The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_fw2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD: releng/5.4/sys/netinet/ip_fw2.c 147668 2005-06-29 21:41:03Z simon $
   26  */
   27 
   28 #define        DEB(x)
   29 #define        DDB(x) x
   30 
   31 /*
   32  * Implement IP packet firewall (new version)
   33  */
   34 
   35 #if !defined(KLD_MODULE)
   36 #include "opt_ipfw.h"
   37 #include "opt_ipdn.h"
   38 #include "opt_ipdivert.h"
   39 #include "opt_inet.h"
   40 #include "opt_ipsec.h"
   41 #ifndef INET
   42 #error IPFIREWALL requires INET.
   43 #endif /* INET */
   44 #endif
   45 
   46 #define IPFW2   1
   47 #if IPFW2
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/condvar.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mbuf.h>
   53 #include <sys/kernel.h>
   54 #include <sys/jail.h>
   55 #include <sys/module.h>
   56 #include <sys/proc.h>
   57 #include <sys/socket.h>
   58 #include <sys/socketvar.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/syslog.h>
   61 #include <sys/ucred.h>
   62 #include <net/if.h>
   63 #include <net/radix.h>
   64 #include <net/route.h>
   65 #include <netinet/in.h>
   66 #include <netinet/in_systm.h>
   67 #include <netinet/in_var.h>
   68 #include <netinet/in_pcb.h>
   69 #include <netinet/ip.h>
   70 #include <netinet/ip_var.h>
   71 #include <netinet/ip_icmp.h>
   72 #include <netinet/ip_fw.h>
   73 #include <netinet/ip_divert.h>
   74 #include <netinet/ip_dummynet.h>
   75 #include <netinet/tcp.h>
   76 #include <netinet/tcp_timer.h>
   77 #include <netinet/tcp_var.h>
   78 #include <netinet/tcpip.h>
   79 #include <netinet/udp.h>
   80 #include <netinet/udp_var.h>
   81 
   82 #ifdef IPSEC
   83 #include <netinet6/ipsec.h>
   84 #endif
   85 
   86 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
   87 
   88 #include <machine/in_cksum.h>   /* XXX for in_cksum */
   89 
   90 /*
   91  * set_disable contains one bit per set value (0..31).
   92  * If the bit is set, all rules with the corresponding set
   93  * are disabled. Set RESVD_SET(31) is reserved for the default rule
   94  * and rules that are not deleted by the flush command,
   95  * and CANNOT be disabled.
   96  * Rules in set RESVD_SET can only be deleted explicitly.
   97  */
   98 static u_int32_t set_disable;
   99 
  100 static int fw_verbose;
  101 static int verbose_limit;
  102 
  103 static struct callout ipfw_timeout;
  104 static uma_zone_t ipfw_dyn_rule_zone;
  105 #define IPFW_DEFAULT_RULE       65535
  106 
  107 /*
  108  * Data structure to cache our ucred related
  109  * information. This structure only gets used if
  110  * the user specified UID/GID based constraints in
  111  * a firewall rule.
  112  */
  113 struct ip_fw_ugid {
  114         gid_t           fw_groups[NGROUPS];
  115         int             fw_ngroups;
  116         uid_t           fw_uid;
  117         int             fw_prid;
  118 };
  119 
  120 struct ip_fw_chain {
  121         struct ip_fw    *rules;         /* list of rules */
  122         struct ip_fw    *reap;          /* list of rules to reap */
  123         struct mtx      mtx;            /* lock guarding rule list */
  124         int             busy_count;     /* busy count for rw locks */
  125         int             want_write;
  126         struct cv       cv;
  127 };
  128 #define IPFW_LOCK_INIT(_chain) \
  129         mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
  130                 MTX_DEF | MTX_RECURSE)
  131 #define IPFW_LOCK_DESTROY(_chain)       mtx_destroy(&(_chain)->mtx)
  132 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
  133         mtx_assert(&(_chain)->mtx, MA_OWNED);                           \
  134         NET_ASSERT_GIANT();                                             \
  135 } while (0)
  136 
  137 static __inline void
  138 IPFW_RLOCK(struct ip_fw_chain *chain)
  139 {
  140         mtx_lock(&chain->mtx);
  141         chain->busy_count++;
  142         mtx_unlock(&chain->mtx);
  143 }
  144 
  145 static __inline void
  146 IPFW_RUNLOCK(struct ip_fw_chain *chain)
  147 {
  148         mtx_lock(&chain->mtx);
  149         chain->busy_count--;
  150         if (chain->busy_count == 0 && chain->want_write)
  151                 cv_signal(&chain->cv);
  152         mtx_unlock(&chain->mtx);
  153 }
  154 
  155 static __inline void
  156 IPFW_WLOCK(struct ip_fw_chain *chain)
  157 {
  158         mtx_lock(&chain->mtx);
  159         chain->want_write++;
  160         while (chain->busy_count > 0)
  161                 cv_wait(&chain->cv, &chain->mtx);
  162 }
  163 
  164 static __inline void
  165 IPFW_WUNLOCK(struct ip_fw_chain *chain)
  166 {
  167         chain->want_write--;
  168         cv_signal(&chain->cv);
  169         mtx_unlock(&chain->mtx);
  170 }
  171 
  172 /*
  173  * list of rules for layer 3
  174  */
  175 static struct ip_fw_chain layer3_chain;
  176 
  177 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
  178 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
  179 
  180 struct table_entry {
  181         struct radix_node       rn[2];
  182         struct sockaddr_in      addr, mask;
  183         u_int32_t               value;
  184 };
  185 
  186 #define IPFW_TABLES_MAX         128
  187 static struct ip_fw_table {
  188         struct radix_node_head  *rnh;
  189         int                     modified;
  190         in_addr_t               last_addr;
  191         int                     last_match;
  192         u_int32_t               last_value;
  193 } ipfw_tables[IPFW_TABLES_MAX];
  194 
  195 static int fw_debug = 1;
  196 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
  197 
  198 #ifdef SYSCTL_NODE
  199 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
  200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
  201     CTLFLAG_RW | CTLFLAG_SECURE3,
  202     &fw_enable, 0, "Enable ipfw");
  203 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
  204     &autoinc_step, 0, "Rule number autincrement step");
  205 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
  206     CTLFLAG_RW | CTLFLAG_SECURE3,
  207     &fw_one_pass, 0,
  208     "Only do a single pass through ipfw when using dummynet(4)");
  209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
  210     &fw_debug, 0, "Enable printing of debug ip_fw statements");
  211 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
  212     CTLFLAG_RW | CTLFLAG_SECURE3,
  213     &fw_verbose, 0, "Log matches to ipfw rules");
  214 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
  215     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
  216 
  217 /*
  218  * Description of dynamic rules.
  219  *
  220  * Dynamic rules are stored in lists accessed through a hash table
  221  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
  222  * be modified through the sysctl variable dyn_buckets which is
  223  * updated when the table becomes empty.
  224  *
  225  * XXX currently there is only one list, ipfw_dyn.
  226  *
  227  * When a packet is received, its address fields are first masked
  228  * with the mask defined for the rule, then hashed, then matched
  229  * against the entries in the corresponding list.
  230  * Dynamic rules can be used for different purposes:
  231  *  + stateful rules;
  232  *  + enforcing limits on the number of sessions;
  233  *  + in-kernel NAT (not implemented yet)
  234  *
  235  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
  236  * measured in seconds and depending on the flags.
  237  *
  238  * The total number of dynamic rules is stored in dyn_count.
  239  * The max number of dynamic rules is dyn_max. When we reach
  240  * the maximum number of rules we do not create anymore. This is
  241  * done to avoid consuming too much memory, but also too much
  242  * time when searching on each packet (ideally, we should try instead
  243  * to put a limit on the length of the list on each bucket...).
  244  *
  245  * Each dynamic rule holds a pointer to the parent ipfw rule so
  246  * we know what action to perform. Dynamic rules are removed when
  247  * the parent rule is deleted. XXX we should make them survive.
  248  *
  249  * There are some limitations with dynamic rules -- we do not
  250  * obey the 'randomized match', and we do not do multiple
  251  * passes through the firewall. XXX check the latter!!!
  252  */
  253 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
  254 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
  255 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
  256 
  257 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
  258 #define IPFW_DYN_LOCK_INIT() \
  259         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
  260 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
  261 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
  262 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
  263 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
  264 
  265 /*
  266  * Timeouts for various events in handing dynamic rules.
  267  */
  268 static u_int32_t dyn_ack_lifetime = 300;
  269 static u_int32_t dyn_syn_lifetime = 20;
  270 static u_int32_t dyn_fin_lifetime = 1;
  271 static u_int32_t dyn_rst_lifetime = 1;
  272 static u_int32_t dyn_udp_lifetime = 10;
  273 static u_int32_t dyn_short_lifetime = 5;
  274 
  275 /*
  276  * Keepalives are sent if dyn_keepalive is set. They are sent every
  277  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
  278  * seconds of lifetime of a rule.
  279  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
  280  * than dyn_keepalive_period.
  281  */
  282 
  283 static u_int32_t dyn_keepalive_interval = 20;
  284 static u_int32_t dyn_keepalive_period = 5;
  285 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
  286 
  287 static u_int32_t static_count;  /* # of static rules */
  288 static u_int32_t static_len;    /* size in bytes of static rules */
  289 static u_int32_t dyn_count;             /* # of dynamic rules */
  290 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
  291 
  292 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
  293     &dyn_buckets, 0, "Number of dyn. buckets");
  294 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
  295     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
  296 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
  297     &dyn_count, 0, "Number of dyn. rules");
  298 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
  299     &dyn_max, 0, "Max number of dyn. rules");
  300 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
  301     &static_count, 0, "Number of static rules");
  302 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
  303     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
  304 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
  305     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
  306 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
  307     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
  308 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
  309     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
  310 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
  311     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
  312 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
  313     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
  314 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
  315     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
  316 
  317 #endif /* SYSCTL_NODE */
  318 
  319 
  320 /*
  321  * This macro maps an ip pointer into a layer3 header pointer of type T
  322  */
  323 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
  324 
  325 static __inline int
  326 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
  327 {
  328         int type = L3HDR(struct icmp,ip)->icmp_type;
  329 
  330         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
  331 }
  332 
  333 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
  334     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
  335 
  336 static int
  337 is_icmp_query(struct ip *ip)
  338 {
  339         int type = L3HDR(struct icmp, ip)->icmp_type;
  340         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
  341 }
  342 #undef TT
  343 
  344 /*
  345  * The following checks use two arrays of 8 or 16 bits to store the
  346  * bits that we want set or clear, respectively. They are in the
  347  * low and high half of cmd->arg1 or cmd->d[0].
  348  *
  349  * We scan options and store the bits we find set. We succeed if
  350  *
  351  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
  352  *
  353  * The code is sometimes optimized not to store additional variables.
  354  */
  355 
  356 static int
  357 flags_match(ipfw_insn *cmd, u_int8_t bits)
  358 {
  359         u_char want_clear;
  360         bits = ~bits;
  361 
  362         if ( ((cmd->arg1 & 0xff) & bits) != 0)
  363                 return 0; /* some bits we want set were clear */
  364         want_clear = (cmd->arg1 >> 8) & 0xff;
  365         if ( (want_clear & bits) != want_clear)
  366                 return 0; /* some bits we want clear were set */
  367         return 1;
  368 }
  369 
  370 static int
  371 ipopts_match(struct ip *ip, ipfw_insn *cmd)
  372 {
  373         int optlen, bits = 0;
  374         u_char *cp = (u_char *)(ip + 1);
  375         int x = (ip->ip_hl << 2) - sizeof (struct ip);
  376 
  377         for (; x > 0; x -= optlen, cp += optlen) {
  378                 int opt = cp[IPOPT_OPTVAL];
  379 
  380                 if (opt == IPOPT_EOL)
  381                         break;
  382                 if (opt == IPOPT_NOP)
  383                         optlen = 1;
  384                 else {
  385                         optlen = cp[IPOPT_OLEN];
  386                         if (optlen <= 0 || optlen > x)
  387                                 return 0; /* invalid or truncated */
  388                 }
  389                 switch (opt) {
  390 
  391                 default:
  392                         break;
  393 
  394                 case IPOPT_LSRR:
  395                         bits |= IP_FW_IPOPT_LSRR;
  396                         break;
  397 
  398                 case IPOPT_SSRR:
  399                         bits |= IP_FW_IPOPT_SSRR;
  400                         break;
  401 
  402                 case IPOPT_RR:
  403                         bits |= IP_FW_IPOPT_RR;
  404                         break;
  405 
  406                 case IPOPT_TS:
  407                         bits |= IP_FW_IPOPT_TS;
  408                         break;
  409                 }
  410         }
  411         return (flags_match(cmd, bits));
  412 }
  413 
  414 static int
  415 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
  416 {
  417         int optlen, bits = 0;
  418         struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
  419         u_char *cp = (u_char *)(tcp + 1);
  420         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
  421 
  422         for (; x > 0; x -= optlen, cp += optlen) {
  423                 int opt = cp[0];
  424                 if (opt == TCPOPT_EOL)
  425                         break;
  426                 if (opt == TCPOPT_NOP)
  427                         optlen = 1;
  428                 else {
  429                         optlen = cp[1];
  430                         if (optlen <= 0)
  431                                 break;
  432                 }
  433 
  434                 switch (opt) {
  435 
  436                 default:
  437                         break;
  438 
  439                 case TCPOPT_MAXSEG:
  440                         bits |= IP_FW_TCPOPT_MSS;
  441                         break;
  442 
  443                 case TCPOPT_WINDOW:
  444                         bits |= IP_FW_TCPOPT_WINDOW;
  445                         break;
  446 
  447                 case TCPOPT_SACK_PERMITTED:
  448                 case TCPOPT_SACK:
  449                         bits |= IP_FW_TCPOPT_SACK;
  450                         break;
  451 
  452                 case TCPOPT_TIMESTAMP:
  453                         bits |= IP_FW_TCPOPT_TS;
  454                         break;
  455 
  456                 case TCPOPT_CC:
  457                 case TCPOPT_CCNEW:
  458                 case TCPOPT_CCECHO:
  459                         bits |= IP_FW_TCPOPT_CC;
  460                         break;
  461                 }
  462         }
  463         return (flags_match(cmd, bits));
  464 }
  465 
  466 static int
  467 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
  468 {
  469         if (ifp == NULL)        /* no iface with this packet, match fails */
  470                 return 0;
  471         /* Check by name or by IP address */
  472         if (cmd->name[0] != '\0') { /* match by name */
  473                 /* Check name */
  474                 if (cmd->p.glob) {
  475                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
  476                                 return(1);
  477                 } else {
  478                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
  479                                 return(1);
  480                 }
  481         } else {
  482                 struct ifaddr *ia;
  483 
  484                 /* XXX lock? */
  485                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
  486                         if (ia->ifa_addr == NULL)
  487                                 continue;
  488                         if (ia->ifa_addr->sa_family != AF_INET)
  489                                 continue;
  490                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
  491                             (ia->ifa_addr))->sin_addr.s_addr)
  492                                 return(1);      /* match */
  493                 }
  494         }
  495         return(0);      /* no match, fail ... */
  496 }
  497 
  498 /*
  499  * The verify_path function checks if a route to the src exists and
  500  * if it is reachable via ifp (when provided).
  501  * 
  502  * The 'verrevpath' option checks that the interface that an IP packet
  503  * arrives on is the same interface that traffic destined for the
  504  * packet's source address would be routed out of.  The 'versrcreach'
  505  * option just checks that the source address is reachable via any route
  506  * (except default) in the routing table.  These two are a measure to block
  507  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
  508  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
  509  * is purposely reminiscent of the Cisco IOS command,
  510  *
  511  *   ip verify unicast reverse-path
  512  *   ip verify unicast source reachable-via any
  513  *
  514  * which implements the same functionality. But note that syntax is
  515  * misleading. The check may be performed on all IP packets whether unicast,
  516  * multicast, or broadcast.
  517  */
  518 static int
  519 verify_path(struct in_addr src, struct ifnet *ifp)
  520 {
  521         struct route ro;
  522         struct sockaddr_in *dst;
  523 
  524         bzero(&ro, sizeof(ro));
  525 
  526         dst = (struct sockaddr_in *)&(ro.ro_dst);
  527         dst->sin_family = AF_INET;
  528         dst->sin_len = sizeof(*dst);
  529         dst->sin_addr = src;
  530         rtalloc_ign(&ro, RTF_CLONING);
  531 
  532         if (ro.ro_rt == NULL)
  533                 return 0;
  534 
  535         /* if ifp is provided, check for equality with rtentry */
  536         if (ifp != NULL && ro.ro_rt->rt_ifp != ifp) {
  537                 RTFREE(ro.ro_rt);
  538                 return 0;
  539         }
  540 
  541         /* if no ifp provided, check if rtentry is not default route */
  542         if (ifp == NULL &&
  543              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
  544                 RTFREE(ro.ro_rt);
  545                 return 0;
  546         }
  547 
  548         /* or if this is a blackhole/reject route */
  549         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
  550                 RTFREE(ro.ro_rt);
  551                 return 0;
  552         }
  553 
  554         /* found valid route */
  555         RTFREE(ro.ro_rt);
  556         return 1;
  557 }
  558 
  559 
  560 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
  561 
  562 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
  563 #define SNP(buf) buf, sizeof(buf)
  564 
  565 /*
  566  * We enter here when we have a rule with O_LOG.
  567  * XXX this function alone takes about 2Kbytes of code!
  568  */
  569 static void
  570 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
  571         struct mbuf *m, struct ifnet *oif)
  572 {
  573         char *action;
  574         int limit_reached = 0;
  575         char action2[40], proto[48], fragment[28];
  576 
  577         fragment[0] = '\0';
  578         proto[0] = '\0';
  579 
  580         if (f == NULL) {        /* bogus pkt */
  581                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
  582                         return;
  583                 norule_counter++;
  584                 if (norule_counter == verbose_limit)
  585                         limit_reached = verbose_limit;
  586                 action = "Refuse";
  587         } else {        /* O_LOG is the first action, find the real one */
  588                 ipfw_insn *cmd = ACTION_PTR(f);
  589                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
  590 
  591                 if (l->max_log != 0 && l->log_left == 0)
  592                         return;
  593                 l->log_left--;
  594                 if (l->log_left == 0)
  595                         limit_reached = l->max_log;
  596                 cmd += F_LEN(cmd);      /* point to first action */
  597                 if (cmd->opcode == O_PROB)
  598                         cmd += F_LEN(cmd);
  599 
  600                 action = action2;
  601                 switch (cmd->opcode) {
  602                 case O_DENY:
  603                         action = "Deny";
  604                         break;
  605 
  606                 case O_REJECT:
  607                         if (cmd->arg1==ICMP_REJECT_RST)
  608                                 action = "Reset";
  609                         else if (cmd->arg1==ICMP_UNREACH_HOST)
  610                                 action = "Reject";
  611                         else
  612                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  613                                         cmd->arg1);
  614                         break;
  615 
  616                 case O_ACCEPT:
  617                         action = "Accept";
  618                         break;
  619                 case O_COUNT:
  620                         action = "Count";
  621                         break;
  622                 case O_DIVERT:
  623                         snprintf(SNPARGS(action2, 0), "Divert %d",
  624                                 cmd->arg1);
  625                         break;
  626                 case O_TEE:
  627                         snprintf(SNPARGS(action2, 0), "Tee %d",
  628                                 cmd->arg1);
  629                         break;
  630                 case O_SKIPTO:
  631                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
  632                                 cmd->arg1);
  633                         break;
  634                 case O_PIPE:
  635                         snprintf(SNPARGS(action2, 0), "Pipe %d",
  636                                 cmd->arg1);
  637                         break;
  638                 case O_QUEUE:
  639                         snprintf(SNPARGS(action2, 0), "Queue %d",
  640                                 cmd->arg1);
  641                         break;
  642                 case O_FORWARD_IP: {
  643                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
  644                         int len;
  645 
  646                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
  647                                 inet_ntoa(sa->sa.sin_addr));
  648                         if (sa->sa.sin_port)
  649                                 snprintf(SNPARGS(action2, len), ":%d",
  650                                     sa->sa.sin_port);
  651                         }
  652                         break;
  653                 default:
  654                         action = "UNKNOWN";
  655                         break;
  656                 }
  657         }
  658 
  659         if (hlen == 0) {        /* non-ip */
  660                 snprintf(SNPARGS(proto, 0), "MAC");
  661         } else {
  662                 struct ip *ip = mtod(m, struct ip *);
  663                 /* these three are all aliases to the same thing */
  664                 struct icmp *const icmp = L3HDR(struct icmp, ip);
  665                 struct tcphdr *const tcp = (struct tcphdr *)icmp;
  666                 struct udphdr *const udp = (struct udphdr *)icmp;
  667 
  668                 int ip_off, offset, ip_len;
  669 
  670                 int len;
  671 
  672                 if (eh != NULL) { /* layer 2 packets are as on the wire */
  673                         ip_off = ntohs(ip->ip_off);
  674                         ip_len = ntohs(ip->ip_len);
  675                 } else {
  676                         ip_off = ip->ip_off;
  677                         ip_len = ip->ip_len;
  678                 }
  679                 offset = ip_off & IP_OFFMASK;
  680                 switch (ip->ip_p) {
  681                 case IPPROTO_TCP:
  682                         len = snprintf(SNPARGS(proto, 0), "TCP %s",
  683                             inet_ntoa(ip->ip_src));
  684                         if (offset == 0)
  685                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  686                                     ntohs(tcp->th_sport),
  687                                     inet_ntoa(ip->ip_dst),
  688                                     ntohs(tcp->th_dport));
  689                         else
  690                                 snprintf(SNPARGS(proto, len), " %s",
  691                                     inet_ntoa(ip->ip_dst));
  692                         break;
  693 
  694                 case IPPROTO_UDP:
  695                         len = snprintf(SNPARGS(proto, 0), "UDP %s",
  696                                 inet_ntoa(ip->ip_src));
  697                         if (offset == 0)
  698                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  699                                     ntohs(udp->uh_sport),
  700                                     inet_ntoa(ip->ip_dst),
  701                                     ntohs(udp->uh_dport));
  702                         else
  703                                 snprintf(SNPARGS(proto, len), " %s",
  704                                     inet_ntoa(ip->ip_dst));
  705                         break;
  706 
  707                 case IPPROTO_ICMP:
  708                         if (offset == 0)
  709                                 len = snprintf(SNPARGS(proto, 0),
  710                                     "ICMP:%u.%u ",
  711                                     icmp->icmp_type, icmp->icmp_code);
  712                         else
  713                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
  714                         len += snprintf(SNPARGS(proto, len), "%s",
  715                             inet_ntoa(ip->ip_src));
  716                         snprintf(SNPARGS(proto, len), " %s",
  717                             inet_ntoa(ip->ip_dst));
  718                         break;
  719 
  720                 default:
  721                         len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
  722                             inet_ntoa(ip->ip_src));
  723                         snprintf(SNPARGS(proto, len), " %s",
  724                             inet_ntoa(ip->ip_dst));
  725                         break;
  726                 }
  727 
  728                 if (ip_off & (IP_MF | IP_OFFMASK))
  729                         snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
  730                              ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
  731                              offset << 3,
  732                              (ip_off & IP_MF) ? "+" : "");
  733         }
  734         if (oif || m->m_pkthdr.rcvif)
  735                 log(LOG_SECURITY | LOG_INFO,
  736                     "ipfw: %d %s %s %s via %s%s\n",
  737                     f ? f->rulenum : -1,
  738                     action, proto, oif ? "out" : "in",
  739                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
  740                     fragment);
  741         else
  742                 log(LOG_SECURITY | LOG_INFO,
  743                     "ipfw: %d %s %s [no if info]%s\n",
  744                     f ? f->rulenum : -1,
  745                     action, proto, fragment);
  746         if (limit_reached)
  747                 log(LOG_SECURITY | LOG_NOTICE,
  748                     "ipfw: limit %d reached on entry %d\n",
  749                     limit_reached, f ? f->rulenum : -1);
  750 }
  751 
  752 /*
  753  * IMPORTANT: the hash function for dynamic rules must be commutative
  754  * in source and destination (ip,port), because rules are bidirectional
  755  * and we want to find both in the same bucket.
  756  */
  757 static __inline int
  758 hash_packet(struct ipfw_flow_id *id)
  759 {
  760         u_int32_t i;
  761 
  762         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
  763         i &= (curr_dyn_buckets - 1);
  764         return i;
  765 }
  766 
  767 /**
  768  * unlink a dynamic rule from a chain. prev is a pointer to
  769  * the previous one, q is a pointer to the rule to delete,
  770  * head is a pointer to the head of the queue.
  771  * Modifies q and potentially also head.
  772  */
  773 #define UNLINK_DYN_RULE(prev, head, q) {                                \
  774         ipfw_dyn_rule *old_q = q;                                       \
  775                                                                         \
  776         /* remove a refcount to the parent */                           \
  777         if (q->dyn_type == O_LIMIT)                                     \
  778                 q->parent->count--;                                     \
  779         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
  780                 (q->id.src_ip), (q->id.src_port),                       \
  781                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
  782         if (prev != NULL)                                               \
  783                 prev->next = q = q->next;                               \
  784         else                                                            \
  785                 head = q = q->next;                                     \
  786         dyn_count--;                                                    \
  787         uma_zfree(ipfw_dyn_rule_zone, old_q); }
  788 
  789 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
  790 
  791 /**
  792  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
  793  *
  794  * If keep_me == NULL, rules are deleted even if not expired,
  795  * otherwise only expired rules are removed.
  796  *
  797  * The value of the second parameter is also used to point to identify
  798  * a rule we absolutely do not want to remove (e.g. because we are
  799  * holding a reference to it -- this is the case with O_LIMIT_PARENT
  800  * rules). The pointer is only used for comparison, so any non-null
  801  * value will do.
  802  */
  803 static void
  804 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
  805 {
  806         static u_int32_t last_remove = 0;
  807 
  808 #define FORCE (keep_me == NULL)
  809 
  810         ipfw_dyn_rule *prev, *q;
  811         int i, pass = 0, max_pass = 0;
  812 
  813         IPFW_DYN_LOCK_ASSERT();
  814 
  815         if (ipfw_dyn_v == NULL || dyn_count == 0)
  816                 return;
  817         /* do not expire more than once per second, it is useless */
  818         if (!FORCE && last_remove == time_second)
  819                 return;
  820         last_remove = time_second;
  821 
  822         /*
  823          * because O_LIMIT refer to parent rules, during the first pass only
  824          * remove child and mark any pending LIMIT_PARENT, and remove
  825          * them in a second pass.
  826          */
  827 next_pass:
  828         for (i = 0 ; i < curr_dyn_buckets ; i++) {
  829                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
  830                         /*
  831                          * Logic can become complex here, so we split tests.
  832                          */
  833                         if (q == keep_me)
  834                                 goto next;
  835                         if (rule != NULL && rule != q->rule)
  836                                 goto next; /* not the one we are looking for */
  837                         if (q->dyn_type == O_LIMIT_PARENT) {
  838                                 /*
  839                                  * handle parent in the second pass,
  840                                  * record we need one.
  841                                  */
  842                                 max_pass = 1;
  843                                 if (pass == 0)
  844                                         goto next;
  845                                 if (FORCE && q->count != 0 ) {
  846                                         /* XXX should not happen! */
  847                                         printf("ipfw: OUCH! cannot remove rule,"
  848                                              " count %d\n", q->count);
  849                                 }
  850                         } else {
  851                                 if (!FORCE &&
  852                                     !TIME_LEQ( q->expire, time_second ))
  853                                         goto next;
  854                         }
  855              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
  856                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  857                      continue;
  858              }
  859 next:
  860                         prev=q;
  861                         q=q->next;
  862                 }
  863         }
  864         if (pass++ < max_pass)
  865                 goto next_pass;
  866 }
  867 
  868 
  869 /**
  870  * lookup a dynamic rule.
  871  */
  872 static ipfw_dyn_rule *
  873 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
  874         struct tcphdr *tcp)
  875 {
  876         /*
  877          * stateful ipfw extensions.
  878          * Lookup into dynamic session queue
  879          */
  880 #define MATCH_REVERSE   0
  881 #define MATCH_FORWARD   1
  882 #define MATCH_NONE      2
  883 #define MATCH_UNKNOWN   3
  884         int i, dir = MATCH_NONE;
  885         ipfw_dyn_rule *prev, *q=NULL;
  886 
  887         IPFW_DYN_LOCK_ASSERT();
  888 
  889         if (ipfw_dyn_v == NULL)
  890                 goto done;      /* not found */
  891         i = hash_packet( pkt );
  892         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
  893                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
  894                         goto next;
  895                 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
  896                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  897                         continue;
  898                 }
  899                 if (pkt->proto == q->id.proto &&
  900                     q->dyn_type != O_LIMIT_PARENT) {
  901                         if (pkt->src_ip == q->id.src_ip &&
  902                             pkt->dst_ip == q->id.dst_ip &&
  903                             pkt->src_port == q->id.src_port &&
  904                             pkt->dst_port == q->id.dst_port ) {
  905                                 dir = MATCH_FORWARD;
  906                                 break;
  907                         }
  908                         if (pkt->src_ip == q->id.dst_ip &&
  909                             pkt->dst_ip == q->id.src_ip &&
  910                             pkt->src_port == q->id.dst_port &&
  911                             pkt->dst_port == q->id.src_port ) {
  912                                 dir = MATCH_REVERSE;
  913                                 break;
  914                         }
  915                 }
  916 next:
  917                 prev = q;
  918                 q = q->next;
  919         }
  920         if (q == NULL)
  921                 goto done; /* q = NULL, not found */
  922 
  923         if ( prev != NULL) { /* found and not in front */
  924                 prev->next = q->next;
  925                 q->next = ipfw_dyn_v[i];
  926                 ipfw_dyn_v[i] = q;
  927         }
  928         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
  929                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
  930 
  931 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
  932 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
  933                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
  934                 switch (q->state) {
  935                 case TH_SYN:                            /* opening */
  936                         q->expire = time_second + dyn_syn_lifetime;
  937                         break;
  938 
  939                 case BOTH_SYN:                  /* move to established */
  940                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
  941                 case BOTH_SYN | (TH_FIN << 8) :
  942                         if (tcp) {
  943 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
  944                             u_int32_t ack = ntohl(tcp->th_ack);
  945                             if (dir == MATCH_FORWARD) {
  946                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
  947                                     q->ack_fwd = ack;
  948                                 else { /* ignore out-of-sequence */
  949                                     break;
  950                                 }
  951                             } else {
  952                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
  953                                     q->ack_rev = ack;
  954                                 else { /* ignore out-of-sequence */
  955                                     break;
  956                                 }
  957                             }
  958                         }
  959                         q->expire = time_second + dyn_ack_lifetime;
  960                         break;
  961 
  962                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
  963                         if (dyn_fin_lifetime >= dyn_keepalive_period)
  964                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
  965                         q->expire = time_second + dyn_fin_lifetime;
  966                         break;
  967 
  968                 default:
  969 #if 0
  970                         /*
  971                          * reset or some invalid combination, but can also
  972                          * occur if we use keep-state the wrong way.
  973                          */
  974                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
  975                                 printf("invalid state: 0x%x\n", q->state);
  976 #endif
  977                         if (dyn_rst_lifetime >= dyn_keepalive_period)
  978                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
  979                         q->expire = time_second + dyn_rst_lifetime;
  980                         break;
  981                 }
  982         } else if (pkt->proto == IPPROTO_UDP) {
  983                 q->expire = time_second + dyn_udp_lifetime;
  984         } else {
  985                 /* other protocols */
  986                 q->expire = time_second + dyn_short_lifetime;
  987         }
  988 done:
  989         if (match_direction)
  990                 *match_direction = dir;
  991         return q;
  992 }
  993 
  994 static ipfw_dyn_rule *
  995 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
  996         struct tcphdr *tcp)
  997 {
  998         ipfw_dyn_rule *q;
  999 
 1000         IPFW_DYN_LOCK();
 1001         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
 1002         if (q == NULL)
 1003                 IPFW_DYN_UNLOCK();
 1004         /* NB: return table locked when q is not NULL */
 1005         return q;
 1006 }
 1007 
 1008 static void
 1009 realloc_dynamic_table(void)
 1010 {
 1011         IPFW_DYN_LOCK_ASSERT();
 1012 
 1013         /*
 1014          * Try reallocation, make sure we have a power of 2 and do
 1015          * not allow more than 64k entries. In case of overflow,
 1016          * default to 1024.
 1017          */
 1018 
 1019         if (dyn_buckets > 65536)
 1020                 dyn_buckets = 1024;
 1021         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
 1022                 dyn_buckets = curr_dyn_buckets; /* reset */
 1023                 return;
 1024         }
 1025         curr_dyn_buckets = dyn_buckets;
 1026         if (ipfw_dyn_v != NULL)
 1027                 free(ipfw_dyn_v, M_IPFW);
 1028         for (;;) {
 1029                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
 1030                        M_IPFW, M_NOWAIT | M_ZERO);
 1031                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
 1032                         break;
 1033                 curr_dyn_buckets /= 2;
 1034         }
 1035 }
 1036 
 1037 /**
 1038  * Install state of type 'type' for a dynamic session.
 1039  * The hash table contains two type of rules:
 1040  * - regular rules (O_KEEP_STATE)
 1041  * - rules for sessions with limited number of sess per user
 1042  *   (O_LIMIT). When they are created, the parent is
 1043  *   increased by 1, and decreased on delete. In this case,
 1044  *   the third parameter is the parent rule and not the chain.
 1045  * - "parent" rules for the above (O_LIMIT_PARENT).
 1046  */
 1047 static ipfw_dyn_rule *
 1048 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
 1049 {
 1050         ipfw_dyn_rule *r;
 1051         int i;
 1052 
 1053         IPFW_DYN_LOCK_ASSERT();
 1054 
 1055         if (ipfw_dyn_v == NULL ||
 1056             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
 1057                 realloc_dynamic_table();
 1058                 if (ipfw_dyn_v == NULL)
 1059                         return NULL; /* failed ! */
 1060         }
 1061         i = hash_packet(id);
 1062 
 1063         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
 1064         if (r == NULL) {
 1065                 printf ("ipfw: sorry cannot allocate state\n");
 1066                 return NULL;
 1067         }
 1068 
 1069         /* increase refcount on parent, and set pointer */
 1070         if (dyn_type == O_LIMIT) {
 1071                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
 1072                 if ( parent->dyn_type != O_LIMIT_PARENT)
 1073                         panic("invalid parent");
 1074                 parent->count++;
 1075                 r->parent = parent;
 1076                 rule = parent->rule;
 1077         }
 1078 
 1079         r->id = *id;
 1080         r->expire = time_second + dyn_syn_lifetime;
 1081         r->rule = rule;
 1082         r->dyn_type = dyn_type;
 1083         r->pcnt = r->bcnt = 0;
 1084         r->count = 0;
 1085 
 1086         r->bucket = i;
 1087         r->next = ipfw_dyn_v[i];
 1088         ipfw_dyn_v[i] = r;
 1089         dyn_count++;
 1090         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
 1091            dyn_type,
 1092            (r->id.src_ip), (r->id.src_port),
 1093            (r->id.dst_ip), (r->id.dst_port),
 1094            dyn_count ); )
 1095         return r;
 1096 }
 1097 
 1098 /**
 1099  * lookup dynamic parent rule using pkt and rule as search keys.
 1100  * If the lookup fails, then install one.
 1101  */
 1102 static ipfw_dyn_rule *
 1103 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
 1104 {
 1105         ipfw_dyn_rule *q;
 1106         int i;
 1107 
 1108         IPFW_DYN_LOCK_ASSERT();
 1109 
 1110         if (ipfw_dyn_v) {
 1111                 i = hash_packet( pkt );
 1112                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
 1113                         if (q->dyn_type == O_LIMIT_PARENT &&
 1114                             rule== q->rule &&
 1115                             pkt->proto == q->id.proto &&
 1116                             pkt->src_ip == q->id.src_ip &&
 1117                             pkt->dst_ip == q->id.dst_ip &&
 1118                             pkt->src_port == q->id.src_port &&
 1119                             pkt->dst_port == q->id.dst_port) {
 1120                                 q->expire = time_second + dyn_short_lifetime;
 1121                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
 1122                                 return q;
 1123                         }
 1124         }
 1125         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
 1126 }
 1127 
 1128 /**
 1129  * Install dynamic state for rule type cmd->o.opcode
 1130  *
 1131  * Returns 1 (failure) if state is not installed because of errors or because
 1132  * session limitations are enforced.
 1133  */
 1134 static int
 1135 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
 1136         struct ip_fw_args *args)
 1137 {
 1138         static int last_log;
 1139 
 1140         ipfw_dyn_rule *q;
 1141 
 1142         DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
 1143             cmd->o.opcode,
 1144             (args->f_id.src_ip), (args->f_id.src_port),
 1145             (args->f_id.dst_ip), (args->f_id.dst_port) );)
 1146 
 1147         IPFW_DYN_LOCK();
 1148 
 1149         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1150 
 1151         if (q != NULL) { /* should never occur */
 1152                 if (last_log != time_second) {
 1153                         last_log = time_second;
 1154                         printf("ipfw: install_state: entry already present, done\n");
 1155                 }
 1156                 IPFW_DYN_UNLOCK();
 1157                 return 0;
 1158         }
 1159 
 1160         if (dyn_count >= dyn_max)
 1161                 /*
 1162                  * Run out of slots, try to remove any expired rule.
 1163                  */
 1164                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
 1165 
 1166         if (dyn_count >= dyn_max) {
 1167                 if (last_log != time_second) {
 1168                         last_log = time_second;
 1169                         printf("ipfw: install_state: Too many dynamic rules\n");
 1170                 }
 1171                 IPFW_DYN_UNLOCK();
 1172                 return 1; /* cannot install, notify caller */
 1173         }
 1174 
 1175         switch (cmd->o.opcode) {
 1176         case O_KEEP_STATE: /* bidir rule */
 1177                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
 1178                 break;
 1179 
 1180         case O_LIMIT: /* limit number of sessions */
 1181             {
 1182                 u_int16_t limit_mask = cmd->limit_mask;
 1183                 struct ipfw_flow_id id;
 1184                 ipfw_dyn_rule *parent;
 1185 
 1186                 DEB(printf("ipfw: installing dyn-limit rule %d\n",
 1187                     cmd->conn_limit);)
 1188 
 1189                 id.dst_ip = id.src_ip = 0;
 1190                 id.dst_port = id.src_port = 0;
 1191                 id.proto = args->f_id.proto;
 1192 
 1193                 if (limit_mask & DYN_SRC_ADDR)
 1194                         id.src_ip = args->f_id.src_ip;
 1195                 if (limit_mask & DYN_DST_ADDR)
 1196                         id.dst_ip = args->f_id.dst_ip;
 1197                 if (limit_mask & DYN_SRC_PORT)
 1198                         id.src_port = args->f_id.src_port;
 1199                 if (limit_mask & DYN_DST_PORT)
 1200                         id.dst_port = args->f_id.dst_port;
 1201                 parent = lookup_dyn_parent(&id, rule);
 1202                 if (parent == NULL) {
 1203                         printf("ipfw: add parent failed\n");
 1204                         return 1;
 1205                 }
 1206                 if (parent->count >= cmd->conn_limit) {
 1207                         /*
 1208                          * See if we can remove some expired rule.
 1209                          */
 1210                         remove_dyn_rule(rule, parent);
 1211                         if (parent->count >= cmd->conn_limit) {
 1212                                 if (fw_verbose && last_log != time_second) {
 1213                                         last_log = time_second;
 1214                                         log(LOG_SECURITY | LOG_DEBUG,
 1215                                             "drop session, too many entries\n");
 1216                                 }
 1217                                 IPFW_DYN_UNLOCK();
 1218                                 return 1;
 1219                         }
 1220                 }
 1221                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
 1222             }
 1223                 break;
 1224         default:
 1225                 printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
 1226                 IPFW_DYN_UNLOCK();
 1227                 return 1;
 1228         }
 1229         lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
 1230         IPFW_DYN_UNLOCK();
 1231         return 0;
 1232 }
 1233 
 1234 /*
 1235  * Transmit a TCP packet, containing either a RST or a keepalive.
 1236  * When flags & TH_RST, we are sending a RST packet, because of a
 1237  * "reset" action matched the packet.
 1238  * Otherwise we are sending a keepalive, and flags & TH_
 1239  */
 1240 static void
 1241 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
 1242 {
 1243         struct mbuf *m;
 1244         struct ip *ip;
 1245         struct tcphdr *tcp;
 1246 
 1247         MGETHDR(m, M_DONTWAIT, MT_HEADER);
 1248         if (m == 0)
 1249                 return;
 1250         m->m_pkthdr.rcvif = (struct ifnet *)0;
 1251         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
 1252         m->m_data += max_linkhdr;
 1253 
 1254         ip = mtod(m, struct ip *);
 1255         bzero(ip, m->m_len);
 1256         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
 1257         ip->ip_p = IPPROTO_TCP;
 1258         tcp->th_off = 5;
 1259         /*
 1260          * Assume we are sending a RST (or a keepalive in the reverse
 1261          * direction), swap src and destination addresses and ports.
 1262          */
 1263         ip->ip_src.s_addr = htonl(id->dst_ip);
 1264         ip->ip_dst.s_addr = htonl(id->src_ip);
 1265         tcp->th_sport = htons(id->dst_port);
 1266         tcp->th_dport = htons(id->src_port);
 1267         if (flags & TH_RST) {   /* we are sending a RST */
 1268                 if (flags & TH_ACK) {
 1269                         tcp->th_seq = htonl(ack);
 1270                         tcp->th_ack = htonl(0);
 1271                         tcp->th_flags = TH_RST;
 1272                 } else {
 1273                         if (flags & TH_SYN)
 1274                                 seq++;
 1275                         tcp->th_seq = htonl(0);
 1276                         tcp->th_ack = htonl(seq);
 1277                         tcp->th_flags = TH_RST | TH_ACK;
 1278                 }
 1279         } else {
 1280                 /*
 1281                  * We are sending a keepalive. flags & TH_SYN determines
 1282                  * the direction, forward if set, reverse if clear.
 1283                  * NOTE: seq and ack are always assumed to be correct
 1284                  * as set by the caller. This may be confusing...
 1285                  */
 1286                 if (flags & TH_SYN) {
 1287                         /*
 1288                          * we have to rewrite the correct addresses!
 1289                          */
 1290                         ip->ip_dst.s_addr = htonl(id->dst_ip);
 1291                         ip->ip_src.s_addr = htonl(id->src_ip);
 1292                         tcp->th_dport = htons(id->dst_port);
 1293                         tcp->th_sport = htons(id->src_port);
 1294                 }
 1295                 tcp->th_seq = htonl(seq);
 1296                 tcp->th_ack = htonl(ack);
 1297                 tcp->th_flags = TH_ACK;
 1298         }
 1299         /*
 1300          * set ip_len to the payload size so we can compute
 1301          * the tcp checksum on the pseudoheader
 1302          * XXX check this, could save a couple of words ?
 1303          */
 1304         ip->ip_len = htons(sizeof(struct tcphdr));
 1305         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
 1306         /*
 1307          * now fill fields left out earlier
 1308          */
 1309         ip->ip_ttl = ip_defttl;
 1310         ip->ip_len = m->m_pkthdr.len;
 1311         m->m_flags |= M_SKIP_FIREWALL;
 1312         ip_output(m, NULL, NULL, 0, NULL, NULL);
 1313 }
 1314 
 1315 /*
 1316  * sends a reject message, consuming the mbuf passed as an argument.
 1317  */
 1318 static void
 1319 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
 1320 {
 1321 
 1322         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
 1323                 /* We need the IP header in host order for icmp_error(). */
 1324                 if (args->eh != NULL) {
 1325                         struct ip *ip = mtod(args->m, struct ip *);
 1326                         ip->ip_len = ntohs(ip->ip_len);
 1327                         ip->ip_off = ntohs(ip->ip_off);
 1328                 }
 1329                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
 1330         } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
 1331                 struct tcphdr *const tcp =
 1332                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
 1333                 if ( (tcp->th_flags & TH_RST) == 0)
 1334                         send_pkt(&(args->f_id), ntohl(tcp->th_seq),
 1335                                 ntohl(tcp->th_ack),
 1336                                 tcp->th_flags | TH_RST);
 1337                 m_freem(args->m);
 1338         } else
 1339                 m_freem(args->m);
 1340         args->m = NULL;
 1341 }
 1342 
 1343 /**
 1344  *
 1345  * Given an ip_fw *, lookup_next_rule will return a pointer
 1346  * to the next rule, which can be either the jump
 1347  * target (for skipto instructions) or the next one in the list (in
 1348  * all other cases including a missing jump target).
 1349  * The result is also written in the "next_rule" field of the rule.
 1350  * Backward jumps are not allowed, so start looking from the next
 1351  * rule...
 1352  *
 1353  * This never returns NULL -- in case we do not have an exact match,
 1354  * the next rule is returned. When the ruleset is changed,
 1355  * pointers are flushed so we are always correct.
 1356  */
 1357 
 1358 static struct ip_fw *
 1359 lookup_next_rule(struct ip_fw *me)
 1360 {
 1361         struct ip_fw *rule = NULL;
 1362         ipfw_insn *cmd;
 1363 
 1364         /* look for action, in case it is a skipto */
 1365         cmd = ACTION_PTR(me);
 1366         if (cmd->opcode == O_LOG)
 1367                 cmd += F_LEN(cmd);
 1368         if ( cmd->opcode == O_SKIPTO )
 1369                 for (rule = me->next; rule ; rule = rule->next)
 1370                         if (rule->rulenum >= cmd->arg1)
 1371                                 break;
 1372         if (rule == NULL)                       /* failure or not a skipto */
 1373                 rule = me->next;
 1374         me->next_rule = rule;
 1375         return rule;
 1376 }
 1377 
 1378 static void
 1379 init_tables(void)
 1380 {
 1381         int i;
 1382 
 1383         for (i = 0; i < IPFW_TABLES_MAX; i++) {
 1384                 rn_inithead((void **)&ipfw_tables[i].rnh, 32);
 1385                 ipfw_tables[i].modified = 1;
 1386         }
 1387 }
 1388 
 1389 static int
 1390 add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
 1391 {
 1392         struct radix_node_head *rnh;
 1393         struct table_entry *ent;
 1394 
 1395         if (tbl >= IPFW_TABLES_MAX)
 1396                 return (EINVAL);
 1397         rnh = ipfw_tables[tbl].rnh;
 1398         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
 1399         if (ent == NULL)
 1400                 return (ENOMEM);
 1401         ent->value = value;
 1402         ent->addr.sin_len = ent->mask.sin_len = 8;
 1403         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1404         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
 1405         RADIX_NODE_HEAD_LOCK(rnh);
 1406         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
 1407             NULL) {
 1408                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1409                 free(ent, M_IPFW_TBL);
 1410                 return (EEXIST);
 1411         }
 1412         ipfw_tables[tbl].modified = 1;
 1413         RADIX_NODE_HEAD_UNLOCK(rnh);
 1414         return (0);
 1415 }
 1416 
 1417 static int
 1418 del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
 1419 {
 1420         struct radix_node_head *rnh;
 1421         struct table_entry *ent;
 1422         struct sockaddr_in sa, mask;
 1423 
 1424         if (tbl >= IPFW_TABLES_MAX)
 1425                 return (EINVAL);
 1426         rnh = ipfw_tables[tbl].rnh;
 1427         sa.sin_len = mask.sin_len = 8;
 1428         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1429         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
 1430         RADIX_NODE_HEAD_LOCK(rnh);
 1431         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
 1432         if (ent == NULL) {
 1433                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1434                 return (ESRCH);
 1435         }
 1436         ipfw_tables[tbl].modified = 1;
 1437         RADIX_NODE_HEAD_UNLOCK(rnh);
 1438         free(ent, M_IPFW_TBL);
 1439         return (0);
 1440 }
 1441 
 1442 static int
 1443 flush_table_entry(struct radix_node *rn, void *arg)
 1444 {
 1445         struct radix_node_head * const rnh = arg;
 1446         struct table_entry *ent;
 1447 
 1448         ent = (struct table_entry *)
 1449             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
 1450         if (ent != NULL)
 1451                 free(ent, M_IPFW_TBL);
 1452         return (0);
 1453 }
 1454 
 1455 static int
 1456 flush_table(u_int16_t tbl)
 1457 {
 1458         struct radix_node_head *rnh;
 1459 
 1460         if (tbl >= IPFW_TABLES_MAX)
 1461                 return (EINVAL);
 1462         rnh = ipfw_tables[tbl].rnh;
 1463         RADIX_NODE_HEAD_LOCK(rnh);
 1464         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
 1465         ipfw_tables[tbl].modified = 1;
 1466         RADIX_NODE_HEAD_UNLOCK(rnh);
 1467         return (0);
 1468 }
 1469 
 1470 static void
 1471 flush_tables(void)
 1472 {
 1473         u_int16_t tbl;
 1474 
 1475         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
 1476                 flush_table(tbl);
 1477 }
 1478 
 1479 static int
 1480 lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
 1481 {
 1482         struct radix_node_head *rnh;
 1483         struct ip_fw_table *table;
 1484         struct table_entry *ent;
 1485         struct sockaddr_in sa;
 1486         int last_match;
 1487 
 1488         if (tbl >= IPFW_TABLES_MAX)
 1489                 return (0);
 1490         table = &ipfw_tables[tbl];
 1491         rnh = table->rnh;
 1492         RADIX_NODE_HEAD_LOCK(rnh);
 1493         if (addr == table->last_addr && !table->modified) {
 1494                 last_match = table->last_match;
 1495                 if (last_match)
 1496                         *val = table->last_value;
 1497                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1498                 return (last_match);
 1499         }
 1500         table->modified = 0;
 1501         sa.sin_len = 8;
 1502         sa.sin_addr.s_addr = addr;
 1503         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
 1504         table->last_addr = addr;
 1505         if (ent != NULL) {
 1506                 table->last_value = *val = ent->value;
 1507                 table->last_match = 1;
 1508                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1509                 return (1);
 1510         }
 1511         table->last_match = 0;
 1512         RADIX_NODE_HEAD_UNLOCK(rnh);
 1513         return (0);
 1514 }
 1515 
 1516 static int
 1517 count_table_entry(struct radix_node *rn, void *arg)
 1518 {
 1519         u_int32_t * const cnt = arg;
 1520 
 1521         (*cnt)++;
 1522         return (0);
 1523 }
 1524 
 1525 static int
 1526 count_table(u_int32_t tbl, u_int32_t *cnt)
 1527 {
 1528         struct radix_node_head *rnh;
 1529 
 1530         if (tbl >= IPFW_TABLES_MAX)
 1531                 return (EINVAL);
 1532         rnh = ipfw_tables[tbl].rnh;
 1533         *cnt = 0;
 1534         RADIX_NODE_HEAD_LOCK(rnh);
 1535         rnh->rnh_walktree(rnh, count_table_entry, cnt);
 1536         RADIX_NODE_HEAD_UNLOCK(rnh);
 1537         return (0);
 1538 }
 1539 
 1540 static int
 1541 dump_table_entry(struct radix_node *rn, void *arg)
 1542 {
 1543         struct table_entry * const n = (struct table_entry *)rn;
 1544         ipfw_table * const tbl = arg;
 1545         ipfw_table_entry *ent;
 1546 
 1547         if (tbl->cnt == tbl->size)
 1548                 return (1);
 1549         ent = &tbl->ent[tbl->cnt];
 1550         ent->tbl = tbl->tbl;
 1551         if (in_nullhost(n->mask.sin_addr))
 1552                 ent->masklen = 0;
 1553         else
 1554                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
 1555         ent->addr = n->addr.sin_addr.s_addr;
 1556         ent->value = n->value;
 1557         tbl->cnt++;
 1558         return (0);
 1559 }
 1560 
 1561 static int
 1562 dump_table(ipfw_table *tbl)
 1563 {
 1564         struct radix_node_head *rnh;
 1565 
 1566         if (tbl->tbl >= IPFW_TABLES_MAX)
 1567                 return (EINVAL);
 1568         rnh = ipfw_tables[tbl->tbl].rnh;
 1569         tbl->cnt = 0;
 1570         RADIX_NODE_HEAD_LOCK(rnh);
 1571         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
 1572         RADIX_NODE_HEAD_UNLOCK(rnh);
 1573         return (0);
 1574 }
 1575 
 1576 static void
 1577 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
 1578 {
 1579         struct ucred *cr;
 1580 
 1581         if (inp->inp_socket != NULL) {
 1582                 cr = inp->inp_socket->so_cred;
 1583                 ugp->fw_prid = jailed(cr) ?
 1584                     cr->cr_prison->pr_id : -1;
 1585                 ugp->fw_uid = cr->cr_uid;
 1586                 ugp->fw_ngroups = cr->cr_ngroups;
 1587                 bcopy(cr->cr_groups, ugp->fw_groups,
 1588                     sizeof(ugp->fw_groups));
 1589         }
 1590 }
 1591 
 1592 static int
 1593 check_uidgid(ipfw_insn_u32 *insn,
 1594         int proto, struct ifnet *oif,
 1595         struct in_addr dst_ip, u_int16_t dst_port,
 1596         struct in_addr src_ip, u_int16_t src_port,
 1597         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
 1598 {
 1599         struct inpcbinfo *pi;
 1600         int wildcard;
 1601         struct inpcb *pcb;
 1602         int match;
 1603         gid_t *gp;
 1604 
 1605         /*
 1606          * Check to see if the UDP or TCP stack supplied us with
 1607          * the PCB. If so, rather then holding a lock and looking
 1608          * up the PCB, we can use the one that was supplied.
 1609          */
 1610         if (inp && *lookup == 0) {
 1611                 INP_LOCK_ASSERT(inp);
 1612                 if (inp->inp_socket != NULL) {
 1613                         fill_ugid_cache(inp, ugp);
 1614                         *lookup = 1;
 1615                 }
 1616         }
 1617         /*
 1618          * If we have already been here and the packet has no
 1619          * PCB entry associated with it, then we can safely
 1620          * assume that this is a no match.
 1621          */
 1622         if (*lookup == -1)
 1623                 return (0);
 1624         if (proto == IPPROTO_TCP) {
 1625                 wildcard = 0;
 1626                 pi = &tcbinfo;
 1627         } else if (proto == IPPROTO_UDP) {
 1628                 wildcard = 1;
 1629                 pi = &udbinfo;
 1630         } else
 1631                 return 0;
 1632         match = 0;
 1633         if (*lookup == 0) {
 1634                 INP_INFO_RLOCK(pi);
 1635                 pcb =  (oif) ?
 1636                         in_pcblookup_hash(pi,
 1637                                 dst_ip, htons(dst_port),
 1638                                 src_ip, htons(src_port),
 1639                                 wildcard, oif) :
 1640                         in_pcblookup_hash(pi,
 1641                                 src_ip, htons(src_port),
 1642                                 dst_ip, htons(dst_port),
 1643                                 wildcard, NULL);
 1644                 if (pcb != NULL) {
 1645                         INP_LOCK(pcb);
 1646                         if (pcb->inp_socket != NULL) {
 1647                                 fill_ugid_cache(pcb, ugp);
 1648                                 *lookup = 1;
 1649                         }
 1650                         INP_UNLOCK(pcb);
 1651                 }
 1652                 INP_INFO_RUNLOCK(pi);
 1653                 if (*lookup == 0) {
 1654                         /*
 1655                          * If the lookup did not yield any results, there
 1656                          * is no sense in coming back and trying again. So
 1657                          * we can set lookup to -1 and ensure that we wont
 1658                          * bother the pcb system again.
 1659                          */
 1660                         *lookup = -1;
 1661                         return (0);
 1662                 }
 1663         } 
 1664         if (insn->o.opcode == O_UID)
 1665                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
 1666         else if (insn->o.opcode == O_GID) {
 1667                 for (gp = ugp->fw_groups;
 1668                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
 1669                         if (*gp == (gid_t)insn->d[0]) {
 1670                                 match = 1;
 1671                                 break;
 1672                         }
 1673         } else if (insn->o.opcode == O_JAIL)
 1674                 match = (ugp->fw_prid == (int)insn->d[0]);
 1675         return match;
 1676 }
 1677 
 1678 /*
 1679  * The main check routine for the firewall.
 1680  *
 1681  * All arguments are in args so we can modify them and return them
 1682  * back to the caller.
 1683  *
 1684  * Parameters:
 1685  *
 1686  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
 1687  *              Starts with the IP header.
 1688  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
 1689  *      args->oif       Outgoing interface, or NULL if packet is incoming.
 1690  *              The incoming interface is in the mbuf. (in)
 1691  *      args->divert_rule (in/out)
 1692  *              Skip up to the first rule past this rule number;
 1693  *              upon return, non-zero port number for divert or tee.
 1694  *
 1695  *      args->rule      Pointer to the last matching rule (in/out)
 1696  *      args->next_hop  Socket we are forwarding to (out).
 1697  *      args->f_id      Addresses grabbed from the packet (out)
 1698  *
 1699  * Return value:
 1700  *
 1701  *      IP_FW_PORT_DENY_FLAG    the packet must be dropped.
 1702  *      0       The packet is to be accepted and routed normally OR
 1703  *              the packet was denied/rejected and has been dropped;
 1704  *              in the latter case, *m is equal to NULL upon return.
 1705  *      port    Divert the packet to port, with these caveats:
 1706  *
 1707  *              - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
 1708  *                of diverting it (ie, 'ipfw tee').
 1709  *
 1710  *              - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
 1711  *                16 bits as a dummynet pipe number instead of diverting
 1712  */
 1713 
 1714 int
 1715 ipfw_chk(struct ip_fw_args *args)
 1716 {
 1717         /*
 1718          * Local variables hold state during the processing of a packet.
 1719          *
 1720          * IMPORTANT NOTE: to speed up the processing of rules, there
 1721          * are some assumption on the values of the variables, which
 1722          * are documented here. Should you change them, please check
 1723          * the implementation of the various instructions to make sure
 1724          * that they still work.
 1725          *
 1726          * args->eh     The MAC header. It is non-null for a layer2
 1727          *      packet, it is NULL for a layer-3 packet.
 1728          *
 1729          * m | args->m  Pointer to the mbuf, as received from the caller.
 1730          *      It may change if ipfw_chk() does an m_pullup, or if it
 1731          *      consumes the packet because it calls send_reject().
 1732          *      XXX This has to change, so that ipfw_chk() never modifies
 1733          *      or consumes the buffer.
 1734          * ip   is simply an alias of the value of m, and it is kept
 1735          *      in sync with it (the packet is  supposed to start with
 1736          *      the ip header).
 1737          */
 1738         struct mbuf *m = args->m;
 1739         struct ip *ip = mtod(m, struct ip *);
 1740 
 1741         /*
 1742          * For rules which contain uid/gid or jail constraints, cache
 1743          * a copy of the users credentials after the pcb lookup has been
 1744          * executed. This will speed up the processing of rules with
 1745          * these types of constraints, as well as decrease contention
 1746          * on pcb related locks.
 1747          */
 1748         struct ip_fw_ugid fw_ugid_cache;
 1749         int ugid_lookup = 0;
 1750 
 1751         /*
 1752          * oif | args->oif      If NULL, ipfw_chk has been called on the
 1753          *      inbound path (ether_input, bdg_forward, ip_input).
 1754          *      If non-NULL, ipfw_chk has been called on the outbound path
 1755          *      (ether_output, ip_output).
 1756          */
 1757         struct ifnet *oif = args->oif;
 1758 
 1759         struct ip_fw *f = NULL;         /* matching rule */
 1760         int retval = 0;
 1761 
 1762         /*
 1763          * hlen The length of the IPv4 header.
 1764          *      hlen >0 means we have an IPv4 packet.
 1765          */
 1766         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
 1767 
 1768         /*
 1769          * offset       The offset of a fragment. offset != 0 means that
 1770          *      we have a fragment at this offset of an IPv4 packet.
 1771          *      offset == 0 means that (if this is an IPv4 packet)
 1772          *      this is the first or only fragment.
 1773          */
 1774         u_short offset = 0;
 1775 
 1776         /*
 1777          * Local copies of addresses. They are only valid if we have
 1778          * an IP packet.
 1779          *
 1780          * proto        The protocol. Set to 0 for non-ip packets,
 1781          *      or to the protocol read from the packet otherwise.
 1782          *      proto != 0 means that we have an IPv4 packet.
 1783          *
 1784          * src_port, dst_port   port numbers, in HOST format. Only
 1785          *      valid for TCP and UDP packets.
 1786          *
 1787          * src_ip, dst_ip       ip addresses, in NETWORK format.
 1788          *      Only valid for IPv4 packets.
 1789          */
 1790         u_int8_t proto;
 1791         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
 1792         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
 1793         u_int16_t ip_len=0;
 1794         int pktlen;
 1795         int dyn_dir = MATCH_UNKNOWN;
 1796         ipfw_dyn_rule *q = NULL;
 1797         struct ip_fw_chain *chain = &layer3_chain;
 1798         struct m_tag *mtag;
 1799 
 1800         if (m->m_flags & M_SKIP_FIREWALL)
 1801                 return 0;       /* accept */
 1802         /*
 1803          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
 1804          *      MATCH_NONE when checked and not matched (q = NULL),
 1805          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
 1806          */
 1807 
 1808         pktlen = m->m_pkthdr.len;
 1809         if (args->eh == NULL ||         /* layer 3 packet */
 1810                 ( m->m_pkthdr.len >= sizeof(struct ip) &&
 1811                     ntohs(args->eh->ether_type) == ETHERTYPE_IP))
 1812                         hlen = ip->ip_hl << 2;
 1813 
 1814         /*
 1815          * Collect parameters into local variables for faster matching.
 1816          */
 1817         if (hlen == 0) {        /* do not grab addresses for non-ip pkts */
 1818                 proto = args->f_id.proto = 0;   /* mark f_id invalid */
 1819                 goto after_ip_checks;
 1820         }
 1821 
 1822         proto = args->f_id.proto = ip->ip_p;
 1823         src_ip = ip->ip_src;
 1824         dst_ip = ip->ip_dst;
 1825         if (args->eh != NULL) { /* layer 2 packets are as on the wire */
 1826                 offset = ntohs(ip->ip_off) & IP_OFFMASK;
 1827                 ip_len = ntohs(ip->ip_len);
 1828         } else {
 1829                 offset = ip->ip_off & IP_OFFMASK;
 1830                 ip_len = ip->ip_len;
 1831         }
 1832         pktlen = ip_len < pktlen ? ip_len : pktlen;
 1833 
 1834 #define PULLUP_TO(len)                                          \
 1835                 do {                                            \
 1836                         if ((m)->m_len < (len)) {               \
 1837                             args->m = m = m_pullup(m, (len));   \
 1838                             if (m == 0)                         \
 1839                                 goto pullup_failed;             \
 1840                             ip = mtod(m, struct ip *);          \
 1841                         }                                       \
 1842                 } while (0)
 1843 
 1844         if (offset == 0) {
 1845                 switch (proto) {
 1846                 case IPPROTO_TCP:
 1847                     {
 1848                         struct tcphdr *tcp;
 1849 
 1850                         PULLUP_TO(hlen + sizeof(struct tcphdr));
 1851                         tcp = L3HDR(struct tcphdr, ip);
 1852                         dst_port = tcp->th_dport;
 1853                         src_port = tcp->th_sport;
 1854                         args->f_id.flags = tcp->th_flags;
 1855                         }
 1856                         break;
 1857 
 1858                 case IPPROTO_UDP:
 1859                     {
 1860                         struct udphdr *udp;
 1861 
 1862                         PULLUP_TO(hlen + sizeof(struct udphdr));
 1863                         udp = L3HDR(struct udphdr, ip);
 1864                         dst_port = udp->uh_dport;
 1865                         src_port = udp->uh_sport;
 1866                         }
 1867                         break;
 1868 
 1869                 case IPPROTO_ICMP:
 1870                         PULLUP_TO(hlen + 4);    /* type, code and checksum. */
 1871                         args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
 1872                         break;
 1873 
 1874                 default:
 1875                         break;
 1876                 }
 1877 #undef PULLUP_TO
 1878         }
 1879 
 1880         args->f_id.src_ip = ntohl(src_ip.s_addr);
 1881         args->f_id.dst_ip = ntohl(dst_ip.s_addr);
 1882         args->f_id.src_port = src_port = ntohs(src_port);
 1883         args->f_id.dst_port = dst_port = ntohs(dst_port);
 1884 
 1885 after_ip_checks:
 1886         IPFW_RLOCK(chain);
 1887         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
 1888         if (args->rule) {
 1889                 /*
 1890                  * Packet has already been tagged. Look for the next rule
 1891                  * to restart processing.
 1892                  *
 1893                  * If fw_one_pass != 0 then just accept it.
 1894                  * XXX should not happen here, but optimized out in
 1895                  * the caller.
 1896                  */
 1897                 if (fw_one_pass) {
 1898                         IPFW_RUNLOCK(chain);
 1899                         return 0;
 1900                 }
 1901 
 1902                 f = args->rule->next_rule;
 1903                 if (f == NULL)
 1904                         f = lookup_next_rule(args->rule);
 1905         } else {
 1906                 /*
 1907                  * Find the starting rule. It can be either the first
 1908                  * one, or the one after divert_rule if asked so.
 1909                  */
 1910                 int skipto = mtag ? divert_cookie(mtag) : 0;
 1911 
 1912                 f = chain->rules;
 1913                 if (args->eh == NULL && skipto != 0) {
 1914                         if (skipto >= IPFW_DEFAULT_RULE) {
 1915                                 IPFW_RUNLOCK(chain);
 1916                                 return(IP_FW_PORT_DENY_FLAG); /* invalid */
 1917                         }
 1918                         while (f && f->rulenum <= skipto)
 1919                                 f = f->next;
 1920                         if (f == NULL) {        /* drop packet */
 1921                                 IPFW_RUNLOCK(chain);
 1922                                 return(IP_FW_PORT_DENY_FLAG);
 1923                         }
 1924                 }
 1925         }
 1926         /* reset divert rule to avoid confusion later */
 1927         if (mtag)
 1928                 m_tag_delete(m, mtag);
 1929 
 1930         /*
 1931          * Now scan the rules, and parse microinstructions for each rule.
 1932          */
 1933         for (; f; f = f->next) {
 1934                 int l, cmdlen;
 1935                 ipfw_insn *cmd;
 1936                 int skip_or; /* skip rest of OR block */
 1937 
 1938 again:
 1939                 if (set_disable & (1 << f->set) )
 1940                         continue;
 1941 
 1942                 skip_or = 0;
 1943                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
 1944                     l -= cmdlen, cmd += cmdlen) {
 1945                         int match;
 1946 
 1947                         /*
 1948                          * check_body is a jump target used when we find a
 1949                          * CHECK_STATE, and need to jump to the body of
 1950                          * the target rule.
 1951                          */
 1952 
 1953 check_body:
 1954                         cmdlen = F_LEN(cmd);
 1955                         /*
 1956                          * An OR block (insn_1 || .. || insn_n) has the
 1957                          * F_OR bit set in all but the last instruction.
 1958                          * The first match will set "skip_or", and cause
 1959                          * the following instructions to be skipped until
 1960                          * past the one with the F_OR bit clear.
 1961                          */
 1962                         if (skip_or) {          /* skip this instruction */
 1963                                 if ((cmd->len & F_OR) == 0)
 1964                                         skip_or = 0;    /* next one is good */
 1965                                 continue;
 1966                         }
 1967                         match = 0; /* set to 1 if we succeed */
 1968 
 1969                         switch (cmd->opcode) {
 1970                         /*
 1971                          * The first set of opcodes compares the packet's
 1972                          * fields with some pattern, setting 'match' if a
 1973                          * match is found. At the end of the loop there is
 1974                          * logic to deal with F_NOT and F_OR flags associated
 1975                          * with the opcode.
 1976                          */
 1977                         case O_NOP:
 1978                                 match = 1;
 1979                                 break;
 1980 
 1981                         case O_FORWARD_MAC:
 1982                                 printf("ipfw: opcode %d unimplemented\n",
 1983                                     cmd->opcode);
 1984                                 break;
 1985 
 1986                         case O_GID:
 1987                         case O_UID:
 1988                         case O_JAIL:
 1989                                 /*
 1990                                  * We only check offset == 0 && proto != 0,
 1991                                  * as this ensures that we have an IPv4
 1992                                  * packet with the ports info.
 1993                                  */
 1994                                 if (offset!=0)
 1995                                         break;
 1996                                 if (proto == IPPROTO_TCP ||
 1997                                     proto == IPPROTO_UDP)
 1998                                         match = check_uidgid(
 1999                                                     (ipfw_insn_u32 *)cmd,
 2000                                                     proto, oif,
 2001                                                     dst_ip, dst_port,
 2002                                                     src_ip, src_port, &fw_ugid_cache,
 2003                                                     &ugid_lookup, args->inp);
 2004                                 break;
 2005 
 2006                         case O_RECV:
 2007                                 match = iface_match(m->m_pkthdr.rcvif,
 2008                                     (ipfw_insn_if *)cmd);
 2009                                 break;
 2010 
 2011                         case O_XMIT:
 2012                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
 2013                                 break;
 2014 
 2015                         case O_VIA:
 2016                                 match = iface_match(oif ? oif :
 2017                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
 2018                                 break;
 2019 
 2020                         case O_MACADDR2:
 2021                                 if (args->eh != NULL) { /* have MAC header */
 2022                                         u_int32_t *want = (u_int32_t *)
 2023                                                 ((ipfw_insn_mac *)cmd)->addr;
 2024                                         u_int32_t *mask = (u_int32_t *)
 2025                                                 ((ipfw_insn_mac *)cmd)->mask;
 2026                                         u_int32_t *hdr = (u_int32_t *)args->eh;
 2027 
 2028                                         match =
 2029                                             ( want[0] == (hdr[0] & mask[0]) &&
 2030                                               want[1] == (hdr[1] & mask[1]) &&
 2031                                               want[2] == (hdr[2] & mask[2]) );
 2032                                 }
 2033                                 break;
 2034 
 2035                         case O_MAC_TYPE:
 2036                                 if (args->eh != NULL) {
 2037                                         u_int16_t t =
 2038                                             ntohs(args->eh->ether_type);
 2039                                         u_int16_t *p =
 2040                                             ((ipfw_insn_u16 *)cmd)->ports;
 2041                                         int i;
 2042 
 2043                                         for (i = cmdlen - 1; !match && i>0;
 2044                                             i--, p += 2)
 2045                                                 match = (t>=p[0] && t<=p[1]);
 2046                                 }
 2047                                 break;
 2048 
 2049                         case O_FRAG:
 2050                                 match = (hlen > 0 && offset != 0);
 2051                                 break;
 2052 
 2053                         case O_IN:      /* "out" is "not in" */
 2054                                 match = (oif == NULL);
 2055                                 break;
 2056 
 2057                         case O_LAYER2:
 2058                                 match = (args->eh != NULL);
 2059                                 break;
 2060 
 2061                         case O_PROTO:
 2062                                 /*
 2063                                  * We do not allow an arg of 0 so the
 2064                                  * check of "proto" only suffices.
 2065                                  */
 2066                                 match = (proto == cmd->arg1);
 2067                                 break;
 2068 
 2069                         case O_IP_SRC:
 2070                                 match = (hlen > 0 &&
 2071                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2072                                     src_ip.s_addr);
 2073                                 break;
 2074 
 2075                         case O_IP_SRC_LOOKUP:
 2076                         case O_IP_DST_LOOKUP:
 2077                                 if (hlen > 0) {
 2078                                     uint32_t a =
 2079                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
 2080                                             dst_ip.s_addr : src_ip.s_addr;
 2081                                     uint32_t v;
 2082 
 2083                                     match = lookup_table(cmd->arg1, a, &v);
 2084                                     if (!match)
 2085                                         break;
 2086                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
 2087                                         match =
 2088                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
 2089                                 }
 2090                                 break;
 2091 
 2092                         case O_IP_SRC_MASK:
 2093                         case O_IP_DST_MASK:
 2094                                 if (hlen > 0) {
 2095                                     uint32_t a =
 2096                                         (cmd->opcode == O_IP_DST_MASK) ?
 2097                                             dst_ip.s_addr : src_ip.s_addr;
 2098                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
 2099                                     int i = cmdlen-1;
 2100 
 2101                                     for (; !match && i>0; i-= 2, p+= 2)
 2102                                         match = (p[0] == (a & p[1]));
 2103                                 }
 2104                                 break;
 2105 
 2106                         case O_IP_SRC_ME:
 2107                                 if (hlen > 0) {
 2108                                         struct ifnet *tif;
 2109 
 2110                                         INADDR_TO_IFP(src_ip, tif);
 2111                                         match = (tif != NULL);
 2112                                 }
 2113                                 break;
 2114 
 2115                         case O_IP_DST_SET:
 2116                         case O_IP_SRC_SET:
 2117                                 if (hlen > 0) {
 2118                                         u_int32_t *d = (u_int32_t *)(cmd+1);
 2119                                         u_int32_t addr =
 2120                                             cmd->opcode == O_IP_DST_SET ?
 2121                                                 args->f_id.dst_ip :
 2122                                                 args->f_id.src_ip;
 2123 
 2124                                             if (addr < d[0])
 2125                                                     break;
 2126                                             addr -= d[0]; /* subtract base */
 2127                                             match = (addr < cmd->arg1) &&
 2128                                                 ( d[ 1 + (addr>>5)] &
 2129                                                   (1<<(addr & 0x1f)) );
 2130                                 }
 2131                                 break;
 2132 
 2133                         case O_IP_DST:
 2134                                 match = (hlen > 0 &&
 2135                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2136                                     dst_ip.s_addr);
 2137                                 break;
 2138 
 2139                         case O_IP_DST_ME:
 2140                                 if (hlen > 0) {
 2141                                         struct ifnet *tif;
 2142 
 2143                                         INADDR_TO_IFP(dst_ip, tif);
 2144                                         match = (tif != NULL);
 2145                                 }
 2146                                 break;
 2147 
 2148                         case O_IP_SRCPORT:
 2149                         case O_IP_DSTPORT:
 2150                                 /*
 2151                                  * offset == 0 && proto != 0 is enough
 2152                                  * to guarantee that we have an IPv4
 2153                                  * packet with port info.
 2154                                  */
 2155                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
 2156                                     && offset == 0) {
 2157                                         u_int16_t x =
 2158                                             (cmd->opcode == O_IP_SRCPORT) ?
 2159                                                 src_port : dst_port ;
 2160                                         u_int16_t *p =
 2161                                             ((ipfw_insn_u16 *)cmd)->ports;
 2162                                         int i;
 2163 
 2164                                         for (i = cmdlen - 1; !match && i>0;
 2165                                             i--, p += 2)
 2166                                                 match = (x>=p[0] && x<=p[1]);
 2167                                 }
 2168                                 break;
 2169 
 2170                         case O_ICMPTYPE:
 2171                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
 2172                                     icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
 2173                                 break;
 2174 
 2175                         case O_IPOPT:
 2176                                 match = (hlen > 0 && ipopts_match(ip, cmd) );
 2177                                 break;
 2178 
 2179                         case O_IPVER:
 2180                                 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
 2181                                 break;
 2182 
 2183                         case O_IPID:
 2184                         case O_IPLEN:
 2185                         case O_IPTTL:
 2186                                 if (hlen > 0) { /* only for IP packets */
 2187                                     uint16_t x;
 2188                                     uint16_t *p;
 2189                                     int i;
 2190 
 2191                                     if (cmd->opcode == O_IPLEN)
 2192                                         x = ip_len;
 2193                                     else if (cmd->opcode == O_IPTTL)
 2194                                         x = ip->ip_ttl;
 2195                                     else /* must be IPID */
 2196                                         x = ntohs(ip->ip_id);
 2197                                     if (cmdlen == 1) {
 2198                                         match = (cmd->arg1 == x);
 2199                                         break;
 2200                                     }
 2201                                     /* otherwise we have ranges */
 2202                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2203                                     i = cmdlen - 1;
 2204                                     for (; !match && i>0; i--, p += 2)
 2205                                         match = (x >= p[0] && x <= p[1]);
 2206                                 }
 2207                                 break;
 2208 
 2209                         case O_IPPRECEDENCE:
 2210                                 match = (hlen > 0 &&
 2211                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
 2212                                 break;
 2213 
 2214                         case O_IPTOS:
 2215                                 match = (hlen > 0 &&
 2216                                     flags_match(cmd, ip->ip_tos));
 2217                                 break;
 2218 
 2219                         case O_TCPFLAGS:
 2220                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2221                                     flags_match(cmd,
 2222                                         L3HDR(struct tcphdr,ip)->th_flags));
 2223                                 break;
 2224 
 2225                         case O_TCPOPTS:
 2226                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2227                                     tcpopts_match(ip, cmd));
 2228                                 break;
 2229 
 2230                         case O_TCPSEQ:
 2231                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2232                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2233                                         L3HDR(struct tcphdr,ip)->th_seq);
 2234                                 break;
 2235 
 2236                         case O_TCPACK:
 2237                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2238                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2239                                         L3HDR(struct tcphdr,ip)->th_ack);
 2240                                 break;
 2241 
 2242                         case O_TCPWIN:
 2243                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2244                                     cmd->arg1 ==
 2245                                         L3HDR(struct tcphdr,ip)->th_win);
 2246                                 break;
 2247 
 2248                         case O_ESTAB:
 2249                                 /* reject packets which have SYN only */
 2250                                 /* XXX should i also check for TH_ACK ? */
 2251                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2252                                     (L3HDR(struct tcphdr,ip)->th_flags &
 2253                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
 2254                                 break;
 2255 
 2256                         case O_LOG:
 2257                                 if (fw_verbose)
 2258                                         ipfw_log(f, hlen, args->eh, m, oif);
 2259                                 match = 1;
 2260                                 break;
 2261 
 2262                         case O_PROB:
 2263                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
 2264                                 break;
 2265 
 2266                         case O_VERREVPATH:
 2267                                 /* Outgoing packets automatically pass/match */
 2268                                 match = (hlen > 0 && ((oif != NULL) ||
 2269                                     (m->m_pkthdr.rcvif == NULL) ||
 2270                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
 2271                                 break;
 2272 
 2273                         case O_VERSRCREACH:
 2274                                 /* Outgoing packets automatically pass/match */
 2275                                 match = (hlen > 0 && ((oif != NULL) ||
 2276                                      verify_path(src_ip, NULL)));
 2277                                 break;
 2278 
 2279                         case O_ANTISPOOF:
 2280                                 /* Outgoing packets automatically pass/match */
 2281                                 if (oif == NULL && hlen > 0 &&
 2282                                     in_localaddr(src_ip))
 2283                                         match = verify_path(src_ip,
 2284                                                         m->m_pkthdr.rcvif);
 2285                                 else
 2286                                         match = 1;
 2287                                 break;
 2288 
 2289                         case O_IPSEC:
 2290 #ifdef FAST_IPSEC
 2291                                 match = (m_tag_find(m,
 2292                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
 2293 #endif
 2294 #ifdef IPSEC
 2295                                 match = (ipsec_getnhist(m) != 0);
 2296 #endif
 2297                                 /* otherwise no match */
 2298                                 break;
 2299 
 2300                         /*
 2301                          * The second set of opcodes represents 'actions',
 2302                          * i.e. the terminal part of a rule once the packet
 2303                          * matches all previous patterns.
 2304                          * Typically there is only one action for each rule,
 2305                          * and the opcode is stored at the end of the rule
 2306                          * (but there are exceptions -- see below).
 2307                          *
 2308                          * In general, here we set retval and terminate the
 2309                          * outer loop (would be a 'break 3' in some language,
 2310                          * but we need to do a 'goto done').
 2311                          *
 2312                          * Exceptions:
 2313                          * O_COUNT and O_SKIPTO actions:
 2314                          *   instead of terminating, we jump to the next rule
 2315                          *   ('goto next_rule', equivalent to a 'break 2'),
 2316                          *   or to the SKIPTO target ('goto again' after
 2317                          *   having set f, cmd and l), respectively.
 2318                          *
 2319                          * O_LIMIT and O_KEEP_STATE: these opcodes are
 2320                          *   not real 'actions', and are stored right
 2321                          *   before the 'action' part of the rule.
 2322                          *   These opcodes try to install an entry in the
 2323                          *   state tables; if successful, we continue with
 2324                          *   the next opcode (match=1; break;), otherwise
 2325                          *   the packet *   must be dropped
 2326                          *   ('goto done' after setting retval);
 2327                          *
 2328                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
 2329                          *   cause a lookup of the state table, and a jump
 2330                          *   to the 'action' part of the parent rule
 2331                          *   ('goto check_body') if an entry is found, or
 2332                          *   (CHECK_STATE only) a jump to the next rule if
 2333                          *   the entry is not found ('goto next_rule').
 2334                          *   The result of the lookup is cached to make
 2335                          *   further instances of these opcodes are
 2336                          *   effectively NOPs.
 2337                          */
 2338                         case O_LIMIT:
 2339                         case O_KEEP_STATE:
 2340                                 if (install_state(f,
 2341                                     (ipfw_insn_limit *)cmd, args)) {
 2342                                         retval = IP_FW_PORT_DENY_FLAG;
 2343                                         goto done; /* error/limit violation */
 2344                                 }
 2345                                 match = 1;
 2346                                 break;
 2347 
 2348                         case O_PROBE_STATE:
 2349                         case O_CHECK_STATE:
 2350                                 /*
 2351                                  * dynamic rules are checked at the first
 2352                                  * keep-state or check-state occurrence,
 2353                                  * with the result being stored in dyn_dir.
 2354                                  * The compiler introduces a PROBE_STATE
 2355                                  * instruction for us when we have a
 2356                                  * KEEP_STATE (because PROBE_STATE needs
 2357                                  * to be run first).
 2358                                  */
 2359                                 if (dyn_dir == MATCH_UNKNOWN &&
 2360                                     (q = lookup_dyn_rule(&args->f_id,
 2361                                      &dyn_dir, proto == IPPROTO_TCP ?
 2362                                         L3HDR(struct tcphdr, ip) : NULL))
 2363                                         != NULL) {
 2364                                         /*
 2365                                          * Found dynamic entry, update stats
 2366                                          * and jump to the 'action' part of
 2367                                          * the parent rule.
 2368                                          */
 2369                                         q->pcnt++;
 2370                                         q->bcnt += pktlen;
 2371                                         f = q->rule;
 2372                                         cmd = ACTION_PTR(f);
 2373                                         l = f->cmd_len - f->act_ofs;
 2374                                         IPFW_DYN_UNLOCK();
 2375                                         goto check_body;
 2376                                 }
 2377                                 /*
 2378                                  * Dynamic entry not found. If CHECK_STATE,
 2379                                  * skip to next rule, if PROBE_STATE just
 2380                                  * ignore and continue with next opcode.
 2381                                  */
 2382                                 if (cmd->opcode == O_CHECK_STATE)
 2383                                         goto next_rule;
 2384                                 match = 1;
 2385                                 break;
 2386 
 2387                         case O_ACCEPT:
 2388                                 retval = 0;     /* accept */
 2389                                 goto done;
 2390 
 2391                         case O_PIPE:
 2392                         case O_QUEUE:
 2393                                 args->rule = f; /* report matching rule */
 2394                                 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
 2395                                 goto done;
 2396 
 2397                         case O_DIVERT:
 2398                         case O_TEE: {
 2399                                 struct divert_tag *dt;
 2400 
 2401                                 if (args->eh) /* not on layer 2 */
 2402                                         break;
 2403                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
 2404                                                 sizeof(struct divert_tag),
 2405                                                 M_NOWAIT);
 2406                                 if (mtag == NULL) {
 2407                                         /* XXX statistic */
 2408                                         /* drop packet */
 2409                                         IPFW_RUNLOCK(chain);
 2410                                         return IP_FW_PORT_DENY_FLAG;
 2411                                 }
 2412                                 dt = (struct divert_tag *)(mtag+1);
 2413                                 dt->cookie = f->rulenum;
 2414                                 dt->info = (cmd->opcode == O_DIVERT) ?
 2415                                     cmd->arg1 :
 2416                                     cmd->arg1 | IP_FW_PORT_TEE_FLAG;
 2417                                 m_tag_prepend(m, mtag);
 2418                                 retval = dt->info;
 2419                                 goto done;
 2420                         }
 2421 
 2422                         case O_COUNT:
 2423                         case O_SKIPTO:
 2424                                 f->pcnt++;      /* update stats */
 2425                                 f->bcnt += pktlen;
 2426                                 f->timestamp = time_second;
 2427                                 if (cmd->opcode == O_COUNT)
 2428                                         goto next_rule;
 2429                                 /* handle skipto */
 2430                                 if (f->next_rule == NULL)
 2431                                         lookup_next_rule(f);
 2432                                 f = f->next_rule;
 2433                                 goto again;
 2434 
 2435                         case O_REJECT:
 2436                                 /*
 2437                                  * Drop the packet and send a reject notice
 2438                                  * if the packet is not ICMP (or is an ICMP
 2439                                  * query), and it is not multicast/broadcast.
 2440                                  */
 2441                                 if (hlen > 0 &&
 2442                                     (proto != IPPROTO_ICMP ||
 2443                                      is_icmp_query(ip)) &&
 2444                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 2445                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
 2446                                         send_reject(args, cmd->arg1,
 2447                                             offset,ip_len);
 2448                                         m = args->m;
 2449                                 }
 2450                                 /* FALLTHROUGH */
 2451                         case O_DENY:
 2452                                 retval = IP_FW_PORT_DENY_FLAG;
 2453                                 goto done;
 2454 
 2455                         case O_FORWARD_IP:
 2456                                 if (args->eh)   /* not valid on layer2 pkts */
 2457                                         break;
 2458                                 if (!q || dyn_dir == MATCH_FORWARD)
 2459                                         args->next_hop =
 2460                                             &((ipfw_insn_sa *)cmd)->sa;
 2461                                 retval = 0;
 2462                                 goto done;
 2463 
 2464                         default:
 2465                                 panic("-- unknown opcode %d\n", cmd->opcode);
 2466                         } /* end of switch() on opcodes */
 2467 
 2468                         if (cmd->len & F_NOT)
 2469                                 match = !match;
 2470 
 2471                         if (match) {
 2472                                 if (cmd->len & F_OR)
 2473                                         skip_or = 1;
 2474                         } else {
 2475                                 if (!(cmd->len & F_OR)) /* not an OR block, */
 2476                                         break;          /* try next rule    */
 2477                         }
 2478 
 2479                 }       /* end of inner for, scan opcodes */
 2480 
 2481 next_rule:;             /* try next rule                */
 2482 
 2483         }               /* end of outer for, scan rules */
 2484         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
 2485         IPFW_RUNLOCK(chain);
 2486         return(IP_FW_PORT_DENY_FLAG);
 2487 
 2488 done:
 2489         /* Update statistics */
 2490         f->pcnt++;
 2491         f->bcnt += pktlen;
 2492         f->timestamp = time_second;
 2493         IPFW_RUNLOCK(chain);
 2494         return retval;
 2495 
 2496 pullup_failed:
 2497         if (fw_verbose)
 2498                 printf("ipfw: pullup failed\n");
 2499         return(IP_FW_PORT_DENY_FLAG);
 2500 }
 2501 
 2502 /*
 2503  * When a rule is added/deleted, clear the next_rule pointers in all rules.
 2504  * These will be reconstructed on the fly as packets are matched.
 2505  */
 2506 static void
 2507 flush_rule_ptrs(struct ip_fw_chain *chain)
 2508 {
 2509         struct ip_fw *rule;
 2510 
 2511         IPFW_WLOCK_ASSERT(chain);
 2512 
 2513         for (rule = chain->rules; rule; rule = rule->next)
 2514                 rule->next_rule = NULL;
 2515 }
 2516 
 2517 /*
 2518  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
 2519  * pipe/queue, or to all of them (match == NULL).
 2520  */
 2521 void
 2522 flush_pipe_ptrs(struct dn_flow_set *match)
 2523 {
 2524         struct ip_fw *rule;
 2525 
 2526         IPFW_WLOCK(&layer3_chain);
 2527         for (rule = layer3_chain.rules; rule; rule = rule->next) {
 2528                 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
 2529 
 2530                 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
 2531                         continue;
 2532                 /*
 2533                  * XXX Use bcmp/bzero to handle pipe_ptr to overcome
 2534                  * possible alignment problems on 64-bit architectures.
 2535                  * This code is seldom used so we do not worry too
 2536                  * much about efficiency.
 2537                  */
 2538                 if (match == NULL ||
 2539                     !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
 2540                         bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
 2541         }
 2542         IPFW_WUNLOCK(&layer3_chain);
 2543 }
 2544 
 2545 /*
 2546  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
 2547  * possibly create a rule number and add the rule to the list.
 2548  * Update the rule_number in the input struct so the caller knows it as well.
 2549  */
 2550 static int
 2551 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
 2552 {
 2553         struct ip_fw *rule, *f, *prev;
 2554         int l = RULESIZE(input_rule);
 2555 
 2556         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
 2557                 return (EINVAL);
 2558 
 2559         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
 2560         if (rule == NULL)
 2561                 return (ENOSPC);
 2562 
 2563         bcopy(input_rule, rule, l);
 2564 
 2565         rule->next = NULL;
 2566         rule->next_rule = NULL;
 2567 
 2568         rule->pcnt = 0;
 2569         rule->bcnt = 0;
 2570         rule->timestamp = 0;
 2571 
 2572         IPFW_WLOCK(chain);
 2573 
 2574         if (chain->rules == NULL) {     /* default rule */
 2575                 chain->rules = rule;
 2576                 goto done;
 2577         }
 2578 
 2579         /*
 2580          * If rulenum is 0, find highest numbered rule before the
 2581          * default rule, and add autoinc_step
 2582          */
 2583         if (autoinc_step < 1)
 2584                 autoinc_step = 1;
 2585         else if (autoinc_step > 1000)
 2586                 autoinc_step = 1000;
 2587         if (rule->rulenum == 0) {
 2588                 /*
 2589                  * locate the highest numbered rule before default
 2590                  */
 2591                 for (f = chain->rules; f; f = f->next) {
 2592                         if (f->rulenum == IPFW_DEFAULT_RULE)
 2593                                 break;
 2594                         rule->rulenum = f->rulenum;
 2595                 }
 2596                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
 2597                         rule->rulenum += autoinc_step;
 2598                 input_rule->rulenum = rule->rulenum;
 2599         }
 2600 
 2601         /*
 2602          * Now insert the new rule in the right place in the sorted list.
 2603          */
 2604         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
 2605                 if (f->rulenum > rule->rulenum) { /* found the location */
 2606                         if (prev) {
 2607                                 rule->next = f;
 2608                                 prev->next = rule;
 2609                         } else { /* head insert */
 2610                                 rule->next = chain->rules;
 2611                                 chain->rules = rule;
 2612                         }
 2613                         break;
 2614                 }
 2615         }
 2616         flush_rule_ptrs(chain);
 2617 done:
 2618         static_count++;
 2619         static_len += l;
 2620         IPFW_WUNLOCK(chain);
 2621         DEB(printf("ipfw: installed rule %d, static count now %d\n",
 2622                 rule->rulenum, static_count);)
 2623         return (0);
 2624 }
 2625 
 2626 /**
 2627  * Remove a static rule (including derived * dynamic rules)
 2628  * and place it on the ``reap list'' for later reclamation.
 2629  * The caller is in charge of clearing rule pointers to avoid
 2630  * dangling pointers.
 2631  * @return a pointer to the next entry.
 2632  * Arguments are not checked, so they better be correct.
 2633  */
 2634 static struct ip_fw *
 2635 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
 2636 {
 2637         struct ip_fw *n;
 2638         int l = RULESIZE(rule);
 2639 
 2640         IPFW_WLOCK_ASSERT(chain);
 2641 
 2642         n = rule->next;
 2643         IPFW_DYN_LOCK();
 2644         remove_dyn_rule(rule, NULL /* force removal */);
 2645         IPFW_DYN_UNLOCK();
 2646         if (prev == NULL)
 2647                 chain->rules = n;
 2648         else
 2649                 prev->next = n;
 2650         static_count--;
 2651         static_len -= l;
 2652 
 2653         rule->next = chain->reap;
 2654         chain->reap = rule;
 2655 
 2656         return n;
 2657 }
 2658 
 2659 /**
 2660  * Reclaim storage associated with a list of rules.  This is
 2661  * typically the list created using remove_rule.
 2662  */
 2663 static void
 2664 reap_rules(struct ip_fw *head)
 2665 {
 2666         struct ip_fw *rule;
 2667 
 2668         while ((rule = head) != NULL) {
 2669                 head = head->next;
 2670                 if (DUMMYNET_LOADED)
 2671                         ip_dn_ruledel_ptr(rule);
 2672                 free(rule, M_IPFW);
 2673         }
 2674 }
 2675 
 2676 /*
 2677  * Remove all rules from a chain (except rules in set RESVD_SET
 2678  * unless kill_default = 1).  The caller is responsible for
 2679  * reclaiming storage for the rules left in chain->reap.
 2680  */
 2681 static void
 2682 free_chain(struct ip_fw_chain *chain, int kill_default)
 2683 {
 2684         struct ip_fw *prev, *rule;
 2685 
 2686         IPFW_WLOCK_ASSERT(chain);
 2687 
 2688         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
 2689         for (prev = NULL, rule = chain->rules; rule ; )
 2690                 if (kill_default || rule->set != RESVD_SET)
 2691                         rule = remove_rule(chain, rule, prev);
 2692                 else {
 2693                         prev = rule;
 2694                         rule = rule->next;
 2695                 }
 2696 }
 2697 
 2698 /**
 2699  * Remove all rules with given number, and also do set manipulation.
 2700  * Assumes chain != NULL && *chain != NULL.
 2701  *
 2702  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
 2703  * the next 8 bits are the new set, the top 8 bits are the command:
 2704  *
 2705  *      0       delete rules with given number
 2706  *      1       delete rules with given set number
 2707  *      2       move rules with given number to new set
 2708  *      3       move rules with given set number to new set
 2709  *      4       swap sets with given numbers
 2710  */
 2711 static int
 2712 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
 2713 {
 2714         struct ip_fw *prev = NULL, *rule;
 2715         u_int16_t rulenum;      /* rule or old_set */
 2716         u_int8_t cmd, new_set;
 2717 
 2718         rulenum = arg & 0xffff;
 2719         cmd = (arg >> 24) & 0xff;
 2720         new_set = (arg >> 16) & 0xff;
 2721 
 2722         if (cmd > 4)
 2723                 return EINVAL;
 2724         if (new_set > RESVD_SET)
 2725                 return EINVAL;
 2726         if (cmd == 0 || cmd == 2) {
 2727                 if (rulenum >= IPFW_DEFAULT_RULE)
 2728                         return EINVAL;
 2729         } else {
 2730                 if (rulenum > RESVD_SET)        /* old_set */
 2731                         return EINVAL;
 2732         }
 2733 
 2734         IPFW_WLOCK(chain);
 2735         rule = chain->rules;
 2736         chain->reap = NULL;
 2737         switch (cmd) {
 2738         case 0: /* delete rules with given number */
 2739                 /*
 2740                  * locate first rule to delete
 2741                  */
 2742                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
 2743                         ;
 2744                 if (rule->rulenum != rulenum) {
 2745                         IPFW_WUNLOCK(chain);
 2746                         return EINVAL;
 2747                 }
 2748 
 2749                 /*
 2750                  * flush pointers outside the loop, then delete all matching
 2751                  * rules. prev remains the same throughout the cycle.
 2752                  */
 2753                 flush_rule_ptrs(chain);
 2754                 while (rule->rulenum == rulenum)
 2755                         rule = remove_rule(chain, rule, prev);
 2756                 break;
 2757 
 2758         case 1: /* delete all rules with given set number */
 2759                 flush_rule_ptrs(chain);
 2760                 rule = chain->rules;
 2761                 while (rule->rulenum < IPFW_DEFAULT_RULE)
 2762                         if (rule->set == rulenum)
 2763                                 rule = remove_rule(chain, rule, prev);
 2764                         else {
 2765                                 prev = rule;
 2766                                 rule = rule->next;
 2767                         }
 2768                 break;
 2769 
 2770         case 2: /* move rules with given number to new set */
 2771                 rule = chain->rules;
 2772                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2773                         if (rule->rulenum == rulenum)
 2774                                 rule->set = new_set;
 2775                 break;
 2776 
 2777         case 3: /* move rules with given set number to new set */
 2778                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2779                         if (rule->set == rulenum)
 2780                                 rule->set = new_set;
 2781                 break;
 2782 
 2783         case 4: /* swap two sets */
 2784                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2785                         if (rule->set == rulenum)
 2786                                 rule->set = new_set;
 2787                         else if (rule->set == new_set)
 2788                                 rule->set = rulenum;
 2789                 break;
 2790         }
 2791         /*
 2792          * Look for rules to reclaim.  We grab the list before
 2793          * releasing the lock then reclaim them w/o the lock to
 2794          * avoid a LOR with dummynet.
 2795          */
 2796         rule = chain->reap;
 2797         chain->reap = NULL;
 2798         IPFW_WUNLOCK(chain);
 2799         if (rule)
 2800                 reap_rules(rule);
 2801         return 0;
 2802 }
 2803 
 2804 /*
 2805  * Clear counters for a specific rule.
 2806  * The enclosing "table" is assumed locked.
 2807  */
 2808 static void
 2809 clear_counters(struct ip_fw *rule, int log_only)
 2810 {
 2811         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
 2812 
 2813         if (log_only == 0) {
 2814                 rule->bcnt = rule->pcnt = 0;
 2815                 rule->timestamp = 0;
 2816         }
 2817         if (l->o.opcode == O_LOG)
 2818                 l->log_left = l->max_log;
 2819 }
 2820 
 2821 /**
 2822  * Reset some or all counters on firewall rules.
 2823  * @arg frwl is null to clear all entries, or contains a specific
 2824  * rule number.
 2825  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
 2826  */
 2827 static int
 2828 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
 2829 {
 2830         struct ip_fw *rule;
 2831         char *msg;
 2832 
 2833         IPFW_WLOCK(chain);
 2834         if (rulenum == 0) {
 2835                 norule_counter = 0;
 2836                 for (rule = chain->rules; rule; rule = rule->next)
 2837                         clear_counters(rule, log_only);
 2838                 msg = log_only ? "ipfw: All logging counts reset.\n" :
 2839                                 "ipfw: Accounting cleared.\n";
 2840         } else {
 2841                 int cleared = 0;
 2842                 /*
 2843                  * We can have multiple rules with the same number, so we
 2844                  * need to clear them all.
 2845                  */
 2846                 for (rule = chain->rules; rule; rule = rule->next)
 2847                         if (rule->rulenum == rulenum) {
 2848                                 while (rule && rule->rulenum == rulenum) {
 2849                                         clear_counters(rule, log_only);
 2850                                         rule = rule->next;
 2851                                 }
 2852                                 cleared = 1;
 2853                                 break;
 2854                         }
 2855                 if (!cleared) { /* we did not find any matching rules */
 2856                         IPFW_WUNLOCK(chain);
 2857                         return (EINVAL);
 2858                 }
 2859                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
 2860                                 "ipfw: Entry %d cleared.\n";
 2861         }
 2862         IPFW_WUNLOCK(chain);
 2863 
 2864         if (fw_verbose)
 2865                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
 2866         return (0);
 2867 }
 2868 
 2869 /*
 2870  * Check validity of the structure before insert.
 2871  * Fortunately rules are simple, so this mostly need to check rule sizes.
 2872  */
 2873 static int
 2874 check_ipfw_struct(struct ip_fw *rule, int size)
 2875 {
 2876         int l, cmdlen = 0;
 2877         int have_action=0;
 2878         ipfw_insn *cmd;
 2879 
 2880         if (size < sizeof(*rule)) {
 2881                 printf("ipfw: rule too short\n");
 2882                 return (EINVAL);
 2883         }
 2884         /* first, check for valid size */
 2885         l = RULESIZE(rule);
 2886         if (l != size) {
 2887                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
 2888                 return (EINVAL);
 2889         }
 2890         if (rule->act_ofs >= rule->cmd_len) {
 2891                 printf("ipfw: bogus action offset (%u > %u)\n",
 2892                     rule->act_ofs, rule->cmd_len - 1);
 2893                 return (EINVAL);
 2894         }
 2895         /*
 2896          * Now go for the individual checks. Very simple ones, basically only
 2897          * instruction sizes.
 2898          */
 2899         for (l = rule->cmd_len, cmd = rule->cmd ;
 2900                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
 2901                 cmdlen = F_LEN(cmd);
 2902                 if (cmdlen > l) {
 2903                         printf("ipfw: opcode %d size truncated\n",
 2904                             cmd->opcode);
 2905                         return EINVAL;
 2906                 }
 2907                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
 2908                 switch (cmd->opcode) {
 2909                 case O_PROBE_STATE:
 2910                 case O_KEEP_STATE:
 2911                 case O_PROTO:
 2912                 case O_IP_SRC_ME:
 2913                 case O_IP_DST_ME:
 2914                 case O_LAYER2:
 2915                 case O_IN:
 2916                 case O_FRAG:
 2917                 case O_IPOPT:
 2918                 case O_IPTOS:
 2919                 case O_IPPRECEDENCE:
 2920                 case O_IPVER:
 2921                 case O_TCPWIN:
 2922                 case O_TCPFLAGS:
 2923                 case O_TCPOPTS:
 2924                 case O_ESTAB:
 2925                 case O_VERREVPATH:
 2926                 case O_VERSRCREACH:
 2927                 case O_ANTISPOOF:
 2928                 case O_IPSEC:
 2929                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 2930                                 goto bad_size;
 2931                         break;
 2932 
 2933                 case O_UID:
 2934                 case O_GID:
 2935                 case O_JAIL:
 2936                 case O_IP_SRC:
 2937                 case O_IP_DST:
 2938                 case O_TCPSEQ:
 2939                 case O_TCPACK:
 2940                 case O_PROB:
 2941                 case O_ICMPTYPE:
 2942                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 2943                                 goto bad_size;
 2944                         break;
 2945 
 2946                 case O_LIMIT:
 2947                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
 2948                                 goto bad_size;
 2949                         break;
 2950 
 2951                 case O_LOG:
 2952                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
 2953                                 goto bad_size;
 2954 
 2955                         ((ipfw_insn_log *)cmd)->log_left =
 2956                             ((ipfw_insn_log *)cmd)->max_log;
 2957 
 2958                         break;
 2959 
 2960                 case O_IP_SRC_MASK:
 2961                 case O_IP_DST_MASK:
 2962                         /* only odd command lengths */
 2963                         if ( !(cmdlen & 1) || cmdlen > 31)
 2964                                 goto bad_size;
 2965                         break;
 2966 
 2967                 case O_IP_SRC_SET:
 2968                 case O_IP_DST_SET:
 2969                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
 2970                                 printf("ipfw: invalid set size %d\n",
 2971                                         cmd->arg1);
 2972                                 return EINVAL;
 2973                         }
 2974                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 2975                             (cmd->arg1+31)/32 )
 2976                                 goto bad_size;
 2977                         break;
 2978 
 2979                 case O_IP_SRC_LOOKUP:
 2980                 case O_IP_DST_LOOKUP:
 2981                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
 2982                                 printf("ipfw: invalid table number %d\n",
 2983                                     cmd->arg1);
 2984                                 return (EINVAL);
 2985                         }
 2986                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
 2987                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 2988                                 goto bad_size;
 2989                         break;
 2990 
 2991                 case O_MACADDR2:
 2992                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
 2993                                 goto bad_size;
 2994                         break;
 2995 
 2996                 case O_NOP:
 2997                 case O_IPID:
 2998                 case O_IPTTL:
 2999                 case O_IPLEN:
 3000                         if (cmdlen < 1 || cmdlen > 31)
 3001                                 goto bad_size;
 3002                         break;
 3003 
 3004                 case O_MAC_TYPE:
 3005                 case O_IP_SRCPORT:
 3006                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
 3007                         if (cmdlen < 2 || cmdlen > 31)
 3008                                 goto bad_size;
 3009                         break;
 3010 
 3011                 case O_RECV:
 3012                 case O_XMIT:
 3013                 case O_VIA:
 3014                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
 3015                                 goto bad_size;
 3016                         break;
 3017 
 3018                 case O_PIPE:
 3019                 case O_QUEUE:
 3020                         if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
 3021                                 goto bad_size;
 3022                         goto check_action;
 3023 
 3024                 case O_FORWARD_IP:
 3025 #ifdef  IPFIREWALL_FORWARD
 3026                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
 3027                                 goto bad_size;
 3028                         goto check_action;
 3029 #else
 3030                         return EINVAL;
 3031 #endif
 3032 
 3033                 case O_DIVERT:
 3034                 case O_TEE:
 3035 #ifndef IPDIVERT
 3036                         return EINVAL;
 3037 #endif
 3038                 case O_FORWARD_MAC: /* XXX not implemented yet */
 3039                 case O_CHECK_STATE:
 3040                 case O_COUNT:
 3041                 case O_ACCEPT:
 3042                 case O_DENY:
 3043                 case O_REJECT:
 3044                 case O_SKIPTO:
 3045                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3046                                 goto bad_size;
 3047 check_action:
 3048                         if (have_action) {
 3049                                 printf("ipfw: opcode %d, multiple actions"
 3050                                         " not allowed\n",
 3051                                         cmd->opcode);
 3052                                 return EINVAL;
 3053                         }
 3054                         have_action = 1;
 3055                         if (l != cmdlen) {
 3056                                 printf("ipfw: opcode %d, action must be"
 3057                                         " last opcode\n",
 3058                                         cmd->opcode);
 3059                                 return EINVAL;
 3060                         }
 3061                         break;
 3062                 default:
 3063                         printf("ipfw: opcode %d, unknown opcode\n",
 3064                                 cmd->opcode);
 3065                         return EINVAL;
 3066                 }
 3067         }
 3068         if (have_action == 0) {
 3069                 printf("ipfw: missing action\n");
 3070                 return EINVAL;
 3071         }
 3072         return 0;
 3073 
 3074 bad_size:
 3075         printf("ipfw: opcode %d size %d wrong\n",
 3076                 cmd->opcode, cmdlen);
 3077         return EINVAL;
 3078 }
 3079 
 3080 /*
 3081  * Copy the static and dynamic rules to the supplied buffer
 3082  * and return the amount of space actually used.
 3083  */
 3084 static size_t
 3085 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
 3086 {
 3087         char *bp = buf;
 3088         char *ep = bp + space;
 3089         struct ip_fw *rule;
 3090         int i;
 3091 
 3092         /* XXX this can take a long time and locking will block packet flow */
 3093         IPFW_RLOCK(chain);
 3094         for (rule = chain->rules; rule ; rule = rule->next) {
 3095                 /*
 3096                  * Verify the entry fits in the buffer in case the
 3097                  * rules changed between calculating buffer space and
 3098                  * now.  This would be better done using a generation
 3099                  * number but should suffice for now.
 3100                  */
 3101                 i = RULESIZE(rule);
 3102                 if (bp + i <= ep) {
 3103                         bcopy(rule, bp, i);
 3104                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
 3105                             sizeof(set_disable));
 3106                         bp += i;
 3107                 }
 3108         }
 3109         IPFW_RUNLOCK(chain);
 3110         if (ipfw_dyn_v) {
 3111                 ipfw_dyn_rule *p, *last = NULL;
 3112 
 3113                 IPFW_DYN_LOCK();
 3114                 for (i = 0 ; i < curr_dyn_buckets; i++)
 3115                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
 3116                                 if (bp + sizeof *p <= ep) {
 3117                                         ipfw_dyn_rule *dst =
 3118                                                 (ipfw_dyn_rule *)bp;
 3119                                         bcopy(p, dst, sizeof *p);
 3120                                         bcopy(&(p->rule->rulenum), &(dst->rule),
 3121                                             sizeof(p->rule->rulenum));
 3122                                         /*
 3123                                          * store a non-null value in "next".
 3124                                          * The userland code will interpret a
 3125                                          * NULL here as a marker
 3126                                          * for the last dynamic rule.
 3127                                          */
 3128                                         bcopy(&dst, &dst->next, sizeof(dst));
 3129                                         last = dst;
 3130                                         dst->expire =
 3131                                             TIME_LEQ(dst->expire, time_second) ?
 3132                                                 0 : dst->expire - time_second ;
 3133                                         bp += sizeof(ipfw_dyn_rule);
 3134                                 }
 3135                         }
 3136                 IPFW_DYN_UNLOCK();
 3137                 if (last != NULL) /* mark last dynamic rule */
 3138                         bzero(&last->next, sizeof(last));
 3139         }
 3140         return (bp - (char *)buf);
 3141 }
 3142 
 3143 
 3144 /**
 3145  * {set|get}sockopt parser.
 3146  */
 3147 static int
 3148 ipfw_ctl(struct sockopt *sopt)
 3149 {
 3150 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
 3151         int error, rule_num;
 3152         size_t size;
 3153         struct ip_fw *buf, *rule;
 3154         u_int32_t rulenum[2];
 3155 
 3156         error = suser(sopt->sopt_td);
 3157         if (error)
 3158                 return (error);
 3159 
 3160         /*
 3161          * Disallow modifications in really-really secure mode, but still allow
 3162          * the logging counters to be reset.
 3163          */
 3164         if (sopt->sopt_name == IP_FW_ADD ||
 3165             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
 3166 #if __FreeBSD_version >= 500034
 3167                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
 3168                 if (error)
 3169                         return (error);
 3170 #else /* FreeBSD 4.x */
 3171                 if (securelevel >= 3)
 3172                         return (EPERM);
 3173 #endif
 3174         }
 3175 
 3176         error = 0;
 3177 
 3178         switch (sopt->sopt_name) {
 3179         case IP_FW_GET:
 3180                 /*
 3181                  * pass up a copy of the current rules. Static rules
 3182                  * come first (the last of which has number IPFW_DEFAULT_RULE),
 3183                  * followed by a possibly empty list of dynamic rule.
 3184                  * The last dynamic rule has NULL in the "next" field.
 3185                  *
 3186                  * Note that the calculated size is used to bound the
 3187                  * amount of data returned to the user.  The rule set may
 3188                  * change between calculating the size and returning the
 3189                  * data in which case we'll just return what fits.
 3190                  */
 3191                 size = static_len;      /* size of static rules */
 3192                 if (ipfw_dyn_v)         /* add size of dyn.rules */
 3193                         size += (dyn_count * sizeof(ipfw_dyn_rule));
 3194 
 3195                 /*
 3196                  * XXX todo: if the user passes a short length just to know
 3197                  * how much room is needed, do not bother filling up the
 3198                  * buffer, just jump to the sooptcopyout.
 3199                  */
 3200                 buf = malloc(size, M_TEMP, M_WAITOK);
 3201                 error = sooptcopyout(sopt, buf,
 3202                                 ipfw_getrules(&layer3_chain, buf, size));
 3203                 free(buf, M_TEMP);
 3204                 break;
 3205 
 3206         case IP_FW_FLUSH:
 3207                 /*
 3208                  * Normally we cannot release the lock on each iteration.
 3209                  * We could do it here only because we start from the head all
 3210                  * the times so there is no risk of missing some entries.
 3211                  * On the other hand, the risk is that we end up with
 3212                  * a very inconsistent ruleset, so better keep the lock
 3213                  * around the whole cycle.
 3214                  *
 3215                  * XXX this code can be improved by resetting the head of
 3216                  * the list to point to the default rule, and then freeing
 3217                  * the old list without the need for a lock.
 3218                  */
 3219 
 3220                 IPFW_WLOCK(&layer3_chain);
 3221                 layer3_chain.reap = NULL;
 3222                 free_chain(&layer3_chain, 0 /* keep default rule */);
 3223                 rule = layer3_chain.reap, layer3_chain.reap = NULL;
 3224                 IPFW_WUNLOCK(&layer3_chain);
 3225                 if (layer3_chain.reap != NULL)
 3226                         reap_rules(rule);
 3227                 break;
 3228 
 3229         case IP_FW_ADD:
 3230                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
 3231                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
 3232                         sizeof(struct ip_fw) );
 3233                 if (error == 0)
 3234                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
 3235                 if (error == 0) {
 3236                         error = add_rule(&layer3_chain, rule);
 3237                         size = RULESIZE(rule);
 3238                         if (!error && sopt->sopt_dir == SOPT_GET)
 3239                                 error = sooptcopyout(sopt, rule, size);
 3240                 }
 3241                 free(rule, M_TEMP);
 3242                 break;
 3243 
 3244         case IP_FW_DEL:
 3245                 /*
 3246                  * IP_FW_DEL is used for deleting single rules or sets,
 3247                  * and (ab)used to atomically manipulate sets. Argument size
 3248                  * is used to distinguish between the two:
 3249                  *    sizeof(u_int32_t)
 3250                  *      delete single rule or set of rules,
 3251                  *      or reassign rules (or sets) to a different set.
 3252                  *    2*sizeof(u_int32_t)
 3253                  *      atomic disable/enable sets.
 3254                  *      first u_int32_t contains sets to be disabled,
 3255                  *      second u_int32_t contains sets to be enabled.
 3256                  */
 3257                 error = sooptcopyin(sopt, rulenum,
 3258                         2*sizeof(u_int32_t), sizeof(u_int32_t));
 3259                 if (error)
 3260                         break;
 3261                 size = sopt->sopt_valsize;
 3262                 if (size == sizeof(u_int32_t))  /* delete or reassign */
 3263                         error = del_entry(&layer3_chain, rulenum[0]);
 3264                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
 3265                         set_disable =
 3266                             (set_disable | rulenum[0]) & ~rulenum[1] &
 3267                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
 3268                 else
 3269                         error = EINVAL;
 3270                 break;
 3271 
 3272         case IP_FW_ZERO:
 3273         case IP_FW_RESETLOG: /* argument is an int, the rule number */
 3274                 rule_num = 0;
 3275                 if (sopt->sopt_val != 0) {
 3276                     error = sooptcopyin(sopt, &rule_num,
 3277                             sizeof(int), sizeof(int));
 3278                     if (error)
 3279                         break;
 3280                 }
 3281                 error = zero_entry(&layer3_chain, rule_num,
 3282                         sopt->sopt_name == IP_FW_RESETLOG);
 3283                 break;
 3284 
 3285         case IP_FW_TABLE_ADD:
 3286                 {
 3287                         ipfw_table_entry ent;
 3288 
 3289                         error = sooptcopyin(sopt, &ent,
 3290                             sizeof(ent), sizeof(ent));
 3291                         if (error)
 3292                                 break;
 3293                         error = add_table_entry(ent.tbl, ent.addr,
 3294                             ent.masklen, ent.value);
 3295                 }
 3296                 break;
 3297 
 3298         case IP_FW_TABLE_DEL:
 3299                 {
 3300                         ipfw_table_entry ent;
 3301 
 3302                         error = sooptcopyin(sopt, &ent,
 3303                             sizeof(ent), sizeof(ent));
 3304                         if (error)
 3305                                 break;
 3306                         error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
 3307                 }
 3308                 break;
 3309 
 3310         case IP_FW_TABLE_FLUSH:
 3311                 {
 3312                         u_int16_t tbl;
 3313 
 3314                         error = sooptcopyin(sopt, &tbl,
 3315                             sizeof(tbl), sizeof(tbl));
 3316                         if (error)
 3317                                 break;
 3318                         error = flush_table(tbl);
 3319                 }
 3320                 break;
 3321 
 3322         case IP_FW_TABLE_GETSIZE:
 3323                 {
 3324                         u_int32_t tbl, cnt;
 3325 
 3326                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
 3327                             sizeof(tbl))))
 3328                                 break;
 3329                         if ((error = count_table(tbl, &cnt)))
 3330                                 break;
 3331                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
 3332                 }
 3333                 break;
 3334 
 3335         case IP_FW_TABLE_LIST:
 3336                 {
 3337                         ipfw_table *tbl;
 3338 
 3339                         if (sopt->sopt_valsize < sizeof(*tbl)) {
 3340                                 error = EINVAL;
 3341                                 break;
 3342                         }
 3343                         size = sopt->sopt_valsize;
 3344                         tbl = malloc(size, M_TEMP, M_WAITOK);
 3345                         if (tbl == NULL) {
 3346                                 error = ENOMEM;
 3347                                 break;
 3348                         }
 3349                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
 3350                         if (error) {
 3351                                 free(tbl, M_TEMP);
 3352                                 break;
 3353                         }
 3354                         tbl->size = (size - sizeof(*tbl)) /
 3355                             sizeof(ipfw_table_entry);
 3356                         error = dump_table(tbl);
 3357                         if (error) {
 3358                                 free(tbl, M_TEMP);
 3359                                 break;
 3360                         }
 3361                         error = sooptcopyout(sopt, tbl, size);
 3362                         free(tbl, M_TEMP);
 3363                 }
 3364                 break;
 3365 
 3366         default:
 3367                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
 3368                 error = EINVAL;
 3369         }
 3370 
 3371         return (error);
 3372 #undef RULE_MAXSIZE
 3373 }
 3374 
 3375 /**
 3376  * dummynet needs a reference to the default rule, because rules can be
 3377  * deleted while packets hold a reference to them. When this happens,
 3378  * dummynet changes the reference to the default rule (it could well be a
 3379  * NULL pointer, but this way we do not need to check for the special
 3380  * case, plus here he have info on the default behaviour).
 3381  */
 3382 struct ip_fw *ip_fw_default_rule;
 3383 
 3384 /*
 3385  * This procedure is only used to handle keepalives. It is invoked
 3386  * every dyn_keepalive_period
 3387  */
 3388 static void
 3389 ipfw_tick(void * __unused unused)
 3390 {
 3391         int i;
 3392         ipfw_dyn_rule *q;
 3393 
 3394         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
 3395                 goto done;
 3396 
 3397         IPFW_DYN_LOCK();
 3398         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 3399                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
 3400                         if (q->dyn_type == O_LIMIT_PARENT)
 3401                                 continue;
 3402                         if (q->id.proto != IPPROTO_TCP)
 3403                                 continue;
 3404                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
 3405                                 continue;
 3406                         if (TIME_LEQ( time_second+dyn_keepalive_interval,
 3407                             q->expire))
 3408                                 continue;       /* too early */
 3409                         if (TIME_LEQ(q->expire, time_second))
 3410                                 continue;       /* too late, rule expired */
 3411 
 3412                         send_pkt(&(q->id), q->ack_rev - 1, q->ack_fwd, TH_SYN);
 3413                         send_pkt(&(q->id), q->ack_fwd - 1, q->ack_rev, 0);
 3414                 }
 3415         }
 3416         IPFW_DYN_UNLOCK();
 3417 done:
 3418         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
 3419 }
 3420 
 3421 int
 3422 ipfw_init(void)
 3423 {
 3424         struct ip_fw default_rule;
 3425         int error;
 3426 
 3427         layer3_chain.rules = NULL;
 3428         layer3_chain.want_write = 0;
 3429         layer3_chain.busy_count = 0;
 3430         cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
 3431         IPFW_LOCK_INIT(&layer3_chain);
 3432         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
 3433             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
 3434             UMA_ALIGN_PTR, 0);
 3435         IPFW_DYN_LOCK_INIT();
 3436         callout_init(&ipfw_timeout, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
 3437 
 3438         bzero(&default_rule, sizeof default_rule);
 3439 
 3440         default_rule.act_ofs = 0;
 3441         default_rule.rulenum = IPFW_DEFAULT_RULE;
 3442         default_rule.cmd_len = 1;
 3443         default_rule.set = RESVD_SET;
 3444 
 3445         default_rule.cmd[0].len = 1;
 3446         default_rule.cmd[0].opcode =
 3447 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
 3448                                 1 ? O_ACCEPT :
 3449 #endif
 3450                                 O_DENY;
 3451 
 3452         error = add_rule(&layer3_chain, &default_rule);
 3453         if (error != 0) {
 3454                 printf("ipfw2: error %u initializing default rule "
 3455                         "(support disabled)\n", error);
 3456                 IPFW_DYN_LOCK_DESTROY();
 3457                 IPFW_LOCK_DESTROY(&layer3_chain);
 3458                 return (error);
 3459         }
 3460 
 3461         ip_fw_default_rule = layer3_chain.rules;
 3462         printf("ipfw2 initialized, divert %s, "
 3463                 "rule-based forwarding "
 3464 #ifdef IPFIREWALL_FORWARD
 3465                 "enabled, "
 3466 #else
 3467                 "disabled, "
 3468 #endif
 3469                 "default to %s, logging ",
 3470 #ifdef IPDIVERT
 3471                 "enabled",
 3472 #else
 3473                 "disabled",
 3474 #endif
 3475                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
 3476 
 3477 #ifdef IPFIREWALL_VERBOSE
 3478         fw_verbose = 1;
 3479 #endif
 3480 #ifdef IPFIREWALL_VERBOSE_LIMIT
 3481         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
 3482 #endif
 3483         if (fw_verbose == 0)
 3484                 printf("disabled\n");
 3485         else if (verbose_limit == 0)
 3486                 printf("unlimited\n");
 3487         else
 3488                 printf("limited to %d packets/entry by default\n",
 3489                     verbose_limit);
 3490 
 3491         init_tables();
 3492         ip_fw_ctl_ptr = ipfw_ctl;
 3493         ip_fw_chk_ptr = ipfw_chk;
 3494         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
 3495 
 3496         return (0);
 3497 }
 3498 
 3499 void
 3500 ipfw_destroy(void)
 3501 {
 3502         struct ip_fw *reap;
 3503 
 3504         ip_fw_chk_ptr = NULL;
 3505         ip_fw_ctl_ptr = NULL;
 3506         callout_drain(&ipfw_timeout);
 3507         IPFW_WLOCK(&layer3_chain);
 3508         layer3_chain.reap = NULL;
 3509         free_chain(&layer3_chain, 1 /* kill default rule */);
 3510         reap = layer3_chain.reap, layer3_chain.reap = NULL;
 3511         IPFW_WUNLOCK(&layer3_chain);
 3512         if (reap != NULL)
 3513                 reap_rules(reap);
 3514         flush_tables();
 3515         IPFW_DYN_LOCK_DESTROY();
 3516         uma_zdestroy(ipfw_dyn_rule_zone);
 3517         IPFW_LOCK_DESTROY(&layer3_chain);
 3518         printf("IP firewall unloaded\n");
 3519 }
 3520 
 3521 #endif /* IPFW2 */

Cache object: 39dcad67d7583da62a672c09a6fcaae7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.