The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_fw2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD: releng/5.2/sys/netinet/ip_fw2.c 123763 2003-12-23 12:25:56Z maxim $
   26  */
   27 
   28 #define        DEB(x)
   29 #define        DDB(x) x
   30 
   31 /*
   32  * Implement IP packet firewall (new version)
   33  */
   34 
   35 #if !defined(KLD_MODULE)
   36 #include "opt_ipfw.h"
   37 #include "opt_ipdn.h"
   38 #include "opt_ipdivert.h"
   39 #include "opt_inet.h"
   40 #include "opt_ipsec.h"
   41 #ifndef INET
   42 #error IPFIREWALL requires INET.
   43 #endif /* INET */
   44 #endif
   45 
   46 #define IPFW2   1
   47 #if IPFW2
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/malloc.h>
   51 #include <sys/mbuf.h>
   52 #include <sys/kernel.h>
   53 #include <sys/proc.h>
   54 #include <sys/socket.h>
   55 #include <sys/socketvar.h>
   56 #include <sys/sysctl.h>
   57 #include <sys/syslog.h>
   58 #include <sys/ucred.h>
   59 #include <net/if.h>
   60 #include <net/route.h>
   61 #include <netinet/in.h>
   62 #include <netinet/in_systm.h>
   63 #include <netinet/in_var.h>
   64 #include <netinet/in_pcb.h>
   65 #include <netinet/ip.h>
   66 #include <netinet/ip_var.h>
   67 #include <netinet/ip_icmp.h>
   68 #include <netinet/ip_fw.h>
   69 #include <netinet/ip_dummynet.h>
   70 #include <netinet/tcp.h>
   71 #include <netinet/tcp_timer.h>
   72 #include <netinet/tcp_var.h>
   73 #include <netinet/tcpip.h>
   74 #include <netinet/udp.h>
   75 #include <netinet/udp_var.h>
   76 
   77 #ifdef IPSEC
   78 #include <netinet6/ipsec.h>
   79 #endif
   80 
   81 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
   82 
   83 #include <machine/in_cksum.h>   /* XXX for in_cksum */
   84 
   85 /*
   86  * This is used to avoid that a firewall-generated packet
   87  * loops forever through the firewall.  Note that it must
   88  * be a flag that is unused by other protocols that might
   89  * be called from ip_output (e.g. IPsec) and it must be
   90  * listed in M_COPYFLAGS in mbuf.h so that if the mbuf chain
   91  * is altered on the way through ip_output it is not lost.
   92  * It might be better to add an m_tag since the this happens
   93  * infrequently.
   94  */
   95 #define M_SKIP_FIREWALL         M_PROTO6
   96 
   97 /*
   98  * set_disable contains one bit per set value (0..31).
   99  * If the bit is set, all rules with the corresponding set
  100  * are disabled. Set RESVD_SET(31) is reserved for the default rule
  101  * and rules that are not deleted by the flush command,
  102  * and CANNOT be disabled.
  103  * Rules in set RESVD_SET can only be deleted explicitly.
  104  */
  105 static u_int32_t set_disable;
  106 
  107 static int fw_verbose;
  108 static int verbose_limit;
  109 
  110 static struct callout ipfw_timeout;
  111 #define IPFW_DEFAULT_RULE       65535
  112 
  113 struct ip_fw_chain {
  114         struct ip_fw    *rules;         /* list of rules */
  115         struct ip_fw    *reap;          /* list of rules to reap */
  116         struct mtx      mtx;            /* lock guarding rule list */
  117 };
  118 #define IPFW_LOCK_INIT(_chain) \
  119         mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
  120                 MTX_DEF | MTX_RECURSE)
  121 #define IPFW_LOCK_DESTROY(_chain)       mtx_destroy(&(_chain)->mtx)
  122 #define IPFW_LOCK(_chain)       mtx_lock(&(_chain)->mtx)
  123 #define IPFW_UNLOCK(_chain)     mtx_unlock(&(_chain)->mtx)
  124 #define IPFW_LOCK_ASSERT(_chain)        mtx_assert(&(_chain)->mtx, MA_OWNED)
  125 
  126 /*
  127  * list of rules for layer 3
  128  */
  129 static struct ip_fw_chain layer3_chain;
  130 
  131 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
  132 
  133 static int fw_debug = 1;
  134 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
  135 
  136 #ifdef SYSCTL_NODE
  137 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
  138 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
  139     CTLFLAG_RW | CTLFLAG_SECURE3,
  140     &fw_enable, 0, "Enable ipfw");
  141 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
  142     &autoinc_step, 0, "Rule number autincrement step");
  143 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
  144     CTLFLAG_RW | CTLFLAG_SECURE3,
  145     &fw_one_pass, 0,
  146     "Only do a single pass through ipfw when using dummynet(4)");
  147 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
  148     &fw_debug, 0, "Enable printing of debug ip_fw statements");
  149 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
  150     CTLFLAG_RW | CTLFLAG_SECURE3,
  151     &fw_verbose, 0, "Log matches to ipfw rules");
  152 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
  153     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
  154 
  155 /*
  156  * Description of dynamic rules.
  157  *
  158  * Dynamic rules are stored in lists accessed through a hash table
  159  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
  160  * be modified through the sysctl variable dyn_buckets which is
  161  * updated when the table becomes empty.
  162  *
  163  * XXX currently there is only one list, ipfw_dyn.
  164  *
  165  * When a packet is received, its address fields are first masked
  166  * with the mask defined for the rule, then hashed, then matched
  167  * against the entries in the corresponding list.
  168  * Dynamic rules can be used for different purposes:
  169  *  + stateful rules;
  170  *  + enforcing limits on the number of sessions;
  171  *  + in-kernel NAT (not implemented yet)
  172  *
  173  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
  174  * measured in seconds and depending on the flags.
  175  *
  176  * The total number of dynamic rules is stored in dyn_count.
  177  * The max number of dynamic rules is dyn_max. When we reach
  178  * the maximum number of rules we do not create anymore. This is
  179  * done to avoid consuming too much memory, but also too much
  180  * time when searching on each packet (ideally, we should try instead
  181  * to put a limit on the length of the list on each bucket...).
  182  *
  183  * Each dynamic rule holds a pointer to the parent ipfw rule so
  184  * we know what action to perform. Dynamic rules are removed when
  185  * the parent rule is deleted. XXX we should make them survive.
  186  *
  187  * There are some limitations with dynamic rules -- we do not
  188  * obey the 'randomized match', and we do not do multiple
  189  * passes through the firewall. XXX check the latter!!!
  190  */
  191 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
  192 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
  193 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
  194 
  195 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
  196 #define IPFW_DYN_LOCK_INIT() \
  197         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
  198 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
  199 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
  200 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
  201 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
  202 
  203 /*
  204  * Timeouts for various events in handing dynamic rules.
  205  */
  206 static u_int32_t dyn_ack_lifetime = 300;
  207 static u_int32_t dyn_syn_lifetime = 20;
  208 static u_int32_t dyn_fin_lifetime = 1;
  209 static u_int32_t dyn_rst_lifetime = 1;
  210 static u_int32_t dyn_udp_lifetime = 10;
  211 static u_int32_t dyn_short_lifetime = 5;
  212 
  213 /*
  214  * Keepalives are sent if dyn_keepalive is set. They are sent every
  215  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
  216  * seconds of lifetime of a rule.
  217  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
  218  * than dyn_keepalive_period.
  219  */
  220 
  221 static u_int32_t dyn_keepalive_interval = 20;
  222 static u_int32_t dyn_keepalive_period = 5;
  223 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
  224 
  225 static u_int32_t static_count;  /* # of static rules */
  226 static u_int32_t static_len;    /* size in bytes of static rules */
  227 static u_int32_t dyn_count;             /* # of dynamic rules */
  228 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
  229 
  230 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
  231     &dyn_buckets, 0, "Number of dyn. buckets");
  232 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
  233     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
  234 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
  235     &dyn_count, 0, "Number of dyn. rules");
  236 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
  237     &dyn_max, 0, "Max number of dyn. rules");
  238 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
  239     &static_count, 0, "Number of static rules");
  240 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
  241     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
  242 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
  243     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
  244 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
  245     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
  246 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
  247     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
  248 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
  249     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
  250 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
  251     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
  252 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
  253     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
  254 
  255 #endif /* SYSCTL_NODE */
  256 
  257 
  258 static ip_fw_chk_t      ipfw_chk;
  259 
  260 ip_dn_ruledel_t *ip_dn_ruledel_ptr = NULL;      /* hook into dummynet */
  261 
  262 /*
  263  * This macro maps an ip pointer into a layer3 header pointer of type T
  264  */
  265 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
  266 
  267 static __inline int
  268 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
  269 {
  270         int type = L3HDR(struct icmp,ip)->icmp_type;
  271 
  272         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
  273 }
  274 
  275 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
  276     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
  277 
  278 static int
  279 is_icmp_query(struct ip *ip)
  280 {
  281         int type = L3HDR(struct icmp, ip)->icmp_type;
  282         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
  283 }
  284 #undef TT
  285 
  286 /*
  287  * The following checks use two arrays of 8 or 16 bits to store the
  288  * bits that we want set or clear, respectively. They are in the
  289  * low and high half of cmd->arg1 or cmd->d[0].
  290  *
  291  * We scan options and store the bits we find set. We succeed if
  292  *
  293  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
  294  *
  295  * The code is sometimes optimized not to store additional variables.
  296  */
  297 
  298 static int
  299 flags_match(ipfw_insn *cmd, u_int8_t bits)
  300 {
  301         u_char want_clear;
  302         bits = ~bits;
  303 
  304         if ( ((cmd->arg1 & 0xff) & bits) != 0)
  305                 return 0; /* some bits we want set were clear */
  306         want_clear = (cmd->arg1 >> 8) & 0xff;
  307         if ( (want_clear & bits) != want_clear)
  308                 return 0; /* some bits we want clear were set */
  309         return 1;
  310 }
  311 
  312 static int
  313 ipopts_match(struct ip *ip, ipfw_insn *cmd)
  314 {
  315         int optlen, bits = 0;
  316         u_char *cp = (u_char *)(ip + 1);
  317         int x = (ip->ip_hl << 2) - sizeof (struct ip);
  318 
  319         for (; x > 0; x -= optlen, cp += optlen) {
  320                 int opt = cp[IPOPT_OPTVAL];
  321 
  322                 if (opt == IPOPT_EOL)
  323                         break;
  324                 if (opt == IPOPT_NOP)
  325                         optlen = 1;
  326                 else {
  327                         optlen = cp[IPOPT_OLEN];
  328                         if (optlen <= 0 || optlen > x)
  329                                 return 0; /* invalid or truncated */
  330                 }
  331                 switch (opt) {
  332 
  333                 default:
  334                         break;
  335 
  336                 case IPOPT_LSRR:
  337                         bits |= IP_FW_IPOPT_LSRR;
  338                         break;
  339 
  340                 case IPOPT_SSRR:
  341                         bits |= IP_FW_IPOPT_SSRR;
  342                         break;
  343 
  344                 case IPOPT_RR:
  345                         bits |= IP_FW_IPOPT_RR;
  346                         break;
  347 
  348                 case IPOPT_TS:
  349                         bits |= IP_FW_IPOPT_TS;
  350                         break;
  351                 }
  352         }
  353         return (flags_match(cmd, bits));
  354 }
  355 
  356 static int
  357 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
  358 {
  359         int optlen, bits = 0;
  360         struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
  361         u_char *cp = (u_char *)(tcp + 1);
  362         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
  363 
  364         for (; x > 0; x -= optlen, cp += optlen) {
  365                 int opt = cp[0];
  366                 if (opt == TCPOPT_EOL)
  367                         break;
  368                 if (opt == TCPOPT_NOP)
  369                         optlen = 1;
  370                 else {
  371                         optlen = cp[1];
  372                         if (optlen <= 0)
  373                                 break;
  374                 }
  375 
  376                 switch (opt) {
  377 
  378                 default:
  379                         break;
  380 
  381                 case TCPOPT_MAXSEG:
  382                         bits |= IP_FW_TCPOPT_MSS;
  383                         break;
  384 
  385                 case TCPOPT_WINDOW:
  386                         bits |= IP_FW_TCPOPT_WINDOW;
  387                         break;
  388 
  389                 case TCPOPT_SACK_PERMITTED:
  390                 case TCPOPT_SACK:
  391                         bits |= IP_FW_TCPOPT_SACK;
  392                         break;
  393 
  394                 case TCPOPT_TIMESTAMP:
  395                         bits |= IP_FW_TCPOPT_TS;
  396                         break;
  397 
  398                 case TCPOPT_CC:
  399                 case TCPOPT_CCNEW:
  400                 case TCPOPT_CCECHO:
  401                         bits |= IP_FW_TCPOPT_CC;
  402                         break;
  403                 }
  404         }
  405         return (flags_match(cmd, bits));
  406 }
  407 
  408 static int
  409 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
  410 {
  411         if (ifp == NULL)        /* no iface with this packet, match fails */
  412                 return 0;
  413         /* Check by name or by IP address */
  414         if (cmd->name[0] != '\0') { /* match by name */
  415                 /* Check name */
  416                 if (cmd->p.glob) {
  417                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
  418                                 return(1);
  419                 } else {
  420                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
  421                                 return(1);
  422                 }
  423         } else {
  424                 struct ifaddr *ia;
  425 
  426                 /* XXX lock? */
  427                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
  428                         if (ia->ifa_addr == NULL)
  429                                 continue;
  430                         if (ia->ifa_addr->sa_family != AF_INET)
  431                                 continue;
  432                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
  433                             (ia->ifa_addr))->sin_addr.s_addr)
  434                                 return(1);      /* match */
  435                 }
  436         }
  437         return(0);      /* no match, fail ... */
  438 }
  439 
  440 /*
  441  * The 'verrevpath' option checks that the interface that an IP packet
  442  * arrives on is the same interface that traffic destined for the
  443  * packet's source address would be routed out of. This is a measure
  444  * to block forged packets. This is also commonly known as "anti-spoofing"
  445  * or Unicast Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The
  446  * name of the knob is purposely reminisent of the Cisco IOS command,
  447  *
  448  *   ip verify unicast reverse-path
  449  *
  450  * which implements the same functionality. But note that syntax is
  451  * misleading. The check may be performed on all IP packets whether unicast,
  452  * multicast, or broadcast.
  453  */
  454 static int
  455 verify_rev_path(struct in_addr src, struct ifnet *ifp)
  456 {
  457         struct route ro;
  458         struct sockaddr_in *dst;
  459 
  460         bzero(&ro, sizeof(ro));
  461 
  462         dst = (struct sockaddr_in *)&(ro.ro_dst);
  463         dst->sin_family = AF_INET;
  464         dst->sin_len = sizeof(*dst);
  465         dst->sin_addr = src;
  466         rtalloc_ign(&ro, RTF_CLONING);
  467 
  468         if (ro.ro_rt == NULL)
  469                 return 0;
  470         if ((ifp == NULL) || (ro.ro_rt->rt_ifp->if_index != ifp->if_index)) {
  471                 RTFREE(ro.ro_rt);
  472                 return 0;
  473         }
  474         RTFREE(ro.ro_rt);
  475         return 1;
  476 }
  477 
  478 
  479 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
  480 
  481 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
  482 #define SNP(buf) buf, sizeof(buf)
  483 
  484 /*
  485  * We enter here when we have a rule with O_LOG.
  486  * XXX this function alone takes about 2Kbytes of code!
  487  */
  488 static void
  489 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
  490         struct mbuf *m, struct ifnet *oif)
  491 {
  492         char *action;
  493         int limit_reached = 0;
  494         char action2[40], proto[48], fragment[28];
  495 
  496         fragment[0] = '\0';
  497         proto[0] = '\0';
  498 
  499         if (f == NULL) {        /* bogus pkt */
  500                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
  501                         return;
  502                 norule_counter++;
  503                 if (norule_counter == verbose_limit)
  504                         limit_reached = verbose_limit;
  505                 action = "Refuse";
  506         } else {        /* O_LOG is the first action, find the real one */
  507                 ipfw_insn *cmd = ACTION_PTR(f);
  508                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
  509 
  510                 if (l->max_log != 0 && l->log_left == 0)
  511                         return;
  512                 l->log_left--;
  513                 if (l->log_left == 0)
  514                         limit_reached = l->max_log;
  515                 cmd += F_LEN(cmd);      /* point to first action */
  516                 if (cmd->opcode == O_PROB)
  517                         cmd += F_LEN(cmd);
  518 
  519                 action = action2;
  520                 switch (cmd->opcode) {
  521                 case O_DENY:
  522                         action = "Deny";
  523                         break;
  524 
  525                 case O_REJECT:
  526                         if (cmd->arg1==ICMP_REJECT_RST)
  527                                 action = "Reset";
  528                         else if (cmd->arg1==ICMP_UNREACH_HOST)
  529                                 action = "Reject";
  530                         else
  531                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  532                                         cmd->arg1);
  533                         break;
  534 
  535                 case O_ACCEPT:
  536                         action = "Accept";
  537                         break;
  538                 case O_COUNT:
  539                         action = "Count";
  540                         break;
  541                 case O_DIVERT:
  542                         snprintf(SNPARGS(action2, 0), "Divert %d",
  543                                 cmd->arg1);
  544                         break;
  545                 case O_TEE:
  546                         snprintf(SNPARGS(action2, 0), "Tee %d",
  547                                 cmd->arg1);
  548                         break;
  549                 case O_SKIPTO:
  550                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
  551                                 cmd->arg1);
  552                         break;
  553                 case O_PIPE:
  554                         snprintf(SNPARGS(action2, 0), "Pipe %d",
  555                                 cmd->arg1);
  556                         break;
  557                 case O_QUEUE:
  558                         snprintf(SNPARGS(action2, 0), "Queue %d",
  559                                 cmd->arg1);
  560                         break;
  561                 case O_FORWARD_IP: {
  562                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
  563                         int len;
  564 
  565                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
  566                                 inet_ntoa(sa->sa.sin_addr));
  567                         if (sa->sa.sin_port)
  568                                 snprintf(SNPARGS(action2, len), ":%d",
  569                                     sa->sa.sin_port);
  570                         }
  571                         break;
  572                 default:
  573                         action = "UNKNOWN";
  574                         break;
  575                 }
  576         }
  577 
  578         if (hlen == 0) {        /* non-ip */
  579                 snprintf(SNPARGS(proto, 0), "MAC");
  580         } else {
  581                 struct ip *ip = mtod(m, struct ip *);
  582                 /* these three are all aliases to the same thing */
  583                 struct icmp *const icmp = L3HDR(struct icmp, ip);
  584                 struct tcphdr *const tcp = (struct tcphdr *)icmp;
  585                 struct udphdr *const udp = (struct udphdr *)icmp;
  586 
  587                 int ip_off, offset, ip_len;
  588 
  589                 int len;
  590 
  591                 if (eh != NULL) { /* layer 2 packets are as on the wire */
  592                         ip_off = ntohs(ip->ip_off);
  593                         ip_len = ntohs(ip->ip_len);
  594                 } else {
  595                         ip_off = ip->ip_off;
  596                         ip_len = ip->ip_len;
  597                 }
  598                 offset = ip_off & IP_OFFMASK;
  599                 switch (ip->ip_p) {
  600                 case IPPROTO_TCP:
  601                         len = snprintf(SNPARGS(proto, 0), "TCP %s",
  602                             inet_ntoa(ip->ip_src));
  603                         if (offset == 0)
  604                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  605                                     ntohs(tcp->th_sport),
  606                                     inet_ntoa(ip->ip_dst),
  607                                     ntohs(tcp->th_dport));
  608                         else
  609                                 snprintf(SNPARGS(proto, len), " %s",
  610                                     inet_ntoa(ip->ip_dst));
  611                         break;
  612 
  613                 case IPPROTO_UDP:
  614                         len = snprintf(SNPARGS(proto, 0), "UDP %s",
  615                                 inet_ntoa(ip->ip_src));
  616                         if (offset == 0)
  617                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  618                                     ntohs(udp->uh_sport),
  619                                     inet_ntoa(ip->ip_dst),
  620                                     ntohs(udp->uh_dport));
  621                         else
  622                                 snprintf(SNPARGS(proto, len), " %s",
  623                                     inet_ntoa(ip->ip_dst));
  624                         break;
  625 
  626                 case IPPROTO_ICMP:
  627                         if (offset == 0)
  628                                 len = snprintf(SNPARGS(proto, 0),
  629                                     "ICMP:%u.%u ",
  630                                     icmp->icmp_type, icmp->icmp_code);
  631                         else
  632                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
  633                         len += snprintf(SNPARGS(proto, len), "%s",
  634                             inet_ntoa(ip->ip_src));
  635                         snprintf(SNPARGS(proto, len), " %s",
  636                             inet_ntoa(ip->ip_dst));
  637                         break;
  638 
  639                 default:
  640                         len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
  641                             inet_ntoa(ip->ip_src));
  642                         snprintf(SNPARGS(proto, len), " %s",
  643                             inet_ntoa(ip->ip_dst));
  644                         break;
  645                 }
  646 
  647                 if (ip_off & (IP_MF | IP_OFFMASK))
  648                         snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
  649                              ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
  650                              offset << 3,
  651                              (ip_off & IP_MF) ? "+" : "");
  652         }
  653         if (oif || m->m_pkthdr.rcvif)
  654                 log(LOG_SECURITY | LOG_INFO,
  655                     "ipfw: %d %s %s %s via %s%s\n",
  656                     f ? f->rulenum : -1,
  657                     action, proto, oif ? "out" : "in",
  658                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
  659                     fragment);
  660         else
  661                 log(LOG_SECURITY | LOG_INFO,
  662                     "ipfw: %d %s %s [no if info]%s\n",
  663                     f ? f->rulenum : -1,
  664                     action, proto, fragment);
  665         if (limit_reached)
  666                 log(LOG_SECURITY | LOG_NOTICE,
  667                     "ipfw: limit %d reached on entry %d\n",
  668                     limit_reached, f ? f->rulenum : -1);
  669 }
  670 
  671 /*
  672  * IMPORTANT: the hash function for dynamic rules must be commutative
  673  * in source and destination (ip,port), because rules are bidirectional
  674  * and we want to find both in the same bucket.
  675  */
  676 static __inline int
  677 hash_packet(struct ipfw_flow_id *id)
  678 {
  679         u_int32_t i;
  680 
  681         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
  682         i &= (curr_dyn_buckets - 1);
  683         return i;
  684 }
  685 
  686 /**
  687  * unlink a dynamic rule from a chain. prev is a pointer to
  688  * the previous one, q is a pointer to the rule to delete,
  689  * head is a pointer to the head of the queue.
  690  * Modifies q and potentially also head.
  691  */
  692 #define UNLINK_DYN_RULE(prev, head, q) {                                \
  693         ipfw_dyn_rule *old_q = q;                                       \
  694                                                                         \
  695         /* remove a refcount to the parent */                           \
  696         if (q->dyn_type == O_LIMIT)                                     \
  697                 q->parent->count--;                                     \
  698         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
  699                 (q->id.src_ip), (q->id.src_port),                       \
  700                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
  701         if (prev != NULL)                                               \
  702                 prev->next = q = q->next;                               \
  703         else                                                            \
  704                 head = q = q->next;                                     \
  705         dyn_count--;                                                    \
  706         free(old_q, M_IPFW); }
  707 
  708 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
  709 
  710 /**
  711  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
  712  *
  713  * If keep_me == NULL, rules are deleted even if not expired,
  714  * otherwise only expired rules are removed.
  715  *
  716  * The value of the second parameter is also used to point to identify
  717  * a rule we absolutely do not want to remove (e.g. because we are
  718  * holding a reference to it -- this is the case with O_LIMIT_PARENT
  719  * rules). The pointer is only used for comparison, so any non-null
  720  * value will do.
  721  */
  722 static void
  723 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
  724 {
  725         static u_int32_t last_remove = 0;
  726 
  727 #define FORCE (keep_me == NULL)
  728 
  729         ipfw_dyn_rule *prev, *q;
  730         int i, pass = 0, max_pass = 0;
  731 
  732         IPFW_DYN_LOCK_ASSERT();
  733 
  734         if (ipfw_dyn_v == NULL || dyn_count == 0)
  735                 return;
  736         /* do not expire more than once per second, it is useless */
  737         if (!FORCE && last_remove == time_second)
  738                 return;
  739         last_remove = time_second;
  740 
  741         /*
  742          * because O_LIMIT refer to parent rules, during the first pass only
  743          * remove child and mark any pending LIMIT_PARENT, and remove
  744          * them in a second pass.
  745          */
  746 next_pass:
  747         for (i = 0 ; i < curr_dyn_buckets ; i++) {
  748                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
  749                         /*
  750                          * Logic can become complex here, so we split tests.
  751                          */
  752                         if (q == keep_me)
  753                                 goto next;
  754                         if (rule != NULL && rule != q->rule)
  755                                 goto next; /* not the one we are looking for */
  756                         if (q->dyn_type == O_LIMIT_PARENT) {
  757                                 /*
  758                                  * handle parent in the second pass,
  759                                  * record we need one.
  760                                  */
  761                                 max_pass = 1;
  762                                 if (pass == 0)
  763                                         goto next;
  764                                 if (FORCE && q->count != 0 ) {
  765                                         /* XXX should not happen! */
  766                                         printf("ipfw: OUCH! cannot remove rule,"
  767                                              " count %d\n", q->count);
  768                                 }
  769                         } else {
  770                                 if (!FORCE &&
  771                                     !TIME_LEQ( q->expire, time_second ))
  772                                         goto next;
  773                         }
  774              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
  775                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  776                      continue;
  777              }
  778 next:
  779                         prev=q;
  780                         q=q->next;
  781                 }
  782         }
  783         if (pass++ < max_pass)
  784                 goto next_pass;
  785 }
  786 
  787 
  788 /**
  789  * lookup a dynamic rule.
  790  */
  791 static ipfw_dyn_rule *
  792 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
  793         struct tcphdr *tcp)
  794 {
  795         /*
  796          * stateful ipfw extensions.
  797          * Lookup into dynamic session queue
  798          */
  799 #define MATCH_REVERSE   0
  800 #define MATCH_FORWARD   1
  801 #define MATCH_NONE      2
  802 #define MATCH_UNKNOWN   3
  803         int i, dir = MATCH_NONE;
  804         ipfw_dyn_rule *prev, *q=NULL;
  805 
  806         IPFW_DYN_LOCK_ASSERT();
  807 
  808         if (ipfw_dyn_v == NULL)
  809                 goto done;      /* not found */
  810         i = hash_packet( pkt );
  811         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
  812                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
  813                         goto next;
  814                 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
  815                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  816                         continue;
  817                 }
  818                 if (pkt->proto == q->id.proto &&
  819                     q->dyn_type != O_LIMIT_PARENT) {
  820                         if (pkt->src_ip == q->id.src_ip &&
  821                             pkt->dst_ip == q->id.dst_ip &&
  822                             pkt->src_port == q->id.src_port &&
  823                             pkt->dst_port == q->id.dst_port ) {
  824                                 dir = MATCH_FORWARD;
  825                                 break;
  826                         }
  827                         if (pkt->src_ip == q->id.dst_ip &&
  828                             pkt->dst_ip == q->id.src_ip &&
  829                             pkt->src_port == q->id.dst_port &&
  830                             pkt->dst_port == q->id.src_port ) {
  831                                 dir = MATCH_REVERSE;
  832                                 break;
  833                         }
  834                 }
  835 next:
  836                 prev = q;
  837                 q = q->next;
  838         }
  839         if (q == NULL)
  840                 goto done; /* q = NULL, not found */
  841 
  842         if ( prev != NULL) { /* found and not in front */
  843                 prev->next = q->next;
  844                 q->next = ipfw_dyn_v[i];
  845                 ipfw_dyn_v[i] = q;
  846         }
  847         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
  848                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
  849 
  850 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
  851 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
  852                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
  853                 switch (q->state) {
  854                 case TH_SYN:                            /* opening */
  855                         q->expire = time_second + dyn_syn_lifetime;
  856                         break;
  857 
  858                 case BOTH_SYN:                  /* move to established */
  859                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
  860                 case BOTH_SYN | (TH_FIN << 8) :
  861                         if (tcp) {
  862 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
  863                             u_int32_t ack = ntohl(tcp->th_ack);
  864                             if (dir == MATCH_FORWARD) {
  865                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
  866                                     q->ack_fwd = ack;
  867                                 else { /* ignore out-of-sequence */
  868                                     break;
  869                                 }
  870                             } else {
  871                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
  872                                     q->ack_rev = ack;
  873                                 else { /* ignore out-of-sequence */
  874                                     break;
  875                                 }
  876                             }
  877                         }
  878                         q->expire = time_second + dyn_ack_lifetime;
  879                         break;
  880 
  881                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
  882                         if (dyn_fin_lifetime >= dyn_keepalive_period)
  883                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
  884                         q->expire = time_second + dyn_fin_lifetime;
  885                         break;
  886 
  887                 default:
  888 #if 0
  889                         /*
  890                          * reset or some invalid combination, but can also
  891                          * occur if we use keep-state the wrong way.
  892                          */
  893                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
  894                                 printf("invalid state: 0x%x\n", q->state);
  895 #endif
  896                         if (dyn_rst_lifetime >= dyn_keepalive_period)
  897                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
  898                         q->expire = time_second + dyn_rst_lifetime;
  899                         break;
  900                 }
  901         } else if (pkt->proto == IPPROTO_UDP) {
  902                 q->expire = time_second + dyn_udp_lifetime;
  903         } else {
  904                 /* other protocols */
  905                 q->expire = time_second + dyn_short_lifetime;
  906         }
  907 done:
  908         if (match_direction)
  909                 *match_direction = dir;
  910         return q;
  911 }
  912 
  913 static ipfw_dyn_rule *
  914 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
  915         struct tcphdr *tcp)
  916 {
  917         ipfw_dyn_rule *q;
  918 
  919         IPFW_DYN_LOCK();
  920         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
  921         if (q == NULL)
  922                 IPFW_DYN_UNLOCK();
  923         /* NB: return table locked when q is not NULL */
  924         return q;
  925 }
  926 
  927 static void
  928 realloc_dynamic_table(void)
  929 {
  930         IPFW_DYN_LOCK_ASSERT();
  931 
  932         /*
  933          * Try reallocation, make sure we have a power of 2 and do
  934          * not allow more than 64k entries. In case of overflow,
  935          * default to 1024.
  936          */
  937 
  938         if (dyn_buckets > 65536)
  939                 dyn_buckets = 1024;
  940         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
  941                 dyn_buckets = curr_dyn_buckets; /* reset */
  942                 return;
  943         }
  944         curr_dyn_buckets = dyn_buckets;
  945         if (ipfw_dyn_v != NULL)
  946                 free(ipfw_dyn_v, M_IPFW);
  947         for (;;) {
  948                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
  949                        M_IPFW, M_NOWAIT | M_ZERO);
  950                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
  951                         break;
  952                 curr_dyn_buckets /= 2;
  953         }
  954 }
  955 
  956 /**
  957  * Install state of type 'type' for a dynamic session.
  958  * The hash table contains two type of rules:
  959  * - regular rules (O_KEEP_STATE)
  960  * - rules for sessions with limited number of sess per user
  961  *   (O_LIMIT). When they are created, the parent is
  962  *   increased by 1, and decreased on delete. In this case,
  963  *   the third parameter is the parent rule and not the chain.
  964  * - "parent" rules for the above (O_LIMIT_PARENT).
  965  */
  966 static ipfw_dyn_rule *
  967 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
  968 {
  969         ipfw_dyn_rule *r;
  970         int i;
  971 
  972         IPFW_DYN_LOCK_ASSERT();
  973 
  974         if (ipfw_dyn_v == NULL ||
  975             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
  976                 realloc_dynamic_table();
  977                 if (ipfw_dyn_v == NULL)
  978                         return NULL; /* failed ! */
  979         }
  980         i = hash_packet(id);
  981 
  982         r = malloc(sizeof *r, M_IPFW, M_NOWAIT | M_ZERO);
  983         if (r == NULL) {
  984                 printf ("ipfw: sorry cannot allocate state\n");
  985                 return NULL;
  986         }
  987 
  988         /* increase refcount on parent, and set pointer */
  989         if (dyn_type == O_LIMIT) {
  990                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
  991                 if ( parent->dyn_type != O_LIMIT_PARENT)
  992                         panic("invalid parent");
  993                 parent->count++;
  994                 r->parent = parent;
  995                 rule = parent->rule;
  996         }
  997 
  998         r->id = *id;
  999         r->expire = time_second + dyn_syn_lifetime;
 1000         r->rule = rule;
 1001         r->dyn_type = dyn_type;
 1002         r->pcnt = r->bcnt = 0;
 1003         r->count = 0;
 1004 
 1005         r->bucket = i;
 1006         r->next = ipfw_dyn_v[i];
 1007         ipfw_dyn_v[i] = r;
 1008         dyn_count++;
 1009         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
 1010            dyn_type,
 1011            (r->id.src_ip), (r->id.src_port),
 1012            (r->id.dst_ip), (r->id.dst_port),
 1013            dyn_count ); )
 1014         return r;
 1015 }
 1016 
 1017 /**
 1018  * lookup dynamic parent rule using pkt and rule as search keys.
 1019  * If the lookup fails, then install one.
 1020  */
 1021 static ipfw_dyn_rule *
 1022 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
 1023 {
 1024         ipfw_dyn_rule *q;
 1025         int i;
 1026 
 1027         IPFW_DYN_LOCK_ASSERT();
 1028 
 1029         if (ipfw_dyn_v) {
 1030                 i = hash_packet( pkt );
 1031                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
 1032                         if (q->dyn_type == O_LIMIT_PARENT &&
 1033                             rule== q->rule &&
 1034                             pkt->proto == q->id.proto &&
 1035                             pkt->src_ip == q->id.src_ip &&
 1036                             pkt->dst_ip == q->id.dst_ip &&
 1037                             pkt->src_port == q->id.src_port &&
 1038                             pkt->dst_port == q->id.dst_port) {
 1039                                 q->expire = time_second + dyn_short_lifetime;
 1040                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
 1041                                 return q;
 1042                         }
 1043         }
 1044         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
 1045 }
 1046 
 1047 /**
 1048  * Install dynamic state for rule type cmd->o.opcode
 1049  *
 1050  * Returns 1 (failure) if state is not installed because of errors or because
 1051  * session limitations are enforced.
 1052  */
 1053 static int
 1054 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
 1055         struct ip_fw_args *args)
 1056 {
 1057         static int last_log;
 1058 
 1059         ipfw_dyn_rule *q;
 1060 
 1061         DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
 1062             cmd->o.opcode,
 1063             (args->f_id.src_ip), (args->f_id.src_port),
 1064             (args->f_id.dst_ip), (args->f_id.dst_port) );)
 1065 
 1066         IPFW_DYN_LOCK();
 1067 
 1068         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1069 
 1070         if (q != NULL) { /* should never occur */
 1071                 if (last_log != time_second) {
 1072                         last_log = time_second;
 1073                         printf("ipfw: install_state: entry already present, done\n");
 1074                 }
 1075                 IPFW_DYN_UNLOCK();
 1076                 return 0;
 1077         }
 1078 
 1079         if (dyn_count >= dyn_max)
 1080                 /*
 1081                  * Run out of slots, try to remove any expired rule.
 1082                  */
 1083                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
 1084 
 1085         if (dyn_count >= dyn_max) {
 1086                 if (last_log != time_second) {
 1087                         last_log = time_second;
 1088                         printf("ipfw: install_state: Too many dynamic rules\n");
 1089                 }
 1090                 IPFW_DYN_UNLOCK();
 1091                 return 1; /* cannot install, notify caller */
 1092         }
 1093 
 1094         switch (cmd->o.opcode) {
 1095         case O_KEEP_STATE: /* bidir rule */
 1096                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
 1097                 break;
 1098 
 1099         case O_LIMIT: /* limit number of sessions */
 1100             {
 1101                 u_int16_t limit_mask = cmd->limit_mask;
 1102                 struct ipfw_flow_id id;
 1103                 ipfw_dyn_rule *parent;
 1104 
 1105                 DEB(printf("ipfw: installing dyn-limit rule %d\n",
 1106                     cmd->conn_limit);)
 1107 
 1108                 id.dst_ip = id.src_ip = 0;
 1109                 id.dst_port = id.src_port = 0;
 1110                 id.proto = args->f_id.proto;
 1111 
 1112                 if (limit_mask & DYN_SRC_ADDR)
 1113                         id.src_ip = args->f_id.src_ip;
 1114                 if (limit_mask & DYN_DST_ADDR)
 1115                         id.dst_ip = args->f_id.dst_ip;
 1116                 if (limit_mask & DYN_SRC_PORT)
 1117                         id.src_port = args->f_id.src_port;
 1118                 if (limit_mask & DYN_DST_PORT)
 1119                         id.dst_port = args->f_id.dst_port;
 1120                 parent = lookup_dyn_parent(&id, rule);
 1121                 if (parent == NULL) {
 1122                         printf("ipfw: add parent failed\n");
 1123                         return 1;
 1124                 }
 1125                 if (parent->count >= cmd->conn_limit) {
 1126                         /*
 1127                          * See if we can remove some expired rule.
 1128                          */
 1129                         remove_dyn_rule(rule, parent);
 1130                         if (parent->count >= cmd->conn_limit) {
 1131                                 if (fw_verbose && last_log != time_second) {
 1132                                         last_log = time_second;
 1133                                         log(LOG_SECURITY | LOG_DEBUG,
 1134                                             "drop session, too many entries\n");
 1135                                 }
 1136                                 IPFW_DYN_UNLOCK();
 1137                                 return 1;
 1138                         }
 1139                 }
 1140                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
 1141             }
 1142                 break;
 1143         default:
 1144                 printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
 1145                 IPFW_DYN_UNLOCK();
 1146                 return 1;
 1147         }
 1148         lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
 1149         IPFW_DYN_UNLOCK();
 1150         return 0;
 1151 }
 1152 
 1153 /*
 1154  * Transmit a TCP packet, containing either a RST or a keepalive.
 1155  * When flags & TH_RST, we are sending a RST packet, because of a
 1156  * "reset" action matched the packet.
 1157  * Otherwise we are sending a keepalive, and flags & TH_
 1158  */
 1159 static void
 1160 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
 1161 {
 1162         struct mbuf *m;
 1163         struct ip *ip;
 1164         struct tcphdr *tcp;
 1165 
 1166         MGETHDR(m, M_DONTWAIT, MT_HEADER);
 1167         if (m == 0)
 1168                 return;
 1169         m->m_pkthdr.rcvif = (struct ifnet *)0;
 1170         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
 1171         m->m_data += max_linkhdr;
 1172 
 1173         ip = mtod(m, struct ip *);
 1174         bzero(ip, m->m_len);
 1175         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
 1176         ip->ip_p = IPPROTO_TCP;
 1177         tcp->th_off = 5;
 1178         /*
 1179          * Assume we are sending a RST (or a keepalive in the reverse
 1180          * direction), swap src and destination addresses and ports.
 1181          */
 1182         ip->ip_src.s_addr = htonl(id->dst_ip);
 1183         ip->ip_dst.s_addr = htonl(id->src_ip);
 1184         tcp->th_sport = htons(id->dst_port);
 1185         tcp->th_dport = htons(id->src_port);
 1186         if (flags & TH_RST) {   /* we are sending a RST */
 1187                 if (flags & TH_ACK) {
 1188                         tcp->th_seq = htonl(ack);
 1189                         tcp->th_ack = htonl(0);
 1190                         tcp->th_flags = TH_RST;
 1191                 } else {
 1192                         if (flags & TH_SYN)
 1193                                 seq++;
 1194                         tcp->th_seq = htonl(0);
 1195                         tcp->th_ack = htonl(seq);
 1196                         tcp->th_flags = TH_RST | TH_ACK;
 1197                 }
 1198         } else {
 1199                 /*
 1200                  * We are sending a keepalive. flags & TH_SYN determines
 1201                  * the direction, forward if set, reverse if clear.
 1202                  * NOTE: seq and ack are always assumed to be correct
 1203                  * as set by the caller. This may be confusing...
 1204                  */
 1205                 if (flags & TH_SYN) {
 1206                         /*
 1207                          * we have to rewrite the correct addresses!
 1208                          */
 1209                         ip->ip_dst.s_addr = htonl(id->dst_ip);
 1210                         ip->ip_src.s_addr = htonl(id->src_ip);
 1211                         tcp->th_dport = htons(id->dst_port);
 1212                         tcp->th_sport = htons(id->src_port);
 1213                 }
 1214                 tcp->th_seq = htonl(seq);
 1215                 tcp->th_ack = htonl(ack);
 1216                 tcp->th_flags = TH_ACK;
 1217         }
 1218         /*
 1219          * set ip_len to the payload size so we can compute
 1220          * the tcp checksum on the pseudoheader
 1221          * XXX check this, could save a couple of words ?
 1222          */
 1223         ip->ip_len = htons(sizeof(struct tcphdr));
 1224         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
 1225         /*
 1226          * now fill fields left out earlier
 1227          */
 1228         ip->ip_ttl = ip_defttl;
 1229         ip->ip_len = m->m_pkthdr.len;
 1230         m->m_flags |= M_SKIP_FIREWALL;
 1231         ip_output(m, NULL, NULL, 0, NULL, NULL);
 1232 }
 1233 
 1234 /*
 1235  * sends a reject message, consuming the mbuf passed as an argument.
 1236  */
 1237 static void
 1238 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
 1239 {
 1240 
 1241         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
 1242                 /* We need the IP header in host order for icmp_error(). */
 1243                 if (args->eh != NULL) {
 1244                         struct ip *ip = mtod(args->m, struct ip *);
 1245                         ip->ip_len = ntohs(ip->ip_len);
 1246                         ip->ip_off = ntohs(ip->ip_off);
 1247                 }
 1248                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
 1249         } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
 1250                 struct tcphdr *const tcp =
 1251                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
 1252                 if ( (tcp->th_flags & TH_RST) == 0)
 1253                         send_pkt(&(args->f_id), ntohl(tcp->th_seq),
 1254                                 ntohl(tcp->th_ack),
 1255                                 tcp->th_flags | TH_RST);
 1256                 m_freem(args->m);
 1257         } else
 1258                 m_freem(args->m);
 1259         args->m = NULL;
 1260 }
 1261 
 1262 /**
 1263  *
 1264  * Given an ip_fw *, lookup_next_rule will return a pointer
 1265  * to the next rule, which can be either the jump
 1266  * target (for skipto instructions) or the next one in the list (in
 1267  * all other cases including a missing jump target).
 1268  * The result is also written in the "next_rule" field of the rule.
 1269  * Backward jumps are not allowed, so start looking from the next
 1270  * rule...
 1271  *
 1272  * This never returns NULL -- in case we do not have an exact match,
 1273  * the next rule is returned. When the ruleset is changed,
 1274  * pointers are flushed so we are always correct.
 1275  */
 1276 
 1277 static struct ip_fw *
 1278 lookup_next_rule(struct ip_fw *me)
 1279 {
 1280         struct ip_fw *rule = NULL;
 1281         ipfw_insn *cmd;
 1282 
 1283         /* look for action, in case it is a skipto */
 1284         cmd = ACTION_PTR(me);
 1285         if (cmd->opcode == O_LOG)
 1286                 cmd += F_LEN(cmd);
 1287         if ( cmd->opcode == O_SKIPTO )
 1288                 for (rule = me->next; rule ; rule = rule->next)
 1289                         if (rule->rulenum >= cmd->arg1)
 1290                                 break;
 1291         if (rule == NULL)                       /* failure or not a skipto */
 1292                 rule = me->next;
 1293         me->next_rule = rule;
 1294         return rule;
 1295 }
 1296 
 1297 static int
 1298 check_uidgid(ipfw_insn_u32 *insn,
 1299         int proto, struct ifnet *oif,
 1300         struct in_addr dst_ip, u_int16_t dst_port,
 1301         struct in_addr src_ip, u_int16_t src_port)
 1302 {
 1303         struct inpcbinfo *pi;
 1304         int wildcard;
 1305         struct inpcb *pcb;
 1306         int match;
 1307 
 1308         if (proto == IPPROTO_TCP) {
 1309                 wildcard = 0;
 1310                 pi = &tcbinfo;
 1311         } else if (proto == IPPROTO_UDP) {
 1312                 wildcard = 1;
 1313                 pi = &udbinfo;
 1314         } else
 1315                 return 0;
 1316 
 1317         match = 0;
 1318 
 1319         INP_INFO_RLOCK(pi);     /* XXX LOR with IPFW */
 1320         pcb =  (oif) ?
 1321                 in_pcblookup_hash(pi,
 1322                     dst_ip, htons(dst_port),
 1323                     src_ip, htons(src_port),
 1324                     wildcard, oif) :
 1325                 in_pcblookup_hash(pi,
 1326                     src_ip, htons(src_port),
 1327                     dst_ip, htons(dst_port),
 1328                     wildcard, NULL);
 1329         if (pcb != NULL) {
 1330                 INP_LOCK(pcb);
 1331                 if (pcb->inp_socket != NULL) {
 1332 #if __FreeBSD_version < 500034
 1333 #define socheckuid(a,b) ((a)->so_cred->cr_uid != (b))
 1334 #endif
 1335                         if (insn->o.opcode == O_UID) {
 1336                                 match = !socheckuid(pcb->inp_socket,
 1337                                    (uid_t)insn->d[0]);
 1338                         } else  {
 1339                                 match = groupmember((uid_t)insn->d[0],
 1340                                     pcb->inp_socket->so_cred);
 1341                         }
 1342                 }
 1343                 INP_UNLOCK(pcb);
 1344         }
 1345         INP_INFO_RUNLOCK(pi);
 1346 
 1347         return match;
 1348 }
 1349 
 1350 /*
 1351  * The main check routine for the firewall.
 1352  *
 1353  * All arguments are in args so we can modify them and return them
 1354  * back to the caller.
 1355  *
 1356  * Parameters:
 1357  *
 1358  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
 1359  *              Starts with the IP header.
 1360  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
 1361  *      args->oif       Outgoing interface, or NULL if packet is incoming.
 1362  *              The incoming interface is in the mbuf. (in)
 1363  *      args->divert_rule (in/out)
 1364  *              Skip up to the first rule past this rule number;
 1365  *              upon return, non-zero port number for divert or tee.
 1366  *
 1367  *      args->rule      Pointer to the last matching rule (in/out)
 1368  *      args->next_hop  Socket we are forwarding to (out).
 1369  *      args->f_id      Addresses grabbed from the packet (out)
 1370  *
 1371  * Return value:
 1372  *
 1373  *      IP_FW_PORT_DENY_FLAG    the packet must be dropped.
 1374  *      0       The packet is to be accepted and routed normally OR
 1375  *              the packet was denied/rejected and has been dropped;
 1376  *              in the latter case, *m is equal to NULL upon return.
 1377  *      port    Divert the packet to port, with these caveats:
 1378  *
 1379  *              - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
 1380  *                of diverting it (ie, 'ipfw tee').
 1381  *
 1382  *              - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
 1383  *                16 bits as a dummynet pipe number instead of diverting
 1384  */
 1385 
 1386 static int
 1387 ipfw_chk(struct ip_fw_args *args)
 1388 {
 1389         /*
 1390          * Local variables hold state during the processing of a packet.
 1391          *
 1392          * IMPORTANT NOTE: to speed up the processing of rules, there
 1393          * are some assumption on the values of the variables, which
 1394          * are documented here. Should you change them, please check
 1395          * the implementation of the various instructions to make sure
 1396          * that they still work.
 1397          *
 1398          * args->eh     The MAC header. It is non-null for a layer2
 1399          *      packet, it is NULL for a layer-3 packet.
 1400          *
 1401          * m | args->m  Pointer to the mbuf, as received from the caller.
 1402          *      It may change if ipfw_chk() does an m_pullup, or if it
 1403          *      consumes the packet because it calls send_reject().
 1404          *      XXX This has to change, so that ipfw_chk() never modifies
 1405          *      or consumes the buffer.
 1406          * ip   is simply an alias of the value of m, and it is kept
 1407          *      in sync with it (the packet is  supposed to start with
 1408          *      the ip header).
 1409          */
 1410         struct mbuf *m = args->m;
 1411         struct ip *ip = mtod(m, struct ip *);
 1412 
 1413         /*
 1414          * oif | args->oif      If NULL, ipfw_chk has been called on the
 1415          *      inbound path (ether_input, bdg_forward, ip_input).
 1416          *      If non-NULL, ipfw_chk has been called on the outbound path
 1417          *      (ether_output, ip_output).
 1418          */
 1419         struct ifnet *oif = args->oif;
 1420 
 1421         struct ip_fw *f = NULL;         /* matching rule */
 1422         int retval = 0;
 1423 
 1424         /*
 1425          * hlen The length of the IPv4 header.
 1426          *      hlen >0 means we have an IPv4 packet.
 1427          */
 1428         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
 1429 
 1430         /*
 1431          * offset       The offset of a fragment. offset != 0 means that
 1432          *      we have a fragment at this offset of an IPv4 packet.
 1433          *      offset == 0 means that (if this is an IPv4 packet)
 1434          *      this is the first or only fragment.
 1435          */
 1436         u_short offset = 0;
 1437 
 1438         /*
 1439          * Local copies of addresses. They are only valid if we have
 1440          * an IP packet.
 1441          *
 1442          * proto        The protocol. Set to 0 for non-ip packets,
 1443          *      or to the protocol read from the packet otherwise.
 1444          *      proto != 0 means that we have an IPv4 packet.
 1445          *
 1446          * src_port, dst_port   port numbers, in HOST format. Only
 1447          *      valid for TCP and UDP packets.
 1448          *
 1449          * src_ip, dst_ip       ip addresses, in NETWORK format.
 1450          *      Only valid for IPv4 packets.
 1451          */
 1452         u_int8_t proto;
 1453         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
 1454         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
 1455         u_int16_t ip_len=0;
 1456         int pktlen;
 1457         int dyn_dir = MATCH_UNKNOWN;
 1458         ipfw_dyn_rule *q = NULL;
 1459         struct ip_fw_chain *chain = &layer3_chain;
 1460 
 1461         if (m->m_flags & M_SKIP_FIREWALL)
 1462                 return 0;       /* accept */
 1463         /*
 1464          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
 1465          *      MATCH_NONE when checked and not matched (q = NULL),
 1466          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
 1467          */
 1468 
 1469         pktlen = m->m_pkthdr.len;
 1470         if (args->eh == NULL ||         /* layer 3 packet */
 1471                 ( m->m_pkthdr.len >= sizeof(struct ip) &&
 1472                     ntohs(args->eh->ether_type) == ETHERTYPE_IP))
 1473                         hlen = ip->ip_hl << 2;
 1474 
 1475         /*
 1476          * Collect parameters into local variables for faster matching.
 1477          */
 1478         if (hlen == 0) {        /* do not grab addresses for non-ip pkts */
 1479                 proto = args->f_id.proto = 0;   /* mark f_id invalid */
 1480                 goto after_ip_checks;
 1481         }
 1482 
 1483         proto = args->f_id.proto = ip->ip_p;
 1484         src_ip = ip->ip_src;
 1485         dst_ip = ip->ip_dst;
 1486         if (args->eh != NULL) { /* layer 2 packets are as on the wire */
 1487                 offset = ntohs(ip->ip_off) & IP_OFFMASK;
 1488                 ip_len = ntohs(ip->ip_len);
 1489         } else {
 1490                 offset = ip->ip_off & IP_OFFMASK;
 1491                 ip_len = ip->ip_len;
 1492         }
 1493         pktlen = ip_len < pktlen ? ip_len : pktlen;
 1494 
 1495 #define PULLUP_TO(len)                                          \
 1496                 do {                                            \
 1497                         if ((m)->m_len < (len)) {               \
 1498                             args->m = m = m_pullup(m, (len));   \
 1499                             if (m == 0)                         \
 1500                                 goto pullup_failed;             \
 1501                             ip = mtod(m, struct ip *);          \
 1502                         }                                       \
 1503                 } while (0)
 1504 
 1505         if (offset == 0) {
 1506                 switch (proto) {
 1507                 case IPPROTO_TCP:
 1508                     {
 1509                         struct tcphdr *tcp;
 1510 
 1511                         PULLUP_TO(hlen + sizeof(struct tcphdr));
 1512                         tcp = L3HDR(struct tcphdr, ip);
 1513                         dst_port = tcp->th_dport;
 1514                         src_port = tcp->th_sport;
 1515                         args->f_id.flags = tcp->th_flags;
 1516                         }
 1517                         break;
 1518 
 1519                 case IPPROTO_UDP:
 1520                     {
 1521                         struct udphdr *udp;
 1522 
 1523                         PULLUP_TO(hlen + sizeof(struct udphdr));
 1524                         udp = L3HDR(struct udphdr, ip);
 1525                         dst_port = udp->uh_dport;
 1526                         src_port = udp->uh_sport;
 1527                         }
 1528                         break;
 1529 
 1530                 case IPPROTO_ICMP:
 1531                         PULLUP_TO(hlen + 4);    /* type, code and checksum. */
 1532                         args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
 1533                         break;
 1534 
 1535                 default:
 1536                         break;
 1537                 }
 1538 #undef PULLUP_TO
 1539         }
 1540 
 1541         args->f_id.src_ip = ntohl(src_ip.s_addr);
 1542         args->f_id.dst_ip = ntohl(dst_ip.s_addr);
 1543         args->f_id.src_port = src_port = ntohs(src_port);
 1544         args->f_id.dst_port = dst_port = ntohs(dst_port);
 1545 
 1546 after_ip_checks:
 1547         IPFW_LOCK(chain);               /* XXX expensive? can we run lock free? */
 1548         if (args->rule) {
 1549                 /*
 1550                  * Packet has already been tagged. Look for the next rule
 1551                  * to restart processing.
 1552                  *
 1553                  * If fw_one_pass != 0 then just accept it.
 1554                  * XXX should not happen here, but optimized out in
 1555                  * the caller.
 1556                  */
 1557                 if (fw_one_pass) {
 1558                         IPFW_UNLOCK(chain);     /* XXX optimize */
 1559                         return 0;
 1560                 }
 1561 
 1562                 f = args->rule->next_rule;
 1563                 if (f == NULL)
 1564                         f = lookup_next_rule(args->rule);
 1565         } else {
 1566                 /*
 1567                  * Find the starting rule. It can be either the first
 1568                  * one, or the one after divert_rule if asked so.
 1569                  */
 1570                 int skipto = args->divert_rule;
 1571 
 1572                 f = chain->rules;
 1573                 if (args->eh == NULL && skipto != 0) {
 1574                         if (skipto >= IPFW_DEFAULT_RULE) {
 1575                                 IPFW_UNLOCK(chain);
 1576                                 return(IP_FW_PORT_DENY_FLAG); /* invalid */
 1577                         }
 1578                         while (f && f->rulenum <= skipto)
 1579                                 f = f->next;
 1580                         if (f == NULL) {        /* drop packet */
 1581                                 IPFW_UNLOCK(chain);
 1582                                 return(IP_FW_PORT_DENY_FLAG);
 1583                         }
 1584                 }
 1585         }
 1586         args->divert_rule = 0;  /* reset to avoid confusion later */
 1587 
 1588         /*
 1589          * Now scan the rules, and parse microinstructions for each rule.
 1590          */
 1591         for (; f; f = f->next) {
 1592                 int l, cmdlen;
 1593                 ipfw_insn *cmd;
 1594                 int skip_or; /* skip rest of OR block */
 1595 
 1596 again:
 1597                 if (set_disable & (1 << f->set) )
 1598                         continue;
 1599 
 1600                 skip_or = 0;
 1601                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
 1602                     l -= cmdlen, cmd += cmdlen) {
 1603                         int match;
 1604 
 1605                         /*
 1606                          * check_body is a jump target used when we find a
 1607                          * CHECK_STATE, and need to jump to the body of
 1608                          * the target rule.
 1609                          */
 1610 
 1611 check_body:
 1612                         cmdlen = F_LEN(cmd);
 1613                         /*
 1614                          * An OR block (insn_1 || .. || insn_n) has the
 1615                          * F_OR bit set in all but the last instruction.
 1616                          * The first match will set "skip_or", and cause
 1617                          * the following instructions to be skipped until
 1618                          * past the one with the F_OR bit clear.
 1619                          */
 1620                         if (skip_or) {          /* skip this instruction */
 1621                                 if ((cmd->len & F_OR) == 0)
 1622                                         skip_or = 0;    /* next one is good */
 1623                                 continue;
 1624                         }
 1625                         match = 0; /* set to 1 if we succeed */
 1626 
 1627                         switch (cmd->opcode) {
 1628                         /*
 1629                          * The first set of opcodes compares the packet's
 1630                          * fields with some pattern, setting 'match' if a
 1631                          * match is found. At the end of the loop there is
 1632                          * logic to deal with F_NOT and F_OR flags associated
 1633                          * with the opcode.
 1634                          */
 1635                         case O_NOP:
 1636                                 match = 1;
 1637                                 break;
 1638 
 1639                         case O_FORWARD_MAC:
 1640                                 printf("ipfw: opcode %d unimplemented\n",
 1641                                     cmd->opcode);
 1642                                 break;
 1643 
 1644                         case O_GID:
 1645                         case O_UID:
 1646                                 /*
 1647                                  * We only check offset == 0 && proto != 0,
 1648                                  * as this ensures that we have an IPv4
 1649                                  * packet with the ports info.
 1650                                  */
 1651                                 if (offset!=0)
 1652                                         break;
 1653                                 if (proto == IPPROTO_TCP ||
 1654                                     proto == IPPROTO_UDP)
 1655                                         match = check_uidgid(
 1656                                                     (ipfw_insn_u32 *)cmd,
 1657                                                     proto, oif,
 1658                                                     dst_ip, dst_port,
 1659                                                     src_ip, src_port);
 1660                                 break;
 1661 
 1662                         case O_RECV:
 1663                                 match = iface_match(m->m_pkthdr.rcvif,
 1664                                     (ipfw_insn_if *)cmd);
 1665                                 break;
 1666 
 1667                         case O_XMIT:
 1668                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
 1669                                 break;
 1670 
 1671                         case O_VIA:
 1672                                 match = iface_match(oif ? oif :
 1673                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
 1674                                 break;
 1675 
 1676                         case O_MACADDR2:
 1677                                 if (args->eh != NULL) { /* have MAC header */
 1678                                         u_int32_t *want = (u_int32_t *)
 1679                                                 ((ipfw_insn_mac *)cmd)->addr;
 1680                                         u_int32_t *mask = (u_int32_t *)
 1681                                                 ((ipfw_insn_mac *)cmd)->mask;
 1682                                         u_int32_t *hdr = (u_int32_t *)args->eh;
 1683 
 1684                                         match =
 1685                                             ( want[0] == (hdr[0] & mask[0]) &&
 1686                                               want[1] == (hdr[1] & mask[1]) &&
 1687                                               want[2] == (hdr[2] & mask[2]) );
 1688                                 }
 1689                                 break;
 1690 
 1691                         case O_MAC_TYPE:
 1692                                 if (args->eh != NULL) {
 1693                                         u_int16_t t =
 1694                                             ntohs(args->eh->ether_type);
 1695                                         u_int16_t *p =
 1696                                             ((ipfw_insn_u16 *)cmd)->ports;
 1697                                         int i;
 1698 
 1699                                         for (i = cmdlen - 1; !match && i>0;
 1700                                             i--, p += 2)
 1701                                                 match = (t>=p[0] && t<=p[1]);
 1702                                 }
 1703                                 break;
 1704 
 1705                         case O_FRAG:
 1706                                 match = (hlen > 0 && offset != 0);
 1707                                 break;
 1708 
 1709                         case O_IN:      /* "out" is "not in" */
 1710                                 match = (oif == NULL);
 1711                                 break;
 1712 
 1713                         case O_LAYER2:
 1714                                 match = (args->eh != NULL);
 1715                                 break;
 1716 
 1717                         case O_PROTO:
 1718                                 /*
 1719                                  * We do not allow an arg of 0 so the
 1720                                  * check of "proto" only suffices.
 1721                                  */
 1722                                 match = (proto == cmd->arg1);
 1723                                 break;
 1724 
 1725                         case O_IP_SRC:
 1726                                 match = (hlen > 0 &&
 1727                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 1728                                     src_ip.s_addr);
 1729                                 break;
 1730 
 1731                         case O_IP_SRC_MASK:
 1732                         case O_IP_DST_MASK:
 1733                                 if (hlen > 0) {
 1734                                     uint32_t a =
 1735                                         (cmd->opcode == O_IP_DST_MASK) ?
 1736                                             dst_ip.s_addr : src_ip.s_addr;
 1737                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
 1738                                     int i = cmdlen-1;
 1739 
 1740                                     for (; !match && i>0; i-= 2, p+= 2)
 1741                                         match = (p[0] == (a & p[1]));
 1742                                 }
 1743                                 break;
 1744 
 1745                         case O_IP_SRC_ME:
 1746                                 if (hlen > 0) {
 1747                                         struct ifnet *tif;
 1748 
 1749                                         INADDR_TO_IFP(src_ip, tif);
 1750                                         match = (tif != NULL);
 1751                                 }
 1752                                 break;
 1753 
 1754                         case O_IP_DST_SET:
 1755                         case O_IP_SRC_SET:
 1756                                 if (hlen > 0) {
 1757                                         u_int32_t *d = (u_int32_t *)(cmd+1);
 1758                                         u_int32_t addr =
 1759                                             cmd->opcode == O_IP_DST_SET ?
 1760                                                 args->f_id.dst_ip :
 1761                                                 args->f_id.src_ip;
 1762 
 1763                                             if (addr < d[0])
 1764                                                     break;
 1765                                             addr -= d[0]; /* subtract base */
 1766                                             match = (addr < cmd->arg1) &&
 1767                                                 ( d[ 1 + (addr>>5)] &
 1768                                                   (1<<(addr & 0x1f)) );
 1769                                 }
 1770                                 break;
 1771 
 1772                         case O_IP_DST:
 1773                                 match = (hlen > 0 &&
 1774                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 1775                                     dst_ip.s_addr);
 1776                                 break;
 1777 
 1778                         case O_IP_DST_ME:
 1779                                 if (hlen > 0) {
 1780                                         struct ifnet *tif;
 1781 
 1782                                         INADDR_TO_IFP(dst_ip, tif);
 1783                                         match = (tif != NULL);
 1784                                 }
 1785                                 break;
 1786 
 1787                         case O_IP_SRCPORT:
 1788                         case O_IP_DSTPORT:
 1789                                 /*
 1790                                  * offset == 0 && proto != 0 is enough
 1791                                  * to guarantee that we have an IPv4
 1792                                  * packet with port info.
 1793                                  */
 1794                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
 1795                                     && offset == 0) {
 1796                                         u_int16_t x =
 1797                                             (cmd->opcode == O_IP_SRCPORT) ?
 1798                                                 src_port : dst_port ;
 1799                                         u_int16_t *p =
 1800                                             ((ipfw_insn_u16 *)cmd)->ports;
 1801                                         int i;
 1802 
 1803                                         for (i = cmdlen - 1; !match && i>0;
 1804                                             i--, p += 2)
 1805                                                 match = (x>=p[0] && x<=p[1]);
 1806                                 }
 1807                                 break;
 1808 
 1809                         case O_ICMPTYPE:
 1810                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
 1811                                     icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
 1812                                 break;
 1813 
 1814                         case O_IPOPT:
 1815                                 match = (hlen > 0 && ipopts_match(ip, cmd) );
 1816                                 break;
 1817 
 1818                         case O_IPVER:
 1819                                 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
 1820                                 break;
 1821 
 1822                         case O_IPID:
 1823                         case O_IPLEN:
 1824                         case O_IPTTL:
 1825                                 if (hlen > 0) { /* only for IP packets */
 1826                                     uint16_t x;
 1827                                     uint16_t *p;
 1828                                     int i;
 1829 
 1830                                     if (cmd->opcode == O_IPLEN)
 1831                                         x = ip_len;
 1832                                     else if (cmd->opcode == O_IPTTL)
 1833                                         x = ip->ip_ttl;
 1834                                     else /* must be IPID */
 1835                                         x = ntohs(ip->ip_id);
 1836                                     if (cmdlen == 1) {
 1837                                         match = (cmd->arg1 == x);
 1838                                         break;
 1839                                     }
 1840                                     /* otherwise we have ranges */
 1841                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 1842                                     i = cmdlen - 1;
 1843                                     for (; !match && i>0; i--, p += 2)
 1844                                         match = (x >= p[0] && x <= p[1]);
 1845                                 }
 1846                                 break;
 1847 
 1848                         case O_IPPRECEDENCE:
 1849                                 match = (hlen > 0 &&
 1850                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
 1851                                 break;
 1852 
 1853                         case O_IPTOS:
 1854                                 match = (hlen > 0 &&
 1855                                     flags_match(cmd, ip->ip_tos));
 1856                                 break;
 1857 
 1858                         case O_TCPFLAGS:
 1859                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1860                                     flags_match(cmd,
 1861                                         L3HDR(struct tcphdr,ip)->th_flags));
 1862                                 break;
 1863 
 1864                         case O_TCPOPTS:
 1865                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1866                                     tcpopts_match(ip, cmd));
 1867                                 break;
 1868 
 1869                         case O_TCPSEQ:
 1870                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1871                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 1872                                         L3HDR(struct tcphdr,ip)->th_seq);
 1873                                 break;
 1874 
 1875                         case O_TCPACK:
 1876                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1877                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 1878                                         L3HDR(struct tcphdr,ip)->th_ack);
 1879                                 break;
 1880 
 1881                         case O_TCPWIN:
 1882                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1883                                     cmd->arg1 ==
 1884                                         L3HDR(struct tcphdr,ip)->th_win);
 1885                                 break;
 1886 
 1887                         case O_ESTAB:
 1888                                 /* reject packets which have SYN only */
 1889                                 /* XXX should i also check for TH_ACK ? */
 1890                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 1891                                     (L3HDR(struct tcphdr,ip)->th_flags &
 1892                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
 1893                                 break;
 1894 
 1895                         case O_LOG:
 1896                                 if (fw_verbose)
 1897                                         ipfw_log(f, hlen, args->eh, m, oif);
 1898                                 match = 1;
 1899                                 break;
 1900 
 1901                         case O_PROB:
 1902                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
 1903                                 break;
 1904 
 1905                         case O_VERREVPATH:
 1906                                 /* Outgoing packets automatically pass/match */
 1907                                 match = ((oif != NULL) ||
 1908                                     (m->m_pkthdr.rcvif == NULL) ||
 1909                                     verify_rev_path(src_ip, m->m_pkthdr.rcvif));
 1910                                 break;
 1911 
 1912                         case O_IPSEC:
 1913 #ifdef FAST_IPSEC
 1914                                 match = (m_tag_find(m,
 1915                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
 1916 #endif
 1917 #ifdef IPSEC
 1918                                 match = (ipsec_getnhist(m) != NULL);
 1919 #endif
 1920                                 /* otherwise no match */
 1921                                 break;
 1922 
 1923                         /*
 1924                          * The second set of opcodes represents 'actions',
 1925                          * i.e. the terminal part of a rule once the packet
 1926                          * matches all previous patterns.
 1927                          * Typically there is only one action for each rule,
 1928                          * and the opcode is stored at the end of the rule
 1929                          * (but there are exceptions -- see below).
 1930                          *
 1931                          * In general, here we set retval and terminate the
 1932                          * outer loop (would be a 'break 3' in some language,
 1933                          * but we need to do a 'goto done').
 1934                          *
 1935                          * Exceptions:
 1936                          * O_COUNT and O_SKIPTO actions:
 1937                          *   instead of terminating, we jump to the next rule
 1938                          *   ('goto next_rule', equivalent to a 'break 2'),
 1939                          *   or to the SKIPTO target ('goto again' after
 1940                          *   having set f, cmd and l), respectively.
 1941                          *
 1942                          * O_LIMIT and O_KEEP_STATE: these opcodes are
 1943                          *   not real 'actions', and are stored right
 1944                          *   before the 'action' part of the rule.
 1945                          *   These opcodes try to install an entry in the
 1946                          *   state tables; if successful, we continue with
 1947                          *   the next opcode (match=1; break;), otherwise
 1948                          *   the packet *   must be dropped
 1949                          *   ('goto done' after setting retval);
 1950                          *
 1951                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
 1952                          *   cause a lookup of the state table, and a jump
 1953                          *   to the 'action' part of the parent rule
 1954                          *   ('goto check_body') if an entry is found, or
 1955                          *   (CHECK_STATE only) a jump to the next rule if
 1956                          *   the entry is not found ('goto next_rule').
 1957                          *   The result of the lookup is cached to make
 1958                          *   further instances of these opcodes are
 1959                          *   effectively NOPs.
 1960                          */
 1961                         case O_LIMIT:
 1962                         case O_KEEP_STATE:
 1963                                 if (install_state(f,
 1964                                     (ipfw_insn_limit *)cmd, args)) {
 1965                                         retval = IP_FW_PORT_DENY_FLAG;
 1966                                         goto done; /* error/limit violation */
 1967                                 }
 1968                                 match = 1;
 1969                                 break;
 1970 
 1971                         case O_PROBE_STATE:
 1972                         case O_CHECK_STATE:
 1973                                 /*
 1974                                  * dynamic rules are checked at the first
 1975                                  * keep-state or check-state occurrence,
 1976                                  * with the result being stored in dyn_dir.
 1977                                  * The compiler introduces a PROBE_STATE
 1978                                  * instruction for us when we have a
 1979                                  * KEEP_STATE (because PROBE_STATE needs
 1980                                  * to be run first).
 1981                                  */
 1982                                 if (dyn_dir == MATCH_UNKNOWN &&
 1983                                     (q = lookup_dyn_rule(&args->f_id,
 1984                                      &dyn_dir, proto == IPPROTO_TCP ?
 1985                                         L3HDR(struct tcphdr, ip) : NULL))
 1986                                         != NULL) {
 1987                                         /*
 1988                                          * Found dynamic entry, update stats
 1989                                          * and jump to the 'action' part of
 1990                                          * the parent rule.
 1991                                          */
 1992                                         q->pcnt++;
 1993                                         q->bcnt += pktlen;
 1994                                         f = q->rule;
 1995                                         cmd = ACTION_PTR(f);
 1996                                         l = f->cmd_len - f->act_ofs;
 1997                                         IPFW_DYN_UNLOCK();
 1998                                         goto check_body;
 1999                                 }
 2000                                 /*
 2001                                  * Dynamic entry not found. If CHECK_STATE,
 2002                                  * skip to next rule, if PROBE_STATE just
 2003                                  * ignore and continue with next opcode.
 2004                                  */
 2005                                 if (cmd->opcode == O_CHECK_STATE)
 2006                                         goto next_rule;
 2007                                 match = 1;
 2008                                 break;
 2009 
 2010                         case O_ACCEPT:
 2011                                 retval = 0;     /* accept */
 2012                                 goto done;
 2013 
 2014                         case O_PIPE:
 2015                         case O_QUEUE:
 2016                                 args->rule = f; /* report matching rule */
 2017                                 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
 2018                                 goto done;
 2019 
 2020                         case O_DIVERT:
 2021                         case O_TEE:
 2022                                 if (args->eh) /* not on layer 2 */
 2023                                         break;
 2024                                 args->divert_rule = f->rulenum;
 2025                                 retval = (cmd->opcode == O_DIVERT) ?
 2026                                     cmd->arg1 :
 2027                                     cmd->arg1 | IP_FW_PORT_TEE_FLAG;
 2028                                 goto done;
 2029 
 2030                         case O_COUNT:
 2031                         case O_SKIPTO:
 2032                                 f->pcnt++;      /* update stats */
 2033                                 f->bcnt += pktlen;
 2034                                 f->timestamp = time_second;
 2035                                 if (cmd->opcode == O_COUNT)
 2036                                         goto next_rule;
 2037                                 /* handle skipto */
 2038                                 if (f->next_rule == NULL)
 2039                                         lookup_next_rule(f);
 2040                                 f = f->next_rule;
 2041                                 goto again;
 2042 
 2043                         case O_REJECT:
 2044                                 /*
 2045                                  * Drop the packet and send a reject notice
 2046                                  * if the packet is not ICMP (or is an ICMP
 2047                                  * query), and it is not multicast/broadcast.
 2048                                  */
 2049                                 if (hlen > 0 &&
 2050                                     (proto != IPPROTO_ICMP ||
 2051                                      is_icmp_query(ip)) &&
 2052                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 2053                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
 2054                                         send_reject(args, cmd->arg1,
 2055                                             offset,ip_len);
 2056                                         m = args->m;
 2057                                 }
 2058                                 /* FALLTHROUGH */
 2059                         case O_DENY:
 2060                                 retval = IP_FW_PORT_DENY_FLAG;
 2061                                 goto done;
 2062 
 2063                         case O_FORWARD_IP:
 2064                                 if (args->eh)   /* not valid on layer2 pkts */
 2065                                         break;
 2066                                 if (!q || dyn_dir == MATCH_FORWARD)
 2067                                         args->next_hop =
 2068                                             &((ipfw_insn_sa *)cmd)->sa;
 2069                                 retval = 0;
 2070                                 goto done;
 2071 
 2072                         default:
 2073                                 panic("-- unknown opcode %d\n", cmd->opcode);
 2074                         } /* end of switch() on opcodes */
 2075 
 2076                         if (cmd->len & F_NOT)
 2077                                 match = !match;
 2078 
 2079                         if (match) {
 2080                                 if (cmd->len & F_OR)
 2081                                         skip_or = 1;
 2082                         } else {
 2083                                 if (!(cmd->len & F_OR)) /* not an OR block, */
 2084                                         break;          /* try next rule    */
 2085                         }
 2086 
 2087                 }       /* end of inner for, scan opcodes */
 2088 
 2089 next_rule:;             /* try next rule                */
 2090 
 2091         }               /* end of outer for, scan rules */
 2092         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
 2093         IPFW_UNLOCK(chain);
 2094         return(IP_FW_PORT_DENY_FLAG);
 2095 
 2096 done:
 2097         /* Update statistics */
 2098         f->pcnt++;
 2099         f->bcnt += pktlen;
 2100         f->timestamp = time_second;
 2101         IPFW_UNLOCK(chain);
 2102         return retval;
 2103 
 2104 pullup_failed:
 2105         if (fw_verbose)
 2106                 printf("ipfw: pullup failed\n");
 2107         return(IP_FW_PORT_DENY_FLAG);
 2108 }
 2109 
 2110 /*
 2111  * When a rule is added/deleted, clear the next_rule pointers in all rules.
 2112  * These will be reconstructed on the fly as packets are matched.
 2113  */
 2114 static void
 2115 flush_rule_ptrs(struct ip_fw_chain *chain)
 2116 {
 2117         struct ip_fw *rule;
 2118 
 2119         IPFW_LOCK_ASSERT(chain);
 2120 
 2121         for (rule = chain->rules; rule; rule = rule->next)
 2122                 rule->next_rule = NULL;
 2123 }
 2124 
 2125 /*
 2126  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
 2127  * pipe/queue, or to all of them (match == NULL).
 2128  */
 2129 void
 2130 flush_pipe_ptrs(struct dn_flow_set *match)
 2131 {
 2132         struct ip_fw *rule;
 2133 
 2134         IPFW_LOCK(&layer3_chain);
 2135         for (rule = layer3_chain.rules; rule; rule = rule->next) {
 2136                 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
 2137 
 2138                 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
 2139                         continue;
 2140                 /*
 2141                  * XXX Use bcmp/bzero to handle pipe_ptr to overcome
 2142                  * possible alignment problems on 64-bit architectures.
 2143                  * This code is seldom used so we do not worry too
 2144                  * much about efficiency.
 2145                  */
 2146                 if (match == NULL ||
 2147                     !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
 2148                         bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
 2149         }
 2150         IPFW_UNLOCK(&layer3_chain);
 2151 }
 2152 
 2153 /*
 2154  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
 2155  * possibly create a rule number and add the rule to the list.
 2156  * Update the rule_number in the input struct so the caller knows it as well.
 2157  */
 2158 static int
 2159 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
 2160 {
 2161         struct ip_fw *rule, *f, *prev;
 2162         int l = RULESIZE(input_rule);
 2163 
 2164         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
 2165                 return (EINVAL);
 2166 
 2167         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
 2168         if (rule == NULL)
 2169                 return (ENOSPC);
 2170 
 2171         bcopy(input_rule, rule, l);
 2172 
 2173         rule->next = NULL;
 2174         rule->next_rule = NULL;
 2175 
 2176         rule->pcnt = 0;
 2177         rule->bcnt = 0;
 2178         rule->timestamp = 0;
 2179 
 2180         IPFW_LOCK(chain);
 2181 
 2182         if (chain->rules == NULL) {     /* default rule */
 2183                 chain->rules = rule;
 2184                 goto done;
 2185         }
 2186 
 2187         /*
 2188          * If rulenum is 0, find highest numbered rule before the
 2189          * default rule, and add autoinc_step
 2190          */
 2191         if (autoinc_step < 1)
 2192                 autoinc_step = 1;
 2193         else if (autoinc_step > 1000)
 2194                 autoinc_step = 1000;
 2195         if (rule->rulenum == 0) {
 2196                 /*
 2197                  * locate the highest numbered rule before default
 2198                  */
 2199                 for (f = chain->rules; f; f = f->next) {
 2200                         if (f->rulenum == IPFW_DEFAULT_RULE)
 2201                                 break;
 2202                         rule->rulenum = f->rulenum;
 2203                 }
 2204                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
 2205                         rule->rulenum += autoinc_step;
 2206                 input_rule->rulenum = rule->rulenum;
 2207         }
 2208 
 2209         /*
 2210          * Now insert the new rule in the right place in the sorted list.
 2211          */
 2212         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
 2213                 if (f->rulenum > rule->rulenum) { /* found the location */
 2214                         if (prev) {
 2215                                 rule->next = f;
 2216                                 prev->next = rule;
 2217                         } else { /* head insert */
 2218                                 rule->next = chain->rules;
 2219                                 chain->rules = rule;
 2220                         }
 2221                         break;
 2222                 }
 2223         }
 2224         flush_rule_ptrs(chain);
 2225 done:
 2226         static_count++;
 2227         static_len += l;
 2228         IPFW_UNLOCK(chain);
 2229         DEB(printf("ipfw: installed rule %d, static count now %d\n",
 2230                 rule->rulenum, static_count);)
 2231         return (0);
 2232 }
 2233 
 2234 /**
 2235  * Remove a static rule (including derived * dynamic rules)
 2236  * and place it on the ``reap list'' for later reclamation.
 2237  * The caller is in charge of clearing rule pointers to avoid
 2238  * dangling pointers.
 2239  * @return a pointer to the next entry.
 2240  * Arguments are not checked, so they better be correct.
 2241  */
 2242 static struct ip_fw *
 2243 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
 2244 {
 2245         struct ip_fw *n;
 2246         int l = RULESIZE(rule);
 2247 
 2248         IPFW_LOCK_ASSERT(chain);
 2249 
 2250         n = rule->next;
 2251         IPFW_DYN_LOCK();
 2252         remove_dyn_rule(rule, NULL /* force removal */);
 2253         IPFW_DYN_UNLOCK();
 2254         if (prev == NULL)
 2255                 chain->rules = n;
 2256         else
 2257                 prev->next = n;
 2258         static_count--;
 2259         static_len -= l;
 2260 
 2261         rule->next = chain->reap;
 2262         chain->reap = rule;
 2263 
 2264         return n;
 2265 }
 2266 
 2267 /**
 2268  * Reclaim storage associated with a list of rules.  This is
 2269  * typically the list created using remove_rule.
 2270  */
 2271 static void
 2272 reap_rules(struct ip_fw *head)
 2273 {
 2274         struct ip_fw *rule;
 2275 
 2276         while ((rule = head) != NULL) {
 2277                 head = head->next;
 2278                 if (DUMMYNET_LOADED)
 2279                         ip_dn_ruledel_ptr(rule);
 2280                 free(rule, M_IPFW);
 2281         }
 2282 }
 2283 
 2284 /*
 2285  * Remove all rules from a chain (except rules in set RESVD_SET
 2286  * unless kill_default = 1).  The caller is responsible for
 2287  * reclaiming storage for the rules left in chain->reap.
 2288  */
 2289 static void
 2290 free_chain(struct ip_fw_chain *chain, int kill_default)
 2291 {
 2292         struct ip_fw *prev, *rule;
 2293 
 2294         IPFW_LOCK_ASSERT(chain);
 2295 
 2296         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
 2297         for (prev = NULL, rule = chain->rules; rule ; )
 2298                 if (kill_default || rule->set != RESVD_SET)
 2299                         rule = remove_rule(chain, rule, prev);
 2300                 else {
 2301                         prev = rule;
 2302                         rule = rule->next;
 2303                 }
 2304 }
 2305 
 2306 /**
 2307  * Remove all rules with given number, and also do set manipulation.
 2308  * Assumes chain != NULL && *chain != NULL.
 2309  *
 2310  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
 2311  * the next 8 bits are the new set, the top 8 bits are the command:
 2312  *
 2313  *      0       delete rules with given number
 2314  *      1       delete rules with given set number
 2315  *      2       move rules with given number to new set
 2316  *      3       move rules with given set number to new set
 2317  *      4       swap sets with given numbers
 2318  */
 2319 static int
 2320 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
 2321 {
 2322         struct ip_fw *prev = NULL, *rule;
 2323         u_int16_t rulenum;      /* rule or old_set */
 2324         u_int8_t cmd, new_set;
 2325 
 2326         rulenum = arg & 0xffff;
 2327         cmd = (arg >> 24) & 0xff;
 2328         new_set = (arg >> 16) & 0xff;
 2329 
 2330         if (cmd > 4)
 2331                 return EINVAL;
 2332         if (new_set > RESVD_SET)
 2333                 return EINVAL;
 2334         if (cmd == 0 || cmd == 2) {
 2335                 if (rulenum >= IPFW_DEFAULT_RULE)
 2336                         return EINVAL;
 2337         } else {
 2338                 if (rulenum > RESVD_SET)        /* old_set */
 2339                         return EINVAL;
 2340         }
 2341 
 2342         IPFW_LOCK(chain);
 2343         rule = chain->rules;
 2344         chain->reap = NULL;
 2345         switch (cmd) {
 2346         case 0: /* delete rules with given number */
 2347                 /*
 2348                  * locate first rule to delete
 2349                  */
 2350                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
 2351                         ;
 2352                 if (rule->rulenum != rulenum) {
 2353                         IPFW_UNLOCK(chain);
 2354                         return EINVAL;
 2355                 }
 2356 
 2357                 /*
 2358                  * flush pointers outside the loop, then delete all matching
 2359                  * rules. prev remains the same throughout the cycle.
 2360                  */
 2361                 flush_rule_ptrs(chain);
 2362                 while (rule->rulenum == rulenum)
 2363                         rule = remove_rule(chain, rule, prev);
 2364                 break;
 2365 
 2366         case 1: /* delete all rules with given set number */
 2367                 flush_rule_ptrs(chain);
 2368                 rule = chain->rules;
 2369                 while (rule->rulenum < IPFW_DEFAULT_RULE)
 2370                         if (rule->set == rulenum)
 2371                                 rule = remove_rule(chain, rule, prev);
 2372                         else {
 2373                                 prev = rule;
 2374                                 rule = rule->next;
 2375                         }
 2376                 break;
 2377 
 2378         case 2: /* move rules with given number to new set */
 2379                 rule = chain->rules;
 2380                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2381                         if (rule->rulenum == rulenum)
 2382                                 rule->set = new_set;
 2383                 break;
 2384 
 2385         case 3: /* move rules with given set number to new set */
 2386                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2387                         if (rule->set == rulenum)
 2388                                 rule->set = new_set;
 2389                 break;
 2390 
 2391         case 4: /* swap two sets */
 2392                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2393                         if (rule->set == rulenum)
 2394                                 rule->set = new_set;
 2395                         else if (rule->set == new_set)
 2396                                 rule->set = rulenum;
 2397                 break;
 2398         }
 2399         /*
 2400          * Look for rules to reclaim.  We grab the list before
 2401          * releasing the lock then reclaim them w/o the lock to
 2402          * avoid a LOR with dummynet.
 2403          */
 2404         rule = chain->reap;
 2405         chain->reap = NULL;
 2406         IPFW_UNLOCK(chain);
 2407         if (rule)
 2408                 reap_rules(rule);
 2409         return 0;
 2410 }
 2411 
 2412 /*
 2413  * Clear counters for a specific rule.
 2414  * The enclosing "table" is assumed locked.
 2415  */
 2416 static void
 2417 clear_counters(struct ip_fw *rule, int log_only)
 2418 {
 2419         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
 2420 
 2421         if (log_only == 0) {
 2422                 rule->bcnt = rule->pcnt = 0;
 2423                 rule->timestamp = 0;
 2424         }
 2425         if (l->o.opcode == O_LOG)
 2426                 l->log_left = l->max_log;
 2427 }
 2428 
 2429 /**
 2430  * Reset some or all counters on firewall rules.
 2431  * @arg frwl is null to clear all entries, or contains a specific
 2432  * rule number.
 2433  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
 2434  */
 2435 static int
 2436 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
 2437 {
 2438         struct ip_fw *rule;
 2439         char *msg;
 2440 
 2441         IPFW_LOCK(chain);
 2442         if (rulenum == 0) {
 2443                 norule_counter = 0;
 2444                 for (rule = chain->rules; rule; rule = rule->next)
 2445                         clear_counters(rule, log_only);
 2446                 msg = log_only ? "ipfw: All logging counts reset.\n" :
 2447                                 "ipfw: Accounting cleared.\n";
 2448         } else {
 2449                 int cleared = 0;
 2450                 /*
 2451                  * We can have multiple rules with the same number, so we
 2452                  * need to clear them all.
 2453                  */
 2454                 for (rule = chain->rules; rule; rule = rule->next)
 2455                         if (rule->rulenum == rulenum) {
 2456                                 while (rule && rule->rulenum == rulenum) {
 2457                                         clear_counters(rule, log_only);
 2458                                         rule = rule->next;
 2459                                 }
 2460                                 cleared = 1;
 2461                                 break;
 2462                         }
 2463                 if (!cleared) { /* we did not find any matching rules */
 2464                         IPFW_UNLOCK(chain);
 2465                         return (EINVAL);
 2466                 }
 2467                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
 2468                                 "ipfw: Entry %d cleared.\n";
 2469         }
 2470         IPFW_UNLOCK(chain);
 2471 
 2472         if (fw_verbose)
 2473                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
 2474         return (0);
 2475 }
 2476 
 2477 /*
 2478  * Check validity of the structure before insert.
 2479  * Fortunately rules are simple, so this mostly need to check rule sizes.
 2480  */
 2481 static int
 2482 check_ipfw_struct(struct ip_fw *rule, int size)
 2483 {
 2484         int l, cmdlen = 0;
 2485         int have_action=0;
 2486         ipfw_insn *cmd;
 2487 
 2488         if (size < sizeof(*rule)) {
 2489                 printf("ipfw: rule too short\n");
 2490                 return (EINVAL);
 2491         }
 2492         /* first, check for valid size */
 2493         l = RULESIZE(rule);
 2494         if (l != size) {
 2495                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
 2496                 return (EINVAL);
 2497         }
 2498         /*
 2499          * Now go for the individual checks. Very simple ones, basically only
 2500          * instruction sizes.
 2501          */
 2502         for (l = rule->cmd_len, cmd = rule->cmd ;
 2503                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
 2504                 cmdlen = F_LEN(cmd);
 2505                 if (cmdlen > l) {
 2506                         printf("ipfw: opcode %d size truncated\n",
 2507                             cmd->opcode);
 2508                         return EINVAL;
 2509                 }
 2510                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
 2511                 switch (cmd->opcode) {
 2512                 case O_PROBE_STATE:
 2513                 case O_KEEP_STATE:
 2514                 case O_PROTO:
 2515                 case O_IP_SRC_ME:
 2516                 case O_IP_DST_ME:
 2517                 case O_LAYER2:
 2518                 case O_IN:
 2519                 case O_FRAG:
 2520                 case O_IPOPT:
 2521                 case O_IPTOS:
 2522                 case O_IPPRECEDENCE:
 2523                 case O_IPVER:
 2524                 case O_TCPWIN:
 2525                 case O_TCPFLAGS:
 2526                 case O_TCPOPTS:
 2527                 case O_ESTAB:
 2528                 case O_VERREVPATH:
 2529                 case O_IPSEC:
 2530                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 2531                                 goto bad_size;
 2532                         break;
 2533 
 2534                 case O_UID:
 2535                 case O_GID:
 2536                 case O_IP_SRC:
 2537                 case O_IP_DST:
 2538                 case O_TCPSEQ:
 2539                 case O_TCPACK:
 2540                 case O_PROB:
 2541                 case O_ICMPTYPE:
 2542                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 2543                                 goto bad_size;
 2544                         break;
 2545 
 2546                 case O_LIMIT:
 2547                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
 2548                                 goto bad_size;
 2549                         break;
 2550 
 2551                 case O_LOG:
 2552                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
 2553                                 goto bad_size;
 2554 
 2555                         ((ipfw_insn_log *)cmd)->log_left =
 2556                             ((ipfw_insn_log *)cmd)->max_log;
 2557 
 2558                         break;
 2559 
 2560                 case O_IP_SRC_MASK:
 2561                 case O_IP_DST_MASK:
 2562                         /* only odd command lengths */
 2563                         if ( !(cmdlen & 1) || cmdlen > 31)
 2564                                 goto bad_size;
 2565                         break;
 2566 
 2567                 case O_IP_SRC_SET:
 2568                 case O_IP_DST_SET:
 2569                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
 2570                                 printf("ipfw: invalid set size %d\n",
 2571                                         cmd->arg1);
 2572                                 return EINVAL;
 2573                         }
 2574                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 2575                             (cmd->arg1+31)/32 )
 2576                                 goto bad_size;
 2577                         break;
 2578 
 2579                 case O_MACADDR2:
 2580                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
 2581                                 goto bad_size;
 2582                         break;
 2583 
 2584                 case O_NOP:
 2585                 case O_IPID:
 2586                 case O_IPTTL:
 2587                 case O_IPLEN:
 2588                         if (cmdlen < 1 || cmdlen > 31)
 2589                                 goto bad_size;
 2590                         break;
 2591 
 2592                 case O_MAC_TYPE:
 2593                 case O_IP_SRCPORT:
 2594                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
 2595                         if (cmdlen < 2 || cmdlen > 31)
 2596                                 goto bad_size;
 2597                         break;
 2598 
 2599                 case O_RECV:
 2600                 case O_XMIT:
 2601                 case O_VIA:
 2602                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
 2603                                 goto bad_size;
 2604                         break;
 2605 
 2606                 case O_PIPE:
 2607                 case O_QUEUE:
 2608                         if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
 2609                                 goto bad_size;
 2610                         goto check_action;
 2611 
 2612                 case O_FORWARD_IP:
 2613                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
 2614                                 goto bad_size;
 2615                         goto check_action;
 2616 
 2617                 case O_FORWARD_MAC: /* XXX not implemented yet */
 2618                 case O_CHECK_STATE:
 2619                 case O_COUNT:
 2620                 case O_ACCEPT:
 2621                 case O_DENY:
 2622                 case O_REJECT:
 2623                 case O_SKIPTO:
 2624                 case O_DIVERT:
 2625                 case O_TEE:
 2626                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 2627                                 goto bad_size;
 2628 check_action:
 2629                         if (have_action) {
 2630                                 printf("ipfw: opcode %d, multiple actions"
 2631                                         " not allowed\n",
 2632                                         cmd->opcode);
 2633                                 return EINVAL;
 2634                         }
 2635                         have_action = 1;
 2636                         if (l != cmdlen) {
 2637                                 printf("ipfw: opcode %d, action must be"
 2638                                         " last opcode\n",
 2639                                         cmd->opcode);
 2640                                 return EINVAL;
 2641                         }
 2642                         break;
 2643                 default:
 2644                         printf("ipfw: opcode %d, unknown opcode\n",
 2645                                 cmd->opcode);
 2646                         return EINVAL;
 2647                 }
 2648         }
 2649         if (have_action == 0) {
 2650                 printf("ipfw: missing action\n");
 2651                 return EINVAL;
 2652         }
 2653         return 0;
 2654 
 2655 bad_size:
 2656         printf("ipfw: opcode %d size %d wrong\n",
 2657                 cmd->opcode, cmdlen);
 2658         return EINVAL;
 2659 }
 2660 
 2661 /*
 2662  * Copy the static and dynamic rules to the supplied buffer
 2663  * and return the amount of space actually used.
 2664  */
 2665 static size_t
 2666 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
 2667 {
 2668         char *bp = buf;
 2669         char *ep = bp + space;
 2670         struct ip_fw *rule;
 2671         int i;
 2672 
 2673         /* XXX this can take a long time and locking will block packet flow */
 2674         IPFW_LOCK(chain);
 2675         for (rule = chain->rules; rule ; rule = rule->next) {
 2676                 /*
 2677                  * Verify the entry fits in the buffer in case the
 2678                  * rules changed between calculating buffer space and
 2679                  * now.  This would be better done using a generation
 2680                  * number but should suffice for now.
 2681                  */
 2682                 i = RULESIZE(rule);
 2683                 if (bp + i <= ep) {
 2684                         bcopy(rule, bp, i);
 2685                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
 2686                             sizeof(set_disable));
 2687                         bp += i;
 2688                 }
 2689         }
 2690         IPFW_UNLOCK(chain);
 2691         if (ipfw_dyn_v) {
 2692                 ipfw_dyn_rule *p, *last = NULL;
 2693 
 2694                 IPFW_DYN_LOCK();
 2695                 for (i = 0 ; i < curr_dyn_buckets; i++)
 2696                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
 2697                                 if (bp + sizeof *p <= ep) {
 2698                                         ipfw_dyn_rule *dst =
 2699                                                 (ipfw_dyn_rule *)bp;
 2700                                         bcopy(p, dst, sizeof *p);
 2701                                         bcopy(&(p->rule->rulenum), &(dst->rule),
 2702                                             sizeof(p->rule->rulenum));
 2703                                         /*
 2704                                          * store a non-null value in "next".
 2705                                          * The userland code will interpret a
 2706                                          * NULL here as a marker
 2707                                          * for the last dynamic rule.
 2708                                          */
 2709                                         bcopy(&dst, &dst->next, sizeof(dst));
 2710                                         last = dst;
 2711                                         dst->expire =
 2712                                             TIME_LEQ(dst->expire, time_second) ?
 2713                                                 0 : dst->expire - time_second ;
 2714                                         bp += sizeof(ipfw_dyn_rule);
 2715                                 }
 2716                         }
 2717                 IPFW_DYN_UNLOCK();
 2718                 if (last != NULL) /* mark last dynamic rule */
 2719                         bzero(&last->next, sizeof(last));
 2720         }
 2721         return (bp - (char *)buf);
 2722 }
 2723 
 2724 
 2725 /**
 2726  * {set|get}sockopt parser.
 2727  */
 2728 static int
 2729 ipfw_ctl(struct sockopt *sopt)
 2730 {
 2731 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
 2732         int error, rule_num;
 2733         size_t size;
 2734         struct ip_fw *buf, *rule;
 2735         u_int32_t rulenum[2];
 2736 
 2737         /*
 2738          * Disallow modifications in really-really secure mode, but still allow
 2739          * the logging counters to be reset.
 2740          */
 2741         if (sopt->sopt_name == IP_FW_ADD ||
 2742             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
 2743 #if __FreeBSD_version >= 500034
 2744                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
 2745                 if (error)
 2746                         return (error);
 2747 #else /* FreeBSD 4.x */
 2748                 if (securelevel >= 3)
 2749                         return (EPERM);
 2750 #endif
 2751         }
 2752 
 2753         error = 0;
 2754 
 2755         switch (sopt->sopt_name) {
 2756         case IP_FW_GET:
 2757                 /*
 2758                  * pass up a copy of the current rules. Static rules
 2759                  * come first (the last of which has number IPFW_DEFAULT_RULE),
 2760                  * followed by a possibly empty list of dynamic rule.
 2761                  * The last dynamic rule has NULL in the "next" field.
 2762                  *
 2763                  * Note that the calculated size is used to bound the
 2764                  * amount of data returned to the user.  The rule set may
 2765                  * change between calculating the size and returning the
 2766                  * data in which case we'll just return what fits.
 2767                  */
 2768                 size = static_len;      /* size of static rules */
 2769                 if (ipfw_dyn_v)         /* add size of dyn.rules */
 2770                         size += (dyn_count * sizeof(ipfw_dyn_rule));
 2771 
 2772                 /*
 2773                  * XXX todo: if the user passes a short length just to know
 2774                  * how much room is needed, do not bother filling up the
 2775                  * buffer, just jump to the sooptcopyout.
 2776                  */
 2777                 buf = malloc(size, M_TEMP, M_WAITOK);
 2778                 error = sooptcopyout(sopt, buf,
 2779                                 ipfw_getrules(&layer3_chain, buf, size));
 2780                 free(buf, M_TEMP);
 2781                 break;
 2782 
 2783         case IP_FW_FLUSH:
 2784                 /*
 2785                  * Normally we cannot release the lock on each iteration.
 2786                  * We could do it here only because we start from the head all
 2787                  * the times so there is no risk of missing some entries.
 2788                  * On the other hand, the risk is that we end up with
 2789                  * a very inconsistent ruleset, so better keep the lock
 2790                  * around the whole cycle.
 2791                  *
 2792                  * XXX this code can be improved by resetting the head of
 2793                  * the list to point to the default rule, and then freeing
 2794                  * the old list without the need for a lock.
 2795                  */
 2796 
 2797                 IPFW_LOCK(&layer3_chain);
 2798                 layer3_chain.reap = NULL;
 2799                 free_chain(&layer3_chain, 0 /* keep default rule */);
 2800                 rule = layer3_chain.reap, layer3_chain.reap = NULL;
 2801                 IPFW_UNLOCK(&layer3_chain);
 2802                 if (layer3_chain.reap != NULL)
 2803                         reap_rules(rule);
 2804                 break;
 2805 
 2806         case IP_FW_ADD:
 2807                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
 2808                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
 2809                         sizeof(struct ip_fw) );
 2810                 if (error == 0)
 2811                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
 2812                 if (error == 0) {
 2813                         error = add_rule(&layer3_chain, rule);
 2814                         size = RULESIZE(rule);
 2815                         if (!error && sopt->sopt_dir == SOPT_GET)
 2816                                 error = sooptcopyout(sopt, rule, size);
 2817                 }
 2818                 free(rule, M_TEMP);
 2819                 break;
 2820 
 2821         case IP_FW_DEL:
 2822                 /*
 2823                  * IP_FW_DEL is used for deleting single rules or sets,
 2824                  * and (ab)used to atomically manipulate sets. Argument size
 2825                  * is used to distinguish between the two:
 2826                  *    sizeof(u_int32_t)
 2827                  *      delete single rule or set of rules,
 2828                  *      or reassign rules (or sets) to a different set.
 2829                  *    2*sizeof(u_int32_t)
 2830                  *      atomic disable/enable sets.
 2831                  *      first u_int32_t contains sets to be disabled,
 2832                  *      second u_int32_t contains sets to be enabled.
 2833                  */
 2834                 error = sooptcopyin(sopt, rulenum,
 2835                         2*sizeof(u_int32_t), sizeof(u_int32_t));
 2836                 if (error)
 2837                         break;
 2838                 size = sopt->sopt_valsize;
 2839                 if (size == sizeof(u_int32_t))  /* delete or reassign */
 2840                         error = del_entry(&layer3_chain, rulenum[0]);
 2841                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
 2842                         set_disable =
 2843                             (set_disable | rulenum[0]) & ~rulenum[1] &
 2844                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
 2845                 else
 2846                         error = EINVAL;
 2847                 break;
 2848 
 2849         case IP_FW_ZERO:
 2850         case IP_FW_RESETLOG: /* argument is an int, the rule number */
 2851                 rule_num = 0;
 2852                 if (sopt->sopt_val != 0) {
 2853                     error = sooptcopyin(sopt, &rule_num,
 2854                             sizeof(int), sizeof(int));
 2855                     if (error)
 2856                         break;
 2857                 }
 2858                 error = zero_entry(&layer3_chain, rule_num,
 2859                         sopt->sopt_name == IP_FW_RESETLOG);
 2860                 break;
 2861 
 2862         default:
 2863                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
 2864                 error = EINVAL;
 2865         }
 2866 
 2867         return (error);
 2868 #undef RULE_MAXSIZE
 2869 }
 2870 
 2871 /**
 2872  * dummynet needs a reference to the default rule, because rules can be
 2873  * deleted while packets hold a reference to them. When this happens,
 2874  * dummynet changes the reference to the default rule (it could well be a
 2875  * NULL pointer, but this way we do not need to check for the special
 2876  * case, plus here he have info on the default behaviour).
 2877  */
 2878 struct ip_fw *ip_fw_default_rule;
 2879 
 2880 /*
 2881  * This procedure is only used to handle keepalives. It is invoked
 2882  * every dyn_keepalive_period
 2883  */
 2884 static void
 2885 ipfw_tick(void * __unused unused)
 2886 {
 2887         int i;
 2888         ipfw_dyn_rule *q;
 2889 
 2890         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
 2891                 goto done;
 2892 
 2893         IPFW_DYN_LOCK();
 2894         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 2895                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
 2896                         if (q->dyn_type == O_LIMIT_PARENT)
 2897                                 continue;
 2898                         if (q->id.proto != IPPROTO_TCP)
 2899                                 continue;
 2900                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
 2901                                 continue;
 2902                         if (TIME_LEQ( time_second+dyn_keepalive_interval,
 2903                             q->expire))
 2904                                 continue;       /* too early */
 2905                         if (TIME_LEQ(q->expire, time_second))
 2906                                 continue;       /* too late, rule expired */
 2907 
 2908                         send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
 2909                         send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
 2910                 }
 2911         }
 2912         IPFW_DYN_UNLOCK();
 2913 done:
 2914         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
 2915 }
 2916 
 2917 static int
 2918 ipfw_init(void)
 2919 {
 2920         struct ip_fw default_rule;
 2921         int error;
 2922 
 2923         layer3_chain.rules = NULL;
 2924         IPFW_LOCK_INIT(&layer3_chain);
 2925         IPFW_DYN_LOCK_INIT();
 2926         callout_init(&ipfw_timeout, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
 2927 
 2928         bzero(&default_rule, sizeof default_rule);
 2929 
 2930         default_rule.act_ofs = 0;
 2931         default_rule.rulenum = IPFW_DEFAULT_RULE;
 2932         default_rule.cmd_len = 1;
 2933         default_rule.set = RESVD_SET;
 2934 
 2935         default_rule.cmd[0].len = 1;
 2936         default_rule.cmd[0].opcode =
 2937 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
 2938                                 1 ? O_ACCEPT :
 2939 #endif
 2940                                 O_DENY;
 2941 
 2942         error = add_rule(&layer3_chain, &default_rule);
 2943         if (error != 0) {
 2944                 printf("ipfw2: error %u initializing default rule "
 2945                         "(support disabled)\n", error);
 2946                 IPFW_DYN_LOCK_DESTROY();
 2947                 IPFW_LOCK_DESTROY(&layer3_chain);
 2948                 return (error);
 2949         }
 2950 
 2951         ip_fw_default_rule = layer3_chain.rules;
 2952         printf("ipfw2 initialized, divert %s, "
 2953                 "rule-based forwarding enabled, default to %s, logging ",
 2954 #ifdef IPDIVERT
 2955                 "enabled",
 2956 #else
 2957                 "disabled",
 2958 #endif
 2959                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
 2960 
 2961 #ifdef IPFIREWALL_VERBOSE
 2962         fw_verbose = 1;
 2963 #endif
 2964 #ifdef IPFIREWALL_VERBOSE_LIMIT
 2965         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
 2966 #endif
 2967         if (fw_verbose == 0)
 2968                 printf("disabled\n");
 2969         else if (verbose_limit == 0)
 2970                 printf("unlimited\n");
 2971         else
 2972                 printf("limited to %d packets/entry by default\n",
 2973                     verbose_limit);
 2974 
 2975         ip_fw_chk_ptr = ipfw_chk;
 2976         ip_fw_ctl_ptr = ipfw_ctl;
 2977         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
 2978 
 2979         return (0);
 2980 }
 2981 
 2982 static void
 2983 ipfw_destroy(void)
 2984 {
 2985         struct ip_fw *reap;
 2986 
 2987         IPFW_LOCK(&layer3_chain);
 2988         callout_stop(&ipfw_timeout);
 2989         ip_fw_chk_ptr = NULL;
 2990         ip_fw_ctl_ptr = NULL;
 2991         layer3_chain.reap = NULL;
 2992         free_chain(&layer3_chain, 1 /* kill default rule */);
 2993         reap = layer3_chain.reap, layer3_chain.reap = NULL;
 2994         IPFW_UNLOCK(&layer3_chain);
 2995         if (reap != NULL)
 2996                 reap_rules(reap);
 2997 
 2998         IPFW_DYN_LOCK_DESTROY();
 2999         IPFW_LOCK_DESTROY(&layer3_chain);
 3000         printf("IP firewall unloaded\n");
 3001 }
 3002 
 3003 static int
 3004 ipfw_modevent(module_t mod, int type, void *unused)
 3005 {
 3006         int err = 0;
 3007 
 3008         switch (type) {
 3009         case MOD_LOAD:
 3010                 if (IPFW_LOADED) {
 3011                         printf("IP firewall already loaded\n");
 3012                         err = EEXIST;
 3013                 } else {
 3014                         err = ipfw_init();
 3015                 }
 3016                 break;
 3017 
 3018         case MOD_UNLOAD:
 3019                 ipfw_destroy();
 3020                 err = 0;
 3021                 break;
 3022         default:
 3023                 break;
 3024         }
 3025         return err;
 3026 }
 3027 
 3028 static moduledata_t ipfwmod = {
 3029         "ipfw",
 3030         ipfw_modevent,
 3031         0
 3032 };
 3033 DECLARE_MODULE(ipfw, ipfwmod, SI_SUB_PSEUDO, SI_ORDER_ANY);
 3034 MODULE_VERSION(ipfw, 1);
 3035 #endif /* IPFW2 */

Cache object: f2a4bc6062b55b3da3e9bcf4039a1051


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.