The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_fw2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright 
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD: releng/5.0/sys/netinet/ip_fw2.c 107906 2002-12-15 13:57:43Z maxim $
   26  */
   27 
   28 #define        DEB(x)
   29 #define        DDB(x) x
   30 
   31 /*
   32  * Implement IP packet firewall (new version)
   33  */
   34 
   35 #if !defined(KLD_MODULE)
   36 #include "opt_ipfw.h"
   37 #include "opt_ipdn.h"
   38 #include "opt_ipdivert.h"
   39 #include "opt_inet.h"
   40 #ifndef INET
   41 #error IPFIREWALL requires INET.
   42 #endif /* INET */
   43 #endif
   44 
   45 #define IPFW2   1
   46 #if IPFW2
   47 #include <sys/param.h>
   48 #include <sys/systm.h>
   49 #include <sys/malloc.h>
   50 #include <sys/mbuf.h>
   51 #include <sys/kernel.h>
   52 #include <sys/proc.h>
   53 #include <sys/socket.h>
   54 #include <sys/socketvar.h>
   55 #include <sys/sysctl.h>
   56 #include <sys/syslog.h>
   57 #include <sys/ucred.h>
   58 #include <net/if.h>
   59 #include <net/route.h>
   60 #include <netinet/in.h>
   61 #include <netinet/in_systm.h>
   62 #include <netinet/in_var.h>
   63 #include <netinet/in_pcb.h>
   64 #include <netinet/ip.h>
   65 #include <netinet/ip_var.h>
   66 #include <netinet/ip_icmp.h>
   67 #include <netinet/ip_fw.h>
   68 #include <netinet/ip_dummynet.h>
   69 #include <netinet/tcp.h>
   70 #include <netinet/tcp_timer.h>
   71 #include <netinet/tcp_var.h>
   72 #include <netinet/tcpip.h>
   73 #include <netinet/udp.h>
   74 #include <netinet/udp_var.h>
   75 
   76 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
   77 
   78 #include <machine/in_cksum.h>   /* XXX for in_cksum */
   79 
   80 /*
   81  * XXX This one should go in sys/mbuf.h. It is used to avoid that
   82  * a firewall-generated packet loops forever through the firewall.
   83  */
   84 #ifndef M_SKIP_FIREWALL
   85 #define M_SKIP_FIREWALL         0x4000
   86 #endif
   87 
   88 /*
   89  * set_disable contains one bit per set value (0..31).
   90  * If the bit is set, all rules with the corresponding set
   91  * are disabled. Set 31 is reserved for the default rule
   92  * and CANNOT be disabled.
   93  */
   94 static u_int32_t set_disable;
   95 
   96 static int fw_verbose;
   97 static int verbose_limit;
   98 
   99 static struct callout_handle ipfw_timeout_h;
  100 #define IPFW_DEFAULT_RULE       65535
  101 
  102 /*
  103  * list of rules for layer 3
  104  */
  105 static struct ip_fw *layer3_chain;
  106 
  107 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
  108 
  109 static int fw_debug = 1;
  110 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
  111 
  112 #ifdef SYSCTL_NODE
  113 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
  114 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
  115     CTLFLAG_RW | CTLFLAG_SECURE,
  116     &fw_enable, 0, "Enable ipfw");
  117 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
  118     &autoinc_step, 0, "Rule number autincrement step");
  119 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
  120     CTLFLAG_RW | CTLFLAG_SECURE,
  121     &fw_one_pass, 0,
  122     "Only do a single pass through ipfw when using dummynet(4)");
  123 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
  124     &fw_debug, 0, "Enable printing of debug ip_fw statements");
  125 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
  126     CTLFLAG_RW | CTLFLAG_SECURE,
  127     &fw_verbose, 0, "Log matches to ipfw rules");
  128 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
  129     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
  130 
  131 /*
  132  * Description of dynamic rules.
  133  *
  134  * Dynamic rules are stored in lists accessed through a hash table
  135  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
  136  * be modified through the sysctl variable dyn_buckets which is
  137  * updated when the table becomes empty.
  138  *
  139  * XXX currently there is only one list, ipfw_dyn.
  140  *
  141  * When a packet is received, its address fields are first masked
  142  * with the mask defined for the rule, then hashed, then matched
  143  * against the entries in the corresponding list.
  144  * Dynamic rules can be used for different purposes:
  145  *  + stateful rules;
  146  *  + enforcing limits on the number of sessions;
  147  *  + in-kernel NAT (not implemented yet)
  148  *
  149  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
  150  * measured in seconds and depending on the flags.
  151  *
  152  * The total number of dynamic rules is stored in dyn_count.
  153  * The max number of dynamic rules is dyn_max. When we reach
  154  * the maximum number of rules we do not create anymore. This is
  155  * done to avoid consuming too much memory, but also too much
  156  * time when searching on each packet (ideally, we should try instead
  157  * to put a limit on the length of the list on each bucket...).
  158  *
  159  * Each dynamic rule holds a pointer to the parent ipfw rule so
  160  * we know what action to perform. Dynamic rules are removed when
  161  * the parent rule is deleted. XXX we should make them survive.
  162  *
  163  * There are some limitations with dynamic rules -- we do not
  164  * obey the 'randomized match', and we do not do multiple
  165  * passes through the firewall. XXX check the latter!!!
  166  */
  167 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
  168 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
  169 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
  170 
  171 /*
  172  * Timeouts for various events in handing dynamic rules.
  173  */
  174 static u_int32_t dyn_ack_lifetime = 300;
  175 static u_int32_t dyn_syn_lifetime = 20;
  176 static u_int32_t dyn_fin_lifetime = 1;
  177 static u_int32_t dyn_rst_lifetime = 1;
  178 static u_int32_t dyn_udp_lifetime = 10;
  179 static u_int32_t dyn_short_lifetime = 5;
  180 
  181 /*
  182  * Keepalives are sent if dyn_keepalive is set. They are sent every
  183  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
  184  * seconds of lifetime of a rule.
  185  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
  186  * than dyn_keepalive_period.
  187  */
  188 
  189 static u_int32_t dyn_keepalive_interval = 20;
  190 static u_int32_t dyn_keepalive_period = 5;
  191 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
  192 
  193 static u_int32_t static_count;  /* # of static rules */
  194 static u_int32_t static_len;    /* size in bytes of static rules */
  195 static u_int32_t dyn_count;             /* # of dynamic rules */
  196 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
  197 
  198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
  199     &dyn_buckets, 0, "Number of dyn. buckets");
  200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
  201     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
  202 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
  203     &dyn_count, 0, "Number of dyn. rules");
  204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
  205     &dyn_max, 0, "Max number of dyn. rules");
  206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
  207     &static_count, 0, "Number of static rules");
  208 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
  209     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
  210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
  211     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
  212 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
  213     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
  214 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
  215     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
  216 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
  217     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
  218 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
  219     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
  220 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
  221     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
  222 
  223 #endif /* SYSCTL_NODE */
  224 
  225 
  226 static ip_fw_chk_t      ipfw_chk;
  227 
  228 ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL;      /* hook into dummynet */
  229 
  230 /*
  231  * This macro maps an ip pointer into a layer3 header pointer of type T
  232  */
  233 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
  234 
  235 static __inline int
  236 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
  237 {
  238         int type = L3HDR(struct icmp,ip)->icmp_type;
  239 
  240         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
  241 }
  242 
  243 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
  244     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
  245 
  246 static int
  247 is_icmp_query(struct ip *ip)
  248 {
  249         int type = L3HDR(struct icmp, ip)->icmp_type;
  250         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
  251 }
  252 #undef TT
  253 
  254 /*
  255  * The following checks use two arrays of 8 or 16 bits to store the
  256  * bits that we want set or clear, respectively. They are in the
  257  * low and high half of cmd->arg1 or cmd->d[0].
  258  *
  259  * We scan options and store the bits we find set. We succeed if
  260  *
  261  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
  262  *
  263  * The code is sometimes optimized not to store additional variables.
  264  */
  265 
  266 static int
  267 flags_match(ipfw_insn *cmd, u_int8_t bits)
  268 {
  269         u_char want_clear;
  270         bits = ~bits;
  271 
  272         if ( ((cmd->arg1 & 0xff) & bits) != 0)
  273                 return 0; /* some bits we want set were clear */
  274         want_clear = (cmd->arg1 >> 8) & 0xff;
  275         if ( (want_clear & bits) != want_clear)
  276                 return 0; /* some bits we want clear were set */
  277         return 1;
  278 }
  279 
  280 static int
  281 ipopts_match(struct ip *ip, ipfw_insn *cmd)
  282 {
  283         int optlen, bits = 0;
  284         u_char *cp = (u_char *)(ip + 1);
  285         int x = (ip->ip_hl << 2) - sizeof (struct ip);
  286 
  287         for (; x > 0; x -= optlen, cp += optlen) {
  288                 int opt = cp[IPOPT_OPTVAL];
  289 
  290                 if (opt == IPOPT_EOL)
  291                         break;
  292                 if (opt == IPOPT_NOP)
  293                         optlen = 1;
  294                 else {
  295                         optlen = cp[IPOPT_OLEN];
  296                         if (optlen <= 0 || optlen > x)
  297                                 return 0; /* invalid or truncated */
  298                 }
  299                 switch (opt) {
  300 
  301                 default:
  302                         break;
  303 
  304                 case IPOPT_LSRR:
  305                         bits |= IP_FW_IPOPT_LSRR;
  306                         break;
  307 
  308                 case IPOPT_SSRR:
  309                         bits |= IP_FW_IPOPT_SSRR;
  310                         break;
  311 
  312                 case IPOPT_RR:
  313                         bits |= IP_FW_IPOPT_RR;
  314                         break;
  315 
  316                 case IPOPT_TS:
  317                         bits |= IP_FW_IPOPT_TS;
  318                         break;
  319                 }
  320         }
  321         return (flags_match(cmd, bits));
  322 }
  323 
  324 static int
  325 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
  326 {
  327         int optlen, bits = 0;
  328         struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
  329         u_char *cp = (u_char *)(tcp + 1);
  330         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
  331 
  332         for (; x > 0; x -= optlen, cp += optlen) {
  333                 int opt = cp[0];
  334                 if (opt == TCPOPT_EOL)
  335                         break;
  336                 if (opt == TCPOPT_NOP)
  337                         optlen = 1;
  338                 else {
  339                         optlen = cp[1];
  340                         if (optlen <= 0)
  341                                 break;
  342                 }
  343 
  344                 switch (opt) {
  345 
  346                 default:
  347                         break;
  348 
  349                 case TCPOPT_MAXSEG:
  350                         bits |= IP_FW_TCPOPT_MSS;
  351                         break;
  352 
  353                 case TCPOPT_WINDOW:
  354                         bits |= IP_FW_TCPOPT_WINDOW;
  355                         break;
  356 
  357                 case TCPOPT_SACK_PERMITTED:
  358                 case TCPOPT_SACK:
  359                         bits |= IP_FW_TCPOPT_SACK;
  360                         break;
  361 
  362                 case TCPOPT_TIMESTAMP:
  363                         bits |= IP_FW_TCPOPT_TS;
  364                         break;
  365 
  366                 case TCPOPT_CC:
  367                 case TCPOPT_CCNEW:
  368                 case TCPOPT_CCECHO:
  369                         bits |= IP_FW_TCPOPT_CC;
  370                         break;
  371                 }
  372         }
  373         return (flags_match(cmd, bits));
  374 }
  375 
  376 static int
  377 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
  378 {
  379         if (ifp == NULL)        /* no iface with this packet, match fails */
  380                 return 0;
  381         /* Check by name or by IP address */
  382         if (cmd->name[0] != '\0') { /* match by name */
  383                 /* Check unit number (-1 is wildcard) */
  384                 if (cmd->p.unit != -1 && cmd->p.unit != ifp->if_unit)
  385                         return(0);
  386                 /* Check name */
  387                 if (!strncmp(ifp->if_name, cmd->name, IFNAMSIZ))
  388                         return(1);
  389         } else {
  390                 struct ifaddr *ia;
  391 
  392                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
  393                         if (ia->ifa_addr == NULL)
  394                                 continue;
  395                         if (ia->ifa_addr->sa_family != AF_INET)
  396                                 continue;
  397                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
  398                             (ia->ifa_addr))->sin_addr.s_addr)
  399                                 return(1);      /* match */
  400                 }
  401         }
  402         return(0);      /* no match, fail ... */
  403 }
  404 
  405 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
  406 
  407 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
  408 #define SNP(buf) buf, sizeof(buf)
  409 
  410 /*
  411  * We enter here when we have a rule with O_LOG.
  412  * XXX this function alone takes about 2Kbytes of code!
  413  */
  414 static void
  415 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
  416         struct mbuf *m, struct ifnet *oif)
  417 {
  418         char *action;
  419         int limit_reached = 0;
  420         char action2[40], proto[48], fragment[28];
  421 
  422         fragment[0] = '\0';
  423         proto[0] = '\0';
  424 
  425         if (f == NULL) {        /* bogus pkt */
  426                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
  427                         return;
  428                 norule_counter++;
  429                 if (norule_counter == verbose_limit)
  430                         limit_reached = verbose_limit;
  431                 action = "Refuse";
  432         } else {        /* O_LOG is the first action, find the real one */
  433                 ipfw_insn *cmd = ACTION_PTR(f);
  434                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
  435 
  436                 if (l->max_log != 0 && l->log_left == 0)
  437                         return;
  438                 l->log_left--;
  439                 if (l->log_left == 0)
  440                         limit_reached = l->max_log;
  441                 cmd += F_LEN(cmd);      /* point to first action */
  442                 if (cmd->opcode == O_PROB)
  443                         cmd += F_LEN(cmd);
  444 
  445                 action = action2;
  446                 switch (cmd->opcode) {
  447                 case O_DENY:
  448                         action = "Deny";
  449                         break;
  450 
  451                 case O_REJECT:
  452                         if (cmd->arg1==ICMP_REJECT_RST)
  453                                 action = "Reset";
  454                         else if (cmd->arg1==ICMP_UNREACH_HOST)
  455                                 action = "Reject";
  456                         else
  457                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  458                                         cmd->arg1);
  459                         break;
  460 
  461                 case O_ACCEPT:
  462                         action = "Accept";
  463                         break;
  464                 case O_COUNT:
  465                         action = "Count";
  466                         break;
  467                 case O_DIVERT:
  468                         snprintf(SNPARGS(action2, 0), "Divert %d",
  469                                 cmd->arg1);
  470                         break;
  471                 case O_TEE:
  472                         snprintf(SNPARGS(action2, 0), "Tee %d",
  473                                 cmd->arg1);
  474                         break;
  475                 case O_SKIPTO:
  476                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
  477                                 cmd->arg1);
  478                         break;
  479                 case O_PIPE:
  480                         snprintf(SNPARGS(action2, 0), "Pipe %d",
  481                                 cmd->arg1);
  482                         break;
  483                 case O_QUEUE:
  484                         snprintf(SNPARGS(action2, 0), "Queue %d",
  485                                 cmd->arg1);
  486                         break;
  487                 case O_FORWARD_IP: {
  488                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
  489                         int len;
  490 
  491                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
  492                                 inet_ntoa(sa->sa.sin_addr));
  493                         if (sa->sa.sin_port)
  494                                 snprintf(SNPARGS(action2, len), ":%d",
  495                                     sa->sa.sin_port);
  496                         }
  497                         break;
  498                 default:
  499                         action = "UNKNOWN";
  500                         break;
  501                 }
  502         }
  503 
  504         if (hlen == 0) {        /* non-ip */
  505                 snprintf(SNPARGS(proto, 0), "MAC");
  506         } else {
  507                 struct ip *ip = mtod(m, struct ip *);
  508                 /* these three are all aliases to the same thing */
  509                 struct icmp *const icmp = L3HDR(struct icmp, ip);
  510                 struct tcphdr *const tcp = (struct tcphdr *)icmp;
  511                 struct udphdr *const udp = (struct udphdr *)icmp;
  512 
  513                 int ip_off, offset, ip_len;
  514 
  515                 int len;
  516 
  517                 if (eh != NULL) { /* layer 2 packets are as on the wire */
  518                         ip_off = ntohs(ip->ip_off);
  519                         ip_len = ntohs(ip->ip_len);
  520                 } else {
  521                         ip_off = ip->ip_off;
  522                         ip_len = ip->ip_len;
  523                 }
  524                 offset = ip_off & IP_OFFMASK;
  525                 switch (ip->ip_p) {
  526                 case IPPROTO_TCP:
  527                         len = snprintf(SNPARGS(proto, 0), "TCP %s",
  528                             inet_ntoa(ip->ip_src));
  529                         if (offset == 0)
  530                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  531                                     ntohs(tcp->th_sport),
  532                                     inet_ntoa(ip->ip_dst),
  533                                     ntohs(tcp->th_dport));
  534                         else
  535                                 snprintf(SNPARGS(proto, len), " %s",
  536                                     inet_ntoa(ip->ip_dst));
  537                         break;
  538 
  539                 case IPPROTO_UDP:
  540                         len = snprintf(SNPARGS(proto, 0), "UDP %s",
  541                                 inet_ntoa(ip->ip_src));
  542                         if (offset == 0)
  543                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  544                                     ntohs(udp->uh_sport),
  545                                     inet_ntoa(ip->ip_dst),
  546                                     ntohs(udp->uh_dport));
  547                         else
  548                                 snprintf(SNPARGS(proto, len), " %s",
  549                                     inet_ntoa(ip->ip_dst));
  550                         break;
  551 
  552                 case IPPROTO_ICMP:
  553                         if (offset == 0)
  554                                 len = snprintf(SNPARGS(proto, 0),
  555                                     "ICMP:%u.%u ",
  556                                     icmp->icmp_type, icmp->icmp_code);
  557                         else
  558                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
  559                         len += snprintf(SNPARGS(proto, len), "%s",
  560                             inet_ntoa(ip->ip_src));
  561                         snprintf(SNPARGS(proto, len), " %s",
  562                             inet_ntoa(ip->ip_dst));
  563                         break;
  564 
  565                 default:
  566                         len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
  567                             inet_ntoa(ip->ip_src));
  568                         snprintf(SNPARGS(proto, len), " %s",
  569                             inet_ntoa(ip->ip_dst));
  570                         break;
  571                 }
  572 
  573                 if (ip_off & (IP_MF | IP_OFFMASK))
  574                         snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
  575                              ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
  576                              offset << 3,
  577                              (ip_off & IP_MF) ? "+" : "");
  578         }
  579         if (oif || m->m_pkthdr.rcvif)
  580                 log(LOG_SECURITY | LOG_INFO,
  581                     "ipfw: %d %s %s %s via %s%d%s\n",
  582                     f ? f->rulenum : -1,
  583                     action, proto, oif ? "out" : "in",
  584                     oif ? oif->if_name : m->m_pkthdr.rcvif->if_name,
  585                     oif ? oif->if_unit : m->m_pkthdr.rcvif->if_unit,
  586                     fragment);
  587         else
  588                 log(LOG_SECURITY | LOG_INFO,
  589                     "ipfw: %d %s %s [no if info]%s\n",
  590                     f ? f->rulenum : -1,
  591                     action, proto, fragment);
  592         if (limit_reached)
  593                 log(LOG_SECURITY | LOG_NOTICE,
  594                     "ipfw: limit %d reached on entry %d\n",
  595                     limit_reached, f ? f->rulenum : -1);
  596 }
  597 
  598 /*
  599  * IMPORTANT: the hash function for dynamic rules must be commutative
  600  * in source and destination (ip,port), because rules are bidirectional
  601  * and we want to find both in the same bucket.
  602  */
  603 static __inline int
  604 hash_packet(struct ipfw_flow_id *id)
  605 {
  606         u_int32_t i;
  607 
  608         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
  609         i &= (curr_dyn_buckets - 1);
  610         return i;
  611 }
  612 
  613 /**
  614  * unlink a dynamic rule from a chain. prev is a pointer to
  615  * the previous one, q is a pointer to the rule to delete,
  616  * head is a pointer to the head of the queue.
  617  * Modifies q and potentially also head.
  618  */
  619 #define UNLINK_DYN_RULE(prev, head, q) {                                \
  620         ipfw_dyn_rule *old_q = q;                                       \
  621                                                                         \
  622         /* remove a refcount to the parent */                           \
  623         if (q->dyn_type == O_LIMIT)                                     \
  624                 q->parent->count--;                                     \
  625         DEB(printf("-- unlink entry 0x%08x %d -> 0x%08x %d, %d left\n", \
  626                 (q->id.src_ip), (q->id.src_port),                       \
  627                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
  628         if (prev != NULL)                                               \
  629                 prev->next = q = q->next;                               \
  630         else                                                            \
  631                 head = q = q->next;                                     \
  632         dyn_count--;                                                    \
  633         free(old_q, M_IPFW); }
  634 
  635 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
  636 
  637 /**
  638  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
  639  *
  640  * If keep_me == NULL, rules are deleted even if not expired,
  641  * otherwise only expired rules are removed.
  642  *
  643  * The value of the second parameter is also used to point to identify
  644  * a rule we absolutely do not want to remove (e.g. because we are
  645  * holding a reference to it -- this is the case with O_LIMIT_PARENT
  646  * rules). The pointer is only used for comparison, so any non-null
  647  * value will do.
  648  */
  649 static void
  650 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
  651 {
  652         static u_int32_t last_remove = 0;
  653 
  654 #define FORCE (keep_me == NULL)
  655 
  656         ipfw_dyn_rule *prev, *q;
  657         int i, pass = 0, max_pass = 0;
  658 
  659         if (ipfw_dyn_v == NULL || dyn_count == 0)
  660                 return;
  661         /* do not expire more than once per second, it is useless */
  662         if (!FORCE && last_remove == time_second)
  663                 return;
  664         last_remove = time_second;
  665 
  666         /*
  667          * because O_LIMIT refer to parent rules, during the first pass only
  668          * remove child and mark any pending LIMIT_PARENT, and remove
  669          * them in a second pass.
  670          */
  671 next_pass:
  672         for (i = 0 ; i < curr_dyn_buckets ; i++) {
  673                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
  674                         /*
  675                          * Logic can become complex here, so we split tests.
  676                          */
  677                         if (q == keep_me)
  678                                 goto next;
  679                         if (rule != NULL && rule != q->rule)
  680                                 goto next; /* not the one we are looking for */
  681                         if (q->dyn_type == O_LIMIT_PARENT) {
  682                                 /*
  683                                  * handle parent in the second pass,
  684                                  * record we need one.
  685                                  */
  686                                 max_pass = 1;
  687                                 if (pass == 0)
  688                                         goto next;
  689                                 if (FORCE && q->count != 0 ) {
  690                                         /* XXX should not happen! */
  691                                         printf( "OUCH! cannot remove rule,"
  692                                              " count %d\n", q->count);
  693                                 }
  694                         } else {
  695                                 if (!FORCE &&
  696                                     !TIME_LEQ( q->expire, time_second ))
  697                                         goto next;
  698                         }
  699                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  700                         continue;
  701 next:
  702                         prev=q;
  703                         q=q->next;
  704                 }
  705         }
  706         if (pass++ < max_pass)
  707                 goto next_pass;
  708 }
  709 
  710 
  711 /**
  712  * lookup a dynamic rule.
  713  */
  714 static ipfw_dyn_rule *
  715 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
  716         struct tcphdr *tcp)
  717 {
  718         /*
  719          * stateful ipfw extensions.
  720          * Lookup into dynamic session queue
  721          */
  722 #define MATCH_REVERSE   0
  723 #define MATCH_FORWARD   1
  724 #define MATCH_NONE      2
  725 #define MATCH_UNKNOWN   3
  726         int i, dir = MATCH_NONE;
  727         ipfw_dyn_rule *prev, *q=NULL;
  728 
  729         if (ipfw_dyn_v == NULL)
  730                 goto done;      /* not found */
  731         i = hash_packet( pkt );
  732         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
  733                 if (q->dyn_type == O_LIMIT_PARENT)
  734                         goto next;
  735                 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
  736                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  737                         continue;
  738                 }
  739                 if ( pkt->proto == q->id.proto) {
  740                         if (pkt->src_ip == q->id.src_ip &&
  741                             pkt->dst_ip == q->id.dst_ip &&
  742                             pkt->src_port == q->id.src_port &&
  743                             pkt->dst_port == q->id.dst_port ) {
  744                                 dir = MATCH_FORWARD;
  745                                 break;
  746                         }
  747                         if (pkt->src_ip == q->id.dst_ip &&
  748                             pkt->dst_ip == q->id.src_ip &&
  749                             pkt->src_port == q->id.dst_port &&
  750                             pkt->dst_port == q->id.src_port ) {
  751                                 dir = MATCH_REVERSE;
  752                                 break;
  753                         }
  754                 }
  755 next:
  756                 prev = q;
  757                 q = q->next;
  758         }
  759         if (q == NULL)
  760                 goto done; /* q = NULL, not found */
  761 
  762         if ( prev != NULL) { /* found and not in front */
  763                 prev->next = q->next;
  764                 q->next = ipfw_dyn_v[i];
  765                 ipfw_dyn_v[i] = q;
  766         }
  767         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
  768                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
  769 
  770 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
  771 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
  772                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
  773                 switch (q->state) {
  774                 case TH_SYN:                            /* opening */
  775                         q->expire = time_second + dyn_syn_lifetime;
  776                         break;
  777 
  778                 case BOTH_SYN:                  /* move to established */
  779                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
  780                 case BOTH_SYN | (TH_FIN << 8) :
  781                         if (tcp) {
  782 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
  783                             u_int32_t ack = ntohl(tcp->th_ack);
  784                             if (dir == MATCH_FORWARD) {
  785                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
  786                                     q->ack_fwd = ack;
  787                                 else { /* ignore out-of-sequence */
  788                                     break;
  789                                 }
  790                             } else {
  791                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
  792                                     q->ack_rev = ack;
  793                                 else { /* ignore out-of-sequence */
  794                                     break;
  795                                 }
  796                             }
  797                         }
  798                         q->expire = time_second + dyn_ack_lifetime;
  799                         break;
  800 
  801                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
  802                         if (dyn_fin_lifetime >= dyn_keepalive_period)
  803                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
  804                         q->expire = time_second + dyn_fin_lifetime;
  805                         break;
  806 
  807                 default:
  808 #if 0
  809                         /*
  810                          * reset or some invalid combination, but can also
  811                          * occur if we use keep-state the wrong way.
  812                          */
  813                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
  814                                 printf("invalid state: 0x%x\n", q->state);
  815 #endif
  816                         if (dyn_rst_lifetime >= dyn_keepalive_period)
  817                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
  818                         q->expire = time_second + dyn_rst_lifetime;
  819                         break;
  820                 }
  821         } else if (pkt->proto == IPPROTO_UDP) {
  822                 q->expire = time_second + dyn_udp_lifetime;
  823         } else {
  824                 /* other protocols */
  825                 q->expire = time_second + dyn_short_lifetime;
  826         }
  827 done:
  828         if (match_direction)
  829                 *match_direction = dir;
  830         return q;
  831 }
  832 
  833 static void
  834 realloc_dynamic_table(void)
  835 {
  836         /*
  837          * Try reallocation, make sure we have a power of 2 and do
  838          * not allow more than 64k entries. In case of overflow,
  839          * default to 1024.
  840          */
  841 
  842         if (dyn_buckets > 65536)
  843                 dyn_buckets = 1024;
  844         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
  845                 dyn_buckets = curr_dyn_buckets; /* reset */
  846                 return;
  847         }
  848         curr_dyn_buckets = dyn_buckets;
  849         if (ipfw_dyn_v != NULL)
  850                 free(ipfw_dyn_v, M_IPFW);
  851         for (;;) {
  852                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
  853                        M_IPFW, M_NOWAIT | M_ZERO);
  854                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
  855                         break;
  856                 curr_dyn_buckets /= 2;
  857         }
  858 }
  859 
  860 /**
  861  * Install state of type 'type' for a dynamic session.
  862  * The hash table contains two type of rules:
  863  * - regular rules (O_KEEP_STATE)
  864  * - rules for sessions with limited number of sess per user
  865  *   (O_LIMIT). When they are created, the parent is
  866  *   increased by 1, and decreased on delete. In this case,
  867  *   the third parameter is the parent rule and not the chain.
  868  * - "parent" rules for the above (O_LIMIT_PARENT).
  869  */
  870 static ipfw_dyn_rule *
  871 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
  872 {
  873         ipfw_dyn_rule *r;
  874         int i;
  875 
  876         if (ipfw_dyn_v == NULL ||
  877             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
  878                 realloc_dynamic_table();
  879                 if (ipfw_dyn_v == NULL)
  880                         return NULL; /* failed ! */
  881         }
  882         i = hash_packet(id);
  883 
  884         r = malloc(sizeof *r, M_IPFW, M_NOWAIT | M_ZERO);
  885         if (r == NULL) {
  886                 printf ("sorry cannot allocate state\n");
  887                 return NULL;
  888         }
  889 
  890         /* increase refcount on parent, and set pointer */
  891         if (dyn_type == O_LIMIT) {
  892                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
  893                 if ( parent->dyn_type != O_LIMIT_PARENT)
  894                         panic("invalid parent");
  895                 parent->count++;
  896                 r->parent = parent;
  897                 rule = parent->rule;
  898         }
  899 
  900         r->id = *id;
  901         r->expire = time_second + dyn_syn_lifetime;
  902         r->rule = rule;
  903         r->dyn_type = dyn_type;
  904         r->pcnt = r->bcnt = 0;
  905         r->count = 0;
  906 
  907         r->bucket = i;
  908         r->next = ipfw_dyn_v[i];
  909         ipfw_dyn_v[i] = r;
  910         dyn_count++;
  911         DEB(printf("-- add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
  912            dyn_type,
  913            (r->id.src_ip), (r->id.src_port),
  914            (r->id.dst_ip), (r->id.dst_port),
  915            dyn_count ); )
  916         return r;
  917 }
  918 
  919 /**
  920  * lookup dynamic parent rule using pkt and rule as search keys.
  921  * If the lookup fails, then install one.
  922  */
  923 static ipfw_dyn_rule *
  924 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
  925 {
  926         ipfw_dyn_rule *q;
  927         int i;
  928 
  929         if (ipfw_dyn_v) {
  930                 i = hash_packet( pkt );
  931                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
  932                         if (q->dyn_type == O_LIMIT_PARENT &&
  933                             rule== q->rule &&
  934                             pkt->proto == q->id.proto &&
  935                             pkt->src_ip == q->id.src_ip &&
  936                             pkt->dst_ip == q->id.dst_ip &&
  937                             pkt->src_port == q->id.src_port &&
  938                             pkt->dst_port == q->id.dst_port) {
  939                                 q->expire = time_second + dyn_short_lifetime;
  940                                 DEB(printf("lookup_dyn_parent found 0x%p\n",q);)
  941                                 return q;
  942                         }
  943         }
  944         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
  945 }
  946 
  947 /**
  948  * Install dynamic state for rule type cmd->o.opcode
  949  *
  950  * Returns 1 (failure) if state is not installed because of errors or because
  951  * session limitations are enforced.
  952  */
  953 static int
  954 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
  955         struct ip_fw_args *args)
  956 {
  957         static int last_log;
  958 
  959         ipfw_dyn_rule *q;
  960 
  961         DEB(printf("-- install state type %d 0x%08x %u -> 0x%08x %u\n",
  962             cmd->o.opcode,
  963             (args->f_id.src_ip), (args->f_id.src_port),
  964             (args->f_id.dst_ip), (args->f_id.dst_port) );)
  965 
  966         q = lookup_dyn_rule(&args->f_id, NULL, NULL);
  967 
  968         if (q != NULL) { /* should never occur */
  969                 if (last_log != time_second) {
  970                         last_log = time_second;
  971                         printf(" install_state: entry already present, done\n");
  972                 }
  973                 return 0;
  974         }
  975 
  976         if (dyn_count >= dyn_max)
  977                 /*
  978                  * Run out of slots, try to remove any expired rule.
  979                  */
  980                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
  981 
  982         if (dyn_count >= dyn_max) {
  983                 if (last_log != time_second) {
  984                         last_log = time_second;
  985                         printf("install_state: Too many dynamic rules\n");
  986                 }
  987                 return 1; /* cannot install, notify caller */
  988         }
  989 
  990         switch (cmd->o.opcode) {
  991         case O_KEEP_STATE: /* bidir rule */
  992                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
  993                 break;
  994 
  995         case O_LIMIT: /* limit number of sessions */
  996             {
  997                 u_int16_t limit_mask = cmd->limit_mask;
  998                 struct ipfw_flow_id id;
  999                 ipfw_dyn_rule *parent;
 1000 
 1001                 DEB(printf("installing dyn-limit rule %d\n", cmd->conn_limit);)
 1002 
 1003                 id.dst_ip = id.src_ip = 0;
 1004                 id.dst_port = id.src_port = 0;
 1005                 id.proto = args->f_id.proto;
 1006 
 1007                 if (limit_mask & DYN_SRC_ADDR)
 1008                         id.src_ip = args->f_id.src_ip;
 1009                 if (limit_mask & DYN_DST_ADDR)
 1010                         id.dst_ip = args->f_id.dst_ip;
 1011                 if (limit_mask & DYN_SRC_PORT)
 1012                         id.src_port = args->f_id.src_port;
 1013                 if (limit_mask & DYN_DST_PORT)
 1014                         id.dst_port = args->f_id.dst_port;
 1015                 parent = lookup_dyn_parent(&id, rule);
 1016                 if (parent == NULL) {
 1017                         printf("add parent failed\n");
 1018                         return 1;
 1019                 }
 1020                 if (parent->count >= cmd->conn_limit) {
 1021                         /*
 1022                          * See if we can remove some expired rule.
 1023                          */
 1024                         remove_dyn_rule(rule, parent);
 1025                         if (parent->count >= cmd->conn_limit) {
 1026                                 if (fw_verbose && last_log != time_second) {
 1027                                         last_log = time_second;
 1028                                         log(LOG_SECURITY | LOG_DEBUG,
 1029                                             "drop session, too many entries\n");
 1030                                 }
 1031                                 return 1;
 1032                         }
 1033                 }
 1034                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
 1035             }
 1036                 break;
 1037         default:
 1038                 printf("unknown dynamic rule type %u\n", cmd->o.opcode);
 1039                 return 1;
 1040         }
 1041         lookup_dyn_rule(&args->f_id, NULL, NULL); /* XXX just set lifetime */
 1042         return 0;
 1043 }
 1044 
 1045 /*
 1046  * Transmit a TCP packet, containing either a RST or a keepalive.
 1047  * When flags & TH_RST, we are sending a RST packet, because of a
 1048  * "reset" action matched the packet.
 1049  * Otherwise we are sending a keepalive, and flags & TH_
 1050  */
 1051 static void
 1052 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
 1053 {
 1054         struct mbuf *m;
 1055         struct ip *ip;
 1056         struct tcphdr *tcp;
 1057         struct route sro;       /* fake route */
 1058 
 1059         MGETHDR(m, M_DONTWAIT, MT_HEADER);
 1060         if (m == 0)
 1061                 return;
 1062         m->m_pkthdr.rcvif = (struct ifnet *)0;
 1063         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
 1064         m->m_data += max_linkhdr;
 1065 
 1066         ip = mtod(m, struct ip *);
 1067         bzero(ip, m->m_len);
 1068         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
 1069         ip->ip_p = IPPROTO_TCP;
 1070         tcp->th_off = 5;
 1071         /*
 1072          * Assume we are sending a RST (or a keepalive in the reverse
 1073          * direction), swap src and destination addresses and ports.
 1074          */
 1075         ip->ip_src.s_addr = htonl(id->dst_ip);
 1076         ip->ip_dst.s_addr = htonl(id->src_ip);
 1077         tcp->th_sport = htons(id->dst_port);
 1078         tcp->th_dport = htons(id->src_port);
 1079         if (flags & TH_RST) {   /* we are sending a RST */
 1080                 if (flags & TH_ACK) {
 1081                         tcp->th_seq = htonl(ack);
 1082                         tcp->th_ack = htonl(0);
 1083                         tcp->th_flags = TH_RST;
 1084                 } else {
 1085                         if (flags & TH_SYN)
 1086                                 seq++;
 1087                         tcp->th_seq = htonl(0);
 1088                         tcp->th_ack = htonl(seq);
 1089                         tcp->th_flags = TH_RST | TH_ACK;
 1090                 }
 1091         } else {
 1092                 /*
 1093                  * We are sending a keepalive. flags & TH_SYN determines
 1094                  * the direction, forward if set, reverse if clear.
 1095                  * NOTE: seq and ack are always assumed to be correct
 1096                  * as set by the caller. This may be confusing...
 1097                  */
 1098                 if (flags & TH_SYN) {
 1099                         /*
 1100                          * we have to rewrite the correct addresses!
 1101                          */
 1102                         ip->ip_dst.s_addr = htonl(id->dst_ip);
 1103                         ip->ip_src.s_addr = htonl(id->src_ip);
 1104                         tcp->th_dport = htons(id->dst_port);
 1105                         tcp->th_sport = htons(id->src_port);
 1106                 }
 1107                 tcp->th_seq = htonl(seq);
 1108                 tcp->th_ack = htonl(ack);
 1109                 tcp->th_flags = TH_ACK;
 1110         }
 1111         /*
 1112          * set ip_len to the payload size so we can compute
 1113          * the tcp checksum on the pseudoheader
 1114          * XXX check this, could save a couple of words ?
 1115          */
 1116         ip->ip_len = htons(sizeof(struct tcphdr));
 1117         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
 1118         /*
 1119          * now fill fields left out earlier
 1120          */
 1121         ip->ip_ttl = ip_defttl;
 1122         ip->ip_len = m->m_pkthdr.len;
 1123         bzero (&sro, sizeof (sro));
 1124         ip_rtaddr(ip->ip_dst, &sro);
 1125         m->m_flags |= M_SKIP_FIREWALL;
 1126         ip_output(m, NULL, &sro, 0, NULL, NULL);
 1127         if (sro.ro_rt)
 1128                 RTFREE(sro.ro_rt);
 1129 }
 1130 
 1131 /*
 1132  * sends a reject message, consuming the mbuf passed as an argument.
 1133  */
 1134 static void
 1135 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
 1136 {
 1137 
 1138         if (code != ICMP_REJECT_RST) /* Send an ICMP unreach */
 1139                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
 1140         else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
 1141                 struct tcphdr *const tcp =
 1142                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
 1143                 if ( (tcp->th_flags & TH_RST) == 0)
 1144                         send_pkt(&(args->f_id), ntohl(tcp->th_seq),
 1145                                 ntohl(tcp->th_ack),
 1146                                 tcp->th_flags | TH_RST);
 1147                 m_freem(args->m);
 1148         } else
 1149                 m_freem(args->m);
 1150         args->m = NULL;
 1151 }
 1152 
 1153 /**
 1154  *
 1155  * Given an ip_fw *, lookup_next_rule will return a pointer
 1156  * to the next rule, which can be either the jump
 1157  * target (for skipto instructions) or the next one in the list (in
 1158  * all other cases including a missing jump target).
 1159  * The result is also written in the "next_rule" field of the rule.
 1160  * Backward jumps are not allowed, so start looking from the next
 1161  * rule...
 1162  *
 1163  * This never returns NULL -- in case we do not have an exact match,
 1164  * the next rule is returned. When the ruleset is changed,
 1165  * pointers are flushed so we are always correct.
 1166  */
 1167 
 1168 static struct ip_fw *
 1169 lookup_next_rule(struct ip_fw *me)
 1170 {
 1171         struct ip_fw *rule = NULL;
 1172         ipfw_insn *cmd;
 1173 
 1174         /* look for action, in case it is a skipto */
 1175         cmd = ACTION_PTR(me);
 1176         if ( cmd->opcode == O_SKIPTO )
 1177                 for (rule = me->next; rule ; rule = rule->next)
 1178                         if (rule->rulenum >= cmd->arg1)
 1179                                 break;
 1180         if (rule == NULL)                       /* failure or not a skipto */
 1181                 rule = me->next;
 1182         me->next_rule = rule;
 1183         return rule;
 1184 }
 1185 
 1186 /*
 1187  * The main check routine for the firewall.
 1188  *
 1189  * All arguments are in args so we can modify them and return them
 1190  * back to the caller.
 1191  *
 1192  * Parameters:
 1193  *
 1194  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
 1195  *              Starts with the IP header.
 1196  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
 1197  *      args->oif       Outgoing interface, or NULL if packet is incoming.
 1198  *              The incoming interface is in the mbuf. (in)
 1199  *      args->divert_rule (in/out)
 1200  *              Skip up to the first rule past this rule number;
 1201  *              upon return, non-zero port number for divert or tee.
 1202  *
 1203  *      args->rule      Pointer to the last matching rule (in/out)
 1204  *      args->next_hop  Socket we are forwarding to (out).
 1205  *      args->f_id      Addresses grabbed from the packet (out)
 1206  *
 1207  * Return value:
 1208  *
 1209  *      IP_FW_PORT_DENY_FLAG    the packet must be dropped.
 1210  *      0       The packet is to be accepted and routed normally OR
 1211  *              the packet was denied/rejected and has been dropped;
 1212  *              in the latter case, *m is equal to NULL upon return.
 1213  *      port    Divert the packet to port, with these caveats:
 1214  *
 1215  *              - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
 1216  *                of diverting it (ie, 'ipfw tee').
 1217  *
 1218  *              - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
 1219  *                16 bits as a dummynet pipe number instead of diverting
 1220  */
 1221 
 1222 static int
 1223 ipfw_chk(struct ip_fw_args *args)
 1224 {
 1225         /*
 1226          * Local variables hold state during the processing of a packet.
 1227          *
 1228          * IMPORTANT NOTE: to speed up the processing of rules, there
 1229          * are some assumption on the values of the variables, which
 1230          * are documented here. Should you change them, please check
 1231          * the implementation of the various instructions to make sure
 1232          * that they still work.
 1233          *
 1234          * args->eh     The MAC header. It is non-null for a layer2
 1235          *      packet, it is NULL for a layer-3 packet.
 1236          *
 1237          * m | args->m  Pointer to the mbuf, as received from the caller.
 1238          *      It may change if ipfw_chk() does an m_pullup, or if it
 1239          *      consumes the packet because it calls send_reject().
 1240          *      XXX This has to change, so that ipfw_chk() never modifies
 1241          *      or consumes the buffer.
 1242          * ip   is simply an alias of the value of m, and it is kept
 1243          *      in sync with it (the packet is  supposed to start with
 1244          *      the ip header).
 1245          */
 1246         struct mbuf *m = args->m;
 1247         struct ip *ip = mtod(m, struct ip *);
 1248 
 1249         /*
 1250          * oif | args->oif      If NULL, ipfw_chk has been called on the
 1251          *      inbound path (ether_input, bdg_forward, ip_input).
 1252          *      If non-NULL, ipfw_chk has been called on the outbound path
 1253          *      (ether_output, ip_output).
 1254          */
 1255         struct ifnet *oif = args->oif;
 1256 
 1257         struct ip_fw *f = NULL;         /* matching rule */
 1258         int retval = 0;
 1259 
 1260         /*
 1261          * hlen The length of the IPv4 header.
 1262          *      hlen >0 means we have an IPv4 packet.
 1263          */
 1264         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
 1265 
 1266         /*
 1267          * offset       The offset of a fragment. offset != 0 means that
 1268          *      we have a fragment at this offset of an IPv4 packet.
 1269          *      offset == 0 means that (if this is an IPv4 packet)
 1270          *      this is the first or only fragment.
 1271          */
 1272         u_short offset = 0;
 1273 
 1274         /*
 1275          * Local copies of addresses. They are only valid if we have
 1276          * an IP packet.
 1277          *
 1278          * proto        The protocol. Set to 0 for non-ip packets,
 1279          *      or to the protocol read from the packet otherwise.
 1280          *      proto != 0 means that we have an IPv4 packet.
 1281          *
 1282          * src_port, dst_port   port numbers, in HOST format. Only
 1283          *      valid for TCP and UDP packets.
 1284          *
 1285          * src_ip, dst_ip       ip addresses, in NETWORK format.
 1286          *      Only valid for IPv4 packets.
 1287          */
 1288         u_int8_t proto;
 1289         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
 1290         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
 1291         u_int16_t ip_len=0;
 1292         int dyn_dir = MATCH_UNKNOWN;
 1293         ipfw_dyn_rule *q = NULL;
 1294 
 1295         if (m->m_flags & M_SKIP_FIREWALL)
 1296                 return 0;       /* accept */
 1297         /*
 1298          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
 1299          *      MATCH_NONE when checked and not matched (q = NULL),
 1300          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
 1301          */
 1302 
 1303         if (args->eh == NULL ||         /* layer 3 packet */
 1304                 ( m->m_pkthdr.len >= sizeof(struct ip) &&
 1305                     ntohs(args->eh->ether_type) == ETHERTYPE_IP))
 1306                         hlen = ip->ip_hl << 2;
 1307 
 1308         /*
 1309          * Collect parameters into local variables for faster matching.
 1310          */
 1311         if (hlen == 0) {        /* do not grab addresses for non-ip pkts */
 1312                 proto = args->f_id.proto = 0;   /* mark f_id invalid */
 1313                 goto after_ip_checks;
 1314         }
 1315 
 1316         proto = args->f_id.proto = ip->ip_p;
 1317         src_ip = ip->ip_src;
 1318         dst_ip = ip->ip_dst;
 1319         if (args->eh != NULL) { /* layer 2 packets are as on the wire */
 1320                 offset = ntohs(ip->ip_off) & IP_OFFMASK;
 1321                 ip_len = ntohs(ip->ip_len);
 1322         } else {
 1323                 offset = ip->ip_off & IP_OFFMASK;
 1324                 ip_len = ip->ip_len;
 1325         }
 1326 
 1327 #define PULLUP_TO(len)                                          \
 1328                 do {                                            \
 1329                         if ((m)->m_len < (len)) {               \
 1330                             args->m = m = m_pullup(m, (len));   \
 1331                             if (m == 0)                         \
 1332                                 goto pullup_failed;             \
 1333                             ip = mtod(m, struct ip *);          \
 1334                         }                                       \
 1335                 } while (0)
 1336 
 1337         if (offset == 0) {
 1338                 switch (proto) {
 1339                 case IPPROTO_TCP:
 1340                     {
 1341                         struct tcphdr *tcp;
 1342 
 1343                         PULLUP_TO(hlen + sizeof(struct tcphdr));
 1344                         tcp = L3HDR(struct tcphdr, ip);
 1345                         dst_port = tcp->th_dport;
 1346                         src_port = tcp->th_sport;
 1347                         args->f_id.flags = tcp->th_flags;
 1348                         }
 1349                         break;
 1350 
 1351                 case IPPROTO_UDP:
 1352                     {
 1353                         struct udphdr *udp;
 1354 
 1355                         PULLUP_TO(hlen + sizeof(struct udphdr));
 1356                         udp = L3HDR(struct udphdr, ip);
 1357                         dst_port = udp->uh_dport;
 1358                         src_port = udp->uh_sport;
 1359                         }
 1360                         break;
 1361 
 1362                 case IPPROTO_ICMP:
 1363                         PULLUP_TO(hlen + 4);    /* type, code and checksum. */
 1364                         args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
 1365                         break;
 1366 
 1367                 default:
 1368                         break;
 1369                 }
 1370 #undef PULLUP_TO
 1371         }
 1372 
 1373         args->f_id.src_ip = ntohl(src_ip.s_addr);
 1374         args->f_id.dst_ip = ntohl(dst_ip.s_addr);
 1375         args->f_id.src_port = src_port = ntohs(src_port);
 1376         args->f_id.dst_port = dst_port = ntohs(dst_port);
 1377 
 1378 after_ip_checks:
 1379         if (args->rule) {
 1380                 /*
 1381                  * Packet has already been tagged. Look for the next rule
 1382                  * to restart processing.
 1383                  *
 1384                  * If fw_one_pass != 0 then just accept it.
 1385                  * XXX should not happen here, but optimized out in
 1386                  * the caller.
 1387                  */
 1388                 if (fw_one_pass)
 1389                         return 0;
 1390 
 1391                 f = args->rule->next_rule;
 1392                 if (f == NULL)
 1393                         f = lookup_next_rule(args->rule);
 1394         } else {
 1395                 /*
 1396                  * Find the starting rule. It can be either the first
 1397                  * one, or the one after divert_rule if asked so.
 1398                  */
 1399                 int skipto = args->divert_rule;
 1400 
 1401                 f = layer3_chain;
 1402                 if (args->eh == NULL && skipto != 0) {
 1403                         if (skipto >= IPFW_DEFAULT_RULE)
 1404                                 return(IP_FW_PORT_DENY_FLAG); /* invalid */
 1405                         while (f && f->rulenum <= skipto)
 1406                                 f = f->next;
 1407                         if (f == NULL)  /* drop packet */
 1408                                 return(IP_FW_PORT_DENY_FLAG);
 1409                 }
 1410         }
 1411         args->divert_rule = 0;  /* reset to avoid confusion later */
 1412 
 1413         /*
 1414          * Now scan the rules, and parse microinstructions for each rule.
 1415          */
 1416         for (; f; f = f->next) {
 1417                 int l, cmdlen;
 1418                 ipfw_insn *cmd;
 1419                 int skip_or; /* skip rest of OR block */
 1420 
 1421 again:
 1422                 if (set_disable & (1 << f->set) )
 1423                         continue;
 1424 
 1425                 skip_or = 0;
 1426                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
 1427                     l -= cmdlen, cmd += cmdlen) {
 1428                         int match;
 1429 
 1430                         /*
 1431                          * check_body is a jump target used when we find a
 1432                          * CHECK_STATE, and need to jump to the body of
 1433                          * the target rule.
 1434                          */
 1435 
 1436 check_body:
 1437                         cmdlen = F_LEN(cmd);
 1438                         /*
 1439                          * An OR block (insn_1 || .. || insn_n) has the
 1440                          * F_OR bit set in all but the last instruction.
 1441                          * The first match will set "skip_or", and cause
 1442                          * the following instructions to be skipped until
 1443                          * past the one with the F_OR bit clear.
 1444                          */
 1445                         if (skip_or) {          /* skip this instruction */
 1446                                 if ((cmd->len & F_OR) == 0)
 1447                                         skip_or = 0;    /* next one is good */
 1448                                 continue;
 1449                         }
 1450                         match = 0; /* set to 1 if we succeed */
 1451 
 1452                         switch (cmd->opcode) {
 1453                         /*
 1454                          * The first set of opcodes compares the packet's
 1455                          * fields with some pattern, setting 'match' if a
 1456                          * match is found. At the end of the loop there is
 1457                          * logic to deal with F_NOT and F_OR flags associated
 1458                          * with the opcode.
 1459                          */
 1460                         case O_NOP:
 1461                                 match = 1;
 1462                                 break;
 1463 
 1464                         case O_FORWARD_MAC:
 1465                                 printf("ipfw: opcode %d unimplemented\n",
 1466                                     cmd->opcode);
 1467                                 break;
 1468 
 1469                         case O_GID:
 1470                         case O_UID:
 1471                                 /*
 1472                                  * We only check offset == 0 && proto != 0,
 1473                                  * as this ensures that we have an IPv4
 1474                                  * packet with the ports info.
 1475                                  */
 1476                                 if (offset!=0)
 1477                                         break;
 1478                             {
 1479                                 struct inpcbinfo *pi;
 1480                                 int wildcard;
 1481                                 struct inpcb *pcb;
 1482 
 1483                                 if (proto == IPPROTO_TCP) {
 1484                                         wildcard = 0;
 1485                                         pi = &tcbinfo;
 1486                                 } else if (proto == IPPROTO_UDP) {
 1487                                         wildcard = 1;
 1488                                         pi = &udbinfo;
 1489                                 } else
 1490                                         break;
 1491 
 1492                                 pcb =  (oif) ?
 1493                                         in_pcblookup_hash(pi,
 1494                                             dst_ip, htons(dst_port),
 1495                                             src_ip, htons(src_port),
 1496                                             wildcard, oif) :
 1497                                         in_pcblookup_hash(pi,
 1498                                             src_ip, htons(src_port),
 1499                                             dst_ip, htons(dst_port),
 1500                                             wildcard, NULL);
 1501 
 1502                                 if (pcb == NULL || pcb->inp_socket == NULL)
 1503                                         break;
 1504 #if __FreeBSD_version < 500034
 1505 #define socheckuid(a,b) ((a)->so_cred->cr_uid == (b))
 1506 #endif
 1507                                 if (cmd->opcode == O_UID) {
 1508                                         match =
 1509                                           socheckuid(pcb->inp_socket,
 1510                                            (uid_t)((ipfw_insn_u32 *)cmd)->d[0]);
 1511                                 } else  {
 1512                                         match = groupmember(
 1513                                             (uid_t)((ipfw_insn_u32 *)cmd)->d[0],
 1514                                             pcb->inp_socket->so_cred);
 1515                                 }
 1516                             }
 1517                                 break;
 1518 
 1519                         case O_RECV:
 1520                                 match = iface_match(m->m_pkthdr.rcvif,
 1521                                     (ipfw_insn_if *)cmd);
 1522                                 break;
 1523 
 1524                         case O_XMIT:
 1525                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
 1526                                 break;
 1527 
 1528                         case O_VIA:
 1529                                 match = iface_match(oif ? oif :
 1530                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
 1531                                 break;
 1532 
 1533                         case O_MACADDR2:
 1534                                 if (args->eh != NULL) { /* have MAC header */
 1535                                         u_int32_t *want = (u_int32_t *)
 1536                                                 ((ipfw_insn_mac *)cmd)->addr;
 1537                                         u_int32_t *mask = (u_int32_t *)
 1538                                                 ((ipfw_insn_mac *)cmd)->mask;
 1539                                         u_int32_t *hdr = (u_int32_t *)args->eh;
 1540 
 1541                                         match =
 1542                                             ( want[0] == (hdr[0] & mask[0]) &&
 1543                                               want[1] == (hdr[1] & mask[1]) &&
 1544                                               want[2] == (hdr[2] & mask[2]) );
 1545                                 }
 1546                                 break;
 1547 
 1548                         case O_MAC_TYPE:
 1549                                 if (args->eh != NULL) {
 1550                                         u_int16_t t =
 1551                                             ntohs(args->eh->ether_type);
 1552                                         u_int16_t *p =
 1553                                             ((ipfw_insn_u16 *)cmd)->ports;
 1554                                         int i;
 1555 
 1556                                         for (i = cmdlen - 1; !match && i>0;
 1557                                             i--, p += 2)
 1558                                                 match = (t>=p[0] && t<=p[1]);
 1559                                 }
 1560                                 break;
 1561 
 1562                         case O_FRAG:
 1563                                 match = (hlen > 0 && offset != 0);
 1564                                 break;
 1565 
 1566                         case O_IN:      /* "out" is "not in" */
 1567                                 match = (oif == NULL);
 1568                                 break;
 1569 
 1570                         case O_LAYER2:
 1571                                 match = (args->eh != NULL);
 1572                                 break;
 1573 
 1574                         case O_PROTO:
 1575                                 /*
 1576                                  * We do not allow an arg of 0 so the
 1577                                  * check of "proto" only suffices.
 1578                                  */
 1579                                 match = (proto == cmd->arg1);
 1580                                 break;
 1581 
 1582                         case O_IP_SRC:
 1583                                 match = (hlen > 0 &&
 1584                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 1585                                     src_ip.s_addr);
 1586                                 break;
 1587 
 1588                         case O_IP_SRC_MASK:
 1589                                 match = (hlen > 0 &&
 1590                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 1591                                      (src_ip.s_addr &
 1592                                      ((ipfw_insn_ip *)cmd)->mask.s_addr));
 1593                                 break;
 1594 
 1595                         case O_IP_SRC_ME:
 1596                                 if (hlen > 0) {
 1597                                         struct ifnet *tif;
 1598 
 1599                                         INADDR_TO_IFP(src_ip, tif);
 1600                                         match = (tif != NULL);
 1601                                 }
 1602                                 break;
 1603 
 1604                         case O_IP_DST_SET:
 1605                         case O_IP_SRC_SET:
 1606                                 if (hlen > 0) {
 1607                                         u_int32_t *d = (u_int32_t *)(cmd+1);
 1608                                         u_int32_t addr =
 1609                                             cmd->opcode == O_IP_DST_SET ?
 1610                                                 args->f_id.dst_ip :
 1611                                                 args->f_id.src_ip;
 1612 
 1613                                             if (addr < d[0])
 1614                                                     break;
 1615                                             addr -= d[0]; /* subtract base */
 1616                                             match = (addr < cmd->arg1) &&
 1617                                                 ( d[ 1 + (addr>>5)] &
 1618                                                   (1<<(addr & 0x1f)) );
 1619                                 }
 1620                                 break;
 1621 
 1622                         case O_IP_DST:
 1623                                 match = (hlen > 0 &&
 1624                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 1625                                     dst_ip.s_addr);
 1626                                 break;
 1627 
 1628                         case O_IP_DST_MASK:
 1629                                 match = (hlen > 0) &&
 1630                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
 1631                                      (dst_ip.s_addr &
 1632                                      ((ipfw_insn_ip *)cmd)->mask.s_addr));
 1633                                 break;
 1634 
 1635                         case O_IP_DST_ME:
 1636                                 if (hlen > 0) {
 1637                                         struct ifnet *tif;
 1638 
 1639                                         INADDR_TO_IFP(dst_ip, tif);
 1640                                         match = (tif != NULL);
 1641                                 }
 1642                                 break;
 1643 
 1644                         case O_IP_SRCPORT:
 1645                         case O_IP_DSTPORT:
 1646                                 /*
 1647                                  * offset == 0 && proto != 0 is enough
 1648                                  * to guarantee that we have an IPv4
 1649                                  * packet with port info.
 1650                                  */
 1651                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
 1652                                     && offset == 0) {
 1653                                         u_int16_t x =
 1654                                             (cmd->opcode == O_IP_SRCPORT) ?
 1655                                                 src_port : dst_port ;
 1656                                         u_int16_t *p =
 1657                                             ((ipfw_insn_u16 *)cmd)->ports;
 1658                                         int i;
 1659 
 1660                                         for (i = cmdlen - 1; !match && i>0;
 1661                                             i--, p += 2)
 1662                                                 match = (x>=p[0] && x<=p[1]);
 1663                                 }
 1664                                 break;
 1665 
 1666                         case O_ICMPTYPE:
 1667                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
 1668                                     icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
 1669                                 break;
 1670 
 1671                         case O_IPOPT:
 1672                                 match = (hlen > 0 && ipopts_match(ip, cmd) );
 1673                                 break;
 1674 
 1675                         case O_IPVER:
 1676                                 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
 1677                                 break;
 1678 
 1679                         case O_IPTTL:
 1680                                 match = (hlen > 0 && cmd->arg1 == ip->ip_ttl);
 1681                                 break;
 1682 
 1683                         case O_IPID:
 1684                                 match = (hlen > 0 &&
 1685                                     cmd->arg1 == ntohs(ip->ip_id));
 1686                                 break;
 1687 
 1688                         case O_IPLEN:
 1689                                 match = (hlen > 0 && cmd->arg1 == ip_len);
 1690                                 break;
 1691 
 1692                         case O_IPPRECEDENCE:
 1693                                 match = (hlen > 0 &&
 1694                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
 1695                                 break;
 1696 
 1697                         case O_IPTOS:
 1698                                 match = (hlen > 0 &&
 1699                                     flags_match(cmd, ip->ip_tos));
 1700                                 break;
 1701 
 1702                         case O_TCPFLAGS:
 1703                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1704                                     flags_match(cmd,
 1705                                         L3HDR(struct tcphdr,ip)->th_flags));
 1706                                 break;
 1707 
 1708                         case O_TCPOPTS:
 1709                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1710                                     tcpopts_match(ip, cmd));
 1711                                 break;
 1712 
 1713                         case O_TCPSEQ:
 1714                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1715                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 1716                                         L3HDR(struct tcphdr,ip)->th_seq);
 1717                                 break;
 1718 
 1719                         case O_TCPACK:
 1720                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1721                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 1722                                         L3HDR(struct tcphdr,ip)->th_ack);
 1723                                 break;
 1724 
 1725                         case O_TCPWIN:
 1726                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1727                                     cmd->arg1 ==
 1728                                         L3HDR(struct tcphdr,ip)->th_win);
 1729                                 break;
 1730 
 1731                         case O_ESTAB:
 1732                                 /* reject packets which have SYN only */
 1733                                 /* XXX should i also check for TH_ACK ? */
 1734                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1735                                     (L3HDR(struct tcphdr,ip)->th_flags &
 1736                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
 1737                                 break;
 1738 
 1739                         case O_LOG:
 1740                                 if (fw_verbose)
 1741                                         ipfw_log(f, hlen, args->eh, m, oif);
 1742                                 match = 1;
 1743                                 break;
 1744 
 1745                         case O_PROB:
 1746                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
 1747                                 break;
 1748 
 1749                         /*
 1750                          * The second set of opcodes represents 'actions',
 1751                          * i.e. the terminal part of a rule once the packet
 1752                          * matches all previous patterns.
 1753                          * Typically there is only one action for each rule,
 1754                          * and the opcode is stored at the end of the rule
 1755                          * (but there are exceptions -- see below).
 1756                          *
 1757                          * In general, here we set retval and terminate the
 1758                          * outer loop (would be a 'break 3' in some language,
 1759                          * but we need to do a 'goto done').
 1760                          *
 1761                          * Exceptions:
 1762                          * O_COUNT and O_SKIPTO actions:
 1763                          *   instead of terminating, we jump to the next rule
 1764                          *   ('goto next_rule', equivalent to a 'break 2'),
 1765                          *   or to the SKIPTO target ('goto again' after
 1766                          *   having set f, cmd and l), respectively.
 1767                          *
 1768                          * O_LIMIT and O_KEEP_STATE: these opcodes are
 1769                          *   not real 'actions', and are stored right
 1770                          *   before the 'action' part of the rule.
 1771                          *   These opcodes try to install an entry in the
 1772                          *   state tables; if successful, we continue with
 1773                          *   the next opcode (match=1; break;), otherwise
 1774                          *   the packet *   must be dropped
 1775                          *   ('goto done' after setting retval);
 1776                          *
 1777                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
 1778                          *   cause a lookup of the state table, and a jump
 1779                          *   to the 'action' part of the parent rule
 1780                          *   ('goto check_body') if an entry is found, or
 1781                          *   (CHECK_STATE only) a jump to the next rule if
 1782                          *   the entry is not found ('goto next_rule').
 1783                          *   The result of the lookup is cached to make
 1784                          *   further instances of these opcodes are
 1785                          *   effectively NOPs.
 1786                          */
 1787                         case O_LIMIT:
 1788                         case O_KEEP_STATE:
 1789                                 if (install_state(f,
 1790                                     (ipfw_insn_limit *)cmd, args)) {
 1791                                         retval = IP_FW_PORT_DENY_FLAG;
 1792                                         goto done; /* error/limit violation */
 1793                                 }
 1794                                 match = 1;
 1795                                 break;
 1796 
 1797                         case O_PROBE_STATE:
 1798                         case O_CHECK_STATE:
 1799                                 /*
 1800                                  * dynamic rules are checked at the first
 1801                                  * keep-state or check-state occurrence,
 1802                                  * with the result being stored in dyn_dir.
 1803                                  * The compiler introduces a PROBE_STATE
 1804                                  * instruction for us when we have a
 1805                                  * KEEP_STATE (because PROBE_STATE needs
 1806                                  * to be run first).
 1807                                  */
 1808                                 if (dyn_dir == MATCH_UNKNOWN &&
 1809                                     (q = lookup_dyn_rule(&args->f_id,
 1810                                      &dyn_dir, proto == IPPROTO_TCP ?
 1811                                         L3HDR(struct tcphdr, ip) : NULL))
 1812                                         != NULL) {
 1813                                         /*
 1814                                          * Found dynamic entry, update stats
 1815                                          * and jump to the 'action' part of
 1816                                          * the parent rule.
 1817                                          */
 1818                                         q->pcnt++;
 1819                                         q->bcnt += ip_len;
 1820                                         f = q->rule;
 1821                                         cmd = ACTION_PTR(f);
 1822                                         l = f->cmd_len - f->act_ofs;
 1823                                         goto check_body;
 1824                                 }
 1825                                 /*
 1826                                  * Dynamic entry not found. If CHECK_STATE,
 1827                                  * skip to next rule, if PROBE_STATE just
 1828                                  * ignore and continue with next opcode.
 1829                                  */
 1830                                 if (cmd->opcode == O_CHECK_STATE)
 1831                                         goto next_rule;
 1832                                 match = 1;
 1833                                 break;
 1834 
 1835                         case O_ACCEPT:
 1836                                 retval = 0;     /* accept */
 1837                                 goto done;
 1838 
 1839                         case O_PIPE:
 1840                         case O_QUEUE:
 1841                                 args->rule = f; /* report matching rule */
 1842                                 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
 1843                                 goto done;
 1844 
 1845                         case O_DIVERT:
 1846                         case O_TEE:
 1847                                 if (args->eh) /* not on layer 2 */
 1848                                         break;
 1849                                 args->divert_rule = f->rulenum;
 1850                                 retval = (cmd->opcode == O_DIVERT) ?
 1851                                     cmd->arg1 :
 1852                                     cmd->arg1 | IP_FW_PORT_TEE_FLAG;
 1853                                 goto done;
 1854 
 1855                         case O_COUNT:
 1856                         case O_SKIPTO:
 1857                                 f->pcnt++;      /* update stats */
 1858                                 f->bcnt += ip_len;
 1859                                 f->timestamp = time_second;
 1860                                 if (cmd->opcode == O_COUNT)
 1861                                         goto next_rule;
 1862                                 /* handle skipto */
 1863                                 if (f->next_rule == NULL)
 1864                                         lookup_next_rule(f);
 1865                                 f = f->next_rule;
 1866                                 goto again;
 1867 
 1868                         case O_REJECT:
 1869                                 /*
 1870                                  * Drop the packet and send a reject notice
 1871                                  * if the packet is not ICMP (or is an ICMP
 1872                                  * query), and it is not multicast/broadcast.
 1873                                  */
 1874                                 if (hlen > 0 &&
 1875                                     (proto != IPPROTO_ICMP ||
 1876                                      is_icmp_query(ip)) &&
 1877                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 1878                                     !IN_MULTICAST(dst_ip.s_addr)) {
 1879                                         send_reject(args, cmd->arg1,
 1880                                             offset,ip_len);
 1881                                         m = args->m;
 1882                                 }
 1883                                 /* FALLTHROUGH */
 1884                         case O_DENY:
 1885                                 retval = IP_FW_PORT_DENY_FLAG;
 1886                                 goto done;
 1887 
 1888                         case O_FORWARD_IP:
 1889                                 if (args->eh)   /* not valid on layer2 pkts */
 1890                                         break;
 1891                                 if (!q || dyn_dir == MATCH_FORWARD)
 1892                                         args->next_hop =
 1893                                             &((ipfw_insn_sa *)cmd)->sa;
 1894                                 retval = 0;
 1895                                 goto done;
 1896 
 1897                         default:
 1898                                 panic("-- unknown opcode %d\n", cmd->opcode);
 1899                         } /* end of switch() on opcodes */
 1900 
 1901                         if (cmd->len & F_NOT)
 1902                                 match = !match;
 1903 
 1904                         if (match) {
 1905                                 if (cmd->len & F_OR)
 1906                                         skip_or = 1;
 1907                         } else {
 1908                                 if (!(cmd->len & F_OR)) /* not an OR block, */
 1909                                         break;          /* try next rule    */
 1910                         }
 1911 
 1912                 }       /* end of inner for, scan opcodes */
 1913 
 1914 next_rule:;             /* try next rule                */
 1915 
 1916         }               /* end of outer for, scan rules */
 1917         printf("+++ ipfw: ouch!, skip past end of rules, denying packet\n");
 1918         return(IP_FW_PORT_DENY_FLAG);
 1919 
 1920 done:
 1921         /* Update statistics */
 1922         f->pcnt++;
 1923         f->bcnt += ip_len;
 1924         f->timestamp = time_second;
 1925         return retval;
 1926 
 1927 pullup_failed:
 1928         if (fw_verbose)
 1929                 printf("pullup failed\n");
 1930         return(IP_FW_PORT_DENY_FLAG);
 1931 }
 1932 
 1933 /*
 1934  * When a rule is added/deleted, clear the next_rule pointers in all rules.
 1935  * These will be reconstructed on the fly as packets are matched.
 1936  * Must be called at splimp().
 1937  */
 1938 static void
 1939 flush_rule_ptrs(void)
 1940 {
 1941         struct ip_fw *rule;
 1942 
 1943         for (rule = layer3_chain; rule; rule = rule->next)
 1944                 rule->next_rule = NULL;
 1945 }
 1946 
 1947 /*
 1948  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
 1949  * pipe/queue, or to all of them (match == NULL).
 1950  * Must be called at splimp().
 1951  */
 1952 void
 1953 flush_pipe_ptrs(struct dn_flow_set *match)
 1954 {
 1955         struct ip_fw *rule;
 1956 
 1957         for (rule = layer3_chain; rule; rule = rule->next) {
 1958                 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
 1959 
 1960                 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
 1961                         continue;
 1962                 if (match == NULL || cmd->pipe_ptr == match)
 1963                         cmd->pipe_ptr = NULL;
 1964         }
 1965 }
 1966 
 1967 /*
 1968  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
 1969  * possibly create a rule number and add the rule to the list.
 1970  * Update the rule_number in the input struct so the caller knows it as well.
 1971  */
 1972 static int
 1973 add_rule(struct ip_fw **head, struct ip_fw *input_rule)
 1974 {
 1975         struct ip_fw *rule, *f, *prev;
 1976         int s;
 1977         int l = RULESIZE(input_rule);
 1978 
 1979         if (*head == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
 1980                 return (EINVAL);
 1981 
 1982         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
 1983         if (rule == NULL)
 1984                 return (ENOSPC);
 1985 
 1986         bcopy(input_rule, rule, l);
 1987 
 1988         rule->next = NULL;
 1989         rule->next_rule = NULL;
 1990 
 1991         rule->pcnt = 0;
 1992         rule->bcnt = 0;
 1993         rule->timestamp = 0;
 1994 
 1995         s = splimp();
 1996 
 1997         if (*head == NULL) {    /* default rule */
 1998                 *head = rule;
 1999                 goto done;
 2000         }
 2001 
 2002         /*
 2003          * If rulenum is 0, find highest numbered rule before the
 2004          * default rule, and add autoinc_step
 2005          */
 2006         if (autoinc_step < 1)
 2007                 autoinc_step = 1;
 2008         else if (autoinc_step > 1000)
 2009                 autoinc_step = 1000;
 2010         if (rule->rulenum == 0) {
 2011                 /*
 2012                  * locate the highest numbered rule before default
 2013                  */
 2014                 for (f = *head; f; f = f->next) {
 2015                         if (f->rulenum == IPFW_DEFAULT_RULE)
 2016                                 break;
 2017                         rule->rulenum = f->rulenum;
 2018                 }
 2019                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
 2020                         rule->rulenum += autoinc_step;
 2021                 input_rule->rulenum = rule->rulenum;
 2022         }
 2023 
 2024         /*
 2025          * Now insert the new rule in the right place in the sorted list.
 2026          */
 2027         for (prev = NULL, f = *head; f; prev = f, f = f->next) {
 2028                 if (f->rulenum > rule->rulenum) { /* found the location */
 2029                         if (prev) {
 2030                                 rule->next = f;
 2031                                 prev->next = rule;
 2032                         } else { /* head insert */
 2033                                 rule->next = *head;
 2034                                 *head = rule;
 2035                         }
 2036                         break;
 2037                 }
 2038         }
 2039         flush_rule_ptrs();
 2040 done:
 2041         static_count++;
 2042         static_len += l;
 2043         splx(s);
 2044         DEB(printf("++ installed rule %d, static count now %d\n",
 2045                 rule->rulenum, static_count);)
 2046         return (0);
 2047 }
 2048 
 2049 /**
 2050  * Free storage associated with a static rule (including derived
 2051  * dynamic rules).
 2052  * The caller is in charge of clearing rule pointers to avoid
 2053  * dangling pointers.
 2054  * @return a pointer to the next entry.
 2055  * Arguments are not checked, so they better be correct.
 2056  * Must be called at splimp().
 2057  */
 2058 static struct ip_fw *
 2059 delete_rule(struct ip_fw **head, struct ip_fw *prev, struct ip_fw *rule)
 2060 {
 2061         struct ip_fw *n;
 2062         int l = RULESIZE(rule);
 2063 
 2064         n = rule->next;
 2065         remove_dyn_rule(rule, NULL /* force removal */);
 2066         if (prev == NULL)
 2067                 *head = n;
 2068         else
 2069                 prev->next = n;
 2070         static_count--;
 2071         static_len -= l;
 2072 
 2073         if (DUMMYNET_LOADED)
 2074                 ip_dn_ruledel_ptr(rule);
 2075         free(rule, M_IPFW);
 2076         return n;
 2077 }
 2078 
 2079 /*
 2080  * Deletes all rules from a chain (including the default rule
 2081  * if the second argument is set).
 2082  * Must be called at splimp().
 2083  */
 2084 static void
 2085 free_chain(struct ip_fw **chain, int kill_default)
 2086 {
 2087         struct ip_fw *rule;
 2088 
 2089         flush_rule_ptrs(); /* more efficient to do outside the loop */
 2090 
 2091         while ( (rule = *chain) != NULL &&
 2092             (kill_default || rule->rulenum != IPFW_DEFAULT_RULE) )
 2093                 delete_rule(chain, NULL, rule);
 2094 }
 2095 
 2096 /**
 2097  * Remove all rules with given number, and also do set manipulation.
 2098  *
 2099  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
 2100  * the next 8 bits are the new set, the top 8 bits are the command:
 2101  *
 2102  *      0       delete rules with given number
 2103  *      1       delete rules with given set number
 2104  *      2       move rules with given number to new set
 2105  *      3       move rules with given set number to new set
 2106  *      4       swap sets with given numbers
 2107  */
 2108 static int
 2109 del_entry(struct ip_fw **chain, u_int32_t arg)
 2110 {
 2111         struct ip_fw *prev, *rule;
 2112         int s;
 2113         u_int16_t rulenum;
 2114         u_int8_t cmd, new_set;
 2115 
 2116         rulenum = arg & 0xffff;
 2117         cmd = (arg >> 24) & 0xff;
 2118         new_set = (arg >> 16) & 0xff;
 2119 
 2120         if (cmd > 4)
 2121                 return EINVAL;
 2122         if (new_set > 30)
 2123                 return EINVAL;
 2124         if (cmd == 0 || cmd == 2) {
 2125                 if (rulenum == IPFW_DEFAULT_RULE)
 2126                         return EINVAL;
 2127         } else {
 2128                 if (rulenum > 30)
 2129                         return EINVAL;
 2130         }
 2131 
 2132         switch (cmd) {
 2133         case 0: /* delete rules with given number */
 2134                 /*
 2135                  * locate first rule to delete
 2136                  */
 2137                 for (prev = NULL, rule = *chain;
 2138                     rule && rule->rulenum < rulenum;
 2139                      prev = rule, rule = rule->next)
 2140                         ;
 2141                 if (rule->rulenum != rulenum)
 2142                         return EINVAL;
 2143 
 2144                 s = splimp(); /* no access to rules while removing */
 2145                 /*
 2146                  * flush pointers outside the loop, then delete all matching
 2147                  * rules. prev remains the same throughout the cycle.
 2148                  */
 2149                 flush_rule_ptrs();
 2150                 while (rule && rule->rulenum == rulenum)
 2151                         rule = delete_rule(chain, prev, rule);
 2152                 splx(s);
 2153                 break;
 2154 
 2155         case 1: /* delete all rules with given set number */
 2156                 s = splimp();
 2157                 flush_rule_ptrs();
 2158                 for (prev = NULL, rule = *chain; rule ; )
 2159                         if (rule->set == rulenum)
 2160                                 rule = delete_rule(chain, prev, rule);
 2161                         else {
 2162                                 prev = rule;
 2163                                 rule = rule->next;
 2164                         }
 2165                 splx(s);
 2166                 break;
 2167 
 2168         case 2: /* move rules with given number to new set */
 2169                 s = splimp();
 2170                 for (rule = *chain; rule ; rule = rule->next)
 2171                         if (rule->rulenum == rulenum)
 2172                                 rule->set = new_set;
 2173                 splx(s);
 2174                 break;
 2175 
 2176         case 3: /* move rules with given set number to new set */
 2177                 s = splimp();
 2178                 for (rule = *chain; rule ; rule = rule->next)
 2179                         if (rule->set == rulenum)
 2180                                 rule->set = new_set;
 2181                 splx(s);
 2182                 break;
 2183 
 2184         case 4: /* swap two sets */
 2185                 s = splimp();
 2186                 for (rule = *chain; rule ; rule = rule->next)
 2187                         if (rule->set == rulenum)
 2188                                 rule->set = new_set;
 2189                         else if (rule->set == new_set)
 2190                                 rule->set = rulenum;
 2191                 splx(s);
 2192                 break;
 2193         }
 2194         return 0;
 2195 }
 2196 
 2197 /*
 2198  * Clear counters for a specific rule.
 2199  */
 2200 static void
 2201 clear_counters(struct ip_fw *rule, int log_only)
 2202 {
 2203         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
 2204 
 2205         if (log_only == 0) {
 2206                 rule->bcnt = rule->pcnt = 0;
 2207                 rule->timestamp = 0;
 2208         }
 2209         if (l->o.opcode == O_LOG)
 2210                 l->log_left = l->max_log;
 2211 }
 2212 
 2213 /**
 2214  * Reset some or all counters on firewall rules.
 2215  * @arg frwl is null to clear all entries, or contains a specific
 2216  * rule number.
 2217  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
 2218  */
 2219 static int
 2220 zero_entry(int rulenum, int log_only)
 2221 {
 2222         struct ip_fw *rule;
 2223         int s;
 2224         char *msg;
 2225 
 2226         if (rulenum == 0) {
 2227                 s = splimp();
 2228                 norule_counter = 0;
 2229                 for (rule = layer3_chain; rule; rule = rule->next)
 2230                         clear_counters(rule, log_only);
 2231                 splx(s);
 2232                 msg = log_only ? "ipfw: All logging counts reset.\n" :
 2233                                 "ipfw: Accounting cleared.\n";
 2234         } else {
 2235                 int cleared = 0;
 2236                 /*
 2237                  * We can have multiple rules with the same number, so we
 2238                  * need to clear them all.
 2239                  */
 2240                 for (rule = layer3_chain; rule; rule = rule->next)
 2241                         if (rule->rulenum == rulenum) {
 2242                                 s = splimp();
 2243                                 while (rule && rule->rulenum == rulenum) {
 2244                                         clear_counters(rule, log_only);
 2245                                         rule = rule->next;
 2246                                 }
 2247                                 splx(s);
 2248                                 cleared = 1;
 2249                                 break;
 2250                         }
 2251                 if (!cleared)   /* we did not find any matching rules */
 2252                         return (EINVAL);
 2253                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
 2254                                 "ipfw: Entry %d cleared.\n";
 2255         }
 2256         if (fw_verbose)
 2257                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
 2258         return (0);
 2259 }
 2260 
 2261 /*
 2262  * Check validity of the structure before insert.
 2263  * Fortunately rules are simple, so this mostly need to check rule sizes.
 2264  */
 2265 static int
 2266 check_ipfw_struct(struct ip_fw *rule, int size)
 2267 {
 2268         int l, cmdlen = 0;
 2269         int have_action=0;
 2270         ipfw_insn *cmd;
 2271 
 2272         if (size < sizeof(*rule)) {
 2273                 printf("ipfw: rule too short\n");
 2274                 return (EINVAL);
 2275         }
 2276         /* first, check for valid size */
 2277         l = RULESIZE(rule);
 2278         if (l != size) {
 2279                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
 2280                 return (EINVAL);
 2281         }
 2282         /*
 2283          * Now go for the individual checks. Very simple ones, basically only
 2284          * instruction sizes.
 2285          */
 2286         for (l = rule->cmd_len, cmd = rule->cmd ;
 2287                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
 2288                 cmdlen = F_LEN(cmd);
 2289                 if (cmdlen > l) {
 2290                         printf("ipfw: opcode %d size truncated\n",
 2291                             cmd->opcode);
 2292                         return EINVAL;
 2293                 }
 2294                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
 2295                 switch (cmd->opcode) {
 2296                 case O_NOP:
 2297                 case O_PROBE_STATE:
 2298                 case O_KEEP_STATE:
 2299                 case O_PROTO:
 2300                 case O_IP_SRC_ME:
 2301                 case O_IP_DST_ME:
 2302                 case O_LAYER2:
 2303                 case O_IN:
 2304                 case O_FRAG:
 2305                 case O_IPOPT:
 2306                 case O_IPLEN:
 2307                 case O_IPID:
 2308                 case O_IPTOS:
 2309                 case O_IPPRECEDENCE:
 2310                 case O_IPTTL:
 2311                 case O_IPVER:
 2312                 case O_TCPWIN:
 2313                 case O_TCPFLAGS:
 2314                 case O_TCPOPTS:
 2315                 case O_ESTAB:
 2316                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 2317                                 goto bad_size;
 2318                         break;
 2319 
 2320                 case O_UID:
 2321                 case O_GID:
 2322                 case O_IP_SRC:
 2323                 case O_IP_DST:
 2324                 case O_TCPSEQ:
 2325                 case O_TCPACK:
 2326                 case O_PROB:
 2327                 case O_ICMPTYPE:
 2328                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 2329                                 goto bad_size;
 2330                         break;
 2331 
 2332                 case O_LIMIT:
 2333                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
 2334                                 goto bad_size;
 2335                         break;
 2336 
 2337                 case O_LOG:
 2338                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
 2339                                 goto bad_size;
 2340 
 2341                         ((ipfw_insn_log *)cmd)->log_left =
 2342                             ((ipfw_insn_log *)cmd)->max_log;
 2343 
 2344                         break;
 2345 
 2346                 case O_IP_SRC_MASK:
 2347                 case O_IP_DST_MASK:
 2348                         if (cmdlen != F_INSN_SIZE(ipfw_insn_ip))
 2349                                 goto bad_size;
 2350                         if (((ipfw_insn_ip *)cmd)->mask.s_addr == 0) {
 2351                                 printf("ipfw: opcode %d, useless rule\n",
 2352                                         cmd->opcode);
 2353                                 return EINVAL;
 2354                         }
 2355                         break;
 2356 
 2357                 case O_IP_SRC_SET:
 2358                 case O_IP_DST_SET:
 2359                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
 2360                                 printf("ipfw: invalid set size %d\n",
 2361                                         cmd->arg1);
 2362                                 return EINVAL;
 2363                         }
 2364                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 2365                             (cmd->arg1+31)/32 )
 2366                                 goto bad_size;
 2367                         break;
 2368 
 2369                 case O_MACADDR2:
 2370                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
 2371                                 goto bad_size;
 2372                         break;
 2373 
 2374                 case O_MAC_TYPE:
 2375                 case O_IP_SRCPORT:
 2376                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
 2377                         if (cmdlen < 2 || cmdlen > 31)
 2378                                 goto bad_size;
 2379                         break;
 2380 
 2381                 case O_RECV:
 2382                 case O_XMIT:
 2383                 case O_VIA:
 2384                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
 2385                                 goto bad_size;
 2386                         break;
 2387 
 2388                 case O_PIPE:
 2389                 case O_QUEUE:
 2390                         if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
 2391                                 goto bad_size;
 2392                         goto check_action;
 2393 
 2394                 case O_FORWARD_IP:
 2395                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
 2396                                 goto bad_size;
 2397                         goto check_action;
 2398 
 2399                 case O_FORWARD_MAC: /* XXX not implemented yet */
 2400                 case O_CHECK_STATE:
 2401                 case O_COUNT:
 2402                 case O_ACCEPT:
 2403                 case O_DENY:
 2404                 case O_REJECT:
 2405                 case O_SKIPTO:
 2406                 case O_DIVERT:
 2407                 case O_TEE:
 2408                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 2409                                 goto bad_size;
 2410 check_action:
 2411                         if (have_action) {
 2412                                 printf("ipfw: opcode %d, multiple actions"
 2413                                         " not allowed\n",
 2414                                         cmd->opcode);
 2415                                 return EINVAL;
 2416                         }
 2417                         have_action = 1;
 2418                         if (l != cmdlen) {
 2419                                 printf("ipfw: opcode %d, action must be"
 2420                                         " last opcode\n",
 2421                                         cmd->opcode);
 2422                                 return EINVAL;
 2423                         }
 2424                         break;
 2425                 default:
 2426                         printf("ipfw: opcode %d, unknown opcode\n",
 2427                                 cmd->opcode);
 2428                         return EINVAL;
 2429                 }
 2430         }
 2431         if (have_action == 0) {
 2432                 printf("ipfw: missing action\n");
 2433                 return EINVAL;
 2434         }
 2435         return 0;
 2436 
 2437 bad_size:
 2438         printf("ipfw: opcode %d size %d wrong\n",
 2439                 cmd->opcode, cmdlen);
 2440         return EINVAL;
 2441 }
 2442 
 2443 
 2444 /**
 2445  * {set|get}sockopt parser.
 2446  */
 2447 static int
 2448 ipfw_ctl(struct sockopt *sopt)
 2449 {
 2450         int error, s, rulenum;
 2451         size_t size;
 2452         struct ip_fw *bp , *buf, *rule;
 2453 
 2454         static u_int32_t rule_buf[255]; /* we copy the data here */
 2455 
 2456         /*
 2457          * Disallow modifications in really-really secure mode, but still allow
 2458          * the logging counters to be reset.
 2459          */
 2460         if (sopt->sopt_name == IP_FW_ADD ||
 2461             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
 2462 #if __FreeBSD_version >= 500034
 2463                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
 2464                 if (error)
 2465                         return (error);
 2466 #else /* FreeBSD 4.x */
 2467                 if (securelevel >= 3)
 2468                         return (EPERM);
 2469 #endif
 2470         }
 2471 
 2472         error = 0;
 2473 
 2474         switch (sopt->sopt_name) {
 2475         case IP_FW_GET:
 2476                 /*
 2477                  * pass up a copy of the current rules. Static rules
 2478                  * come first (the last of which has number IPFW_DEFAULT_RULE),
 2479                  * followed by a possibly empty list of dynamic rule.
 2480                  * The last dynamic rule has NULL in the "next" field.
 2481                  */
 2482                 s = splimp();
 2483                 size = static_len;      /* size of static rules */
 2484                 if (ipfw_dyn_v)         /* add size of dyn.rules */
 2485                         size += (dyn_count * sizeof(ipfw_dyn_rule));
 2486 
 2487                 /*
 2488                  * XXX todo: if the user passes a short length just to know
 2489                  * how much room is needed, do not bother filling up the
 2490                  * buffer, just jump to the sooptcopyout.
 2491                  */
 2492                 buf = malloc(size, M_TEMP, M_WAITOK);
 2493                 if (buf == 0) {
 2494                         splx(s);
 2495                         error = ENOBUFS;
 2496                         break;
 2497                 }
 2498 
 2499                 bp = buf;
 2500                 for (rule = layer3_chain; rule ; rule = rule->next) {
 2501                         int i = RULESIZE(rule);
 2502                         bcopy(rule, bp, i);
 2503                         ((struct ip_fw *)bp)->set_disable = set_disable;
 2504                         bp = (struct ip_fw *)((char *)bp + i);
 2505                 }
 2506                 if (ipfw_dyn_v) {
 2507                         int i;
 2508                         ipfw_dyn_rule *p, *dst, *last = NULL;
 2509 
 2510                         dst = (ipfw_dyn_rule *)bp;
 2511                         for (i = 0 ; i < curr_dyn_buckets ; i++ )
 2512                                 for ( p = ipfw_dyn_v[i] ; p != NULL ;
 2513                                     p = p->next, dst++ ) {
 2514                                         bcopy(p, dst, sizeof *p);
 2515                                         dst->rulenum = p->rule->rulenum;
 2516                                         /*
 2517                                          * store a non-null value in "next".
 2518                                          * The userland code will interpret a
 2519                                          * NULL here as a marker
 2520                                          * for the last dynamic rule.
 2521                                          */
 2522                                         dst->next = dst ;
 2523                                         last = dst ;
 2524                                         dst->expire =
 2525                                             TIME_LEQ(dst->expire, time_second) ?
 2526                                                 0 : dst->expire - time_second ;
 2527                                 }
 2528                         if (last != NULL) /* mark last dynamic rule */
 2529                                 last->next = NULL;
 2530                 }
 2531                 splx(s);
 2532 
 2533                 error = sooptcopyout(sopt, buf, size);
 2534                 free(buf, M_TEMP);
 2535                 break;
 2536 
 2537         case IP_FW_FLUSH:
 2538                 /*
 2539                  * Normally we cannot release the lock on each iteration.
 2540                  * We could do it here only because we start from the head all
 2541                  * the times so there is no risk of missing some entries.
 2542                  * On the other hand, the risk is that we end up with
 2543                  * a very inconsistent ruleset, so better keep the lock
 2544                  * around the whole cycle.
 2545                  *
 2546                  * XXX this code can be improved by resetting the head of
 2547                  * the list to point to the default rule, and then freeing
 2548                  * the old list without the need for a lock.
 2549                  */
 2550 
 2551                 s = splimp();
 2552                 free_chain(&layer3_chain, 0 /* keep default rule */);
 2553                 splx(s);
 2554                 break;
 2555 
 2556         case IP_FW_ADD:
 2557                 rule = (struct ip_fw *)rule_buf; /* XXX do a malloc */
 2558                 error = sooptcopyin(sopt, rule, sizeof(rule_buf),
 2559                         sizeof(struct ip_fw) );
 2560                 size = sopt->sopt_valsize;
 2561                 if (error || (error = check_ipfw_struct(rule, size)))
 2562                         break;
 2563 
 2564                 error = add_rule(&layer3_chain, rule);
 2565                 size = RULESIZE(rule);
 2566                 if (!error && sopt->sopt_dir == SOPT_GET)
 2567                         error = sooptcopyout(sopt, rule, size);
 2568                 break;
 2569 
 2570         case IP_FW_DEL:
 2571                 /*
 2572                  * IP_FW_DEL is used for deleting single rules or sets,
 2573                  * and (ab)used to atomically manipulate sets. Argument size
 2574                  * is used to distinguish between the two:
 2575                  *    sizeof(u_int32_t)
 2576                  *      delete single rule or set of rules,
 2577                  *      or reassign rules (or sets) to a different set.
 2578                  *    2*sizeof(u_int32_t)
 2579                  *      atomic disable/enable sets.
 2580                  *      first u_int32_t contains sets to be disabled,
 2581                  *      second u_int32_t contains sets to be enabled.
 2582                  */
 2583                 error = sooptcopyin(sopt, rule_buf,
 2584                         2*sizeof(u_int32_t), sizeof(u_int32_t));
 2585                 if (error)
 2586                         break;
 2587                 size = sopt->sopt_valsize;
 2588                 if (size == sizeof(u_int32_t))  /* delete or reassign */
 2589                         error = del_entry(&layer3_chain, rule_buf[0]);
 2590                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
 2591                         set_disable =
 2592                             (set_disable | rule_buf[0]) & ~rule_buf[1] &
 2593                             ~(1<<31); /* set 31 always enabled */
 2594                 else
 2595                         error = EINVAL;
 2596                 break;
 2597 
 2598         case IP_FW_ZERO:
 2599         case IP_FW_RESETLOG: /* argument is an int, the rule number */
 2600                 rulenum=0;
 2601 
 2602                 if (sopt->sopt_val != 0) {
 2603                     error = sooptcopyin(sopt, &rulenum,
 2604                             sizeof(int), sizeof(int));
 2605                     if (error)
 2606                         break;
 2607                 }
 2608                 error = zero_entry(rulenum, sopt->sopt_name == IP_FW_RESETLOG);
 2609                 break;
 2610 
 2611         default:
 2612                 printf("ipfw_ctl invalid option %d\n", sopt->sopt_name);
 2613                 error = EINVAL;
 2614         }
 2615 
 2616         return (error);
 2617 }
 2618 
 2619 /**
 2620  * dummynet needs a reference to the default rule, because rules can be
 2621  * deleted while packets hold a reference to them. When this happens,
 2622  * dummynet changes the reference to the default rule (it could well be a
 2623  * NULL pointer, but this way we do not need to check for the special
 2624  * case, plus here he have info on the default behaviour).
 2625  */
 2626 struct ip_fw *ip_fw_default_rule;
 2627 
 2628 /*
 2629  * This procedure is only used to handle keepalives. It is invoked
 2630  * every dyn_keepalive_period
 2631  */
 2632 static void
 2633 ipfw_tick(void * __unused unused)
 2634 {
 2635         int i;
 2636         int s;
 2637         ipfw_dyn_rule *q;
 2638 
 2639         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
 2640                 goto done;
 2641 
 2642         s = splimp();
 2643         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 2644                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
 2645                         if (q->dyn_type == O_LIMIT_PARENT)
 2646                                 continue;
 2647                         if (q->id.proto != IPPROTO_TCP)
 2648                                 continue;
 2649                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
 2650                                 continue;
 2651                         if (TIME_LEQ( time_second+dyn_keepalive_interval,
 2652                             q->expire))
 2653                                 continue;       /* too early */
 2654                         if (TIME_LEQ(q->expire, time_second))
 2655                                 continue;       /* too late, rule expired */
 2656 
 2657                         send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
 2658                         send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
 2659                 }
 2660         }
 2661         splx(s);
 2662 done:
 2663         ipfw_timeout_h = timeout(ipfw_tick, NULL, dyn_keepalive_period*hz);
 2664 }
 2665 
 2666 static void
 2667 ipfw_init(void)
 2668 {
 2669         struct ip_fw default_rule;
 2670 
 2671         ip_fw_chk_ptr = ipfw_chk;
 2672         ip_fw_ctl_ptr = ipfw_ctl;
 2673         layer3_chain = NULL;
 2674 
 2675         bzero(&default_rule, sizeof default_rule);
 2676 
 2677         default_rule.act_ofs = 0;
 2678         default_rule.rulenum = IPFW_DEFAULT_RULE;
 2679         default_rule.cmd_len = 1;
 2680         default_rule.set = 31;
 2681 
 2682         default_rule.cmd[0].len = 1;
 2683         default_rule.cmd[0].opcode =
 2684 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
 2685                                 1 ? O_ACCEPT :
 2686 #endif
 2687                                 O_DENY;
 2688 
 2689         add_rule(&layer3_chain, &default_rule);
 2690 
 2691         ip_fw_default_rule = layer3_chain;
 2692         printf("ipfw2 initialized, divert %s, "
 2693                 "rule-based forwarding enabled, default to %s, logging ",
 2694 #ifdef IPDIVERT
 2695                 "enabled",
 2696 #else
 2697                 "disabled",
 2698 #endif
 2699                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
 2700 
 2701 #ifdef IPFIREWALL_VERBOSE
 2702         fw_verbose = 1;
 2703 #endif
 2704 #ifdef IPFIREWALL_VERBOSE_LIMIT
 2705         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
 2706 #endif
 2707         if (fw_verbose == 0)
 2708                 printf("disabled\n");
 2709         else if (verbose_limit == 0)
 2710                 printf("unlimited\n");
 2711         else
 2712                 printf("limited to %d packets/entry by default\n",
 2713                     verbose_limit);
 2714         bzero(&ipfw_timeout_h, sizeof(struct callout_handle));
 2715         ipfw_timeout_h = timeout(ipfw_tick, NULL, hz);
 2716 }
 2717 
 2718 static int
 2719 ipfw_modevent(module_t mod, int type, void *unused)
 2720 {
 2721         int s;
 2722         int err = 0;
 2723 
 2724         switch (type) {
 2725         case MOD_LOAD:
 2726                 s = splimp();
 2727                 if (IPFW_LOADED) {
 2728                         splx(s);
 2729                         printf("IP firewall already loaded\n");
 2730                         err = EEXIST;
 2731                 } else {
 2732                         ipfw_init();
 2733                         splx(s);
 2734                 }
 2735                 break;
 2736 
 2737         case MOD_UNLOAD:
 2738 #if !defined(KLD_MODULE)
 2739                 printf("ipfw statically compiled, cannot unload\n");
 2740                 err = EBUSY;
 2741 #else
 2742                 s = splimp();
 2743                 untimeout(ipfw_tick, NULL, ipfw_timeout_h);
 2744                 ip_fw_chk_ptr = NULL;
 2745                 ip_fw_ctl_ptr = NULL;
 2746                 free_chain(&layer3_chain, 1 /* kill default rule */);
 2747                 splx(s);
 2748                 printf("IP firewall unloaded\n");
 2749 #endif
 2750                 break;
 2751         default:
 2752                 break;
 2753         }
 2754         return err;
 2755 }
 2756 
 2757 static moduledata_t ipfwmod = {
 2758         "ipfw",
 2759         ipfw_modevent,
 2760         0
 2761 };
 2762 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PSEUDO, SI_ORDER_ANY);
 2763 MODULE_VERSION(ipfw, 1);
 2764 #endif /* IPFW2 */

Cache object: ecc803d68bd15cb9f6f68a681b4f853b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.