bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
 1550         x->ifp = NULL ; /* reset interface ptr */
 1551             x->delay = p->delay ;
 1552         set_fs_parms(&(x->fs), pfs);
 1553 
 1554 
 1555         if ( x->fs.rq == NULL ) { /* a new pipe */
 1556             s = alloc_hash(&(x->fs), pfs) ;
 1557             if (s) {
 1558                 free(x, M_DUMMYNET);
 1559                 return s ;
 1560             }
 1561             s = splimp() ;
 1562             x->next = b ;
 1563             if (a == NULL)
 1564                 all_pipes = x ;
 1565             else
 1566                 a->next = x ;
 1567             splx(s);
 1568         }
 1569     } else { /* config queue */
 1570         struct dn_flow_set *x, *a, *b ;
 1571 
 1572         /* locate flow_set */
 1573         for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
 1574                  a = b , b = b->next) ;
 1575 
 1576         if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
 1577             if (pfs->parent_nr == 0)    /* need link to a pipe */
 1578                 return EINVAL ;
 1579             x = malloc(sizeof(struct dn_flow_set),M_DUMMYNET,M_DONTWAIT|M_ZERO);
 1580             if (x == NULL) {
 1581                 printf("ip_dummynet.c: no memory for new flow_set\n");
 1582                 return ENOSPC;
 1583             }
 1584             x->fs_nr = pfs->fs_nr;
 1585             x->parent_nr = pfs->parent_nr;
 1586             x->weight = pfs->weight ;
 1587             if (x->weight == 0)
 1588                 x->weight = 1 ;
 1589             else if (x->weight > 100)
 1590                 x->weight = 100 ;
 1591         } else {
 1592             /* Change parent pipe not allowed; must delete and recreate */
 1593             if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr)
 1594                 return EINVAL ;
 1595             x = b;
 1596         }
 1597         set_fs_parms(x, pfs);
 1598 
 1599         if ( x->rq == NULL ) { /* a new flow_set */
 1600             s = alloc_hash(x, pfs) ;
 1601             if (s) {
 1602                 free(x, M_DUMMYNET);
 1603                 return s ;
 1604             }
 1605             s = splimp() ;
 1606             x->next = b;
 1607             if (a == NULL)
 1608                 all_flow_sets = x;
 1609             else
 1610                 a->next = x;
 1611             splx(s);
 1612         }
 1613     }
 1614     return 0 ;
 1615 }
 1616 
 1617 /*
 1618  * Helper function to remove from a heap queues which are linked to
 1619  * a flow_set about to be deleted.
 1620  */
 1621 static void
 1622 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
 1623 {
 1624     int i = 0, found = 0 ;
 1625     for (; i < h->elements ;)
 1626         if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
 1627             h->elements-- ;
 1628             h->p[i] = h->p[h->elements] ;
 1629             found++ ;
 1630         } else
 1631             i++ ;
 1632     if (found)
 1633         heapify(h);
 1634 }
 1635 
 1636 /*
 1637  * helper function to remove a pipe from a heap (can be there at most once)
 1638  */
 1639 static void
 1640 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
 1641 {
 1642     if (h->elements > 0) {
 1643         int i = 0 ;
 1644         for (i=0; i < h->elements ; i++ ) {
 1645             if (h->p[i].object == p) { /* found it */
 1646                 h->elements-- ;
 1647                 h->p[i] = h->p[h->elements] ;
 1648                 heapify(h);
 1649                 break ;
 1650             }
 1651         }
 1652     }
 1653 }
 1654 
 1655 /*
 1656  * drain all queues. Called in case of severe mbuf shortage.
 1657  */
 1658 void
 1659 dummynet_drain()
 1660 {
 1661     struct dn_flow_set *fs;
 1662     struct dn_pipe *p;
 1663     struct dn_pkt *pkt;
 1664 
 1665     heap_free(&ready_heap);
 1666     heap_free(&wfq_ready_heap);
 1667     heap_free(&extract_heap);
 1668     /* remove all references to this pipe from flow_sets */
 1669     for (fs = all_flow_sets; fs; fs= fs->next )
 1670         purge_flow_set(fs, 0);
 1671 
 1672     for (p = all_pipes; p; p= p->next ) {
 1673         purge_flow_set(&(p->fs), 0);
 1674         for (pkt = p->head ; pkt ; )
 1675             DN_FREE_PKT(pkt) ;
 1676         p->head = p->tail = NULL ;
 1677     }
 1678 }
 1679 
 1680 /*
 1681  * Fully delete a pipe or a queue, cleaning up associated info.
 1682  */
 1683 static int 
 1684 delete_pipe(struct dn_pipe *p)
 1685 {
 1686     int s ;
 1687 
 1688     if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
 1689         return EINVAL ;
 1690     if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
 1691         return EINVAL ;
 1692     if (p->pipe_nr != 0) { /* this is an old-style pipe */
 1693         struct dn_pipe *a, *b;
 1694         struct dn_flow_set *fs;
 1695 
 1696         /* locate pipe */
 1697         for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
 1698                  a = b , b = b->next) ;
 1699         if (b == NULL || (b->pipe_nr != p->pipe_nr) )
 1700             return EINVAL ; /* not found */
 1701 
 1702         s = splimp() ;
 1703 
 1704         /* unlink from list of pipes */
 1705         if (a == NULL)
 1706             all_pipes = b->next ;
 1707         else
 1708             a->next = b->next ;
 1709         /* remove references to this pipe from the ip_fw rules. */
 1710         flush_pipe_ptrs(&(b->fs));
 1711 
 1712         /* remove all references to this pipe from flow_sets */
 1713         for (fs = all_flow_sets; fs; fs= fs->next )
 1714             if (fs->pipe == b) {
 1715                 printf("++ ref to pipe %d from fs %d\n",
 1716                         p->pipe_nr, fs->fs_nr);
 1717                 fs->pipe = NULL ;
 1718                 purge_flow_set(fs, 0);
 1719             }
 1720         fs_remove_from_heap(&ready_heap, &(b->fs));
 1721         purge_pipe(b);  /* remove all data associated to this pipe */
 1722         /* remove reference to here from extract_heap and wfq_ready_heap */
 1723         pipe_remove_from_heap(&extract_heap, b);
 1724         pipe_remove_from_heap(&wfq_ready_heap, b);
 1725         splx(s);
 1726         free(b, M_DUMMYNET);
 1727     } else { /* this is a WF2Q queue (dn_flow_set) */
 1728         struct dn_flow_set *a, *b;
 1729 
 1730         /* locate set */
 1731         for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
 1732                  a = b , b = b->next) ;
 1733         if (b == NULL || (b->fs_nr != p->fs.fs_nr) )
 1734             return EINVAL ; /* not found */
 1735 
 1736         s = splimp() ;
 1737         if (a == NULL)
 1738             all_flow_sets = b->next ;
 1739         else
 1740             a->next = b->next ;
 1741         /* remove references to this flow_set from the ip_fw rules. */
 1742         flush_pipe_ptrs(b);
 1743 
 1744         if (b->pipe != NULL) {
 1745             /* Update total weight on parent pipe and cleanup parent heaps */
 1746             b->pipe->sum -= b->weight * b->backlogged ;
 1747             fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
 1748             fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
 1749 #if 1   /* XXX should i remove from idle_heap as well ? */
 1750             fs_remove_from_heap(&(b->pipe->idle_heap), b);
 1751 #endif
 1752         }
 1753         purge_flow_set(b, 1);
 1754         splx(s);
 1755     }
 1756     return 0 ;
 1757 }
 1758 
 1759 /*
 1760  * helper function used to copy data from kernel in DUMMYNET_GET
 1761  */
 1762 static char *
 1763 dn_copy_set(struct dn_flow_set *set, char *bp)
 1764 {
 1765     int i, copied = 0 ;
 1766     struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
 1767 
 1768     for (i = 0 ; i <= set->rq_size ; i++)
 1769         for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
 1770             if (q->hash_slot != i)
 1771                 printf("++ at %d: wrong slot (have %d, "
 1772                     "should be %d)\n", copied, q->hash_slot, i);
 1773             if (q->fs != set)
 1774                 printf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
 1775                         i, q->fs, set);
 1776             copied++ ;
 1777             bcopy(q, qp, sizeof( *q ) );
 1778             /* cleanup pointers */
 1779             qp->next = NULL ;
 1780             qp->head = qp->tail = NULL ;
 1781             qp->fs = NULL ;
 1782         }
 1783     if (copied != set->rq_elements)
 1784         printf("++ wrong count, have %d should be %d\n",
 1785             copied, set->rq_elements);
 1786     return (char *)qp ;
 1787 }
 1788 
 1789 static int
 1790 dummynet_get(struct sockopt *sopt)
 1791 {
 1792     char *buf, *bp ; /* bp is the "copy-pointer" */
 1793     size_t size ;
 1794     struct dn_flow_set *set ;
 1795     struct dn_pipe *p ;
 1796     int s, error=0 ;
 1797 
 1798     s = splimp();
 1799     /*
 1800      * compute size of data structures: list of pipes and flow_sets.
 1801      */
 1802     for (p = all_pipes, size = 0 ; p ; p = p->next )
 1803         size += sizeof( *p ) +
 1804             p->fs.rq_elements * sizeof(struct dn_flow_queue);
 1805     for (set = all_flow_sets ; set ; set = set->next )
 1806         size += sizeof ( *set ) +
 1807             set->rq_elements * sizeof(struct dn_flow_queue);
 1808     buf = malloc(size, M_TEMP, M_DONTWAIT);
 1809     if (buf == 0) {
 1810         splx(s);
 1811         return ENOBUFS ;
 1812     }
 1813     for (p = all_pipes, bp = buf ; p ; p = p->next ) {
 1814         struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
 1815 
 1816         /*
 1817          * copy pipe descriptor into *bp, convert delay back to ms,
 1818          * then copy the flow_set descriptor(s) one at a time.
 1819          * After each flow_set, copy the queue descriptor it owns.
 1820          */
 1821         bcopy(p, bp, sizeof( *p ) );
 1822         pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
 1823         /*
 1824          * XXX the following is a hack based on ->next being the
 1825          * first field in dn_pipe and dn_flow_set. The correct
 1826          * solution would be to move the dn_flow_set to the beginning
 1827          * of struct dn_pipe.
 1828          */
 1829         pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
 1830         /* clean pointers */
 1831         pipe_bp->head = pipe_bp->tail = NULL ;
 1832         pipe_bp->fs.next = NULL ;
 1833         pipe_bp->fs.pipe = NULL ;
 1834         pipe_bp->fs.rq = NULL ;
 1835 
 1836         bp += sizeof( *p ) ;
 1837         bp = dn_copy_set( &(p->fs), bp );
 1838     }
 1839     for (set = all_flow_sets ; set ; set = set->next ) {
 1840         struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
 1841         bcopy(set, bp, sizeof( *set ) );
 1842         /* XXX same hack as above */
 1843         fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
 1844         fs_bp->pipe = NULL ;
 1845         fs_bp->rq = NULL ;
 1846         bp += sizeof( *set ) ;
 1847         bp = dn_copy_set( set, bp );
 1848     }
 1849     splx(s);
 1850     error = sooptcopyout(sopt, buf, size);
 1851     free(buf, M_TEMP);
 1852     return error ;
 1853 }
 1854 
 1855 /*
 1856  * Handler for the various dummynet socket options (get, flush, config, del)
 1857  */
 1858 static int
 1859 ip_dn_ctl(struct sockopt *sopt)
 1860 {
 1861     int error = 0 ;
 1862     struct dn_pipe *p, tmp_pipe;
 1863 
 1864     /* Disallow sets in really-really secure mode. */
 1865     if (sopt->sopt_dir == SOPT_SET) {
 1866 #if __FreeBSD_version >= 500034
 1867         error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
 1868         if (error)
 1869             return (error);
 1870 #else
 1871         if (securelevel >= 3)
 1872             return (EPERM);
 1873 #endif
 1874     }
 1875 
 1876     switch (sopt->sopt_name) {
 1877     default :
 1878         printf("ip_dn_ctl -- unknown option %d", sopt->sopt_name);
 1879         return EINVAL ;
 1880 
 1881     case IP_DUMMYNET_GET :
 1882         error = dummynet_get(sopt);
 1883         break ;
 1884 
 1885     case IP_DUMMYNET_FLUSH :
 1886         dummynet_flush() ;
 1887         break ;
 1888 
 1889     case IP_DUMMYNET_CONFIGURE :
 1890         p = &tmp_pipe ;
 1891         error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
 1892         if (error)
 1893             break ;
 1894         error = config_pipe(p);
 1895         break ;
 1896 
 1897     case IP_DUMMYNET_DEL :      /* remove a pipe or queue */
 1898         p = &tmp_pipe ;
 1899         error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
 1900         if (error)
 1901             break ;
 1902 
 1903         error = delete_pipe(p);
 1904         break ;
 1905     }
 1906     return error ;
 1907 }
 1908 
 1909 static void
 1910 ip_dn_init(void)
 1911 {
 1912     printf("DUMMYNET initialized (011031)\n");
 1913     all_pipes = NULL ;
 1914     all_flow_sets = NULL ;
 1915     ready_heap.size = ready_heap.elements = 0 ;
 1916     ready_heap.offset = 0 ;
 1917 
 1918     wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
 1919     wfq_ready_heap.offset = 0 ;
 1920 
 1921     extract_heap.size = extract_heap.elements = 0 ;
 1922     extract_heap.offset = 0 ;
 1923     ip_dn_ctl_ptr = ip_dn_ctl;
 1924     ip_dn_io_ptr = dummynet_io;
 1925     ip_dn_ruledel_ptr = dn_rule_delete;
 1926     bzero(&dn_timeout, sizeof(struct callout_handle));
 1927     dn_timeout = timeout(dummynet, NULL, 1);
 1928 }
 1929 
 1930 static int
 1931 dummynet_modevent(module_t mod, int type, void *data)
 1932 {
 1933         int s;
 1934         switch (type) {
 1935         case MOD_LOAD:
 1936                 s = splimp();
 1937                 if (DUMMYNET_LOADED) {
 1938                     splx(s);
 1939                     printf("DUMMYNET already loaded\n");
 1940                     return EEXIST ;
 1941                 }
 1942                 ip_dn_init();
 1943                 splx(s);
 1944                 break;
 1945 
 1946         case MOD_UNLOAD:
 1947 #if !defined(KLD_MODULE)
 1948                 printf("dummynet statically compiled, cannot unload\n");
 1949                 return EINVAL ;
 1950 #else
 1951                 s = splimp();
 1952                 untimeout(dummynet, NULL, dn_timeout);
 1953                 dummynet_flush();
 1954                 ip_dn_ctl_ptr = NULL;
 1955                 ip_dn_io_ptr = NULL;
 1956                 ip_dn_ruledel_ptr = NULL;
 1957                 splx(s);
 1958 #endif
 1959                 break ;
 1960         default:
 1961                 break ;
 1962         }
 1963         return 0 ;
 1964 }
 1965 
 1966 static moduledata_t dummynet_mod = {
 1967         "dummynet",
 1968         dummynet_modevent,
 1969         NULL
 1970 };
 1971 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
 1972 MODULE_DEPEND(dummynet, ipfw, 1, 1, 1);
 1973 MODULE_VERSION(dummynet, 1);

Cache object: eef24ecbb0d72b1140932b815a0cc8fd


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.