The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_dummynet.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
    3  * Portions Copyright (c) 2000 Akamba Corp.
    4  * All rights reserved
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  *
   15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   25  * SUCH DAMAGE.
   26  *
   27  * $FreeBSD: releng/5.3/sys/netinet/ip_dummynet.c 136588 2004-10-16 08:43:07Z cvs2svn $
   28  */
   29 
   30 #define DUMMYNET_DEBUG
   31 
   32 /*
   33  * This module implements IP dummynet, a bandwidth limiter/delay emulator
   34  * used in conjunction with the ipfw package.
   35  * Description of the data structures used is in ip_dummynet.h
   36  * Here you mainly find the following blocks of code:
   37  *  + variable declarations;
   38  *  + heap management functions;
   39  *  + scheduler and dummynet functions;
   40  *  + configuration and initialization.
   41  *
   42  * NOTA BENE: critical sections are protected by the "dummynet lock".
   43  *
   44  * Most important Changes:
   45  *
   46  * 011004: KLDable
   47  * 010124: Fixed WF2Q behaviour
   48  * 010122: Fixed spl protection.
   49  * 000601: WF2Q support
   50  * 000106: large rewrite, use heaps to handle very many pipes.
   51  * 980513:      initial release
   52  *
   53  * include files marked with XXX are probably not needed
   54  */
   55 
   56 #include <sys/param.h>
   57 #include <sys/systm.h>
   58 #include <sys/malloc.h>
   59 #include <sys/mbuf.h>
   60 #include <sys/kernel.h>
   61 #include <sys/module.h>
   62 #include <sys/proc.h>
   63 #include <sys/socket.h>
   64 #include <sys/socketvar.h>
   65 #include <sys/time.h>
   66 #include <sys/sysctl.h>
   67 #include <net/if.h>
   68 #include <net/route.h>
   69 #include <netinet/in.h>
   70 #include <netinet/in_systm.h>
   71 #include <netinet/in_var.h>
   72 #include <netinet/ip.h>
   73 #include <netinet/ip_fw.h>
   74 #include <netinet/ip_dummynet.h>
   75 #include <netinet/ip_var.h>
   76 
   77 #include <netinet/if_ether.h> /* for struct arpcom */
   78 #include <net/bridge.h>
   79 
   80 /*
   81  * We keep a private variable for the simulation time, but we could
   82  * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
   83  */
   84 static dn_key curr_time = 0 ; /* current simulation time */
   85 
   86 static int dn_hash_size = 64 ;  /* default hash size */
   87 
   88 /* statistics on number of queue searches and search steps */
   89 static int searches, search_steps ;
   90 static int pipe_expire = 1 ;   /* expire queue if empty */
   91 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
   92 
   93 static int red_lookup_depth = 256;      /* RED - default lookup table depth */
   94 static int red_avg_pkt_size = 512;      /* RED - default medium packet size */
   95 static int red_max_pkt_size = 1500;     /* RED - default max packet size */
   96 
   97 /*
   98  * Three heaps contain queues and pipes that the scheduler handles:
   99  *
  100  * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
  101  *
  102  * wfq_ready_heap contains the pipes associated with WF2Q flows
  103  *
  104  * extract_heap contains pipes associated with delay lines.
  105  *
  106  */
  107 
  108 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
  109 
  110 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
  111 
  112 static int heap_init(struct dn_heap *h, int size) ;
  113 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
  114 static void heap_extract(struct dn_heap *h, void *obj);
  115 
  116 static void transmit_event(struct dn_pipe *pipe);
  117 static void ready_event(struct dn_flow_queue *q);
  118 
  119 static struct dn_pipe *all_pipes = NULL ;       /* list of all pipes */
  120 static struct dn_flow_set *all_flow_sets = NULL ;/* list of all flow_sets */
  121 
  122 static struct callout dn_timeout;
  123 
  124 #ifdef SYSCTL_NODE
  125 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
  126                 CTLFLAG_RW, 0, "Dummynet");
  127 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
  128             CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
  129 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time,
  130             CTLFLAG_RD, &curr_time, 0, "Current tick");
  131 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
  132             CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
  133 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
  134             CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
  135 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
  136             CTLFLAG_RD, &searches, 0, "Number of queue searches");
  137 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
  138             CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
  139 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
  140             CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
  141 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
  142             CTLFLAG_RW, &dn_max_ratio, 0,
  143         "Max ratio between dynamic queues and buckets");
  144 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
  145         CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
  146 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
  147         CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
  148 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
  149         CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
  150 #endif
  151 
  152 #ifdef DUMMYNET_DEBUG
  153 int     dummynet_debug = 0;
  154 #ifdef SYSCTL_NODE
  155 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
  156             0, "control debugging printfs");
  157 #endif
  158 #define DPRINTF(X)      if (dummynet_debug) printf X
  159 #else
  160 #define DPRINTF(X)
  161 #endif
  162 
  163 static struct mtx dummynet_mtx;
  164 /*
  165  * NB: Recursion is needed to deal with re-entry via ICMP.  That is,
  166  *     a packet may be dispatched via ip_input from dummynet_io and
  167  *     re-enter through ip_output.  Yech.
  168  */
  169 #define DUMMYNET_LOCK_INIT() \
  170         mtx_init(&dummynet_mtx, "dummynet", NULL, MTX_DEF | MTX_RECURSE)
  171 #define DUMMYNET_LOCK_DESTROY() mtx_destroy(&dummynet_mtx)
  172 #define DUMMYNET_LOCK()         mtx_lock(&dummynet_mtx)
  173 #define DUMMYNET_UNLOCK()       mtx_unlock(&dummynet_mtx)
  174 #define DUMMYNET_LOCK_ASSERT()  do {                            \
  175         mtx_assert(&dummynet_mtx, MA_OWNED);                    \
  176         NET_ASSERT_GIANT();                                     \
  177 } while (0)
  178 
  179 static int config_pipe(struct dn_pipe *p);
  180 static int ip_dn_ctl(struct sockopt *sopt);
  181 
  182 static void dummynet(void *);
  183 static void dummynet_flush(void);
  184 void dummynet_drain(void);
  185 static ip_dn_io_t dummynet_io;
  186 static void dn_rule_delete(void *);
  187 
  188 int if_tx_rdy(struct ifnet *ifp);
  189 
  190 /*
  191  * Heap management functions.
  192  *
  193  * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
  194  * Some macros help finding parent/children so we can optimize them.
  195  *
  196  * heap_init() is called to expand the heap when needed.
  197  * Increment size in blocks of 16 entries.
  198  * XXX failure to allocate a new element is a pretty bad failure
  199  * as we basically stall a whole queue forever!!
  200  * Returns 1 on error, 0 on success
  201  */
  202 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
  203 #define HEAP_LEFT(x) ( 2*(x) + 1 )
  204 #define HEAP_IS_LEFT(x) ( (x) & 1 )
  205 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
  206 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
  207 #define HEAP_INCREMENT  15
  208 
  209 static int
  210 heap_init(struct dn_heap *h, int new_size)
  211 {
  212     struct dn_heap_entry *p;
  213 
  214     if (h->size >= new_size ) {
  215         printf("dummynet: %s, Bogus call, have %d want %d\n", __func__,
  216                 h->size, new_size);
  217         return 0 ;
  218     }
  219     new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
  220     p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT);
  221     if (p == NULL) {
  222         printf("dummynet: %s, resize %d failed\n", __func__, new_size );
  223         return 1 ; /* error */
  224     }
  225     if (h->size > 0) {
  226         bcopy(h->p, p, h->size * sizeof(*p) );
  227         free(h->p, M_DUMMYNET);
  228     }
  229     h->p = p ;
  230     h->size = new_size ;
  231     return 0 ;
  232 }
  233 
  234 /*
  235  * Insert element in heap. Normally, p != NULL, we insert p in
  236  * a new position and bubble up. If p == NULL, then the element is
  237  * already in place, and key is the position where to start the
  238  * bubble-up.
  239  * Returns 1 on failure (cannot allocate new heap entry)
  240  *
  241  * If offset > 0 the position (index, int) of the element in the heap is
  242  * also stored in the element itself at the given offset in bytes.
  243  */
  244 #define SET_OFFSET(heap, node) \
  245     if (heap->offset > 0) \
  246             *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
  247 /*
  248  * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
  249  */
  250 #define RESET_OFFSET(heap, node) \
  251     if (heap->offset > 0) \
  252             *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
  253 static int
  254 heap_insert(struct dn_heap *h, dn_key key1, void *p)
  255 {
  256     int son = h->elements ;
  257 
  258     if (p == NULL)      /* data already there, set starting point */
  259         son = key1 ;
  260     else {              /* insert new element at the end, possibly resize */
  261         son = h->elements ;
  262         if (son == h->size) /* need resize... */
  263             if (heap_init(h, h->elements+1) )
  264                 return 1 ; /* failure... */
  265         h->p[son].object = p ;
  266         h->p[son].key = key1 ;
  267         h->elements++ ;
  268     }
  269     while (son > 0) {                           /* bubble up */
  270         int father = HEAP_FATHER(son) ;
  271         struct dn_heap_entry tmp  ;
  272 
  273         if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
  274             break ; /* found right position */
  275         /* son smaller than father, swap and repeat */
  276         HEAP_SWAP(h->p[son], h->p[father], tmp) ;
  277         SET_OFFSET(h, son);
  278         son = father ;
  279     }
  280     SET_OFFSET(h, son);
  281     return 0 ;
  282 }
  283 
  284 /*
  285  * remove top element from heap, or obj if obj != NULL
  286  */
  287 static void
  288 heap_extract(struct dn_heap *h, void *obj)
  289 {
  290     int child, father, max = h->elements - 1 ;
  291 
  292     if (max < 0) {
  293         printf("dummynet: warning, extract from empty heap 0x%p\n", h);
  294         return ;
  295     }
  296     father = 0 ; /* default: move up smallest child */
  297     if (obj != NULL) { /* extract specific element, index is at offset */
  298         if (h->offset <= 0)
  299             panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
  300         father = *((int *)((char *)obj + h->offset)) ;
  301         if (father < 0 || father >= h->elements) {
  302             printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
  303                 father, h->elements);
  304             panic("dummynet: heap_extract");
  305         }
  306     }
  307     RESET_OFFSET(h, father);
  308     child = HEAP_LEFT(father) ;         /* left child */
  309     while (child <= max) {              /* valid entry */
  310         if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
  311             child = child+1 ;           /* take right child, otherwise left */
  312         h->p[father] = h->p[child] ;
  313         SET_OFFSET(h, father);
  314         father = child ;
  315         child = HEAP_LEFT(child) ;   /* left child for next loop */
  316     }
  317     h->elements-- ;
  318     if (father != max) {
  319         /*
  320          * Fill hole with last entry and bubble up, reusing the insert code
  321          */
  322         h->p[father] = h->p[max] ;
  323         heap_insert(h, father, NULL); /* this one cannot fail */
  324     }
  325 }
  326 
  327 #if 0
  328 /*
  329  * change object position and update references
  330  * XXX this one is never used!
  331  */
  332 static void
  333 heap_move(struct dn_heap *h, dn_key new_key, void *object)
  334 {
  335     int temp;
  336     int i ;
  337     int max = h->elements-1 ;
  338     struct dn_heap_entry buf ;
  339 
  340     if (h->offset <= 0)
  341         panic("cannot move items on this heap");
  342 
  343     i = *((int *)((char *)object + h->offset));
  344     if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
  345         h->p[i].key = new_key ;
  346         for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
  347                  i = temp ) { /* bubble up */
  348             HEAP_SWAP(h->p[i], h->p[temp], buf) ;
  349             SET_OFFSET(h, i);
  350         }
  351     } else {            /* must move down */
  352         h->p[i].key = new_key ;
  353         while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
  354             if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
  355                 temp++ ; /* select child with min key */
  356             if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
  357                 HEAP_SWAP(h->p[i], h->p[temp], buf) ;
  358                 SET_OFFSET(h, i);
  359             } else
  360                 break ;
  361             i = temp ;
  362         }
  363     }
  364     SET_OFFSET(h, i);
  365 }
  366 #endif /* heap_move, unused */
  367 
  368 /*
  369  * heapify() will reorganize data inside an array to maintain the
  370  * heap property. It is needed when we delete a bunch of entries.
  371  */
  372 static void
  373 heapify(struct dn_heap *h)
  374 {
  375     int i ;
  376 
  377     for (i = 0 ; i < h->elements ; i++ )
  378         heap_insert(h, i , NULL) ;
  379 }
  380 
  381 /*
  382  * cleanup the heap and free data structure
  383  */
  384 static void
  385 heap_free(struct dn_heap *h)
  386 {
  387     if (h->size >0 )
  388         free(h->p, M_DUMMYNET);
  389     bzero(h, sizeof(*h) );
  390 }
  391 
  392 /*
  393  * --- end of heap management functions ---
  394  */
  395 
  396 /*
  397  * Return the mbuf tag holding the dummynet state.  As an optimization
  398  * this is assumed to be the first tag on the list.  If this turns out
  399  * wrong we'll need to search the list.
  400  */
  401 static struct dn_pkt_tag *
  402 dn_tag_get(struct mbuf *m)
  403 {
  404     struct m_tag *mtag = m_tag_first(m);
  405     KASSERT(mtag != NULL &&
  406             mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
  407             mtag->m_tag_id == PACKET_TAG_DUMMYNET,
  408             ("packet on dummynet queue w/o dummynet tag!"));
  409     return (struct dn_pkt_tag *)(mtag+1);
  410 }
  411 
  412 /*
  413  * Scheduler functions:
  414  *
  415  * transmit_event() is called when the delay-line needs to enter
  416  * the scheduler, either because of existing pkts getting ready,
  417  * or new packets entering the queue. The event handled is the delivery
  418  * time of the packet.
  419  *
  420  * ready_event() does something similar with fixed-rate queues, and the
  421  * event handled is the finish time of the head pkt.
  422  *
  423  * wfq_ready_event() does something similar with WF2Q queues, and the
  424  * event handled is the start time of the head pkt.
  425  *
  426  * In all cases, we make sure that the data structures are consistent
  427  * before passing pkts out, because this might trigger recursive
  428  * invocations of the procedures.
  429  */
  430 static void
  431 transmit_event(struct dn_pipe *pipe)
  432 {
  433     struct mbuf *m ;
  434     struct dn_pkt_tag *pkt ;
  435     struct ip *ip;
  436 
  437     DUMMYNET_LOCK_ASSERT();
  438 
  439     while ( (m = pipe->head) ) {
  440         pkt = dn_tag_get(m);
  441         if ( !DN_KEY_LEQ(pkt->output_time, curr_time) )
  442             break;
  443         /*
  444          * first unlink, then call procedures, since ip_input() can invoke
  445          * ip_output() and viceversa, thus causing nested calls
  446          */
  447         pipe->head = m->m_nextpkt ;
  448         m->m_nextpkt = NULL;
  449 
  450         /* XXX: drop the lock for now to avoid LOR's */
  451         DUMMYNET_UNLOCK();
  452         switch (pkt->dn_dir) {
  453         case DN_TO_IP_OUT:
  454             (void)ip_output(m, NULL, NULL, pkt->flags, NULL, NULL);
  455             break ;
  456 
  457         case DN_TO_IP_IN :
  458             ip = mtod(m, struct ip *);
  459             ip->ip_len = htons(ip->ip_len);
  460             ip->ip_off = htons(ip->ip_off);
  461             ip_input(m) ;
  462             break ;
  463 
  464         case DN_TO_BDG_FWD :
  465             /*
  466              * The bridge requires/assumes the Ethernet header is
  467              * contiguous in the first mbuf header.  Insure this is true.
  468              */
  469             if (BDG_LOADED) {
  470                 if (m->m_len < ETHER_HDR_LEN &&
  471                     (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
  472                     printf("dummynet/bridge: pullup fail, dropping pkt\n");
  473                     break;
  474                 }
  475                 m = bdg_forward_ptr(m, pkt->ifp);
  476             } else {
  477                 /* somebody unloaded the bridge module. Drop pkt */
  478                 /* XXX rate limit */
  479                 printf("dummynet: dropping bridged packet trapped in pipe\n");
  480             }
  481             if (m)
  482                 m_freem(m);
  483             break;
  484 
  485         case DN_TO_ETH_DEMUX:
  486             /*
  487              * The Ethernet code assumes the Ethernet header is
  488              * contiguous in the first mbuf header.  Insure this is true.
  489              */
  490             if (m->m_len < ETHER_HDR_LEN &&
  491                 (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
  492                 printf("dummynet/ether: pullup fail, dropping pkt\n");
  493                 break;
  494             }
  495             ether_demux(m->m_pkthdr.rcvif, m); /* which consumes the mbuf */
  496             break ;
  497 
  498         case DN_TO_ETH_OUT:
  499             ether_output_frame(pkt->ifp, m);
  500             break;
  501 
  502         default:
  503             printf("dummynet: bad switch %d!\n", pkt->dn_dir);
  504             m_freem(m);
  505             break ;
  506         }
  507         DUMMYNET_LOCK();
  508     }
  509     /* if there are leftover packets, put into the heap for next event */
  510     if ( (m = pipe->head) ) {
  511         pkt = dn_tag_get(m) ;
  512         /* XXX should check errors on heap_insert, by draining the
  513          * whole pipe p and hoping in the future we are more successful
  514          */
  515         heap_insert(&extract_heap, pkt->output_time, pipe ) ;
  516     }
  517 }
  518 
  519 /*
  520  * the following macro computes how many ticks we have to wait
  521  * before being able to transmit a packet. The credit is taken from
  522  * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
  523  */
  524 #define SET_TICKS(_m, q, p)     \
  525     ((_m)->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
  526             p->bandwidth ;
  527 
  528 /*
  529  * extract pkt from queue, compute output time (could be now)
  530  * and put into delay line (p_queue)
  531  */
  532 static void
  533 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
  534         struct dn_pipe *p, int len)
  535 {
  536     struct dn_pkt_tag *dt = dn_tag_get(pkt);
  537 
  538     q->head = pkt->m_nextpkt ;
  539     q->len-- ;
  540     q->len_bytes -= len ;
  541 
  542     dt->output_time = curr_time + p->delay ;
  543 
  544     if (p->head == NULL)
  545         p->head = pkt;
  546     else
  547         p->tail->m_nextpkt = pkt;
  548     p->tail = pkt;
  549     p->tail->m_nextpkt = NULL;
  550 }
  551 
  552 /*
  553  * ready_event() is invoked every time the queue must enter the
  554  * scheduler, either because the first packet arrives, or because
  555  * a previously scheduled event fired.
  556  * On invokation, drain as many pkts as possible (could be 0) and then
  557  * if there are leftover packets reinsert the pkt in the scheduler.
  558  */
  559 static void
  560 ready_event(struct dn_flow_queue *q)
  561 {
  562     struct mbuf *pkt;
  563     struct dn_pipe *p = q->fs->pipe ;
  564     int p_was_empty ;
  565 
  566     DUMMYNET_LOCK_ASSERT();
  567 
  568     if (p == NULL) {
  569         printf("dummynet: ready_event- pipe is gone\n");
  570         return ;
  571     }
  572     p_was_empty = (p->head == NULL) ;
  573 
  574     /*
  575      * schedule fixed-rate queues linked to this pipe:
  576      * Account for the bw accumulated since last scheduling, then
  577      * drain as many pkts as allowed by q->numbytes and move to
  578      * the delay line (in p) computing output time.
  579      * bandwidth==0 (no limit) means we can drain the whole queue,
  580      * setting len_scaled = 0 does the job.
  581      */
  582     q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
  583     while ( (pkt = q->head) != NULL ) {
  584         int len = pkt->m_pkthdr.len;
  585         int len_scaled = p->bandwidth ? len*8*hz : 0 ;
  586         if (len_scaled > q->numbytes )
  587             break ;
  588         q->numbytes -= len_scaled ;
  589         move_pkt(pkt, q, p, len);
  590     }
  591     /*
  592      * If we have more packets queued, schedule next ready event
  593      * (can only occur when bandwidth != 0, otherwise we would have
  594      * flushed the whole queue in the previous loop).
  595      * To this purpose we record the current time and compute how many
  596      * ticks to go for the finish time of the packet.
  597      */
  598     if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
  599         dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
  600         q->sched_time = curr_time ;
  601         heap_insert(&ready_heap, curr_time + t, (void *)q );
  602         /* XXX should check errors on heap_insert, and drain the whole
  603          * queue on error hoping next time we are luckier.
  604          */
  605     } else {    /* RED needs to know when the queue becomes empty */
  606         q->q_time = curr_time;
  607         q->numbytes = 0;
  608     }
  609     /*
  610      * If the delay line was empty call transmit_event(p) now.
  611      * Otherwise, the scheduler will take care of it.
  612      */
  613     if (p_was_empty)
  614         transmit_event(p);
  615 }
  616 
  617 /*
  618  * Called when we can transmit packets on WF2Q queues. Take pkts out of
  619  * the queues at their start time, and enqueue into the delay line.
  620  * Packets are drained until p->numbytes < 0. As long as
  621  * len_scaled >= p->numbytes, the packet goes into the delay line
  622  * with a deadline p->delay. For the last packet, if p->numbytes<0,
  623  * there is an additional delay.
  624  */
  625 static void
  626 ready_event_wfq(struct dn_pipe *p)
  627 {
  628     int p_was_empty = (p->head == NULL) ;
  629     struct dn_heap *sch = &(p->scheduler_heap);
  630     struct dn_heap *neh = &(p->not_eligible_heap) ;
  631 
  632     DUMMYNET_LOCK_ASSERT();
  633 
  634     if (p->if_name[0] == 0) /* tx clock is simulated */
  635         p->numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
  636     else { /* tx clock is for real, the ifq must be empty or this is a NOP */
  637         if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
  638             return ;
  639         else {
  640             DPRINTF(("dummynet: pipe %d ready from %s --\n",
  641                 p->pipe_nr, p->if_name));
  642         }
  643     }
  644 
  645     /*
  646      * While we have backlogged traffic AND credit, we need to do
  647      * something on the queue.
  648      */
  649     while ( p->numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
  650         if (sch->elements > 0) { /* have some eligible pkts to send out */
  651             struct dn_flow_queue *q = sch->p[0].object ;
  652             struct mbuf *pkt = q->head;
  653             struct dn_flow_set *fs = q->fs;
  654             u_int64_t len = pkt->m_pkthdr.len;
  655             int len_scaled = p->bandwidth ? len*8*hz : 0 ;
  656 
  657             heap_extract(sch, NULL); /* remove queue from heap */
  658             p->numbytes -= len_scaled ;
  659             move_pkt(pkt, q, p, len);
  660 
  661             p->V += (len<<MY_M) / p->sum ; /* update V */
  662             q->S = q->F ; /* update start time */
  663             if (q->len == 0) { /* Flow not backlogged any more */
  664                 fs->backlogged-- ;
  665                 heap_insert(&(p->idle_heap), q->F, q);
  666             } else { /* still backlogged */
  667                 /*
  668                  * update F and position in backlogged queue, then
  669                  * put flow in not_eligible_heap (we will fix this later).
  670                  */
  671                 len = (q->head)->m_pkthdr.len;
  672                 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
  673                 if (DN_KEY_LEQ(q->S, p->V))
  674                     heap_insert(neh, q->S, q);
  675                 else
  676                     heap_insert(sch, q->F, q);
  677             }
  678         }
  679         /*
  680          * now compute V = max(V, min(S_i)). Remember that all elements in sch
  681          * have by definition S_i <= V so if sch is not empty, V is surely
  682          * the max and we must not update it. Conversely, if sch is empty
  683          * we only need to look at neh.
  684          */
  685         if (sch->elements == 0 && neh->elements > 0)
  686             p->V = MAX64 ( p->V, neh->p[0].key );
  687         /* move from neh to sch any packets that have become eligible */
  688         while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
  689             struct dn_flow_queue *q = neh->p[0].object ;
  690             heap_extract(neh, NULL);
  691             heap_insert(sch, q->F, q);
  692         }
  693 
  694         if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
  695             p->numbytes = -1 ; /* mark not ready for I/O */
  696             break ;
  697         }
  698     }
  699     if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0
  700             && p->idle_heap.elements > 0) {
  701         /*
  702          * no traffic and no events scheduled. We can get rid of idle-heap.
  703          */
  704         int i ;
  705 
  706         for (i = 0 ; i < p->idle_heap.elements ; i++) {
  707             struct dn_flow_queue *q = p->idle_heap.p[i].object ;
  708 
  709             q->F = 0 ;
  710             q->S = q->F + 1 ;
  711         }
  712         p->sum = 0 ;
  713         p->V = 0 ;
  714         p->idle_heap.elements = 0 ;
  715     }
  716     /*
  717      * If we are getting clocks from dummynet (not a real interface) and
  718      * If we are under credit, schedule the next ready event.
  719      * Also fix the delivery time of the last packet.
  720      */
  721     if (p->if_name[0]==0 && p->numbytes < 0) { /* this implies bandwidth >0 */
  722         dn_key t=0 ; /* number of ticks i have to wait */
  723 
  724         if (p->bandwidth > 0)
  725             t = ( p->bandwidth -1 - p->numbytes) / p->bandwidth ;
  726         dn_tag_get(p->tail)->output_time += t ;
  727         p->sched_time = curr_time ;
  728         heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
  729         /* XXX should check errors on heap_insert, and drain the whole
  730          * queue on error hoping next time we are luckier.
  731          */
  732     }
  733     /*
  734      * If the delay line was empty call transmit_event(p) now.
  735      * Otherwise, the scheduler will take care of it.
  736      */
  737     if (p_was_empty)
  738         transmit_event(p);
  739 }
  740 
  741 /*
  742  * This is called once per tick, or HZ times per second. It is used to
  743  * increment the current tick counter and schedule expired events.
  744  */
  745 static void
  746 dummynet(void * __unused unused)
  747 {
  748     void *p ; /* generic parameter to handler */
  749     struct dn_heap *h ;
  750     struct dn_heap *heaps[3];
  751     int i;
  752     struct dn_pipe *pe ;
  753 
  754     heaps[0] = &ready_heap ;            /* fixed-rate queues */
  755     heaps[1] = &wfq_ready_heap ;        /* wfq queues */
  756     heaps[2] = &extract_heap ;          /* delay line */
  757 
  758     DUMMYNET_LOCK();
  759     curr_time++ ;
  760     for (i=0; i < 3 ; i++) {
  761         h = heaps[i];
  762         while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
  763             if (h->p[0].key > curr_time)
  764                 printf("dummynet: warning, heap %d is %d ticks late\n",
  765                     i, (int)(curr_time - h->p[0].key));
  766             p = h->p[0].object ; /* store a copy before heap_extract */
  767             heap_extract(h, NULL); /* need to extract before processing */
  768             if (i == 0)
  769                 ready_event(p) ;
  770             else if (i == 1) {
  771                 struct dn_pipe *pipe = p;
  772                 if (pipe->if_name[0] != '\0')
  773                     printf("dummynet: bad ready_event_wfq for pipe %s\n",
  774                         pipe->if_name);
  775                 else
  776                     ready_event_wfq(p) ;
  777             } else
  778                 transmit_event(p);
  779         }
  780     }
  781     /* sweep pipes trying to expire idle flow_queues */
  782     for (pe = all_pipes; pe ; pe = pe->next )
  783         if (pe->idle_heap.elements > 0 &&
  784                 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
  785             struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
  786 
  787             heap_extract(&(pe->idle_heap), NULL);
  788             q->S = q->F + 1 ; /* mark timestamp as invalid */
  789             pe->sum -= q->fs->weight ;
  790         }
  791     DUMMYNET_UNLOCK();
  792 
  793     callout_reset(&dn_timeout, 1, dummynet, NULL);
  794 }
  795 
  796 /*
  797  * called by an interface when tx_rdy occurs.
  798  */
  799 int
  800 if_tx_rdy(struct ifnet *ifp)
  801 {
  802     struct dn_pipe *p;
  803 
  804     DUMMYNET_LOCK();
  805     for (p = all_pipes; p ; p = p->next )
  806         if (p->ifp == ifp)
  807             break ;
  808     if (p == NULL) {
  809         for (p = all_pipes; p ; p = p->next )
  810             if (!strcmp(p->if_name, ifp->if_xname) ) {
  811                 p->ifp = ifp ;
  812                 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n",
  813                         ifp->if_xname));
  814                 break ;
  815             }
  816     }
  817     if (p != NULL) {
  818         DPRINTF(("dummynet: ++ tx rdy from %s - qlen %d\n", ifp->if_xname,
  819                 ifp->if_snd.ifq_len));
  820         p->numbytes = 0 ; /* mark ready for I/O */
  821         ready_event_wfq(p);
  822     }
  823     DUMMYNET_UNLOCK();
  824 
  825     return 0;
  826 }
  827 
  828 /*
  829  * Unconditionally expire empty queues in case of shortage.
  830  * Returns the number of queues freed.
  831  */
  832 static int
  833 expire_queues(struct dn_flow_set *fs)
  834 {
  835     struct dn_flow_queue *q, *prev ;
  836     int i, initial_elements = fs->rq_elements ;
  837 
  838     if (fs->last_expired == time_second)
  839         return 0 ;
  840     fs->last_expired = time_second ;
  841     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
  842         for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
  843             if (q->head != NULL || q->S != q->F+1) {
  844                 prev = q ;
  845                 q = q->next ;
  846             } else { /* entry is idle, expire it */
  847                 struct dn_flow_queue *old_q = q ;
  848 
  849                 if (prev != NULL)
  850                     prev->next = q = q->next ;
  851                 else
  852                     fs->rq[i] = q = q->next ;
  853                 fs->rq_elements-- ;
  854                 free(old_q, M_DUMMYNET);
  855             }
  856     return initial_elements - fs->rq_elements ;
  857 }
  858 
  859 /*
  860  * If room, create a new queue and put at head of slot i;
  861  * otherwise, create or use the default queue.
  862  */
  863 static struct dn_flow_queue *
  864 create_queue(struct dn_flow_set *fs, int i)
  865 {
  866     struct dn_flow_queue *q ;
  867 
  868     if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
  869             expire_queues(fs) == 0) {
  870         /*
  871          * No way to get room, use or create overflow queue.
  872          */
  873         i = fs->rq_size ;
  874         if ( fs->rq[i] != NULL )
  875             return fs->rq[i] ;
  876     }
  877     q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO);
  878     if (q == NULL) {
  879         printf("dummynet: sorry, cannot allocate queue for new flow\n");
  880         return NULL ;
  881     }
  882     q->fs = fs ;
  883     q->hash_slot = i ;
  884     q->next = fs->rq[i] ;
  885     q->S = q->F + 1;   /* hack - mark timestamp as invalid */
  886     fs->rq[i] = q ;
  887     fs->rq_elements++ ;
  888     return q ;
  889 }
  890 
  891 /*
  892  * Given a flow_set and a pkt in last_pkt, find a matching queue
  893  * after appropriate masking. The queue is moved to front
  894  * so that further searches take less time.
  895  */
  896 static struct dn_flow_queue *
  897 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
  898 {
  899     int i = 0 ; /* we need i and q for new allocations */
  900     struct dn_flow_queue *q, *prev;
  901 
  902     if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
  903         q = fs->rq[0] ;
  904     else {
  905         /* first, do the masking */
  906         id->dst_ip &= fs->flow_mask.dst_ip ;
  907         id->src_ip &= fs->flow_mask.src_ip ;
  908         id->dst_port &= fs->flow_mask.dst_port ;
  909         id->src_port &= fs->flow_mask.src_port ;
  910         id->proto &= fs->flow_mask.proto ;
  911         id->flags = 0 ; /* we don't care about this one */
  912         /* then, hash function */
  913         i = ( (id->dst_ip) & 0xffff ) ^
  914             ( (id->dst_ip >> 15) & 0xffff ) ^
  915             ( (id->src_ip << 1) & 0xffff ) ^
  916             ( (id->src_ip >> 16 ) & 0xffff ) ^
  917             (id->dst_port << 1) ^ (id->src_port) ^
  918             (id->proto );
  919         i = i % fs->rq_size ;
  920         /* finally, scan the current list for a match */
  921         searches++ ;
  922         for (prev=NULL, q = fs->rq[i] ; q ; ) {
  923             search_steps++;
  924             if (id->dst_ip == q->id.dst_ip &&
  925                     id->src_ip == q->id.src_ip &&
  926                     id->dst_port == q->id.dst_port &&
  927                     id->src_port == q->id.src_port &&
  928                     id->proto == q->id.proto &&
  929                     id->flags == q->id.flags)
  930                 break ; /* found */
  931             else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
  932                 /* entry is idle and not in any heap, expire it */
  933                 struct dn_flow_queue *old_q = q ;
  934 
  935                 if (prev != NULL)
  936                     prev->next = q = q->next ;
  937                 else
  938                     fs->rq[i] = q = q->next ;
  939                 fs->rq_elements-- ;
  940                 free(old_q, M_DUMMYNET);
  941                 continue ;
  942             }
  943             prev = q ;
  944             q = q->next ;
  945         }
  946         if (q && prev != NULL) { /* found and not in front */
  947             prev->next = q->next ;
  948             q->next = fs->rq[i] ;
  949             fs->rq[i] = q ;
  950         }
  951     }
  952     if (q == NULL) { /* no match, need to allocate a new entry */
  953         q = create_queue(fs, i);
  954         if (q != NULL)
  955         q->id = *id ;
  956     }
  957     return q ;
  958 }
  959 
  960 static int
  961 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
  962 {
  963     /*
  964      * RED algorithm
  965      *
  966      * RED calculates the average queue size (avg) using a low-pass filter
  967      * with an exponential weighted (w_q) moving average:
  968      *  avg  <-  (1-w_q) * avg + w_q * q_size
  969      * where q_size is the queue length (measured in bytes or * packets).
  970      *
  971      * If q_size == 0, we compute the idle time for the link, and set
  972      *  avg = (1 - w_q)^(idle/s)
  973      * where s is the time needed for transmitting a medium-sized packet.
  974      *
  975      * Now, if avg < min_th the packet is enqueued.
  976      * If avg > max_th the packet is dropped. Otherwise, the packet is
  977      * dropped with probability P function of avg.
  978      *
  979      */
  980 
  981     int64_t p_b = 0;
  982     /* queue in bytes or packets ? */
  983     u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
  984 
  985     DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
  986 
  987     /* average queue size estimation */
  988     if (q_size != 0) {
  989         /*
  990          * queue is not empty, avg <- avg + (q_size - avg) * w_q
  991          */
  992         int diff = SCALE(q_size) - q->avg;
  993         int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
  994 
  995         q->avg += (int) v;
  996     } else {
  997         /*
  998          * queue is empty, find for how long the queue has been
  999          * empty and use a lookup table for computing
 1000          * (1 - * w_q)^(idle_time/s) where s is the time to send a
 1001          * (small) packet.
 1002          * XXX check wraps...
 1003          */
 1004         if (q->avg) {
 1005             u_int t = (curr_time - q->q_time) / fs->lookup_step;
 1006 
 1007             q->avg = (t < fs->lookup_depth) ?
 1008                     SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
 1009         }
 1010     }
 1011     DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
 1012 
 1013     /* should i drop ? */
 1014 
 1015     if (q->avg < fs->min_th) {
 1016         q->count = -1;
 1017         return 0; /* accept packet ; */
 1018     }
 1019     if (q->avg >= fs->max_th) { /* average queue >=  max threshold */
 1020         if (fs->flags_fs & DN_IS_GENTLE_RED) {
 1021             /*
 1022              * According to Gentle-RED, if avg is greater than max_th the
 1023              * packet is dropped with a probability
 1024              *  p_b = c_3 * avg - c_4
 1025              * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
 1026              */
 1027             p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
 1028         } else {
 1029             q->count = -1;
 1030             DPRINTF(("dummynet: - drop"));
 1031             return 1 ;
 1032         }
 1033     } else if (q->avg > fs->min_th) {
 1034         /*
 1035          * we compute p_b using the linear dropping function p_b = c_1 *
 1036          * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
 1037          * max_p * min_th / (max_th - min_th)
 1038          */
 1039         p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
 1040     }
 1041     if (fs->flags_fs & DN_QSIZE_IS_BYTES)
 1042         p_b = (p_b * len) / fs->max_pkt_size;
 1043     if (++q->count == 0)
 1044         q->random = random() & 0xffff;
 1045     else {
 1046         /*
 1047          * q->count counts packets arrived since last drop, so a greater
 1048          * value of q->count means a greater packet drop probability.
 1049          */
 1050         if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
 1051             q->count = 0;
 1052             DPRINTF(("dummynet: - red drop"));
 1053             /* after a drop we calculate a new random value */
 1054             q->random = random() & 0xffff;
 1055             return 1;    /* drop */
 1056         }
 1057     }
 1058     /* end of RED algorithm */
 1059     return 0 ; /* accept */
 1060 }
 1061 
 1062 static __inline
 1063 struct dn_flow_set *
 1064 locate_flowset(int pipe_nr, struct ip_fw *rule)
 1065 {
 1066 #if IPFW2
 1067     struct dn_flow_set *fs;
 1068     ipfw_insn *cmd = rule->cmd + rule->act_ofs;
 1069 
 1070     if (cmd->opcode == O_LOG)
 1071         cmd += F_LEN(cmd);
 1072 #ifdef __i386__
 1073     fs = ((ipfw_insn_pipe *)cmd)->pipe_ptr;
 1074 #else
 1075     bcopy(& ((ipfw_insn_pipe *)cmd)->pipe_ptr, &fs, sizeof(fs));
 1076 #endif
 1077 
 1078     if (fs != NULL)
 1079         return fs;
 1080 
 1081     if (cmd->opcode == O_QUEUE)
 1082 #else /* !IPFW2 */
 1083     struct dn_flow_set *fs = NULL ;
 1084 
 1085     if ( (rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_QUEUE )
 1086 #endif /* !IPFW2 */
 1087         for (fs=all_flow_sets; fs && fs->fs_nr != pipe_nr; fs=fs->next)
 1088             ;
 1089     else {
 1090         struct dn_pipe *p1;
 1091         for (p1 = all_pipes; p1 && p1->pipe_nr != pipe_nr; p1 = p1->next)
 1092             ;
 1093         if (p1 != NULL)
 1094             fs = &(p1->fs) ;
 1095     }
 1096     /* record for the future */
 1097 #if IPFW2
 1098 #ifdef __i386__
 1099     ((ipfw_insn_pipe *)cmd)->pipe_ptr = fs;
 1100 #else
 1101     bcopy(&fs, & ((ipfw_insn_pipe *)cmd)->pipe_ptr, sizeof(fs));
 1102 #endif
 1103 #else
 1104     if (fs != NULL)
 1105         rule->pipe_ptr = fs;
 1106 #endif
 1107     return fs ;
 1108 }
 1109 
 1110 /*
 1111  * dummynet hook for packets. Below 'pipe' is a pipe or a queue
 1112  * depending on whether WF2Q or fixed bw is used.
 1113  *
 1114  * pipe_nr      pipe or queue the packet is destined for.
 1115  * dir          where shall we send the packet after dummynet.
 1116  * m            the mbuf with the packet
 1117  * ifp          the 'ifp' parameter from the caller.
 1118  *              NULL in ip_input, destination interface in ip_output,
 1119  *              real_dst in bdg_forward
 1120  * rule         matching rule, in case of multiple passes
 1121  * flags        flags from the caller, only used in ip_output
 1122  *
 1123  */
 1124 static int
 1125 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
 1126 {
 1127     struct dn_pkt_tag *pkt;
 1128     struct m_tag *mtag;
 1129     struct dn_flow_set *fs;
 1130     struct dn_pipe *pipe ;
 1131     u_int64_t len = m->m_pkthdr.len ;
 1132     struct dn_flow_queue *q = NULL ;
 1133     int is_pipe;
 1134 #if IPFW2
 1135     ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
 1136 #endif
 1137 
 1138     KASSERT(m->m_nextpkt == NULL,
 1139         ("dummynet_io: mbuf queue passed to dummynet"));
 1140 
 1141 #if IPFW2
 1142     if (cmd->opcode == O_LOG)
 1143         cmd += F_LEN(cmd);
 1144     is_pipe = (cmd->opcode == O_PIPE);
 1145 #else
 1146     is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
 1147 #endif
 1148 
 1149     pipe_nr &= 0xffff ;
 1150 
 1151     DUMMYNET_LOCK();
 1152     /*
 1153      * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
 1154      */
 1155     fs = locate_flowset(pipe_nr, fwa->rule);
 1156     if (fs == NULL)
 1157         goto dropit ;   /* this queue/pipe does not exist! */
 1158     pipe = fs->pipe ;
 1159     if (pipe == NULL) { /* must be a queue, try find a matching pipe */
 1160         for (pipe = all_pipes; pipe && pipe->pipe_nr != fs->parent_nr;
 1161                  pipe = pipe->next)
 1162             ;
 1163         if (pipe != NULL)
 1164             fs->pipe = pipe ;
 1165         else {
 1166             printf("dummynet: no pipe %d for queue %d, drop pkt\n",
 1167                 fs->parent_nr, fs->fs_nr);
 1168             goto dropit ;
 1169         }
 1170     }
 1171     q = find_queue(fs, &(fwa->f_id));
 1172     if ( q == NULL )
 1173         goto dropit ;           /* cannot allocate queue                */
 1174     /*
 1175      * update statistics, then check reasons to drop pkt
 1176      */
 1177     q->tot_bytes += len ;
 1178     q->tot_pkts++ ;
 1179     if ( fs->plr && random() < fs->plr )
 1180         goto dropit ;           /* random pkt drop                      */
 1181     if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
 1182         if (q->len_bytes > fs->qsize)
 1183             goto dropit ;       /* queue size overflow                  */
 1184     } else {
 1185         if (q->len >= fs->qsize)
 1186             goto dropit ;       /* queue count overflow                 */
 1187     }
 1188     if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
 1189         goto dropit ;
 1190 
 1191     /* XXX expensive to zero, see if we can remove it*/
 1192     mtag = m_tag_get(PACKET_TAG_DUMMYNET,
 1193                 sizeof(struct dn_pkt_tag), M_NOWAIT|M_ZERO);
 1194     if ( mtag == NULL )
 1195         goto dropit ;           /* cannot allocate packet header        */
 1196     m_tag_prepend(m, mtag);     /* attach to mbuf chain */
 1197 
 1198     pkt = (struct dn_pkt_tag *)(mtag+1);
 1199     /* ok, i can handle the pkt now... */
 1200     /* build and enqueue packet + parameters */
 1201     pkt->rule = fwa->rule ;
 1202     pkt->dn_dir = dir ;
 1203 
 1204     pkt->ifp = fwa->oif;
 1205     if (dir == DN_TO_IP_OUT)
 1206         pkt->flags = fwa->flags;
 1207     if (q->head == NULL)
 1208         q->head = m;
 1209     else
 1210         q->tail->m_nextpkt = m;
 1211     q->tail = m;
 1212     q->len++;
 1213     q->len_bytes += len ;
 1214 
 1215     if ( q->head != m )         /* flow was not idle, we are done */
 1216         goto done;
 1217     /*
 1218      * If we reach this point the flow was previously idle, so we need
 1219      * to schedule it. This involves different actions for fixed-rate or
 1220      * WF2Q queues.
 1221      */
 1222     if (is_pipe) {
 1223         /*
 1224          * Fixed-rate queue: just insert into the ready_heap.
 1225          */
 1226         dn_key t = 0 ;
 1227         if (pipe->bandwidth)
 1228             t = SET_TICKS(m, q, pipe);
 1229         q->sched_time = curr_time ;
 1230         if (t == 0)     /* must process it now */
 1231             ready_event( q );
 1232         else
 1233             heap_insert(&ready_heap, curr_time + t , q );
 1234     } else {
 1235         /*
 1236          * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
 1237          * set S to the virtual time V for the controlling pipe, and update
 1238          * the sum of weights for the pipe; otherwise, remove flow from
 1239          * idle_heap and set S to max(F,V).
 1240          * Second, compute finish time F = S + len/weight.
 1241          * Third, if pipe was idle, update V=max(S, V).
 1242          * Fourth, count one more backlogged flow.
 1243          */
 1244         if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
 1245             q->S = pipe->V ;
 1246             pipe->sum += fs->weight ; /* add weight of new queue */
 1247         } else {
 1248             heap_extract(&(pipe->idle_heap), q);
 1249             q->S = MAX64(q->F, pipe->V ) ;
 1250         }
 1251         q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
 1252 
 1253         if (pipe->not_eligible_heap.elements == 0 &&
 1254                 pipe->scheduler_heap.elements == 0)
 1255             pipe->V = MAX64 ( q->S, pipe->V );
 1256         fs->backlogged++ ;
 1257         /*
 1258          * Look at eligibility. A flow is not eligibile if S>V (when
 1259          * this happens, it means that there is some other flow already
 1260          * scheduled for the same pipe, so the scheduler_heap cannot be
 1261          * empty). If the flow is not eligible we just store it in the
 1262          * not_eligible_heap. Otherwise, we store in the scheduler_heap
 1263          * and possibly invoke ready_event_wfq() right now if there is
 1264          * leftover credit.
 1265          * Note that for all flows in scheduler_heap (SCH), S_i <= V,
 1266          * and for all flows in not_eligible_heap (NEH), S_i > V .
 1267          * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
 1268          * we only need to look into NEH.
 1269          */
 1270         if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
 1271             if (pipe->scheduler_heap.elements == 0)
 1272                 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
 1273             heap_insert(&(pipe->not_eligible_heap), q->S, q);
 1274         } else {
 1275             heap_insert(&(pipe->scheduler_heap), q->F, q);
 1276             if (pipe->numbytes >= 0) { /* pipe is idle */
 1277                 if (pipe->scheduler_heap.elements != 1)
 1278                     printf("dummynet: OUCH! pipe should have been idle!\n");
 1279                 DPRINTF(("dummynet: waking up pipe %d at %d\n",
 1280                         pipe->pipe_nr, (int)(q->F >> MY_M)));
 1281                 pipe->sched_time = curr_time ;
 1282                 ready_event_wfq(pipe);
 1283             }
 1284         }
 1285     }
 1286 done:
 1287     DUMMYNET_UNLOCK();
 1288     return 0;
 1289 
 1290 dropit:
 1291     if (q)
 1292         q->drops++ ;
 1293     DUMMYNET_UNLOCK();
 1294     m_freem(m);
 1295     return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
 1296 }
 1297 
 1298 /*
 1299  * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
 1300  * Doing this would probably save us the initial bzero of dn_pkt
 1301  */
 1302 #define DN_FREE_PKT(_m) do {                            \
 1303         m_freem(_m);                                    \
 1304 } while (0)
 1305 
 1306 /*
 1307  * Dispose all packets and flow_queues on a flow_set.
 1308  * If all=1, also remove red lookup table and other storage,
 1309  * including the descriptor itself.
 1310  * For the one in dn_pipe MUST also cleanup ready_heap...
 1311  */
 1312 static void
 1313 purge_flow_set(struct dn_flow_set *fs, int all)
 1314 {
 1315     struct dn_flow_queue *q, *qn ;
 1316     int i ;
 1317 
 1318     DUMMYNET_LOCK_ASSERT();
 1319 
 1320     for (i = 0 ; i <= fs->rq_size ; i++ ) {
 1321         for (q = fs->rq[i] ; q ; q = qn ) {
 1322             struct mbuf *m, *mnext;
 1323 
 1324             mnext = q->head;
 1325             while ((m = mnext) != NULL) {
 1326                 mnext = m->m_nextpkt;
 1327                 DN_FREE_PKT(m);
 1328             }
 1329             qn = q->next ;
 1330             free(q, M_DUMMYNET);
 1331         }
 1332         fs->rq[i] = NULL ;
 1333     }
 1334     fs->rq_elements = 0 ;
 1335     if (all) {
 1336         /* RED - free lookup table */
 1337         if (fs->w_q_lookup)
 1338             free(fs->w_q_lookup, M_DUMMYNET);
 1339         if (fs->rq)
 1340             free(fs->rq, M_DUMMYNET);
 1341         /* if this fs is not part of a pipe, free it */
 1342         if (fs->pipe && fs != &(fs->pipe->fs) )
 1343             free(fs, M_DUMMYNET);
 1344     }
 1345 }
 1346 
 1347 /*
 1348  * Dispose all packets queued on a pipe (not a flow_set).
 1349  * Also free all resources associated to a pipe, which is about
 1350  * to be deleted.
 1351  */
 1352 static void
 1353 purge_pipe(struct dn_pipe *pipe)
 1354 {
 1355     struct mbuf *m, *mnext;
 1356 
 1357     purge_flow_set( &(pipe->fs), 1 );
 1358 
 1359     mnext = pipe->head;
 1360     while ((m = mnext) != NULL) {
 1361         mnext = m->m_nextpkt;
 1362         DN_FREE_PKT(m);
 1363     }
 1364 
 1365     heap_free( &(pipe->scheduler_heap) );
 1366     heap_free( &(pipe->not_eligible_heap) );
 1367     heap_free( &(pipe->idle_heap) );
 1368 }
 1369 
 1370 /*
 1371  * Delete all pipes and heaps returning memory. Must also
 1372  * remove references from all ipfw rules to all pipes.
 1373  */
 1374 static void
 1375 dummynet_flush()
 1376 {
 1377     struct dn_pipe *curr_p, *p ;
 1378     struct dn_flow_set *fs, *curr_fs;
 1379 
 1380     DUMMYNET_LOCK();
 1381     /* remove all references to pipes ...*/
 1382     flush_pipe_ptrs(NULL);
 1383     /* prevent future matches... */
 1384     p = all_pipes ;
 1385     all_pipes = NULL ;
 1386     fs = all_flow_sets ;
 1387     all_flow_sets = NULL ;
 1388     /* and free heaps so we don't have unwanted events */
 1389     heap_free(&ready_heap);
 1390     heap_free(&wfq_ready_heap);
 1391     heap_free(&extract_heap);
 1392 
 1393     /*
 1394      * Now purge all queued pkts and delete all pipes
 1395      */
 1396     /* scan and purge all flow_sets. */
 1397     for ( ; fs ; ) {
 1398         curr_fs = fs ;
 1399         fs = fs->next ;
 1400         purge_flow_set(curr_fs, 1);
 1401     }
 1402     for ( ; p ; ) {
 1403         purge_pipe(p);
 1404         curr_p = p ;
 1405         p = p->next ;
 1406         free(curr_p, M_DUMMYNET);
 1407     }
 1408     DUMMYNET_UNLOCK();
 1409 }
 1410 
 1411 
 1412 extern struct ip_fw *ip_fw_default_rule ;
 1413 static void
 1414 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
 1415 {
 1416     int i ;
 1417     struct dn_flow_queue *q ;
 1418     struct mbuf *m ;
 1419 
 1420     for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
 1421         for (q = fs->rq[i] ; q ; q = q->next )
 1422             for (m = q->head ; m ; m = m->m_nextpkt ) {
 1423                 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
 1424                 if (pkt->rule == r)
 1425                     pkt->rule = ip_fw_default_rule ;
 1426             }
 1427 }
 1428 /*
 1429  * when a firewall rule is deleted, scan all queues and remove the flow-id
 1430  * from packets matching this rule.
 1431  */
 1432 void
 1433 dn_rule_delete(void *r)
 1434 {
 1435     struct dn_pipe *p ;
 1436     struct dn_flow_set *fs ;
 1437     struct dn_pkt_tag *pkt ;
 1438     struct mbuf *m ;
 1439 
 1440     DUMMYNET_LOCK();
 1441     /*
 1442      * If the rule references a queue (dn_flow_set), then scan
 1443      * the flow set, otherwise scan pipes. Should do either, but doing
 1444      * both does not harm.
 1445      */
 1446     for ( fs = all_flow_sets ; fs ; fs = fs->next )
 1447         dn_rule_delete_fs(fs, r);
 1448     for ( p = all_pipes ; p ; p = p->next ) {
 1449         fs = &(p->fs) ;
 1450         dn_rule_delete_fs(fs, r);
 1451         for (m = p->head ; m ; m = m->m_nextpkt ) {
 1452             pkt = dn_tag_get(m) ;
 1453             if (pkt->rule == r)
 1454                 pkt->rule = ip_fw_default_rule ;
 1455         }
 1456     }
 1457     DUMMYNET_UNLOCK();
 1458 }
 1459 
 1460 /*
 1461  * setup RED parameters
 1462  */
 1463 static int
 1464 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
 1465 {
 1466     int i;
 1467 
 1468     x->w_q = p->w_q;
 1469     x->min_th = SCALE(p->min_th);
 1470     x->max_th = SCALE(p->max_th);
 1471     x->max_p = p->max_p;
 1472 
 1473     x->c_1 = p->max_p / (p->max_th - p->min_th);
 1474     x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
 1475     if (x->flags_fs & DN_IS_GENTLE_RED) {
 1476         x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
 1477         x->c_4 = (SCALE(1) - 2 * p->max_p);
 1478     }
 1479 
 1480     /* if the lookup table already exist, free and create it again */
 1481     if (x->w_q_lookup) {
 1482         free(x->w_q_lookup, M_DUMMYNET);
 1483         x->w_q_lookup = NULL ;
 1484     }
 1485     if (red_lookup_depth == 0) {
 1486         printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
 1487         free(x, M_DUMMYNET);
 1488         return EINVAL;
 1489     }
 1490     x->lookup_depth = red_lookup_depth;
 1491     x->w_q_lookup = (u_int *) malloc(x->lookup_depth * sizeof(int),
 1492             M_DUMMYNET, M_NOWAIT);
 1493     if (x->w_q_lookup == NULL) {
 1494         printf("dummynet: sorry, cannot allocate red lookup table\n");
 1495         free(x, M_DUMMYNET);
 1496         return ENOSPC;
 1497     }
 1498 
 1499     /* fill the lookup table with (1 - w_q)^x */
 1500     x->lookup_step = p->lookup_step ;
 1501     x->lookup_weight = p->lookup_weight ;
 1502     x->w_q_lookup[0] = SCALE(1) - x->w_q;
 1503     for (i = 1; i < x->lookup_depth; i++)
 1504         x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
 1505     if (red_avg_pkt_size < 1)
 1506         red_avg_pkt_size = 512 ;
 1507     x->avg_pkt_size = red_avg_pkt_size ;
 1508     if (red_max_pkt_size < 1)
 1509         red_max_pkt_size = 1500 ;
 1510     x->max_pkt_size = red_max_pkt_size ;
 1511     return 0 ;
 1512 }
 1513 
 1514 static int
 1515 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
 1516 {
 1517     if (x->flags_fs & DN_HAVE_FLOW_MASK) {     /* allocate some slots */
 1518         int l = pfs->rq_size;
 1519 
 1520         if (l == 0)
 1521             l = dn_hash_size;
 1522         if (l < 4)
 1523             l = 4;
 1524         else if (l > DN_MAX_HASH_SIZE)
 1525             l = DN_MAX_HASH_SIZE;
 1526         x->rq_size = l;
 1527     } else                  /* one is enough for null mask */
 1528         x->rq_size = 1;
 1529     x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
 1530             M_DUMMYNET, M_NOWAIT | M_ZERO);
 1531     if (x->rq == NULL) {
 1532         printf("dummynet: sorry, cannot allocate queue\n");
 1533         return ENOSPC;
 1534     }
 1535     x->rq_elements = 0;
 1536     return 0 ;
 1537 }
 1538 
 1539 static void
 1540 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
 1541 {
 1542     x->flags_fs = src->flags_fs;
 1543     x->qsize = src->qsize;
 1544     x->plr = src->plr;
 1545     x->flow_mask = src->flow_mask;
 1546     if (x->flags_fs & DN_QSIZE_IS_BYTES) {
 1547         if (x->qsize > 1024*1024)
 1548             x->qsize = 1024*1024 ;
 1549     } else {
 1550         if (x->qsize == 0)
 1551             x->qsize = 50 ;
 1552         if (x->qsize > 100)
 1553             x->qsize = 50 ;
 1554     }
 1555     /* configuring RED */
 1556     if ( x->flags_fs & DN_IS_RED )
 1557         config_red(src, x) ;    /* XXX should check errors */
 1558 }
 1559 
 1560 /*
 1561  * setup pipe or queue parameters.
 1562  */
 1563 
 1564 static int
 1565 config_pipe(struct dn_pipe *p)
 1566 {
 1567     int i, r;
 1568     struct dn_flow_set *pfs = &(p->fs);
 1569     struct dn_flow_queue *q;
 1570 
 1571     /*
 1572      * The config program passes parameters as follows:
 1573      * bw = bits/second (0 means no limits),
 1574      * delay = ms, must be translated into ticks.
 1575      * qsize = slots/bytes
 1576      */
 1577     p->delay = ( p->delay * hz ) / 1000 ;
 1578     /* We need either a pipe number or a flow_set number */
 1579     if (p->pipe_nr == 0 && pfs->fs_nr == 0)
 1580         return EINVAL ;
 1581     if (p->pipe_nr != 0 && pfs->fs_nr != 0)
 1582         return EINVAL ;
 1583     if (p->pipe_nr != 0) { /* this is a pipe */
 1584         struct dn_pipe *x, *a, *b;
 1585 
 1586         DUMMYNET_LOCK();
 1587         /* locate pipe */
 1588         for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
 1589                  a = b , b = b->next) ;
 1590 
 1591         if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
 1592             x = malloc(sizeof(struct dn_pipe), M_DUMMYNET, M_NOWAIT | M_ZERO);
 1593             if (x == NULL) {
 1594                 DUMMYNET_UNLOCK();
 1595                 printf("dummynet: no memory for new pipe\n");
 1596                 return ENOSPC;
 1597             }
 1598             x->pipe_nr = p->pipe_nr;
 1599             x->fs.pipe = x ;
 1600             /* idle_heap is the only one from which we extract from the middle.
 1601              */
 1602             x->idle_heap.size = x->idle_heap.elements = 0 ;
 1603             x->idle_heap.offset=OFFSET_OF(struct dn_flow_queue, heap_pos);
 1604         } else {
 1605             x = b;
 1606             /* Flush accumulated credit for all queues */
 1607             for (i = 0; i <= x->fs.rq_size; i++)
 1608                 for (q = x->fs.rq[i]; q; q = q->next)
 1609                     q->numbytes = 0;
 1610         }
 1611 
 1612         x->bandwidth = p->bandwidth ;
 1613         x->numbytes = 0; /* just in case... */
 1614         bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
 1615         x->ifp = NULL ; /* reset interface ptr */
 1616         x->delay = p->delay ;
 1617         set_fs_parms(&(x->fs), pfs);
 1618 
 1619 
 1620         if ( x->fs.rq == NULL ) { /* a new pipe */
 1621             r = alloc_hash(&(x->fs), pfs) ;
 1622             if (r) {
 1623                 DUMMYNET_UNLOCK();
 1624                 free(x, M_DUMMYNET);
 1625                 return r ;
 1626             }
 1627             x->next = b ;
 1628             if (a == NULL)
 1629                 all_pipes = x ;
 1630             else
 1631                 a->next = x ;
 1632         }
 1633         DUMMYNET_UNLOCK();
 1634     } else { /* config queue */
 1635         struct dn_flow_set *x, *a, *b ;
 1636 
 1637         DUMMYNET_LOCK();
 1638         /* locate flow_set */
 1639         for (a=NULL, b=all_flow_sets ; b && b->fs_nr < pfs->fs_nr ;
 1640                  a = b , b = b->next) ;
 1641 
 1642         if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new  */
 1643             if (pfs->parent_nr == 0) {  /* need link to a pipe */
 1644                 DUMMYNET_UNLOCK();
 1645                 return EINVAL ;
 1646             }
 1647             x = malloc(sizeof(struct dn_flow_set), M_DUMMYNET, M_NOWAIT|M_ZERO);
 1648             if (x == NULL) {
 1649                 DUMMYNET_UNLOCK();
 1650                 printf("dummynet: no memory for new flow_set\n");
 1651                 return ENOSPC;
 1652             }
 1653             x->fs_nr = pfs->fs_nr;
 1654             x->parent_nr = pfs->parent_nr;
 1655             x->weight = pfs->weight ;
 1656             if (x->weight == 0)
 1657                 x->weight = 1 ;
 1658             else if (x->weight > 100)
 1659                 x->weight = 100 ;
 1660         } else {
 1661             /* Change parent pipe not allowed; must delete and recreate */
 1662             if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
 1663                 DUMMYNET_UNLOCK();
 1664                 return EINVAL ;
 1665             }
 1666             x = b;
 1667         }
 1668         set_fs_parms(x, pfs);
 1669 
 1670         if ( x->rq == NULL ) { /* a new flow_set */
 1671             r = alloc_hash(x, pfs) ;
 1672             if (r) {
 1673                 DUMMYNET_UNLOCK();
 1674                 free(x, M_DUMMYNET);
 1675                 return r ;
 1676             }
 1677             x->next = b;
 1678             if (a == NULL)
 1679                 all_flow_sets = x;
 1680             else
 1681                 a->next = x;
 1682         }
 1683         DUMMYNET_UNLOCK();
 1684     }
 1685     return 0 ;
 1686 }
 1687 
 1688 /*
 1689  * Helper function to remove from a heap queues which are linked to
 1690  * a flow_set about to be deleted.
 1691  */
 1692 static void
 1693 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
 1694 {
 1695     int i = 0, found = 0 ;
 1696     for (; i < h->elements ;)
 1697         if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
 1698             h->elements-- ;
 1699             h->p[i] = h->p[h->elements] ;
 1700             found++ ;
 1701         } else
 1702             i++ ;
 1703     if (found)
 1704         heapify(h);
 1705 }
 1706 
 1707 /*
 1708  * helper function to remove a pipe from a heap (can be there at most once)
 1709  */
 1710 static void
 1711 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
 1712 {
 1713     if (h->elements > 0) {
 1714         int i = 0 ;
 1715         for (i=0; i < h->elements ; i++ ) {
 1716             if (h->p[i].object == p) { /* found it */
 1717                 h->elements-- ;
 1718                 h->p[i] = h->p[h->elements] ;
 1719                 heapify(h);
 1720                 break ;
 1721             }
 1722         }
 1723     }
 1724 }
 1725 
 1726 /*
 1727  * drain all queues. Called in case of severe mbuf shortage.
 1728  */
 1729 void
 1730 dummynet_drain()
 1731 {
 1732     struct dn_flow_set *fs;
 1733     struct dn_pipe *p;
 1734     struct mbuf *m, *mnext;
 1735 
 1736     DUMMYNET_LOCK_ASSERT();
 1737 
 1738     heap_free(&ready_heap);
 1739     heap_free(&wfq_ready_heap);
 1740     heap_free(&extract_heap);
 1741     /* remove all references to this pipe from flow_sets */
 1742     for (fs = all_flow_sets; fs; fs= fs->next )
 1743         purge_flow_set(fs, 0);
 1744 
 1745     for (p = all_pipes; p; p= p->next ) {
 1746         purge_flow_set(&(p->fs), 0);
 1747 
 1748         mnext = p->head;
 1749         while ((m = mnext) != NULL) {
 1750             mnext = m->m_nextpkt;
 1751             DN_FREE_PKT(m);
 1752         }
 1753         p->head = p->tail = NULL ;
 1754     }
 1755 }
 1756 
 1757 /*
 1758  * Fully delete a pipe or a queue, cleaning up associated info.
 1759  */
 1760 static int
 1761 delete_pipe(struct dn_pipe *p)
 1762 {
 1763     if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
 1764         return EINVAL ;
 1765     if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
 1766         return EINVAL ;
 1767     if (p->pipe_nr != 0) { /* this is an old-style pipe */
 1768         struct dn_pipe *a, *b;
 1769         struct dn_flow_set *fs;
 1770 
 1771         DUMMYNET_LOCK();
 1772         /* locate pipe */
 1773         for (a = NULL , b = all_pipes ; b && b->pipe_nr < p->pipe_nr ;
 1774                  a = b , b = b->next) ;
 1775         if (b == NULL || (b->pipe_nr != p->pipe_nr) ) {
 1776             DUMMYNET_UNLOCK();
 1777             return EINVAL ; /* not found */
 1778         }
 1779 
 1780         /* unlink from list of pipes */
 1781         if (a == NULL)
 1782             all_pipes = b->next ;
 1783         else
 1784             a->next = b->next ;
 1785         /* remove references to this pipe from the ip_fw rules. */
 1786         flush_pipe_ptrs(&(b->fs));
 1787 
 1788         /* remove all references to this pipe from flow_sets */
 1789         for (fs = all_flow_sets; fs; fs= fs->next )
 1790             if (fs->pipe == b) {
 1791                 printf("dummynet: ++ ref to pipe %d from fs %d\n",
 1792                         p->pipe_nr, fs->fs_nr);
 1793                 fs->pipe = NULL ;
 1794                 purge_flow_set(fs, 0);
 1795             }
 1796         fs_remove_from_heap(&ready_heap, &(b->fs));
 1797         purge_pipe(b);  /* remove all data associated to this pipe */
 1798         /* remove reference to here from extract_heap and wfq_ready_heap */
 1799         pipe_remove_from_heap(&extract_heap, b);
 1800         pipe_remove_from_heap(&wfq_ready_heap, b);
 1801         DUMMYNET_UNLOCK();
 1802 
 1803         free(b, M_DUMMYNET);
 1804     } else { /* this is a WF2Q queue (dn_flow_set) */
 1805         struct dn_flow_set *a, *b;
 1806 
 1807         DUMMYNET_LOCK();
 1808         /* locate set */
 1809         for (a = NULL, b = all_flow_sets ; b && b->fs_nr < p->fs.fs_nr ;
 1810                  a = b , b = b->next) ;
 1811         if (b == NULL || (b->fs_nr != p->fs.fs_nr) ) {
 1812             DUMMYNET_UNLOCK();
 1813             return EINVAL ; /* not found */
 1814         }
 1815 
 1816         if (a == NULL)
 1817             all_flow_sets = b->next ;
 1818         else
 1819             a->next = b->next ;
 1820         /* remove references to this flow_set from the ip_fw rules. */
 1821         flush_pipe_ptrs(b);
 1822 
 1823         if (b->pipe != NULL) {
 1824             /* Update total weight on parent pipe and cleanup parent heaps */
 1825             b->pipe->sum -= b->weight * b->backlogged ;
 1826             fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
 1827             fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
 1828 #if 1   /* XXX should i remove from idle_heap as well ? */
 1829             fs_remove_from_heap(&(b->pipe->idle_heap), b);
 1830 #endif
 1831         }
 1832         purge_flow_set(b, 1);
 1833         DUMMYNET_UNLOCK();
 1834     }
 1835     return 0 ;
 1836 }
 1837 
 1838 /*
 1839  * helper function used to copy data from kernel in DUMMYNET_GET
 1840  */
 1841 static char *
 1842 dn_copy_set(struct dn_flow_set *set, char *bp)
 1843 {
 1844     int i, copied = 0 ;
 1845     struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
 1846 
 1847     DUMMYNET_LOCK_ASSERT();
 1848 
 1849     for (i = 0 ; i <= set->rq_size ; i++)
 1850         for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
 1851             if (q->hash_slot != i)
 1852                 printf("dummynet: ++ at %d: wrong slot (have %d, "
 1853                     "should be %d)\n", copied, q->hash_slot, i);
 1854             if (q->fs != set)
 1855                 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
 1856                         i, q->fs, set);
 1857             copied++ ;
 1858             bcopy(q, qp, sizeof( *q ) );
 1859             /* cleanup pointers */
 1860             qp->next = NULL ;
 1861             qp->head = qp->tail = NULL ;
 1862             qp->fs = NULL ;
 1863         }
 1864     if (copied != set->rq_elements)
 1865         printf("dummynet: ++ wrong count, have %d should be %d\n",
 1866             copied, set->rq_elements);
 1867     return (char *)qp ;
 1868 }
 1869 
 1870 static size_t
 1871 dn_calc_size(void)
 1872 {
 1873     struct dn_flow_set *set ;
 1874     struct dn_pipe *p ;
 1875     size_t size ;
 1876 
 1877     DUMMYNET_LOCK_ASSERT();
 1878     /*
 1879      * compute size of data structures: list of pipes and flow_sets.
 1880      */
 1881     for (p = all_pipes, size = 0 ; p ; p = p->next )
 1882         size += sizeof( *p ) +
 1883             p->fs.rq_elements * sizeof(struct dn_flow_queue);
 1884     for (set = all_flow_sets ; set ; set = set->next )
 1885         size += sizeof ( *set ) +
 1886             set->rq_elements * sizeof(struct dn_flow_queue);
 1887     return size ;
 1888 }
 1889 
 1890 static int
 1891 dummynet_get(struct sockopt *sopt)
 1892 {
 1893     char *buf, *bp ; /* bp is the "copy-pointer" */
 1894     size_t size ;
 1895     struct dn_flow_set *set ;
 1896     struct dn_pipe *p ;
 1897     int error=0, i ;
 1898 
 1899     /* XXX lock held too long */
 1900     DUMMYNET_LOCK();
 1901     /*
 1902      * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
 1903      *      cannot use this flag while holding a mutex.
 1904      */
 1905     for (i = 0; i < 10; i++) {
 1906         size = dn_calc_size();
 1907         DUMMYNET_UNLOCK();
 1908         buf = malloc(size, M_TEMP, M_WAITOK);
 1909         DUMMYNET_LOCK();
 1910         if (size == dn_calc_size())
 1911                 break;
 1912         free(buf, M_TEMP);
 1913         buf = NULL;
 1914     }
 1915     if (buf == NULL) {
 1916         DUMMYNET_UNLOCK();
 1917         return ENOBUFS ;
 1918     }
 1919     for (p = all_pipes, bp = buf ; p ; p = p->next ) {
 1920         struct dn_pipe *pipe_bp = (struct dn_pipe *)bp ;
 1921 
 1922         /*
 1923          * copy pipe descriptor into *bp, convert delay back to ms,
 1924          * then copy the flow_set descriptor(s) one at a time.
 1925          * After each flow_set, copy the queue descriptor it owns.
 1926          */
 1927         bcopy(p, bp, sizeof( *p ) );
 1928         pipe_bp->delay = (pipe_bp->delay * 1000) / hz ;
 1929         /*
 1930          * XXX the following is a hack based on ->next being the
 1931          * first field in dn_pipe and dn_flow_set. The correct
 1932          * solution would be to move the dn_flow_set to the beginning
 1933          * of struct dn_pipe.
 1934          */
 1935         pipe_bp->next = (struct dn_pipe *)DN_IS_PIPE ;
 1936         /* clean pointers */
 1937         pipe_bp->head = pipe_bp->tail = NULL ;
 1938         pipe_bp->fs.next = NULL ;
 1939         pipe_bp->fs.pipe = NULL ;
 1940         pipe_bp->fs.rq = NULL ;
 1941 
 1942         bp += sizeof( *p ) ;
 1943         bp = dn_copy_set( &(p->fs), bp );
 1944     }
 1945     for (set = all_flow_sets ; set ; set = set->next ) {
 1946         struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp ;
 1947         bcopy(set, bp, sizeof( *set ) );
 1948         /* XXX same hack as above */
 1949         fs_bp->next = (struct dn_flow_set *)DN_IS_QUEUE ;
 1950         fs_bp->pipe = NULL ;
 1951         fs_bp->rq = NULL ;
 1952         bp += sizeof( *set ) ;
 1953         bp = dn_copy_set( set, bp );
 1954     }
 1955     DUMMYNET_UNLOCK();
 1956 
 1957     error = sooptcopyout(sopt, buf, size);
 1958     free(buf, M_TEMP);
 1959     return error ;
 1960 }
 1961 
 1962 /*
 1963  * Handler for the various dummynet socket options (get, flush, config, del)
 1964  */
 1965 static int
 1966 ip_dn_ctl(struct sockopt *sopt)
 1967 {
 1968     int error = 0 ;
 1969     struct dn_pipe *p, tmp_pipe;
 1970 
 1971     /* Disallow sets in really-really secure mode. */
 1972     if (sopt->sopt_dir == SOPT_SET) {
 1973 #if __FreeBSD_version >= 500034
 1974         error =  securelevel_ge(sopt->sopt_td->td_ucred, 3);
 1975         if (error)
 1976             return (error);
 1977 #else
 1978         if (securelevel >= 3)
 1979             return (EPERM);
 1980 #endif
 1981     }
 1982 
 1983     switch (sopt->sopt_name) {
 1984     default :
 1985         printf("dummynet: -- unknown option %d", sopt->sopt_name);
 1986         return EINVAL ;
 1987 
 1988     case IP_DUMMYNET_GET :
 1989         error = dummynet_get(sopt);
 1990         break ;
 1991 
 1992     case IP_DUMMYNET_FLUSH :
 1993         dummynet_flush() ;
 1994         break ;
 1995 
 1996     case IP_DUMMYNET_CONFIGURE :
 1997         p = &tmp_pipe ;
 1998         error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
 1999         if (error)
 2000             break ;
 2001         error = config_pipe(p);
 2002         break ;
 2003 
 2004     case IP_DUMMYNET_DEL :      /* remove a pipe or queue */
 2005         p = &tmp_pipe ;
 2006         error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
 2007         if (error)
 2008             break ;
 2009 
 2010         error = delete_pipe(p);
 2011         break ;
 2012     }
 2013     return error ;
 2014 }
 2015 
 2016 static void
 2017 ip_dn_init(void)
 2018 {
 2019     if (bootverbose)
 2020             printf("DUMMYNET initialized (011031)\n");
 2021 
 2022     DUMMYNET_LOCK_INIT();
 2023 
 2024     all_pipes = NULL ;
 2025     all_flow_sets = NULL ;
 2026     ready_heap.size = ready_heap.elements = 0 ;
 2027     ready_heap.offset = 0 ;
 2028 
 2029     wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
 2030     wfq_ready_heap.offset = 0 ;
 2031 
 2032     extract_heap.size = extract_heap.elements = 0 ;
 2033     extract_heap.offset = 0 ;
 2034 
 2035     ip_dn_ctl_ptr = ip_dn_ctl;
 2036     ip_dn_io_ptr = dummynet_io;
 2037     ip_dn_ruledel_ptr = dn_rule_delete;
 2038 
 2039     callout_init(&dn_timeout, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
 2040     callout_reset(&dn_timeout, 1, dummynet, NULL);
 2041 }
 2042 
 2043 #ifdef KLD_MODULE
 2044 static void
 2045 ip_dn_destroy(void)
 2046 {
 2047     ip_dn_ctl_ptr = NULL;
 2048     ip_dn_io_ptr = NULL;
 2049     ip_dn_ruledel_ptr = NULL;
 2050 
 2051     callout_stop(&dn_timeout);
 2052     dummynet_flush();
 2053 
 2054     DUMMYNET_LOCK_DESTROY();
 2055 }
 2056 #endif /* KLD_MODULE */
 2057 
 2058 static int
 2059 dummynet_modevent(module_t mod, int type, void *data)
 2060 {
 2061         switch (type) {
 2062         case MOD_LOAD:
 2063                 if (DUMMYNET_LOADED) {
 2064                     printf("DUMMYNET already loaded\n");
 2065                     return EEXIST ;
 2066                 }
 2067                 ip_dn_init();
 2068                 break;
 2069 
 2070         case MOD_UNLOAD:
 2071 #if !defined(KLD_MODULE)
 2072                 printf("dummynet statically compiled, cannot unload\n");
 2073                 return EINVAL ;
 2074 #else
 2075                 ip_dn_destroy();
 2076 #endif
 2077                 break ;
 2078         default:
 2079                 return EOPNOTSUPP;
 2080                 break ;
 2081         }
 2082         return 0 ;
 2083 }
 2084 
 2085 static moduledata_t dummynet_mod = {
 2086         "dummynet",
 2087         dummynet_modevent,
 2088         NULL
 2089 };
 2090 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY);
 2091 MODULE_DEPEND(dummynet, ipfw, 2, 2, 2);
 2092 MODULE_VERSION(dummynet, 1);

Cache object: 8d2cfb52a616e6cde2c4a27e6d47e7b7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.