The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_fw2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.70.2.17 2006/02/23 23:06:24 emaste Exp $
   26  */
   27 
   28 #define        DEB(x)
   29 #define        DDB(x) x
   30 
   31 /*
   32  * Implement IP packet firewall (new version)
   33  */
   34 
   35 #if !defined(KLD_MODULE)
   36 #include "opt_ipfw.h"
   37 #include "opt_ipdn.h"
   38 #include "opt_ipdivert.h"
   39 #include "opt_inet.h"
   40 #include "opt_ipsec.h"
   41 #ifndef INET
   42 #error IPFIREWALL requires INET.
   43 #endif /* INET */
   44 #endif
   45 
   46 #define IPFW2   1
   47 #if IPFW2
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/condvar.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mbuf.h>
   53 #include <sys/kernel.h>
   54 #include <sys/jail.h>
   55 #include <sys/module.h>
   56 #include <sys/proc.h>
   57 #include <sys/socket.h>
   58 #include <sys/socketvar.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/syslog.h>
   61 #include <sys/ucred.h>
   62 #include <net/if.h>
   63 #include <net/radix.h>
   64 #include <net/route.h>
   65 #include <netinet/in.h>
   66 #include <netinet/in_systm.h>
   67 #include <netinet/in_var.h>
   68 #include <netinet/in_pcb.h>
   69 #include <netinet/ip.h>
   70 #include <netinet/ip_var.h>
   71 #include <netinet/ip_icmp.h>
   72 #include <netinet/ip_fw.h>
   73 #include <netinet/ip_divert.h>
   74 #include <netinet/ip_dummynet.h>
   75 #include <netinet/tcp.h>
   76 #include <netinet/tcp_timer.h>
   77 #include <netinet/tcp_var.h>
   78 #include <netinet/tcpip.h>
   79 #include <netinet/udp.h>
   80 #include <netinet/udp_var.h>
   81 #include <altq/if_altq.h>
   82 
   83 #ifdef IPSEC
   84 #include <netinet6/ipsec.h>
   85 #endif
   86 
   87 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
   88 
   89 #include <machine/in_cksum.h>   /* XXX for in_cksum */
   90 
   91 /*
   92  * set_disable contains one bit per set value (0..31).
   93  * If the bit is set, all rules with the corresponding set
   94  * are disabled. Set RESVD_SET(31) is reserved for the default rule
   95  * and rules that are not deleted by the flush command,
   96  * and CANNOT be disabled.
   97  * Rules in set RESVD_SET can only be deleted explicitly.
   98  */
   99 static u_int32_t set_disable;
  100 
  101 static int fw_verbose;
  102 static int verbose_limit;
  103 
  104 static struct callout ipfw_timeout;
  105 static uma_zone_t ipfw_dyn_rule_zone;
  106 #define IPFW_DEFAULT_RULE       65535
  107 
  108 /*
  109  * Data structure to cache our ucred related
  110  * information. This structure only gets used if
  111  * the user specified UID/GID based constraints in
  112  * a firewall rule.
  113  */
  114 struct ip_fw_ugid {
  115         gid_t           fw_groups[NGROUPS];
  116         int             fw_ngroups;
  117         uid_t           fw_uid;
  118         int             fw_prid;
  119 };
  120 
  121 struct ip_fw_chain {
  122         struct ip_fw    *rules;         /* list of rules */
  123         struct ip_fw    *reap;          /* list of rules to reap */
  124         struct mtx      mtx;            /* lock guarding rule list */
  125         int             busy_count;     /* busy count for rw locks */
  126         int             want_write;
  127         struct cv       cv;
  128 };
  129 #define IPFW_LOCK_INIT(_chain) \
  130         mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
  131                 MTX_DEF | MTX_RECURSE)
  132 #define IPFW_LOCK_DESTROY(_chain)       mtx_destroy(&(_chain)->mtx)
  133 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
  134         mtx_assert(&(_chain)->mtx, MA_OWNED);                           \
  135         NET_ASSERT_GIANT();                                             \
  136 } while (0)
  137 
  138 static __inline void
  139 IPFW_RLOCK(struct ip_fw_chain *chain)
  140 {
  141         mtx_lock(&chain->mtx);
  142         chain->busy_count++;
  143         mtx_unlock(&chain->mtx);
  144 }
  145 
  146 static __inline void
  147 IPFW_RUNLOCK(struct ip_fw_chain *chain)
  148 {
  149         mtx_lock(&chain->mtx);
  150         chain->busy_count--;
  151         if (chain->busy_count == 0 && chain->want_write)
  152                 cv_signal(&chain->cv);
  153         mtx_unlock(&chain->mtx);
  154 }
  155 
  156 static __inline void
  157 IPFW_WLOCK(struct ip_fw_chain *chain)
  158 {
  159         mtx_lock(&chain->mtx);
  160         chain->want_write++;
  161         while (chain->busy_count > 0)
  162                 cv_wait(&chain->cv, &chain->mtx);
  163 }
  164 
  165 static __inline void
  166 IPFW_WUNLOCK(struct ip_fw_chain *chain)
  167 {
  168         chain->want_write--;
  169         cv_signal(&chain->cv);
  170         mtx_unlock(&chain->mtx);
  171 }
  172 
  173 /*
  174  * list of rules for layer 3
  175  */
  176 static struct ip_fw_chain layer3_chain;
  177 
  178 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
  179 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
  180 
  181 struct table_entry {
  182         struct radix_node       rn[2];
  183         struct sockaddr_in      addr, mask;
  184         u_int32_t               value;
  185 };
  186 
  187 #define IPFW_TABLES_MAX         128
  188 static struct ip_fw_table {
  189         struct radix_node_head  *rnh;
  190         int                     modified;
  191         in_addr_t               last_addr;
  192         int                     last_match;
  193         u_int32_t               last_value;
  194 } ipfw_tables[IPFW_TABLES_MAX];
  195 
  196 static int fw_debug = 1;
  197 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
  198 
  199 #ifdef SYSCTL_NODE
  200 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
  201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
  202     CTLFLAG_RW | CTLFLAG_SECURE3,
  203     &fw_enable, 0, "Enable ipfw");
  204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
  205     &autoinc_step, 0, "Rule number autincrement step");
  206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
  207     CTLFLAG_RW | CTLFLAG_SECURE3,
  208     &fw_one_pass, 0,
  209     "Only do a single pass through ipfw when using dummynet(4)");
  210 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
  211     &fw_debug, 0, "Enable printing of debug ip_fw statements");
  212 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
  213     CTLFLAG_RW | CTLFLAG_SECURE3,
  214     &fw_verbose, 0, "Log matches to ipfw rules");
  215 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
  216     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
  217 
  218 /*
  219  * Description of dynamic rules.
  220  *
  221  * Dynamic rules are stored in lists accessed through a hash table
  222  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
  223  * be modified through the sysctl variable dyn_buckets which is
  224  * updated when the table becomes empty.
  225  *
  226  * XXX currently there is only one list, ipfw_dyn.
  227  *
  228  * When a packet is received, its address fields are first masked
  229  * with the mask defined for the rule, then hashed, then matched
  230  * against the entries in the corresponding list.
  231  * Dynamic rules can be used for different purposes:
  232  *  + stateful rules;
  233  *  + enforcing limits on the number of sessions;
  234  *  + in-kernel NAT (not implemented yet)
  235  *
  236  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
  237  * measured in seconds and depending on the flags.
  238  *
  239  * The total number of dynamic rules is stored in dyn_count.
  240  * The max number of dynamic rules is dyn_max. When we reach
  241  * the maximum number of rules we do not create anymore. This is
  242  * done to avoid consuming too much memory, but also too much
  243  * time when searching on each packet (ideally, we should try instead
  244  * to put a limit on the length of the list on each bucket...).
  245  *
  246  * Each dynamic rule holds a pointer to the parent ipfw rule so
  247  * we know what action to perform. Dynamic rules are removed when
  248  * the parent rule is deleted. XXX we should make them survive.
  249  *
  250  * There are some limitations with dynamic rules -- we do not
  251  * obey the 'randomized match', and we do not do multiple
  252  * passes through the firewall. XXX check the latter!!!
  253  */
  254 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
  255 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
  256 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
  257 
  258 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
  259 #define IPFW_DYN_LOCK_INIT() \
  260         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
  261 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
  262 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
  263 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
  264 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
  265 
  266 /*
  267  * Timeouts for various events in handing dynamic rules.
  268  */
  269 static u_int32_t dyn_ack_lifetime = 300;
  270 static u_int32_t dyn_syn_lifetime = 20;
  271 static u_int32_t dyn_fin_lifetime = 1;
  272 static u_int32_t dyn_rst_lifetime = 1;
  273 static u_int32_t dyn_udp_lifetime = 10;
  274 static u_int32_t dyn_short_lifetime = 5;
  275 
  276 /*
  277  * Keepalives are sent if dyn_keepalive is set. They are sent every
  278  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
  279  * seconds of lifetime of a rule.
  280  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
  281  * than dyn_keepalive_period.
  282  */
  283 
  284 static u_int32_t dyn_keepalive_interval = 20;
  285 static u_int32_t dyn_keepalive_period = 5;
  286 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
  287 
  288 static u_int32_t static_count;  /* # of static rules */
  289 static u_int32_t static_len;    /* size in bytes of static rules */
  290 static u_int32_t dyn_count;             /* # of dynamic rules */
  291 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
  292 
  293 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
  294     &dyn_buckets, 0, "Number of dyn. buckets");
  295 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
  296     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
  297 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
  298     &dyn_count, 0, "Number of dyn. rules");
  299 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
  300     &dyn_max, 0, "Max number of dyn. rules");
  301 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
  302     &static_count, 0, "Number of static rules");
  303 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
  304     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
  305 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
  306     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
  307 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
  308     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
  309 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
  310     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
  311 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
  312     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
  313 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
  314     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
  315 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
  316     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
  317 
  318 #endif /* SYSCTL_NODE */
  319 
  320 
  321 /*
  322  * This macro maps an ip pointer into a layer3 header pointer of type T
  323  */
  324 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
  325 
  326 static __inline int
  327 icmptype_match(struct ip *ip, ipfw_insn_u32 *cmd)
  328 {
  329         int type = L3HDR(struct icmp,ip)->icmp_type;
  330 
  331         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
  332 }
  333 
  334 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
  335     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
  336 
  337 static int
  338 is_icmp_query(struct ip *ip)
  339 {
  340         int type = L3HDR(struct icmp, ip)->icmp_type;
  341         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
  342 }
  343 #undef TT
  344 
  345 /*
  346  * The following checks use two arrays of 8 or 16 bits to store the
  347  * bits that we want set or clear, respectively. They are in the
  348  * low and high half of cmd->arg1 or cmd->d[0].
  349  *
  350  * We scan options and store the bits we find set. We succeed if
  351  *
  352  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
  353  *
  354  * The code is sometimes optimized not to store additional variables.
  355  */
  356 
  357 static int
  358 flags_match(ipfw_insn *cmd, u_int8_t bits)
  359 {
  360         u_char want_clear;
  361         bits = ~bits;
  362 
  363         if ( ((cmd->arg1 & 0xff) & bits) != 0)
  364                 return 0; /* some bits we want set were clear */
  365         want_clear = (cmd->arg1 >> 8) & 0xff;
  366         if ( (want_clear & bits) != want_clear)
  367                 return 0; /* some bits we want clear were set */
  368         return 1;
  369 }
  370 
  371 static int
  372 ipopts_match(struct ip *ip, ipfw_insn *cmd)
  373 {
  374         int optlen, bits = 0;
  375         u_char *cp = (u_char *)(ip + 1);
  376         int x = (ip->ip_hl << 2) - sizeof (struct ip);
  377 
  378         for (; x > 0; x -= optlen, cp += optlen) {
  379                 int opt = cp[IPOPT_OPTVAL];
  380 
  381                 if (opt == IPOPT_EOL)
  382                         break;
  383                 if (opt == IPOPT_NOP)
  384                         optlen = 1;
  385                 else {
  386                         optlen = cp[IPOPT_OLEN];
  387                         if (optlen <= 0 || optlen > x)
  388                                 return 0; /* invalid or truncated */
  389                 }
  390                 switch (opt) {
  391 
  392                 default:
  393                         break;
  394 
  395                 case IPOPT_LSRR:
  396                         bits |= IP_FW_IPOPT_LSRR;
  397                         break;
  398 
  399                 case IPOPT_SSRR:
  400                         bits |= IP_FW_IPOPT_SSRR;
  401                         break;
  402 
  403                 case IPOPT_RR:
  404                         bits |= IP_FW_IPOPT_RR;
  405                         break;
  406 
  407                 case IPOPT_TS:
  408                         bits |= IP_FW_IPOPT_TS;
  409                         break;
  410                 }
  411         }
  412         return (flags_match(cmd, bits));
  413 }
  414 
  415 static int
  416 tcpopts_match(struct ip *ip, ipfw_insn *cmd)
  417 {
  418         int optlen, bits = 0;
  419         struct tcphdr *tcp = L3HDR(struct tcphdr,ip);
  420         u_char *cp = (u_char *)(tcp + 1);
  421         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
  422 
  423         for (; x > 0; x -= optlen, cp += optlen) {
  424                 int opt = cp[0];
  425                 if (opt == TCPOPT_EOL)
  426                         break;
  427                 if (opt == TCPOPT_NOP)
  428                         optlen = 1;
  429                 else {
  430                         optlen = cp[1];
  431                         if (optlen <= 0)
  432                                 break;
  433                 }
  434 
  435                 switch (opt) {
  436 
  437                 default:
  438                         break;
  439 
  440                 case TCPOPT_MAXSEG:
  441                         bits |= IP_FW_TCPOPT_MSS;
  442                         break;
  443 
  444                 case TCPOPT_WINDOW:
  445                         bits |= IP_FW_TCPOPT_WINDOW;
  446                         break;
  447 
  448                 case TCPOPT_SACK_PERMITTED:
  449                 case TCPOPT_SACK:
  450                         bits |= IP_FW_TCPOPT_SACK;
  451                         break;
  452 
  453                 case TCPOPT_TIMESTAMP:
  454                         bits |= IP_FW_TCPOPT_TS;
  455                         break;
  456 
  457                 case TCPOPT_CC:
  458                 case TCPOPT_CCNEW:
  459                 case TCPOPT_CCECHO:
  460                         bits |= IP_FW_TCPOPT_CC;
  461                         break;
  462                 }
  463         }
  464         return (flags_match(cmd, bits));
  465 }
  466 
  467 static int
  468 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
  469 {
  470         if (ifp == NULL)        /* no iface with this packet, match fails */
  471                 return 0;
  472         /* Check by name or by IP address */
  473         if (cmd->name[0] != '\0') { /* match by name */
  474                 /* Check name */
  475                 if (cmd->p.glob) {
  476                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
  477                                 return(1);
  478                 } else {
  479                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
  480                                 return(1);
  481                 }
  482         } else {
  483                 struct ifaddr *ia;
  484 
  485                 /* XXX lock? */
  486                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
  487                         if (ia->ifa_addr == NULL)
  488                                 continue;
  489                         if (ia->ifa_addr->sa_family != AF_INET)
  490                                 continue;
  491                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
  492                             (ia->ifa_addr))->sin_addr.s_addr)
  493                                 return(1);      /* match */
  494                 }
  495         }
  496         return(0);      /* no match, fail ... */
  497 }
  498 
  499 /*
  500  * The verify_path function checks if a route to the src exists and
  501  * if it is reachable via ifp (when provided).
  502  * 
  503  * The 'verrevpath' option checks that the interface that an IP packet
  504  * arrives on is the same interface that traffic destined for the
  505  * packet's source address would be routed out of.  The 'versrcreach'
  506  * option just checks that the source address is reachable via any route
  507  * (except default) in the routing table.  These two are a measure to block
  508  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
  509  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
  510  * is purposely reminiscent of the Cisco IOS command,
  511  *
  512  *   ip verify unicast reverse-path
  513  *   ip verify unicast source reachable-via any
  514  *
  515  * which implements the same functionality. But note that syntax is
  516  * misleading. The check may be performed on all IP packets whether unicast,
  517  * multicast, or broadcast.
  518  */
  519 static int
  520 verify_path(struct in_addr src, struct ifnet *ifp)
  521 {
  522         struct route ro;
  523         struct sockaddr_in *dst;
  524 
  525         bzero(&ro, sizeof(ro));
  526 
  527         dst = (struct sockaddr_in *)&(ro.ro_dst);
  528         dst->sin_family = AF_INET;
  529         dst->sin_len = sizeof(*dst);
  530         dst->sin_addr = src;
  531         rtalloc_ign(&ro, RTF_CLONING);
  532 
  533         if (ro.ro_rt == NULL)
  534                 return 0;
  535 
  536         /*
  537          * If ifp is provided, check for equality with rtentry.
  538          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
  539          * in order to pass packets injected back by if_simloop():
  540          * if useloopback == 1 routing entry (via lo0) for our own address
  541          * may exist, so we need to handle routing assymetry.
  542          */
  543         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
  544                 RTFREE(ro.ro_rt);
  545                 return 0;
  546         }
  547 
  548         /* if no ifp provided, check if rtentry is not default route */
  549         if (ifp == NULL &&
  550              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
  551                 RTFREE(ro.ro_rt);
  552                 return 0;
  553         }
  554 
  555         /* or if this is a blackhole/reject route */
  556         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
  557                 RTFREE(ro.ro_rt);
  558                 return 0;
  559         }
  560 
  561         /* found valid route */
  562         RTFREE(ro.ro_rt);
  563         return 1;
  564 }
  565 
  566 
  567 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
  568 
  569 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
  570 #define SNP(buf) buf, sizeof(buf)
  571 
  572 /*
  573  * We enter here when we have a rule with O_LOG.
  574  * XXX this function alone takes about 2Kbytes of code!
  575  */
  576 static void
  577 ipfw_log(struct ip_fw *f, u_int hlen, struct ether_header *eh,
  578         struct mbuf *m, struct ifnet *oif)
  579 {
  580         char *action;
  581         int limit_reached = 0;
  582         char action2[40], proto[48], fragment[28];
  583 
  584         fragment[0] = '\0';
  585         proto[0] = '\0';
  586 
  587         if (f == NULL) {        /* bogus pkt */
  588                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
  589                         return;
  590                 norule_counter++;
  591                 if (norule_counter == verbose_limit)
  592                         limit_reached = verbose_limit;
  593                 action = "Refuse";
  594         } else {        /* O_LOG is the first action, find the real one */
  595                 ipfw_insn *cmd = ACTION_PTR(f);
  596                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
  597 
  598                 if (l->max_log != 0 && l->log_left == 0)
  599                         return;
  600                 l->log_left--;
  601                 if (l->log_left == 0)
  602                         limit_reached = l->max_log;
  603                 cmd += F_LEN(cmd);      /* point to first action */
  604                 if (cmd->opcode == O_ALTQ) {
  605                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
  606 
  607                         snprintf(SNPARGS(action2, 0), "Altq %d",
  608                                 altq->qid);
  609                         cmd += F_LEN(cmd);
  610                 }
  611                 if (cmd->opcode == O_PROB)
  612                         cmd += F_LEN(cmd);
  613 
  614                 action = action2;
  615                 switch (cmd->opcode) {
  616                 case O_DENY:
  617                         action = "Deny";
  618                         break;
  619 
  620                 case O_REJECT:
  621                         if (cmd->arg1==ICMP_REJECT_RST)
  622                                 action = "Reset";
  623                         else if (cmd->arg1==ICMP_UNREACH_HOST)
  624                                 action = "Reject";
  625                         else
  626                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  627                                         cmd->arg1);
  628                         break;
  629 
  630                 case O_ACCEPT:
  631                         action = "Accept";
  632                         break;
  633                 case O_COUNT:
  634                         action = "Count";
  635                         break;
  636                 case O_DIVERT:
  637                         snprintf(SNPARGS(action2, 0), "Divert %d",
  638                                 cmd->arg1);
  639                         break;
  640                 case O_TEE:
  641                         snprintf(SNPARGS(action2, 0), "Tee %d",
  642                                 cmd->arg1);
  643                         break;
  644                 case O_SKIPTO:
  645                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
  646                                 cmd->arg1);
  647                         break;
  648                 case O_PIPE:
  649                         snprintf(SNPARGS(action2, 0), "Pipe %d",
  650                                 cmd->arg1);
  651                         break;
  652                 case O_QUEUE:
  653                         snprintf(SNPARGS(action2, 0), "Queue %d",
  654                                 cmd->arg1);
  655                         break;
  656                 case O_FORWARD_IP: {
  657                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
  658                         int len;
  659 
  660                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
  661                                 inet_ntoa(sa->sa.sin_addr));
  662                         if (sa->sa.sin_port)
  663                                 snprintf(SNPARGS(action2, len), ":%d",
  664                                     sa->sa.sin_port);
  665                         }
  666                         break;
  667                 default:
  668                         action = "UNKNOWN";
  669                         break;
  670                 }
  671         }
  672 
  673         if (hlen == 0) {        /* non-ip */
  674                 snprintf(SNPARGS(proto, 0), "MAC");
  675         } else {
  676                 struct ip *ip = mtod(m, struct ip *);
  677                 /* these three are all aliases to the same thing */
  678                 struct icmp *const icmp = L3HDR(struct icmp, ip);
  679                 struct tcphdr *const tcp = (struct tcphdr *)icmp;
  680                 struct udphdr *const udp = (struct udphdr *)icmp;
  681 
  682                 int ip_off, offset, ip_len;
  683 
  684                 int len;
  685 
  686                 if (eh != NULL) { /* layer 2 packets are as on the wire */
  687                         ip_off = ntohs(ip->ip_off);
  688                         ip_len = ntohs(ip->ip_len);
  689                 } else {
  690                         ip_off = ip->ip_off;
  691                         ip_len = ip->ip_len;
  692                 }
  693                 offset = ip_off & IP_OFFMASK;
  694                 switch (ip->ip_p) {
  695                 case IPPROTO_TCP:
  696                         len = snprintf(SNPARGS(proto, 0), "TCP %s",
  697                             inet_ntoa(ip->ip_src));
  698                         if (offset == 0)
  699                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  700                                     ntohs(tcp->th_sport),
  701                                     inet_ntoa(ip->ip_dst),
  702                                     ntohs(tcp->th_dport));
  703                         else
  704                                 snprintf(SNPARGS(proto, len), " %s",
  705                                     inet_ntoa(ip->ip_dst));
  706                         break;
  707 
  708                 case IPPROTO_UDP:
  709                         len = snprintf(SNPARGS(proto, 0), "UDP %s",
  710                                 inet_ntoa(ip->ip_src));
  711                         if (offset == 0)
  712                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  713                                     ntohs(udp->uh_sport),
  714                                     inet_ntoa(ip->ip_dst),
  715                                     ntohs(udp->uh_dport));
  716                         else
  717                                 snprintf(SNPARGS(proto, len), " %s",
  718                                     inet_ntoa(ip->ip_dst));
  719                         break;
  720 
  721                 case IPPROTO_ICMP:
  722                         if (offset == 0)
  723                                 len = snprintf(SNPARGS(proto, 0),
  724                                     "ICMP:%u.%u ",
  725                                     icmp->icmp_type, icmp->icmp_code);
  726                         else
  727                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
  728                         len += snprintf(SNPARGS(proto, len), "%s",
  729                             inet_ntoa(ip->ip_src));
  730                         snprintf(SNPARGS(proto, len), " %s",
  731                             inet_ntoa(ip->ip_dst));
  732                         break;
  733 
  734                 default:
  735                         len = snprintf(SNPARGS(proto, 0), "P:%d %s", ip->ip_p,
  736                             inet_ntoa(ip->ip_src));
  737                         snprintf(SNPARGS(proto, len), " %s",
  738                             inet_ntoa(ip->ip_dst));
  739                         break;
  740                 }
  741 
  742                 if (ip_off & (IP_MF | IP_OFFMASK))
  743                         snprintf(SNPARGS(fragment, 0), " (frag %d:%d@%d%s)",
  744                              ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
  745                              offset << 3,
  746                              (ip_off & IP_MF) ? "+" : "");
  747         }
  748         if (oif || m->m_pkthdr.rcvif)
  749                 log(LOG_SECURITY | LOG_INFO,
  750                     "ipfw: %d %s %s %s via %s%s\n",
  751                     f ? f->rulenum : -1,
  752                     action, proto, oif ? "out" : "in",
  753                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
  754                     fragment);
  755         else
  756                 log(LOG_SECURITY | LOG_INFO,
  757                     "ipfw: %d %s %s [no if info]%s\n",
  758                     f ? f->rulenum : -1,
  759                     action, proto, fragment);
  760         if (limit_reached)
  761                 log(LOG_SECURITY | LOG_NOTICE,
  762                     "ipfw: limit %d reached on entry %d\n",
  763                     limit_reached, f ? f->rulenum : -1);
  764 }
  765 
  766 /*
  767  * IMPORTANT: the hash function for dynamic rules must be commutative
  768  * in source and destination (ip,port), because rules are bidirectional
  769  * and we want to find both in the same bucket.
  770  */
  771 static __inline int
  772 hash_packet(struct ipfw_flow_id *id)
  773 {
  774         u_int32_t i;
  775 
  776         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
  777         i &= (curr_dyn_buckets - 1);
  778         return i;
  779 }
  780 
  781 /**
  782  * unlink a dynamic rule from a chain. prev is a pointer to
  783  * the previous one, q is a pointer to the rule to delete,
  784  * head is a pointer to the head of the queue.
  785  * Modifies q and potentially also head.
  786  */
  787 #define UNLINK_DYN_RULE(prev, head, q) {                                \
  788         ipfw_dyn_rule *old_q = q;                                       \
  789                                                                         \
  790         /* remove a refcount to the parent */                           \
  791         if (q->dyn_type == O_LIMIT)                                     \
  792                 q->parent->count--;                                     \
  793         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
  794                 (q->id.src_ip), (q->id.src_port),                       \
  795                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
  796         if (prev != NULL)                                               \
  797                 prev->next = q = q->next;                               \
  798         else                                                            \
  799                 head = q = q->next;                                     \
  800         dyn_count--;                                                    \
  801         uma_zfree(ipfw_dyn_rule_zone, old_q); }
  802 
  803 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
  804 
  805 /**
  806  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
  807  *
  808  * If keep_me == NULL, rules are deleted even if not expired,
  809  * otherwise only expired rules are removed.
  810  *
  811  * The value of the second parameter is also used to point to identify
  812  * a rule we absolutely do not want to remove (e.g. because we are
  813  * holding a reference to it -- this is the case with O_LIMIT_PARENT
  814  * rules). The pointer is only used for comparison, so any non-null
  815  * value will do.
  816  */
  817 static void
  818 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
  819 {
  820         static u_int32_t last_remove = 0;
  821 
  822 #define FORCE (keep_me == NULL)
  823 
  824         ipfw_dyn_rule *prev, *q;
  825         int i, pass = 0, max_pass = 0;
  826 
  827         IPFW_DYN_LOCK_ASSERT();
  828 
  829         if (ipfw_dyn_v == NULL || dyn_count == 0)
  830                 return;
  831         /* do not expire more than once per second, it is useless */
  832         if (!FORCE && last_remove == time_second)
  833                 return;
  834         last_remove = time_second;
  835 
  836         /*
  837          * because O_LIMIT refer to parent rules, during the first pass only
  838          * remove child and mark any pending LIMIT_PARENT, and remove
  839          * them in a second pass.
  840          */
  841 next_pass:
  842         for (i = 0 ; i < curr_dyn_buckets ; i++) {
  843                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
  844                         /*
  845                          * Logic can become complex here, so we split tests.
  846                          */
  847                         if (q == keep_me)
  848                                 goto next;
  849                         if (rule != NULL && rule != q->rule)
  850                                 goto next; /* not the one we are looking for */
  851                         if (q->dyn_type == O_LIMIT_PARENT) {
  852                                 /*
  853                                  * handle parent in the second pass,
  854                                  * record we need one.
  855                                  */
  856                                 max_pass = 1;
  857                                 if (pass == 0)
  858                                         goto next;
  859                                 if (FORCE && q->count != 0 ) {
  860                                         /* XXX should not happen! */
  861                                         printf("ipfw: OUCH! cannot remove rule,"
  862                                              " count %d\n", q->count);
  863                                 }
  864                         } else {
  865                                 if (!FORCE &&
  866                                     !TIME_LEQ( q->expire, time_second ))
  867                                         goto next;
  868                         }
  869              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
  870                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  871                      continue;
  872              }
  873 next:
  874                         prev=q;
  875                         q=q->next;
  876                 }
  877         }
  878         if (pass++ < max_pass)
  879                 goto next_pass;
  880 }
  881 
  882 
  883 /**
  884  * lookup a dynamic rule.
  885  */
  886 static ipfw_dyn_rule *
  887 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
  888         struct tcphdr *tcp)
  889 {
  890         /*
  891          * stateful ipfw extensions.
  892          * Lookup into dynamic session queue
  893          */
  894 #define MATCH_REVERSE   0
  895 #define MATCH_FORWARD   1
  896 #define MATCH_NONE      2
  897 #define MATCH_UNKNOWN   3
  898         int i, dir = MATCH_NONE;
  899         ipfw_dyn_rule *prev, *q=NULL;
  900 
  901         IPFW_DYN_LOCK_ASSERT();
  902 
  903         if (ipfw_dyn_v == NULL)
  904                 goto done;      /* not found */
  905         i = hash_packet( pkt );
  906         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
  907                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
  908                         goto next;
  909                 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
  910                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
  911                         continue;
  912                 }
  913                 if (pkt->proto == q->id.proto &&
  914                     q->dyn_type != O_LIMIT_PARENT) {
  915                         if (pkt->src_ip == q->id.src_ip &&
  916                             pkt->dst_ip == q->id.dst_ip &&
  917                             pkt->src_port == q->id.src_port &&
  918                             pkt->dst_port == q->id.dst_port ) {
  919                                 dir = MATCH_FORWARD;
  920                                 break;
  921                         }
  922                         if (pkt->src_ip == q->id.dst_ip &&
  923                             pkt->dst_ip == q->id.src_ip &&
  924                             pkt->src_port == q->id.dst_port &&
  925                             pkt->dst_port == q->id.src_port ) {
  926                                 dir = MATCH_REVERSE;
  927                                 break;
  928                         }
  929                 }
  930 next:
  931                 prev = q;
  932                 q = q->next;
  933         }
  934         if (q == NULL)
  935                 goto done; /* q = NULL, not found */
  936 
  937         if ( prev != NULL) { /* found and not in front */
  938                 prev->next = q->next;
  939                 q->next = ipfw_dyn_v[i];
  940                 ipfw_dyn_v[i] = q;
  941         }
  942         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
  943                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
  944 
  945 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
  946 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
  947                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
  948                 switch (q->state) {
  949                 case TH_SYN:                            /* opening */
  950                         q->expire = time_second + dyn_syn_lifetime;
  951                         break;
  952 
  953                 case BOTH_SYN:                  /* move to established */
  954                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
  955                 case BOTH_SYN | (TH_FIN << 8) :
  956                         if (tcp) {
  957 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
  958                             u_int32_t ack = ntohl(tcp->th_ack);
  959                             if (dir == MATCH_FORWARD) {
  960                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
  961                                     q->ack_fwd = ack;
  962                                 else { /* ignore out-of-sequence */
  963                                     break;
  964                                 }
  965                             } else {
  966                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
  967                                     q->ack_rev = ack;
  968                                 else { /* ignore out-of-sequence */
  969                                     break;
  970                                 }
  971                             }
  972                         }
  973                         q->expire = time_second + dyn_ack_lifetime;
  974                         break;
  975 
  976                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
  977                         if (dyn_fin_lifetime >= dyn_keepalive_period)
  978                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
  979                         q->expire = time_second + dyn_fin_lifetime;
  980                         break;
  981 
  982                 default:
  983 #if 0
  984                         /*
  985                          * reset or some invalid combination, but can also
  986                          * occur if we use keep-state the wrong way.
  987                          */
  988                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
  989                                 printf("invalid state: 0x%x\n", q->state);
  990 #endif
  991                         if (dyn_rst_lifetime >= dyn_keepalive_period)
  992                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
  993                         q->expire = time_second + dyn_rst_lifetime;
  994                         break;
  995                 }
  996         } else if (pkt->proto == IPPROTO_UDP) {
  997                 q->expire = time_second + dyn_udp_lifetime;
  998         } else {
  999                 /* other protocols */
 1000                 q->expire = time_second + dyn_short_lifetime;
 1001         }
 1002 done:
 1003         if (match_direction)
 1004                 *match_direction = dir;
 1005         return q;
 1006 }
 1007 
 1008 static ipfw_dyn_rule *
 1009 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
 1010         struct tcphdr *tcp)
 1011 {
 1012         ipfw_dyn_rule *q;
 1013 
 1014         IPFW_DYN_LOCK();
 1015         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
 1016         if (q == NULL)
 1017                 IPFW_DYN_UNLOCK();
 1018         /* NB: return table locked when q is not NULL */
 1019         return q;
 1020 }
 1021 
 1022 static void
 1023 realloc_dynamic_table(void)
 1024 {
 1025         IPFW_DYN_LOCK_ASSERT();
 1026 
 1027         /*
 1028          * Try reallocation, make sure we have a power of 2 and do
 1029          * not allow more than 64k entries. In case of overflow,
 1030          * default to 1024.
 1031          */
 1032 
 1033         if (dyn_buckets > 65536)
 1034                 dyn_buckets = 1024;
 1035         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
 1036                 dyn_buckets = curr_dyn_buckets; /* reset */
 1037                 return;
 1038         }
 1039         curr_dyn_buckets = dyn_buckets;
 1040         if (ipfw_dyn_v != NULL)
 1041                 free(ipfw_dyn_v, M_IPFW);
 1042         for (;;) {
 1043                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
 1044                        M_IPFW, M_NOWAIT | M_ZERO);
 1045                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
 1046                         break;
 1047                 curr_dyn_buckets /= 2;
 1048         }
 1049 }
 1050 
 1051 /**
 1052  * Install state of type 'type' for a dynamic session.
 1053  * The hash table contains two type of rules:
 1054  * - regular rules (O_KEEP_STATE)
 1055  * - rules for sessions with limited number of sess per user
 1056  *   (O_LIMIT). When they are created, the parent is
 1057  *   increased by 1, and decreased on delete. In this case,
 1058  *   the third parameter is the parent rule and not the chain.
 1059  * - "parent" rules for the above (O_LIMIT_PARENT).
 1060  */
 1061 static ipfw_dyn_rule *
 1062 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
 1063 {
 1064         ipfw_dyn_rule *r;
 1065         int i;
 1066 
 1067         IPFW_DYN_LOCK_ASSERT();
 1068 
 1069         if (ipfw_dyn_v == NULL ||
 1070             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
 1071                 realloc_dynamic_table();
 1072                 if (ipfw_dyn_v == NULL)
 1073                         return NULL; /* failed ! */
 1074         }
 1075         i = hash_packet(id);
 1076 
 1077         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
 1078         if (r == NULL) {
 1079                 printf ("ipfw: sorry cannot allocate state\n");
 1080                 return NULL;
 1081         }
 1082 
 1083         /* increase refcount on parent, and set pointer */
 1084         if (dyn_type == O_LIMIT) {
 1085                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
 1086                 if ( parent->dyn_type != O_LIMIT_PARENT)
 1087                         panic("invalid parent");
 1088                 parent->count++;
 1089                 r->parent = parent;
 1090                 rule = parent->rule;
 1091         }
 1092 
 1093         r->id = *id;
 1094         r->expire = time_second + dyn_syn_lifetime;
 1095         r->rule = rule;
 1096         r->dyn_type = dyn_type;
 1097         r->pcnt = r->bcnt = 0;
 1098         r->count = 0;
 1099 
 1100         r->bucket = i;
 1101         r->next = ipfw_dyn_v[i];
 1102         ipfw_dyn_v[i] = r;
 1103         dyn_count++;
 1104         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
 1105            dyn_type,
 1106            (r->id.src_ip), (r->id.src_port),
 1107            (r->id.dst_ip), (r->id.dst_port),
 1108            dyn_count ); )
 1109         return r;
 1110 }
 1111 
 1112 /**
 1113  * lookup dynamic parent rule using pkt and rule as search keys.
 1114  * If the lookup fails, then install one.
 1115  */
 1116 static ipfw_dyn_rule *
 1117 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
 1118 {
 1119         ipfw_dyn_rule *q;
 1120         int i;
 1121 
 1122         IPFW_DYN_LOCK_ASSERT();
 1123 
 1124         if (ipfw_dyn_v) {
 1125                 i = hash_packet( pkt );
 1126                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
 1127                         if (q->dyn_type == O_LIMIT_PARENT &&
 1128                             rule== q->rule &&
 1129                             pkt->proto == q->id.proto &&
 1130                             pkt->src_ip == q->id.src_ip &&
 1131                             pkt->dst_ip == q->id.dst_ip &&
 1132                             pkt->src_port == q->id.src_port &&
 1133                             pkt->dst_port == q->id.dst_port) {
 1134                                 q->expire = time_second + dyn_short_lifetime;
 1135                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
 1136                                 return q;
 1137                         }
 1138         }
 1139         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
 1140 }
 1141 
 1142 /**
 1143  * Install dynamic state for rule type cmd->o.opcode
 1144  *
 1145  * Returns 1 (failure) if state is not installed because of errors or because
 1146  * session limitations are enforced.
 1147  */
 1148 static int
 1149 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
 1150         struct ip_fw_args *args)
 1151 {
 1152         static int last_log;
 1153 
 1154         ipfw_dyn_rule *q;
 1155 
 1156         DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
 1157             cmd->o.opcode,
 1158             (args->f_id.src_ip), (args->f_id.src_port),
 1159             (args->f_id.dst_ip), (args->f_id.dst_port) );)
 1160 
 1161         IPFW_DYN_LOCK();
 1162 
 1163         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1164 
 1165         if (q != NULL) { /* should never occur */
 1166                 if (last_log != time_second) {
 1167                         last_log = time_second;
 1168                         printf("ipfw: install_state: entry already present, done\n");
 1169                 }
 1170                 IPFW_DYN_UNLOCK();
 1171                 return 0;
 1172         }
 1173 
 1174         if (dyn_count >= dyn_max)
 1175                 /*
 1176                  * Run out of slots, try to remove any expired rule.
 1177                  */
 1178                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
 1179 
 1180         if (dyn_count >= dyn_max) {
 1181                 if (last_log != time_second) {
 1182                         last_log = time_second;
 1183                         printf("ipfw: install_state: Too many dynamic rules\n");
 1184                 }
 1185                 IPFW_DYN_UNLOCK();
 1186                 return 1; /* cannot install, notify caller */
 1187         }
 1188 
 1189         switch (cmd->o.opcode) {
 1190         case O_KEEP_STATE: /* bidir rule */
 1191                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
 1192                 break;
 1193 
 1194         case O_LIMIT: /* limit number of sessions */
 1195             {
 1196                 u_int16_t limit_mask = cmd->limit_mask;
 1197                 struct ipfw_flow_id id;
 1198                 ipfw_dyn_rule *parent;
 1199 
 1200                 DEB(printf("ipfw: installing dyn-limit rule %d\n",
 1201                     cmd->conn_limit);)
 1202 
 1203                 id.dst_ip = id.src_ip = 0;
 1204                 id.dst_port = id.src_port = 0;
 1205                 id.proto = args->f_id.proto;
 1206 
 1207                 if (limit_mask & DYN_SRC_ADDR)
 1208                         id.src_ip = args->f_id.src_ip;
 1209                 if (limit_mask & DYN_DST_ADDR)
 1210                         id.dst_ip = args->f_id.dst_ip;
 1211                 if (limit_mask & DYN_SRC_PORT)
 1212                         id.src_port = args->f_id.src_port;
 1213                 if (limit_mask & DYN_DST_PORT)
 1214                         id.dst_port = args->f_id.dst_port;
 1215                 parent = lookup_dyn_parent(&id, rule);
 1216                 if (parent == NULL) {
 1217                         printf("ipfw: add parent failed\n");
 1218                         IPFW_DYN_UNLOCK();
 1219                         return 1;
 1220                 }
 1221                 if (parent->count >= cmd->conn_limit) {
 1222                         /*
 1223                          * See if we can remove some expired rule.
 1224                          */
 1225                         remove_dyn_rule(rule, parent);
 1226                         if (parent->count >= cmd->conn_limit) {
 1227                                 if (fw_verbose && last_log != time_second) {
 1228                                         last_log = time_second;
 1229                                         log(LOG_SECURITY | LOG_DEBUG,
 1230                                             "drop session, too many entries\n");
 1231                                 }
 1232                                 IPFW_DYN_UNLOCK();
 1233                                 return 1;
 1234                         }
 1235                 }
 1236                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
 1237             }
 1238                 break;
 1239         default:
 1240                 printf("ipfw: unknown dynamic rule type %u\n", cmd->o.opcode);
 1241                 IPFW_DYN_UNLOCK();
 1242                 return 1;
 1243         }
 1244         lookup_dyn_rule_locked(&args->f_id, NULL, NULL); /* XXX just set lifetime */
 1245         IPFW_DYN_UNLOCK();
 1246         return 0;
 1247 }
 1248 
 1249 /*
 1250  * Generate a TCP packet, containing either a RST or a keepalive.
 1251  * When flags & TH_RST, we are sending a RST packet, because of a
 1252  * "reset" action matched the packet.
 1253  * Otherwise we are sending a keepalive, and flags & TH_
 1254  */
 1255 static struct mbuf *
 1256 send_pkt(struct ipfw_flow_id *id, u_int32_t seq, u_int32_t ack, int flags)
 1257 {
 1258         struct mbuf *m;
 1259         struct ip *ip;
 1260         struct tcphdr *tcp;
 1261 
 1262         MGETHDR(m, M_DONTWAIT, MT_HEADER);
 1263         if (m == 0)
 1264                 return (NULL);
 1265         m->m_pkthdr.rcvif = (struct ifnet *)0;
 1266         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
 1267         m->m_data += max_linkhdr;
 1268 
 1269         ip = mtod(m, struct ip *);
 1270         bzero(ip, m->m_len);
 1271         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
 1272         ip->ip_p = IPPROTO_TCP;
 1273         tcp->th_off = 5;
 1274         /*
 1275          * Assume we are sending a RST (or a keepalive in the reverse
 1276          * direction), swap src and destination addresses and ports.
 1277          */
 1278         ip->ip_src.s_addr = htonl(id->dst_ip);
 1279         ip->ip_dst.s_addr = htonl(id->src_ip);
 1280         tcp->th_sport = htons(id->dst_port);
 1281         tcp->th_dport = htons(id->src_port);
 1282         if (flags & TH_RST) {   /* we are sending a RST */
 1283                 if (flags & TH_ACK) {
 1284                         tcp->th_seq = htonl(ack);
 1285                         tcp->th_ack = htonl(0);
 1286                         tcp->th_flags = TH_RST;
 1287                 } else {
 1288                         if (flags & TH_SYN)
 1289                                 seq++;
 1290                         tcp->th_seq = htonl(0);
 1291                         tcp->th_ack = htonl(seq);
 1292                         tcp->th_flags = TH_RST | TH_ACK;
 1293                 }
 1294         } else {
 1295                 /*
 1296                  * We are sending a keepalive. flags & TH_SYN determines
 1297                  * the direction, forward if set, reverse if clear.
 1298                  * NOTE: seq and ack are always assumed to be correct
 1299                  * as set by the caller. This may be confusing...
 1300                  */
 1301                 if (flags & TH_SYN) {
 1302                         /*
 1303                          * we have to rewrite the correct addresses!
 1304                          */
 1305                         ip->ip_dst.s_addr = htonl(id->dst_ip);
 1306                         ip->ip_src.s_addr = htonl(id->src_ip);
 1307                         tcp->th_dport = htons(id->dst_port);
 1308                         tcp->th_sport = htons(id->src_port);
 1309                 }
 1310                 tcp->th_seq = htonl(seq);
 1311                 tcp->th_ack = htonl(ack);
 1312                 tcp->th_flags = TH_ACK;
 1313         }
 1314         /*
 1315          * set ip_len to the payload size so we can compute
 1316          * the tcp checksum on the pseudoheader
 1317          * XXX check this, could save a couple of words ?
 1318          */
 1319         ip->ip_len = htons(sizeof(struct tcphdr));
 1320         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
 1321         /*
 1322          * now fill fields left out earlier
 1323          */
 1324         ip->ip_ttl = ip_defttl;
 1325         ip->ip_len = m->m_pkthdr.len;
 1326         m->m_flags |= M_SKIP_FIREWALL;
 1327         return (m);
 1328 }
 1329 
 1330 /*
 1331  * sends a reject message, consuming the mbuf passed as an argument.
 1332  */
 1333 static void
 1334 send_reject(struct ip_fw_args *args, int code, int offset, int ip_len)
 1335 {
 1336 
 1337         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
 1338                 /* We need the IP header in host order for icmp_error(). */
 1339                 if (args->eh != NULL) {
 1340                         struct ip *ip = mtod(args->m, struct ip *);
 1341                         ip->ip_len = ntohs(ip->ip_len);
 1342                         ip->ip_off = ntohs(ip->ip_off);
 1343                 }
 1344                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
 1345         } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
 1346                 struct tcphdr *const tcp =
 1347                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
 1348                 if ( (tcp->th_flags & TH_RST) == 0) {
 1349                         struct mbuf *m;
 1350                         m = send_pkt(&(args->f_id), ntohl(tcp->th_seq),
 1351                                 ntohl(tcp->th_ack),
 1352                                 tcp->th_flags | TH_RST);
 1353                         if (m != NULL)
 1354                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
 1355                 }
 1356                 m_freem(args->m);
 1357         } else
 1358                 m_freem(args->m);
 1359         args->m = NULL;
 1360 }
 1361 
 1362 /**
 1363  *
 1364  * Given an ip_fw *, lookup_next_rule will return a pointer
 1365  * to the next rule, which can be either the jump
 1366  * target (for skipto instructions) or the next one in the list (in
 1367  * all other cases including a missing jump target).
 1368  * The result is also written in the "next_rule" field of the rule.
 1369  * Backward jumps are not allowed, so start looking from the next
 1370  * rule...
 1371  *
 1372  * This never returns NULL -- in case we do not have an exact match,
 1373  * the next rule is returned. When the ruleset is changed,
 1374  * pointers are flushed so we are always correct.
 1375  */
 1376 
 1377 static struct ip_fw *
 1378 lookup_next_rule(struct ip_fw *me)
 1379 {
 1380         struct ip_fw *rule = NULL;
 1381         ipfw_insn *cmd;
 1382 
 1383         /* look for action, in case it is a skipto */
 1384         cmd = ACTION_PTR(me);
 1385         if (cmd->opcode == O_LOG)
 1386                 cmd += F_LEN(cmd);
 1387         if (cmd->opcode == O_ALTQ)
 1388                 cmd += F_LEN(cmd);
 1389         if ( cmd->opcode == O_SKIPTO )
 1390                 for (rule = me->next; rule ; rule = rule->next)
 1391                         if (rule->rulenum >= cmd->arg1)
 1392                                 break;
 1393         if (rule == NULL)                       /* failure or not a skipto */
 1394                 rule = me->next;
 1395         me->next_rule = rule;
 1396         return rule;
 1397 }
 1398 
 1399 static void
 1400 init_tables(void)
 1401 {
 1402         int i;
 1403 
 1404         for (i = 0; i < IPFW_TABLES_MAX; i++) {
 1405                 rn_inithead((void **)&ipfw_tables[i].rnh, 32);
 1406                 ipfw_tables[i].modified = 1;
 1407         }
 1408 }
 1409 
 1410 static int
 1411 add_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen, u_int32_t value)
 1412 {
 1413         struct radix_node_head *rnh;
 1414         struct table_entry *ent;
 1415 
 1416         if (tbl >= IPFW_TABLES_MAX)
 1417                 return (EINVAL);
 1418         rnh = ipfw_tables[tbl].rnh;
 1419         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
 1420         if (ent == NULL)
 1421                 return (ENOMEM);
 1422         ent->value = value;
 1423         ent->addr.sin_len = ent->mask.sin_len = 8;
 1424         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1425         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
 1426         RADIX_NODE_HEAD_LOCK(rnh);
 1427         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
 1428             NULL) {
 1429                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1430                 free(ent, M_IPFW_TBL);
 1431                 return (EEXIST);
 1432         }
 1433         ipfw_tables[tbl].modified = 1;
 1434         RADIX_NODE_HEAD_UNLOCK(rnh);
 1435         return (0);
 1436 }
 1437 
 1438 static int
 1439 del_table_entry(u_int16_t tbl, in_addr_t addr, u_int8_t mlen)
 1440 {
 1441         struct radix_node_head *rnh;
 1442         struct table_entry *ent;
 1443         struct sockaddr_in sa, mask;
 1444 
 1445         if (tbl >= IPFW_TABLES_MAX)
 1446                 return (EINVAL);
 1447         rnh = ipfw_tables[tbl].rnh;
 1448         sa.sin_len = mask.sin_len = 8;
 1449         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1450         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
 1451         RADIX_NODE_HEAD_LOCK(rnh);
 1452         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
 1453         if (ent == NULL) {
 1454                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1455                 return (ESRCH);
 1456         }
 1457         ipfw_tables[tbl].modified = 1;
 1458         RADIX_NODE_HEAD_UNLOCK(rnh);
 1459         free(ent, M_IPFW_TBL);
 1460         return (0);
 1461 }
 1462 
 1463 static int
 1464 flush_table_entry(struct radix_node *rn, void *arg)
 1465 {
 1466         struct radix_node_head * const rnh = arg;
 1467         struct table_entry *ent;
 1468 
 1469         ent = (struct table_entry *)
 1470             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
 1471         if (ent != NULL)
 1472                 free(ent, M_IPFW_TBL);
 1473         return (0);
 1474 }
 1475 
 1476 static int
 1477 flush_table(u_int16_t tbl)
 1478 {
 1479         struct radix_node_head *rnh;
 1480 
 1481         if (tbl >= IPFW_TABLES_MAX)
 1482                 return (EINVAL);
 1483         rnh = ipfw_tables[tbl].rnh;
 1484         RADIX_NODE_HEAD_LOCK(rnh);
 1485         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
 1486         ipfw_tables[tbl].modified = 1;
 1487         RADIX_NODE_HEAD_UNLOCK(rnh);
 1488         return (0);
 1489 }
 1490 
 1491 static void
 1492 flush_tables(void)
 1493 {
 1494         u_int16_t tbl;
 1495 
 1496         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
 1497                 flush_table(tbl);
 1498 }
 1499 
 1500 static int
 1501 lookup_table(u_int16_t tbl, in_addr_t addr, u_int32_t *val)
 1502 {
 1503         struct radix_node_head *rnh;
 1504         struct ip_fw_table *table;
 1505         struct table_entry *ent;
 1506         struct sockaddr_in sa;
 1507         int last_match;
 1508 
 1509         if (tbl >= IPFW_TABLES_MAX)
 1510                 return (0);
 1511         table = &ipfw_tables[tbl];
 1512         rnh = table->rnh;
 1513         RADIX_NODE_HEAD_LOCK(rnh);
 1514         if (addr == table->last_addr && !table->modified) {
 1515                 last_match = table->last_match;
 1516                 if (last_match)
 1517                         *val = table->last_value;
 1518                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1519                 return (last_match);
 1520         }
 1521         table->modified = 0;
 1522         sa.sin_len = 8;
 1523         sa.sin_addr.s_addr = addr;
 1524         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
 1525         table->last_addr = addr;
 1526         if (ent != NULL) {
 1527                 table->last_value = *val = ent->value;
 1528                 table->last_match = 1;
 1529                 RADIX_NODE_HEAD_UNLOCK(rnh);
 1530                 return (1);
 1531         }
 1532         table->last_match = 0;
 1533         RADIX_NODE_HEAD_UNLOCK(rnh);
 1534         return (0);
 1535 }
 1536 
 1537 static int
 1538 count_table_entry(struct radix_node *rn, void *arg)
 1539 {
 1540         u_int32_t * const cnt = arg;
 1541 
 1542         (*cnt)++;
 1543         return (0);
 1544 }
 1545 
 1546 static int
 1547 count_table(u_int32_t tbl, u_int32_t *cnt)
 1548 {
 1549         struct radix_node_head *rnh;
 1550 
 1551         if (tbl >= IPFW_TABLES_MAX)
 1552                 return (EINVAL);
 1553         rnh = ipfw_tables[tbl].rnh;
 1554         *cnt = 0;
 1555         RADIX_NODE_HEAD_LOCK(rnh);
 1556         rnh->rnh_walktree(rnh, count_table_entry, cnt);
 1557         RADIX_NODE_HEAD_UNLOCK(rnh);
 1558         return (0);
 1559 }
 1560 
 1561 static int
 1562 dump_table_entry(struct radix_node *rn, void *arg)
 1563 {
 1564         struct table_entry * const n = (struct table_entry *)rn;
 1565         ipfw_table * const tbl = arg;
 1566         ipfw_table_entry *ent;
 1567 
 1568         if (tbl->cnt == tbl->size)
 1569                 return (1);
 1570         ent = &tbl->ent[tbl->cnt];
 1571         ent->tbl = tbl->tbl;
 1572         if (in_nullhost(n->mask.sin_addr))
 1573                 ent->masklen = 0;
 1574         else
 1575                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
 1576         ent->addr = n->addr.sin_addr.s_addr;
 1577         ent->value = n->value;
 1578         tbl->cnt++;
 1579         return (0);
 1580 }
 1581 
 1582 static int
 1583 dump_table(ipfw_table *tbl)
 1584 {
 1585         struct radix_node_head *rnh;
 1586 
 1587         if (tbl->tbl >= IPFW_TABLES_MAX)
 1588                 return (EINVAL);
 1589         rnh = ipfw_tables[tbl->tbl].rnh;
 1590         tbl->cnt = 0;
 1591         RADIX_NODE_HEAD_LOCK(rnh);
 1592         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
 1593         RADIX_NODE_HEAD_UNLOCK(rnh);
 1594         return (0);
 1595 }
 1596 
 1597 static void
 1598 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
 1599 {
 1600         struct ucred *cr;
 1601 
 1602         if (inp->inp_socket != NULL) {
 1603                 cr = inp->inp_socket->so_cred;
 1604                 ugp->fw_prid = jailed(cr) ?
 1605                     cr->cr_prison->pr_id : -1;
 1606                 ugp->fw_uid = cr->cr_uid;
 1607                 ugp->fw_ngroups = cr->cr_ngroups;
 1608                 bcopy(cr->cr_groups, ugp->fw_groups,
 1609                     sizeof(ugp->fw_groups));
 1610         }
 1611 }
 1612 
 1613 static int
 1614 check_uidgid(ipfw_insn_u32 *insn,
 1615         int proto, struct ifnet *oif,
 1616         struct in_addr dst_ip, u_int16_t dst_port,
 1617         struct in_addr src_ip, u_int16_t src_port,
 1618         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
 1619 {
 1620         struct inpcbinfo *pi;
 1621         int wildcard;
 1622         struct inpcb *pcb;
 1623         int match;
 1624         gid_t *gp;
 1625 
 1626         /*
 1627          * Check to see if the UDP or TCP stack supplied us with
 1628          * the PCB. If so, rather then holding a lock and looking
 1629          * up the PCB, we can use the one that was supplied.
 1630          */
 1631         if (inp && *lookup == 0) {
 1632                 INP_LOCK_ASSERT(inp);
 1633                 if (inp->inp_socket != NULL) {
 1634                         fill_ugid_cache(inp, ugp);
 1635                         *lookup = 1;
 1636                 }
 1637         }
 1638         /*
 1639          * If we have already been here and the packet has no
 1640          * PCB entry associated with it, then we can safely
 1641          * assume that this is a no match.
 1642          */
 1643         if (*lookup == -1)
 1644                 return (0);
 1645         if (proto == IPPROTO_TCP) {
 1646                 wildcard = 0;
 1647                 pi = &tcbinfo;
 1648         } else if (proto == IPPROTO_UDP) {
 1649                 wildcard = 1;
 1650                 pi = &udbinfo;
 1651         } else
 1652                 return 0;
 1653         match = 0;
 1654         if (*lookup == 0) {
 1655                 INP_INFO_RLOCK(pi);
 1656                 pcb =  (oif) ?
 1657                         in_pcblookup_hash(pi,
 1658                                 dst_ip, htons(dst_port),
 1659                                 src_ip, htons(src_port),
 1660                                 wildcard, oif) :
 1661                         in_pcblookup_hash(pi,
 1662                                 src_ip, htons(src_port),
 1663                                 dst_ip, htons(dst_port),
 1664                                 wildcard, NULL);
 1665                 if (pcb != NULL) {
 1666                         INP_LOCK(pcb);
 1667                         if (pcb->inp_socket != NULL) {
 1668                                 fill_ugid_cache(pcb, ugp);
 1669                                 *lookup = 1;
 1670                         }
 1671                         INP_UNLOCK(pcb);
 1672                 }
 1673                 INP_INFO_RUNLOCK(pi);
 1674                 if (*lookup == 0) {
 1675                         /*
 1676                          * If the lookup did not yield any results, there
 1677                          * is no sense in coming back and trying again. So
 1678                          * we can set lookup to -1 and ensure that we wont
 1679                          * bother the pcb system again.
 1680                          */
 1681                         *lookup = -1;
 1682                         return (0);
 1683                 }
 1684         } 
 1685         if (insn->o.opcode == O_UID)
 1686                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
 1687         else if (insn->o.opcode == O_GID) {
 1688                 for (gp = ugp->fw_groups;
 1689                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
 1690                         if (*gp == (gid_t)insn->d[0]) {
 1691                                 match = 1;
 1692                                 break;
 1693                         }
 1694         } else if (insn->o.opcode == O_JAIL)
 1695                 match = (ugp->fw_prid == (int)insn->d[0]);
 1696         return match;
 1697 }
 1698 
 1699 /*
 1700  * The main check routine for the firewall.
 1701  *
 1702  * All arguments are in args so we can modify them and return them
 1703  * back to the caller.
 1704  *
 1705  * Parameters:
 1706  *
 1707  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
 1708  *              Starts with the IP header.
 1709  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
 1710  *      args->oif       Outgoing interface, or NULL if packet is incoming.
 1711  *              The incoming interface is in the mbuf. (in)
 1712  *      args->divert_rule (in/out)
 1713  *              Skip up to the first rule past this rule number;
 1714  *              upon return, non-zero port number for divert or tee.
 1715  *
 1716  *      args->rule      Pointer to the last matching rule (in/out)
 1717  *      args->next_hop  Socket we are forwarding to (out).
 1718  *      args->f_id      Addresses grabbed from the packet (out)
 1719  *
 1720  * Return value:
 1721  *
 1722  *      IP_FW_PORT_DENY_FLAG    the packet must be dropped.
 1723  *      0       The packet is to be accepted and routed normally OR
 1724  *              the packet was denied/rejected and has been dropped;
 1725  *              in the latter case, *m is equal to NULL upon return.
 1726  *      port    Divert the packet to port, with these caveats:
 1727  *
 1728  *              - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
 1729  *                of diverting it (ie, 'ipfw tee').
 1730  *
 1731  *              - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
 1732  *                16 bits as a dummynet pipe number instead of diverting
 1733  */
 1734 
 1735 int
 1736 ipfw_chk(struct ip_fw_args *args)
 1737 {
 1738         /*
 1739          * Local variables hold state during the processing of a packet.
 1740          *
 1741          * IMPORTANT NOTE: to speed up the processing of rules, there
 1742          * are some assumption on the values of the variables, which
 1743          * are documented here. Should you change them, please check
 1744          * the implementation of the various instructions to make sure
 1745          * that they still work.
 1746          *
 1747          * args->eh     The MAC header. It is non-null for a layer2
 1748          *      packet, it is NULL for a layer-3 packet.
 1749          *
 1750          * m | args->m  Pointer to the mbuf, as received from the caller.
 1751          *      It may change if ipfw_chk() does an m_pullup, or if it
 1752          *      consumes the packet because it calls send_reject().
 1753          *      XXX This has to change, so that ipfw_chk() never modifies
 1754          *      or consumes the buffer.
 1755          * ip   is simply an alias of the value of m, and it is kept
 1756          *      in sync with it (the packet is  supposed to start with
 1757          *      the ip header).
 1758          */
 1759         struct mbuf *m = args->m;
 1760         struct ip *ip = mtod(m, struct ip *);
 1761 
 1762         /*
 1763          * For rules which contain uid/gid or jail constraints, cache
 1764          * a copy of the users credentials after the pcb lookup has been
 1765          * executed. This will speed up the processing of rules with
 1766          * these types of constraints, as well as decrease contention
 1767          * on pcb related locks.
 1768          */
 1769         struct ip_fw_ugid fw_ugid_cache;
 1770         int ugid_lookup = 0;
 1771 
 1772         /*
 1773          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
 1774          *      associated with a packet input on a divert socket.  This
 1775          *      will allow to distinguish traffic and its direction when
 1776          *      it originates from a divert socket.
 1777          */
 1778         u_int divinput_flags = 0;
 1779 
 1780         /*
 1781          * oif | args->oif      If NULL, ipfw_chk has been called on the
 1782          *      inbound path (ether_input, bdg_forward, ip_input).
 1783          *      If non-NULL, ipfw_chk has been called on the outbound path
 1784          *      (ether_output, ip_output).
 1785          */
 1786         struct ifnet *oif = args->oif;
 1787 
 1788         struct ip_fw *f = NULL;         /* matching rule */
 1789         int retval = 0;
 1790 
 1791         /*
 1792          * hlen The length of the IPv4 header.
 1793          *      hlen >0 means we have an IPv4 packet.
 1794          */
 1795         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
 1796 
 1797         /*
 1798          * offset       The offset of a fragment. offset != 0 means that
 1799          *      we have a fragment at this offset of an IPv4 packet.
 1800          *      offset == 0 means that (if this is an IPv4 packet)
 1801          *      this is the first or only fragment.
 1802          */
 1803         u_short offset = 0;
 1804 
 1805         /*
 1806          * Local copies of addresses. They are only valid if we have
 1807          * an IP packet.
 1808          *
 1809          * proto        The protocol. Set to 0 for non-ip packets,
 1810          *      or to the protocol read from the packet otherwise.
 1811          *      proto != 0 means that we have an IPv4 packet.
 1812          *
 1813          * src_port, dst_port   port numbers, in HOST format. Only
 1814          *      valid for TCP and UDP packets.
 1815          *
 1816          * src_ip, dst_ip       ip addresses, in NETWORK format.
 1817          *      Only valid for IPv4 packets.
 1818          */
 1819         u_int8_t proto;
 1820         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
 1821         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
 1822         u_int16_t ip_len=0;
 1823         int pktlen;
 1824         int dyn_dir = MATCH_UNKNOWN;
 1825         ipfw_dyn_rule *q = NULL;
 1826         struct ip_fw_chain *chain = &layer3_chain;
 1827         struct m_tag *mtag;
 1828 
 1829         if (m->m_flags & M_SKIP_FIREWALL)
 1830                 return 0;       /* accept */
 1831         /*
 1832          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
 1833          *      MATCH_NONE when checked and not matched (q = NULL),
 1834          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
 1835          */
 1836 
 1837         pktlen = m->m_pkthdr.len;
 1838         if (args->eh == NULL ||         /* layer 3 packet */
 1839                 ( m->m_pkthdr.len >= sizeof(struct ip) &&
 1840                     ntohs(args->eh->ether_type) == ETHERTYPE_IP))
 1841                         hlen = ip->ip_hl << 2;
 1842 
 1843         /*
 1844          * Collect parameters into local variables for faster matching.
 1845          */
 1846         if (hlen == 0) {        /* do not grab addresses for non-ip pkts */
 1847                 proto = args->f_id.proto = 0;   /* mark f_id invalid */
 1848                 goto after_ip_checks;
 1849         }
 1850 
 1851         proto = args->f_id.proto = ip->ip_p;
 1852         src_ip = ip->ip_src;
 1853         dst_ip = ip->ip_dst;
 1854         if (args->eh != NULL) { /* layer 2 packets are as on the wire */
 1855                 offset = ntohs(ip->ip_off) & IP_OFFMASK;
 1856                 ip_len = ntohs(ip->ip_len);
 1857         } else {
 1858                 offset = ip->ip_off & IP_OFFMASK;
 1859                 ip_len = ip->ip_len;
 1860         }
 1861         pktlen = ip_len < pktlen ? ip_len : pktlen;
 1862 
 1863 #define PULLUP_TO(len)                                          \
 1864                 do {                                            \
 1865                         if ((m)->m_len < (len)) {               \
 1866                             args->m = m = m_pullup(m, (len));   \
 1867                             if (m == 0)                         \
 1868                                 goto pullup_failed;             \
 1869                             ip = mtod(m, struct ip *);          \
 1870                         }                                       \
 1871                 } while (0)
 1872 
 1873         if (offset == 0) {
 1874                 switch (proto) {
 1875                 case IPPROTO_TCP:
 1876                     {
 1877                         struct tcphdr *tcp;
 1878 
 1879                         PULLUP_TO(hlen + sizeof(struct tcphdr));
 1880                         tcp = L3HDR(struct tcphdr, ip);
 1881                         dst_port = tcp->th_dport;
 1882                         src_port = tcp->th_sport;
 1883                         args->f_id.flags = tcp->th_flags;
 1884                         }
 1885                         break;
 1886 
 1887                 case IPPROTO_UDP:
 1888                     {
 1889                         struct udphdr *udp;
 1890 
 1891                         PULLUP_TO(hlen + sizeof(struct udphdr));
 1892                         udp = L3HDR(struct udphdr, ip);
 1893                         dst_port = udp->uh_dport;
 1894                         src_port = udp->uh_sport;
 1895                         }
 1896                         break;
 1897 
 1898                 case IPPROTO_ICMP:
 1899                         PULLUP_TO(hlen + 4);    /* type, code and checksum. */
 1900                         args->f_id.flags = L3HDR(struct icmp, ip)->icmp_type;
 1901                         break;
 1902 
 1903                 default:
 1904                         break;
 1905                 }
 1906 #undef PULLUP_TO
 1907         }
 1908 
 1909         args->f_id.src_ip = ntohl(src_ip.s_addr);
 1910         args->f_id.dst_ip = ntohl(dst_ip.s_addr);
 1911         args->f_id.src_port = src_port = ntohs(src_port);
 1912         args->f_id.dst_port = dst_port = ntohs(dst_port);
 1913 
 1914 after_ip_checks:
 1915         IPFW_RLOCK(chain);
 1916         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
 1917         if (args->rule) {
 1918                 /*
 1919                  * Packet has already been tagged. Look for the next rule
 1920                  * to restart processing.
 1921                  *
 1922                  * If fw_one_pass != 0 then just accept it.
 1923                  * XXX should not happen here, but optimized out in
 1924                  * the caller.
 1925                  */
 1926                 if (fw_one_pass) {
 1927                         IPFW_RUNLOCK(chain);
 1928                         return 0;
 1929                 }
 1930 
 1931                 f = args->rule->next_rule;
 1932                 if (f == NULL)
 1933                         f = lookup_next_rule(args->rule);
 1934         } else {
 1935                 /*
 1936                  * Find the starting rule. It can be either the first
 1937                  * one, or the one after divert_rule if asked so.
 1938                  */
 1939                 int skipto = mtag ? divert_cookie(mtag) : 0;
 1940 
 1941                 f = chain->rules;
 1942                 if (args->eh == NULL && skipto != 0) {
 1943                         if (skipto >= IPFW_DEFAULT_RULE) {
 1944                                 IPFW_RUNLOCK(chain);
 1945                                 return(IP_FW_PORT_DENY_FLAG); /* invalid */
 1946                         }
 1947                         while (f && f->rulenum <= skipto)
 1948                                 f = f->next;
 1949                         if (f == NULL) {        /* drop packet */
 1950                                 IPFW_RUNLOCK(chain);
 1951                                 return(IP_FW_PORT_DENY_FLAG);
 1952                         }
 1953                 }
 1954         }
 1955         /* reset divert rule to avoid confusion later */
 1956         if (mtag) {
 1957                 divinput_flags = divert_info(mtag) &
 1958                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
 1959                 m_tag_delete(m, mtag);
 1960         }
 1961 
 1962         /*
 1963          * Now scan the rules, and parse microinstructions for each rule.
 1964          */
 1965         for (; f; f = f->next) {
 1966                 int l, cmdlen;
 1967                 ipfw_insn *cmd;
 1968                 int skip_or; /* skip rest of OR block */
 1969 
 1970 again:
 1971                 if (set_disable & (1 << f->set) )
 1972                         continue;
 1973 
 1974                 skip_or = 0;
 1975                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
 1976                     l -= cmdlen, cmd += cmdlen) {
 1977                         int match;
 1978 
 1979                         /*
 1980                          * check_body is a jump target used when we find a
 1981                          * CHECK_STATE, and need to jump to the body of
 1982                          * the target rule.
 1983                          */
 1984 
 1985 check_body:
 1986                         cmdlen = F_LEN(cmd);
 1987                         /*
 1988                          * An OR block (insn_1 || .. || insn_n) has the
 1989                          * F_OR bit set in all but the last instruction.
 1990                          * The first match will set "skip_or", and cause
 1991                          * the following instructions to be skipped until
 1992                          * past the one with the F_OR bit clear.
 1993                          */
 1994                         if (skip_or) {          /* skip this instruction */
 1995                                 if ((cmd->len & F_OR) == 0)
 1996                                         skip_or = 0;    /* next one is good */
 1997                                 continue;
 1998                         }
 1999                         match = 0; /* set to 1 if we succeed */
 2000 
 2001                         switch (cmd->opcode) {
 2002                         /*
 2003                          * The first set of opcodes compares the packet's
 2004                          * fields with some pattern, setting 'match' if a
 2005                          * match is found. At the end of the loop there is
 2006                          * logic to deal with F_NOT and F_OR flags associated
 2007                          * with the opcode.
 2008                          */
 2009                         case O_NOP:
 2010                                 match = 1;
 2011                                 break;
 2012 
 2013                         case O_FORWARD_MAC:
 2014                                 printf("ipfw: opcode %d unimplemented\n",
 2015                                     cmd->opcode);
 2016                                 break;
 2017 
 2018                         case O_GID:
 2019                         case O_UID:
 2020                         case O_JAIL:
 2021                                 /*
 2022                                  * We only check offset == 0 && proto != 0,
 2023                                  * as this ensures that we have an IPv4
 2024                                  * packet with the ports info.
 2025                                  */
 2026                                 if (offset!=0)
 2027                                         break;
 2028                                 if (proto == IPPROTO_TCP ||
 2029                                     proto == IPPROTO_UDP)
 2030                                         match = check_uidgid(
 2031                                                     (ipfw_insn_u32 *)cmd,
 2032                                                     proto, oif,
 2033                                                     dst_ip, dst_port,
 2034                                                     src_ip, src_port, &fw_ugid_cache,
 2035                                                     &ugid_lookup, args->inp);
 2036                                 break;
 2037 
 2038                         case O_RECV:
 2039                                 match = iface_match(m->m_pkthdr.rcvif,
 2040                                     (ipfw_insn_if *)cmd);
 2041                                 break;
 2042 
 2043                         case O_XMIT:
 2044                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
 2045                                 break;
 2046 
 2047                         case O_VIA:
 2048                                 match = iface_match(oif ? oif :
 2049                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
 2050                                 break;
 2051 
 2052                         case O_MACADDR2:
 2053                                 if (args->eh != NULL) { /* have MAC header */
 2054                                         u_int32_t *want = (u_int32_t *)
 2055                                                 ((ipfw_insn_mac *)cmd)->addr;
 2056                                         u_int32_t *mask = (u_int32_t *)
 2057                                                 ((ipfw_insn_mac *)cmd)->mask;
 2058                                         u_int32_t *hdr = (u_int32_t *)args->eh;
 2059 
 2060                                         match =
 2061                                             ( want[0] == (hdr[0] & mask[0]) &&
 2062                                               want[1] == (hdr[1] & mask[1]) &&
 2063                                               want[2] == (hdr[2] & mask[2]) );
 2064                                 }
 2065                                 break;
 2066 
 2067                         case O_MAC_TYPE:
 2068                                 if (args->eh != NULL) {
 2069                                         u_int16_t t =
 2070                                             ntohs(args->eh->ether_type);
 2071                                         u_int16_t *p =
 2072                                             ((ipfw_insn_u16 *)cmd)->ports;
 2073                                         int i;
 2074 
 2075                                         for (i = cmdlen - 1; !match && i>0;
 2076                                             i--, p += 2)
 2077                                                 match = (t>=p[0] && t<=p[1]);
 2078                                 }
 2079                                 break;
 2080 
 2081                         case O_FRAG:
 2082                                 match = (hlen > 0 && offset != 0);
 2083                                 break;
 2084 
 2085                         case O_IN:      /* "out" is "not in" */
 2086                                 match = (oif == NULL);
 2087                                 break;
 2088 
 2089                         case O_LAYER2:
 2090                                 match = (args->eh != NULL);
 2091                                 break;
 2092 
 2093                         case O_DIVERTED:
 2094                                 match = (cmd->arg1 & 1 && divinput_flags &
 2095                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
 2096                                         (cmd->arg1 & 2 && divinput_flags &
 2097                                     IP_FW_DIVERT_OUTPUT_FLAG);
 2098                                 break;
 2099 
 2100                         case O_PROTO:
 2101                                 /*
 2102                                  * We do not allow an arg of 0 so the
 2103                                  * check of "proto" only suffices.
 2104                                  */
 2105                                 match = (proto == cmd->arg1);
 2106                                 break;
 2107 
 2108                         case O_IP_SRC:
 2109                                 match = (hlen > 0 &&
 2110                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2111                                     src_ip.s_addr);
 2112                                 break;
 2113 
 2114                         case O_IP_SRC_LOOKUP:
 2115                         case O_IP_DST_LOOKUP:
 2116                                 if (hlen > 0) {
 2117                                     uint32_t a =
 2118                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
 2119                                             dst_ip.s_addr : src_ip.s_addr;
 2120                                     uint32_t v;
 2121 
 2122                                     match = lookup_table(cmd->arg1, a, &v);
 2123                                     if (!match)
 2124                                         break;
 2125                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
 2126                                         match =
 2127                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
 2128                                 }
 2129                                 break;
 2130 
 2131                         case O_IP_SRC_MASK:
 2132                         case O_IP_DST_MASK:
 2133                                 if (hlen > 0) {
 2134                                     uint32_t a =
 2135                                         (cmd->opcode == O_IP_DST_MASK) ?
 2136                                             dst_ip.s_addr : src_ip.s_addr;
 2137                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
 2138                                     int i = cmdlen-1;
 2139 
 2140                                     for (; !match && i>0; i-= 2, p+= 2)
 2141                                         match = (p[0] == (a & p[1]));
 2142                                 }
 2143                                 break;
 2144 
 2145                         case O_IP_SRC_ME:
 2146                                 if (hlen > 0) {
 2147                                         struct ifnet *tif;
 2148 
 2149                                         INADDR_TO_IFP(src_ip, tif);
 2150                                         match = (tif != NULL);
 2151                                 }
 2152                                 break;
 2153 
 2154                         case O_IP_DST_SET:
 2155                         case O_IP_SRC_SET:
 2156                                 if (hlen > 0) {
 2157                                         u_int32_t *d = (u_int32_t *)(cmd+1);
 2158                                         u_int32_t addr =
 2159                                             cmd->opcode == O_IP_DST_SET ?
 2160                                                 args->f_id.dst_ip :
 2161                                                 args->f_id.src_ip;
 2162 
 2163                                             if (addr < d[0])
 2164                                                     break;
 2165                                             addr -= d[0]; /* subtract base */
 2166                                             match = (addr < cmd->arg1) &&
 2167                                                 ( d[ 1 + (addr>>5)] &
 2168                                                   (1<<(addr & 0x1f)) );
 2169                                 }
 2170                                 break;
 2171 
 2172                         case O_IP_DST:
 2173                                 match = (hlen > 0 &&
 2174                                     ((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2175                                     dst_ip.s_addr);
 2176                                 break;
 2177 
 2178                         case O_IP_DST_ME:
 2179                                 if (hlen > 0) {
 2180                                         struct ifnet *tif;
 2181 
 2182                                         INADDR_TO_IFP(dst_ip, tif);
 2183                                         match = (tif != NULL);
 2184                                 }
 2185                                 break;
 2186 
 2187                         case O_IP_SRCPORT:
 2188                         case O_IP_DSTPORT:
 2189                                 /*
 2190                                  * offset == 0 && proto != 0 is enough
 2191                                  * to guarantee that we have an IPv4
 2192                                  * packet with port info.
 2193                                  */
 2194                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
 2195                                     && offset == 0) {
 2196                                         u_int16_t x =
 2197                                             (cmd->opcode == O_IP_SRCPORT) ?
 2198                                                 src_port : dst_port ;
 2199                                         u_int16_t *p =
 2200                                             ((ipfw_insn_u16 *)cmd)->ports;
 2201                                         int i;
 2202 
 2203                                         for (i = cmdlen - 1; !match && i>0;
 2204                                             i--, p += 2)
 2205                                                 match = (x>=p[0] && x<=p[1]);
 2206                                 }
 2207                                 break;
 2208 
 2209                         case O_ICMPTYPE:
 2210                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
 2211                                     icmptype_match(ip, (ipfw_insn_u32 *)cmd) );
 2212                                 break;
 2213 
 2214                         case O_IPOPT:
 2215                                 match = (hlen > 0 && ipopts_match(ip, cmd) );
 2216                                 break;
 2217 
 2218                         case O_IPVER:
 2219                                 match = (hlen > 0 && cmd->arg1 == ip->ip_v);
 2220                                 break;
 2221 
 2222                         case O_IPID:
 2223                         case O_IPLEN:
 2224                         case O_IPTTL:
 2225                                 if (hlen > 0) { /* only for IP packets */
 2226                                     uint16_t x;
 2227                                     uint16_t *p;
 2228                                     int i;
 2229 
 2230                                     if (cmd->opcode == O_IPLEN)
 2231                                         x = ip_len;
 2232                                     else if (cmd->opcode == O_IPTTL)
 2233                                         x = ip->ip_ttl;
 2234                                     else /* must be IPID */
 2235                                         x = ntohs(ip->ip_id);
 2236                                     if (cmdlen == 1) {
 2237                                         match = (cmd->arg1 == x);
 2238                                         break;
 2239                                     }
 2240                                     /* otherwise we have ranges */
 2241                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2242                                     i = cmdlen - 1;
 2243                                     for (; !match && i>0; i--, p += 2)
 2244                                         match = (x >= p[0] && x <= p[1]);
 2245                                 }
 2246                                 break;
 2247 
 2248                         case O_IPPRECEDENCE:
 2249                                 match = (hlen > 0 &&
 2250                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
 2251                                 break;
 2252 
 2253                         case O_IPTOS:
 2254                                 match = (hlen > 0 &&
 2255                                     flags_match(cmd, ip->ip_tos));
 2256                                 break;
 2257 
 2258                         case O_TCPDATALEN:
 2259                                 if (proto == IPPROTO_TCP && offset == 0) {
 2260                                     struct tcphdr *tcp;
 2261                                     uint16_t x;
 2262                                     uint16_t *p;
 2263                                     int i;
 2264 
 2265                                     tcp = L3HDR(struct tcphdr,ip);
 2266                                     x = ip_len -
 2267                                         ((ip->ip_hl + tcp->th_off) << 2);
 2268                                     if (cmdlen == 1) {
 2269                                         match = (cmd->arg1 == x);
 2270                                         break;
 2271                                     }
 2272                                     /* otherwise we have ranges */
 2273                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2274                                     i = cmdlen - 1;
 2275                                     for (; !match && i>0; i--, p += 2)
 2276                                         match = (x >= p[0] && x <= p[1]);
 2277                                 }
 2278                                 break;
 2279 
 2280                         case O_TCPFLAGS:
 2281                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2282                                     flags_match(cmd,
 2283                                         L3HDR(struct tcphdr,ip)->th_flags));
 2284                                 break;
 2285 
 2286                         case O_TCPOPTS:
 2287                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2288                                     tcpopts_match(ip, cmd));
 2289                                 break;
 2290 
 2291                         case O_TCPSEQ:
 2292                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2293                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2294                                         L3HDR(struct tcphdr,ip)->th_seq);
 2295                                 break;
 2296 
 2297                         case O_TCPACK:
 2298                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2299                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2300                                         L3HDR(struct tcphdr,ip)->th_ack);
 2301                                 break;
 2302 
 2303                         case O_TCPWIN:
 2304                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2305                                     cmd->arg1 ==
 2306                                         L3HDR(struct tcphdr,ip)->th_win);
 2307                                 break;
 2308 
 2309                         case O_ESTAB:
 2310                                 /* reject packets which have SYN only */
 2311                                 /* XXX should i also check for TH_ACK ? */
 2312                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2313                                     (L3HDR(struct tcphdr,ip)->th_flags &
 2314                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
 2315                                 break;
 2316 
 2317                         case O_ALTQ: {
 2318                                 struct altq_tag *at;
 2319                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
 2320 
 2321                                 match = 1;
 2322                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
 2323                                 if (mtag != NULL)
 2324                                         break;
 2325                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
 2326                                                 sizeof(struct altq_tag),
 2327                                                 M_NOWAIT);
 2328                                 if (mtag == NULL) {
 2329                                         /*
 2330                                          * Let the packet fall back to the
 2331                                          * default ALTQ.
 2332                                          */
 2333                                         break;
 2334                                 }
 2335                                 at = (struct altq_tag *)(mtag+1);
 2336                                 at->qid = altq->qid;
 2337                                 if (hlen != 0)
 2338                                         at->af = AF_INET;
 2339                                 else
 2340                                         at->af = AF_LINK;
 2341                                 at->hdr = ip;
 2342                                 m_tag_prepend(m, mtag);
 2343                                 break;
 2344                         }
 2345 
 2346                         case O_LOG:
 2347                                 if (fw_verbose)
 2348                                         ipfw_log(f, hlen, args->eh, m, oif);
 2349                                 match = 1;
 2350                                 break;
 2351 
 2352                         case O_PROB:
 2353                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
 2354                                 break;
 2355 
 2356                         case O_VERREVPATH:
 2357                                 /* Outgoing packets automatically pass/match */
 2358                                 match = (hlen > 0 && ((oif != NULL) ||
 2359                                     (m->m_pkthdr.rcvif == NULL) ||
 2360                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
 2361                                 break;
 2362 
 2363                         case O_VERSRCREACH:
 2364                                 /* Outgoing packets automatically pass/match */
 2365                                 match = (hlen > 0 && ((oif != NULL) ||
 2366                                      verify_path(src_ip, NULL)));
 2367                                 break;
 2368 
 2369                         case O_ANTISPOOF:
 2370                                 /* Outgoing packets automatically pass/match */
 2371                                 if (oif == NULL && hlen > 0 &&
 2372                                     in_localaddr(src_ip))
 2373                                         match = verify_path(src_ip,
 2374                                                         m->m_pkthdr.rcvif);
 2375                                 else
 2376                                         match = 1;
 2377                                 break;
 2378 
 2379                         case O_IPSEC:
 2380 #ifdef FAST_IPSEC
 2381                                 match = (m_tag_find(m,
 2382                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
 2383 #endif
 2384 #ifdef IPSEC
 2385                                 match = (ipsec_getnhist(m) != 0);
 2386 #endif
 2387                                 /* otherwise no match */
 2388                                 break;
 2389 
 2390                         /*
 2391                          * The second set of opcodes represents 'actions',
 2392                          * i.e. the terminal part of a rule once the packet
 2393                          * matches all previous patterns.
 2394                          * Typically there is only one action for each rule,
 2395                          * and the opcode is stored at the end of the rule
 2396                          * (but there are exceptions -- see below).
 2397                          *
 2398                          * In general, here we set retval and terminate the
 2399                          * outer loop (would be a 'break 3' in some language,
 2400                          * but we need to do a 'goto done').
 2401                          *
 2402                          * Exceptions:
 2403                          * O_COUNT and O_SKIPTO actions:
 2404                          *   instead of terminating, we jump to the next rule
 2405                          *   ('goto next_rule', equivalent to a 'break 2'),
 2406                          *   or to the SKIPTO target ('goto again' after
 2407                          *   having set f, cmd and l), respectively.
 2408                          *
 2409                          * O_LOG and O_ALTQ action parameters:
 2410                          *   perform some action and set match = 1;
 2411                          *
 2412                          * O_LIMIT and O_KEEP_STATE: these opcodes are
 2413                          *   not real 'actions', and are stored right
 2414                          *   before the 'action' part of the rule.
 2415                          *   These opcodes try to install an entry in the
 2416                          *   state tables; if successful, we continue with
 2417                          *   the next opcode (match=1; break;), otherwise
 2418                          *   the packet *   must be dropped
 2419                          *   ('goto done' after setting retval);
 2420                          *
 2421                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
 2422                          *   cause a lookup of the state table, and a jump
 2423                          *   to the 'action' part of the parent rule
 2424                          *   ('goto check_body') if an entry is found, or
 2425                          *   (CHECK_STATE only) a jump to the next rule if
 2426                          *   the entry is not found ('goto next_rule').
 2427                          *   The result of the lookup is cached to make
 2428                          *   further instances of these opcodes are
 2429                          *   effectively NOPs.
 2430                          */
 2431                         case O_LIMIT:
 2432                         case O_KEEP_STATE:
 2433                                 if (install_state(f,
 2434                                     (ipfw_insn_limit *)cmd, args)) {
 2435                                         retval = IP_FW_PORT_DENY_FLAG;
 2436                                         goto done; /* error/limit violation */
 2437                                 }
 2438                                 match = 1;
 2439                                 break;
 2440 
 2441                         case O_PROBE_STATE:
 2442                         case O_CHECK_STATE:
 2443                                 /*
 2444                                  * dynamic rules are checked at the first
 2445                                  * keep-state or check-state occurrence,
 2446                                  * with the result being stored in dyn_dir.
 2447                                  * The compiler introduces a PROBE_STATE
 2448                                  * instruction for us when we have a
 2449                                  * KEEP_STATE (because PROBE_STATE needs
 2450                                  * to be run first).
 2451                                  */
 2452                                 if (dyn_dir == MATCH_UNKNOWN &&
 2453                                     (q = lookup_dyn_rule(&args->f_id,
 2454                                      &dyn_dir, proto == IPPROTO_TCP ?
 2455                                         L3HDR(struct tcphdr, ip) : NULL))
 2456                                         != NULL) {
 2457                                         /*
 2458                                          * Found dynamic entry, update stats
 2459                                          * and jump to the 'action' part of
 2460                                          * the parent rule.
 2461                                          */
 2462                                         q->pcnt++;
 2463                                         q->bcnt += pktlen;
 2464                                         f = q->rule;
 2465                                         cmd = ACTION_PTR(f);
 2466                                         l = f->cmd_len - f->act_ofs;
 2467                                         IPFW_DYN_UNLOCK();
 2468                                         goto check_body;
 2469                                 }
 2470                                 /*
 2471                                  * Dynamic entry not found. If CHECK_STATE,
 2472                                  * skip to next rule, if PROBE_STATE just
 2473                                  * ignore and continue with next opcode.
 2474                                  */
 2475                                 if (cmd->opcode == O_CHECK_STATE)
 2476                                         goto next_rule;
 2477                                 match = 1;
 2478                                 break;
 2479 
 2480                         case O_ACCEPT:
 2481                                 retval = 0;     /* accept */
 2482                                 goto done;
 2483 
 2484                         case O_PIPE:
 2485                         case O_QUEUE:
 2486                                 args->rule = f; /* report matching rule */
 2487                                 retval = cmd->arg1 | IP_FW_PORT_DYNT_FLAG;
 2488                                 goto done;
 2489 
 2490                         case O_DIVERT:
 2491                         case O_TEE: {
 2492                                 struct divert_tag *dt;
 2493 
 2494                                 if (args->eh) /* not on layer 2 */
 2495                                         break;
 2496                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
 2497                                                 sizeof(struct divert_tag),
 2498                                                 M_NOWAIT);
 2499                                 if (mtag == NULL) {
 2500                                         /* XXX statistic */
 2501                                         /* drop packet */
 2502                                         IPFW_RUNLOCK(chain);
 2503                                         return IP_FW_PORT_DENY_FLAG;
 2504                                 }
 2505                                 dt = (struct divert_tag *)(mtag+1);
 2506                                 dt->cookie = f->rulenum;
 2507                                 dt->info = (cmd->opcode == O_DIVERT) ?
 2508                                     cmd->arg1 :
 2509                                     cmd->arg1 | IP_FW_PORT_TEE_FLAG;
 2510                                 m_tag_prepend(m, mtag);
 2511                                 retval = dt->info;
 2512                                 goto done;
 2513                         }
 2514 
 2515                         case O_COUNT:
 2516                         case O_SKIPTO:
 2517                                 f->pcnt++;      /* update stats */
 2518                                 f->bcnt += pktlen;
 2519                                 f->timestamp = time_second;
 2520                                 if (cmd->opcode == O_COUNT)
 2521                                         goto next_rule;
 2522                                 /* handle skipto */
 2523                                 if (f->next_rule == NULL)
 2524                                         lookup_next_rule(f);
 2525                                 f = f->next_rule;
 2526                                 goto again;
 2527 
 2528                         case O_REJECT:
 2529                                 /*
 2530                                  * Drop the packet and send a reject notice
 2531                                  * if the packet is not ICMP (or is an ICMP
 2532                                  * query), and it is not multicast/broadcast.
 2533                                  */
 2534                                 if (hlen > 0 && offset == 0 &&
 2535                                     (proto != IPPROTO_ICMP ||
 2536                                      is_icmp_query(ip)) &&
 2537                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 2538                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
 2539                                         send_reject(args, cmd->arg1,
 2540                                             offset,ip_len);
 2541                                         m = args->m;
 2542                                 }
 2543                                 /* FALLTHROUGH */
 2544                         case O_DENY:
 2545                                 retval = IP_FW_PORT_DENY_FLAG;
 2546                                 goto done;
 2547 
 2548                         case O_FORWARD_IP:
 2549                                 if (args->eh)   /* not valid on layer2 pkts */
 2550                                         break;
 2551                                 if (!q || dyn_dir == MATCH_FORWARD)
 2552                                         args->next_hop =
 2553                                             &((ipfw_insn_sa *)cmd)->sa;
 2554                                 retval = 0;
 2555                                 goto done;
 2556 
 2557                         default:
 2558                                 panic("-- unknown opcode %d\n", cmd->opcode);
 2559                         } /* end of switch() on opcodes */
 2560 
 2561                         if (cmd->len & F_NOT)
 2562                                 match = !match;
 2563 
 2564                         if (match) {
 2565                                 if (cmd->len & F_OR)
 2566                                         skip_or = 1;
 2567                         } else {
 2568                                 if (!(cmd->len & F_OR)) /* not an OR block, */
 2569                                         break;          /* try next rule    */
 2570                         }
 2571 
 2572                 }       /* end of inner for, scan opcodes */
 2573 
 2574 next_rule:;             /* try next rule                */
 2575 
 2576         }               /* end of outer for, scan rules */
 2577         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
 2578         IPFW_RUNLOCK(chain);
 2579         return(IP_FW_PORT_DENY_FLAG);
 2580 
 2581 done:
 2582         /* Update statistics */
 2583         f->pcnt++;
 2584         f->bcnt += pktlen;
 2585         f->timestamp = time_second;
 2586         IPFW_RUNLOCK(chain);
 2587         return retval;
 2588 
 2589 pullup_failed:
 2590         if (fw_verbose)
 2591                 printf("ipfw: pullup failed\n");
 2592         return(IP_FW_PORT_DENY_FLAG);
 2593 }
 2594 
 2595 /*
 2596  * When a rule is added/deleted, clear the next_rule pointers in all rules.
 2597  * These will be reconstructed on the fly as packets are matched.
 2598  */
 2599 static void
 2600 flush_rule_ptrs(struct ip_fw_chain *chain)
 2601 {
 2602         struct ip_fw *rule;
 2603 
 2604         IPFW_WLOCK_ASSERT(chain);
 2605 
 2606         for (rule = chain->rules; rule; rule = rule->next)
 2607                 rule->next_rule = NULL;
 2608 }
 2609 
 2610 /*
 2611  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
 2612  * pipe/queue, or to all of them (match == NULL).
 2613  */
 2614 void
 2615 flush_pipe_ptrs(struct dn_flow_set *match)
 2616 {
 2617         struct ip_fw *rule;
 2618 
 2619         IPFW_WLOCK(&layer3_chain);
 2620         for (rule = layer3_chain.rules; rule; rule = rule->next) {
 2621                 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
 2622 
 2623                 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
 2624                         continue;
 2625                 /*
 2626                  * XXX Use bcmp/bzero to handle pipe_ptr to overcome
 2627                  * possible alignment problems on 64-bit architectures.
 2628                  * This code is seldom used so we do not worry too
 2629                  * much about efficiency.
 2630                  */
 2631                 if (match == NULL ||
 2632                     !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
 2633                         bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
 2634         }
 2635         IPFW_WUNLOCK(&layer3_chain);
 2636 }
 2637 
 2638 /*
 2639  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
 2640  * possibly create a rule number and add the rule to the list.
 2641  * Update the rule_number in the input struct so the caller knows it as well.
 2642  */
 2643 static int
 2644 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
 2645 {
 2646         struct ip_fw *rule, *f, *prev;
 2647         int l = RULESIZE(input_rule);
 2648 
 2649         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
 2650                 return (EINVAL);
 2651 
 2652         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
 2653         if (rule == NULL)
 2654                 return (ENOSPC);
 2655 
 2656         bcopy(input_rule, rule, l);
 2657 
 2658         rule->next = NULL;
 2659         rule->next_rule = NULL;
 2660 
 2661         rule->pcnt = 0;
 2662         rule->bcnt = 0;
 2663         rule->timestamp = 0;
 2664 
 2665         IPFW_WLOCK(chain);
 2666 
 2667         if (chain->rules == NULL) {     /* default rule */
 2668                 chain->rules = rule;
 2669                 goto done;
 2670         }
 2671 
 2672         /*
 2673          * If rulenum is 0, find highest numbered rule before the
 2674          * default rule, and add autoinc_step
 2675          */
 2676         if (autoinc_step < 1)
 2677                 autoinc_step = 1;
 2678         else if (autoinc_step > 1000)
 2679                 autoinc_step = 1000;
 2680         if (rule->rulenum == 0) {
 2681                 /*
 2682                  * locate the highest numbered rule before default
 2683                  */
 2684                 for (f = chain->rules; f; f = f->next) {
 2685                         if (f->rulenum == IPFW_DEFAULT_RULE)
 2686                                 break;
 2687                         rule->rulenum = f->rulenum;
 2688                 }
 2689                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
 2690                         rule->rulenum += autoinc_step;
 2691                 input_rule->rulenum = rule->rulenum;
 2692         }
 2693 
 2694         /*
 2695          * Now insert the new rule in the right place in the sorted list.
 2696          */
 2697         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
 2698                 if (f->rulenum > rule->rulenum) { /* found the location */
 2699                         if (prev) {
 2700                                 rule->next = f;
 2701                                 prev->next = rule;
 2702                         } else { /* head insert */
 2703                                 rule->next = chain->rules;
 2704                                 chain->rules = rule;
 2705                         }
 2706                         break;
 2707                 }
 2708         }
 2709         flush_rule_ptrs(chain);
 2710 done:
 2711         static_count++;
 2712         static_len += l;
 2713         IPFW_WUNLOCK(chain);
 2714         DEB(printf("ipfw: installed rule %d, static count now %d\n",
 2715                 rule->rulenum, static_count);)
 2716         return (0);
 2717 }
 2718 
 2719 /**
 2720  * Remove a static rule (including derived * dynamic rules)
 2721  * and place it on the ``reap list'' for later reclamation.
 2722  * The caller is in charge of clearing rule pointers to avoid
 2723  * dangling pointers.
 2724  * @return a pointer to the next entry.
 2725  * Arguments are not checked, so they better be correct.
 2726  */
 2727 static struct ip_fw *
 2728 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
 2729 {
 2730         struct ip_fw *n;
 2731         int l = RULESIZE(rule);
 2732 
 2733         IPFW_WLOCK_ASSERT(chain);
 2734 
 2735         n = rule->next;
 2736         IPFW_DYN_LOCK();
 2737         remove_dyn_rule(rule, NULL /* force removal */);
 2738         IPFW_DYN_UNLOCK();
 2739         if (prev == NULL)
 2740                 chain->rules = n;
 2741         else
 2742                 prev->next = n;
 2743         static_count--;
 2744         static_len -= l;
 2745 
 2746         rule->next = chain->reap;
 2747         chain->reap = rule;
 2748 
 2749         return n;
 2750 }
 2751 
 2752 /**
 2753  * Reclaim storage associated with a list of rules.  This is
 2754  * typically the list created using remove_rule.
 2755  */
 2756 static void
 2757 reap_rules(struct ip_fw *head)
 2758 {
 2759         struct ip_fw *rule;
 2760 
 2761         while ((rule = head) != NULL) {
 2762                 head = head->next;
 2763                 if (DUMMYNET_LOADED)
 2764                         ip_dn_ruledel_ptr(rule);
 2765                 free(rule, M_IPFW);
 2766         }
 2767 }
 2768 
 2769 /*
 2770  * Remove all rules from a chain (except rules in set RESVD_SET
 2771  * unless kill_default = 1).  The caller is responsible for
 2772  * reclaiming storage for the rules left in chain->reap.
 2773  */
 2774 static void
 2775 free_chain(struct ip_fw_chain *chain, int kill_default)
 2776 {
 2777         struct ip_fw *prev, *rule;
 2778 
 2779         IPFW_WLOCK_ASSERT(chain);
 2780 
 2781         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
 2782         for (prev = NULL, rule = chain->rules; rule ; )
 2783                 if (kill_default || rule->set != RESVD_SET)
 2784                         rule = remove_rule(chain, rule, prev);
 2785                 else {
 2786                         prev = rule;
 2787                         rule = rule->next;
 2788                 }
 2789 }
 2790 
 2791 /**
 2792  * Remove all rules with given number, and also do set manipulation.
 2793  * Assumes chain != NULL && *chain != NULL.
 2794  *
 2795  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
 2796  * the next 8 bits are the new set, the top 8 bits are the command:
 2797  *
 2798  *      0       delete rules with given number
 2799  *      1       delete rules with given set number
 2800  *      2       move rules with given number to new set
 2801  *      3       move rules with given set number to new set
 2802  *      4       swap sets with given numbers
 2803  */
 2804 static int
 2805 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
 2806 {
 2807         struct ip_fw *prev = NULL, *rule;
 2808         u_int16_t rulenum;      /* rule or old_set */
 2809         u_int8_t cmd, new_set;
 2810 
 2811         rulenum = arg & 0xffff;
 2812         cmd = (arg >> 24) & 0xff;
 2813         new_set = (arg >> 16) & 0xff;
 2814 
 2815         if (cmd > 4)
 2816                 return EINVAL;
 2817         if (new_set > RESVD_SET)
 2818                 return EINVAL;
 2819         if (cmd == 0 || cmd == 2) {
 2820                 if (rulenum >= IPFW_DEFAULT_RULE)
 2821                         return EINVAL;
 2822         } else {
 2823                 if (rulenum > RESVD_SET)        /* old_set */
 2824                         return EINVAL;
 2825         }
 2826 
 2827         IPFW_WLOCK(chain);
 2828         rule = chain->rules;
 2829         chain->reap = NULL;
 2830         switch (cmd) {
 2831         case 0: /* delete rules with given number */
 2832                 /*
 2833                  * locate first rule to delete
 2834                  */
 2835                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
 2836                         ;
 2837                 if (rule->rulenum != rulenum) {
 2838                         IPFW_WUNLOCK(chain);
 2839                         return EINVAL;
 2840                 }
 2841 
 2842                 /*
 2843                  * flush pointers outside the loop, then delete all matching
 2844                  * rules. prev remains the same throughout the cycle.
 2845                  */
 2846                 flush_rule_ptrs(chain);
 2847                 while (rule->rulenum == rulenum)
 2848                         rule = remove_rule(chain, rule, prev);
 2849                 break;
 2850 
 2851         case 1: /* delete all rules with given set number */
 2852                 flush_rule_ptrs(chain);
 2853                 rule = chain->rules;
 2854                 while (rule->rulenum < IPFW_DEFAULT_RULE)
 2855                         if (rule->set == rulenum)
 2856                                 rule = remove_rule(chain, rule, prev);
 2857                         else {
 2858                                 prev = rule;
 2859                                 rule = rule->next;
 2860                         }
 2861                 break;
 2862 
 2863         case 2: /* move rules with given number to new set */
 2864                 rule = chain->rules;
 2865                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2866                         if (rule->rulenum == rulenum)
 2867                                 rule->set = new_set;
 2868                 break;
 2869 
 2870         case 3: /* move rules with given set number to new set */
 2871                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2872                         if (rule->set == rulenum)
 2873                                 rule->set = new_set;
 2874                 break;
 2875 
 2876         case 4: /* swap two sets */
 2877                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 2878                         if (rule->set == rulenum)
 2879                                 rule->set = new_set;
 2880                         else if (rule->set == new_set)
 2881                                 rule->set = rulenum;
 2882                 break;
 2883         }
 2884         /*
 2885          * Look for rules to reclaim.  We grab the list before
 2886          * releasing the lock then reclaim them w/o the lock to
 2887          * avoid a LOR with dummynet.
 2888          */
 2889         rule = chain->reap;
 2890         chain->reap = NULL;
 2891         IPFW_WUNLOCK(chain);
 2892         if (rule)
 2893                 reap_rules(rule);
 2894         return 0;
 2895 }
 2896 
 2897 /*
 2898  * Clear counters for a specific rule.
 2899  * The enclosing "table" is assumed locked.
 2900  */
 2901 static void
 2902 clear_counters(struct ip_fw *rule, int log_only)
 2903 {
 2904         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
 2905 
 2906         if (log_only == 0) {
 2907                 rule->bcnt = rule->pcnt = 0;
 2908                 rule->timestamp = 0;
 2909         }
 2910         if (l->o.opcode == O_LOG)
 2911                 l->log_left = l->max_log;
 2912 }
 2913 
 2914 /**
 2915  * Reset some or all counters on firewall rules.
 2916  * @arg frwl is null to clear all entries, or contains a specific
 2917  * rule number.
 2918  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
 2919  */
 2920 static int
 2921 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
 2922 {
 2923         struct ip_fw *rule;
 2924         char *msg;
 2925 
 2926         IPFW_WLOCK(chain);
 2927         if (rulenum == 0) {
 2928                 norule_counter = 0;
 2929                 for (rule = chain->rules; rule; rule = rule->next)
 2930                         clear_counters(rule, log_only);
 2931                 msg = log_only ? "ipfw: All logging counts reset.\n" :
 2932                                 "ipfw: Accounting cleared.\n";
 2933         } else {
 2934                 int cleared = 0;
 2935                 /*
 2936                  * We can have multiple rules with the same number, so we
 2937                  * need to clear them all.
 2938                  */
 2939                 for (rule = chain->rules; rule; rule = rule->next)
 2940                         if (rule->rulenum == rulenum) {
 2941                                 while (rule && rule->rulenum == rulenum) {
 2942                                         clear_counters(rule, log_only);
 2943                                         rule = rule->next;
 2944                                 }
 2945                                 cleared = 1;
 2946                                 break;
 2947                         }
 2948                 if (!cleared) { /* we did not find any matching rules */
 2949                         IPFW_WUNLOCK(chain);
 2950                         return (EINVAL);
 2951                 }
 2952                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
 2953                                 "ipfw: Entry %d cleared.\n";
 2954         }
 2955         IPFW_WUNLOCK(chain);
 2956 
 2957         if (fw_verbose)
 2958                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
 2959         return (0);
 2960 }
 2961 
 2962 /*
 2963  * Check validity of the structure before insert.
 2964  * Fortunately rules are simple, so this mostly need to check rule sizes.
 2965  */
 2966 static int
 2967 check_ipfw_struct(struct ip_fw *rule, int size)
 2968 {
 2969         int l, cmdlen = 0;
 2970         int have_action=0;
 2971         ipfw_insn *cmd;
 2972 
 2973         if (size < sizeof(*rule)) {
 2974                 printf("ipfw: rule too short\n");
 2975                 return (EINVAL);
 2976         }
 2977         /* first, check for valid size */
 2978         l = RULESIZE(rule);
 2979         if (l != size) {
 2980                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
 2981                 return (EINVAL);
 2982         }
 2983         if (rule->act_ofs >= rule->cmd_len) {
 2984                 printf("ipfw: bogus action offset (%u > %u)\n",
 2985                     rule->act_ofs, rule->cmd_len - 1);
 2986                 return (EINVAL);
 2987         }
 2988         if (rule->act_ofs >= rule->cmd_len) {
 2989                 printf("ipfw: bogus action offset (%u > %u)\n",
 2990                     rule->act_ofs, rule->cmd_len - 1);
 2991                 return (EINVAL);
 2992         }
 2993         /*
 2994          * Now go for the individual checks. Very simple ones, basically only
 2995          * instruction sizes.
 2996          */
 2997         for (l = rule->cmd_len, cmd = rule->cmd ;
 2998                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
 2999                 cmdlen = F_LEN(cmd);
 3000                 if (cmdlen > l) {
 3001                         printf("ipfw: opcode %d size truncated\n",
 3002                             cmd->opcode);
 3003                         return EINVAL;
 3004                 }
 3005                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
 3006                 switch (cmd->opcode) {
 3007                 case O_PROBE_STATE:
 3008                 case O_KEEP_STATE:
 3009                 case O_PROTO:
 3010                 case O_IP_SRC_ME:
 3011                 case O_IP_DST_ME:
 3012                 case O_LAYER2:
 3013                 case O_IN:
 3014                 case O_FRAG:
 3015                 case O_DIVERTED:
 3016                 case O_IPOPT:
 3017                 case O_IPTOS:
 3018                 case O_IPPRECEDENCE:
 3019                 case O_IPVER:
 3020                 case O_TCPWIN:
 3021                 case O_TCPFLAGS:
 3022                 case O_TCPOPTS:
 3023                 case O_ESTAB:
 3024                 case O_VERREVPATH:
 3025                 case O_VERSRCREACH:
 3026                 case O_ANTISPOOF:
 3027                 case O_IPSEC:
 3028                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3029                                 goto bad_size;
 3030                         break;
 3031 
 3032                 case O_UID:
 3033                 case O_GID:
 3034                 case O_JAIL:
 3035                 case O_IP_SRC:
 3036                 case O_IP_DST:
 3037                 case O_TCPSEQ:
 3038                 case O_TCPACK:
 3039                 case O_PROB:
 3040                 case O_ICMPTYPE:
 3041                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 3042                                 goto bad_size;
 3043                         break;
 3044 
 3045                 case O_LIMIT:
 3046                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
 3047                                 goto bad_size;
 3048                         break;
 3049 
 3050                 case O_LOG:
 3051                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
 3052                                 goto bad_size;
 3053 
 3054                         ((ipfw_insn_log *)cmd)->log_left =
 3055                             ((ipfw_insn_log *)cmd)->max_log;
 3056 
 3057                         break;
 3058 
 3059                 case O_IP_SRC_MASK:
 3060                 case O_IP_DST_MASK:
 3061                         /* only odd command lengths */
 3062                         if ( !(cmdlen & 1) || cmdlen > 31)
 3063                                 goto bad_size;
 3064                         break;
 3065 
 3066                 case O_IP_SRC_SET:
 3067                 case O_IP_DST_SET:
 3068                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
 3069                                 printf("ipfw: invalid set size %d\n",
 3070                                         cmd->arg1);
 3071                                 return EINVAL;
 3072                         }
 3073                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 3074                             (cmd->arg1+31)/32 )
 3075                                 goto bad_size;
 3076                         break;
 3077 
 3078                 case O_IP_SRC_LOOKUP:
 3079                 case O_IP_DST_LOOKUP:
 3080                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
 3081                                 printf("ipfw: invalid table number %d\n",
 3082                                     cmd->arg1);
 3083                                 return (EINVAL);
 3084                         }
 3085                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
 3086                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 3087                                 goto bad_size;
 3088                         break;
 3089 
 3090                 case O_MACADDR2:
 3091                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
 3092                                 goto bad_size;
 3093                         break;
 3094 
 3095                 case O_NOP:
 3096                 case O_IPID:
 3097                 case O_IPTTL:
 3098                 case O_IPLEN:
 3099                 case O_TCPDATALEN:
 3100                         if (cmdlen < 1 || cmdlen > 31)
 3101                                 goto bad_size;
 3102                         break;
 3103 
 3104                 case O_MAC_TYPE:
 3105                 case O_IP_SRCPORT:
 3106                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
 3107                         if (cmdlen < 2 || cmdlen > 31)
 3108                                 goto bad_size;
 3109                         break;
 3110 
 3111                 case O_RECV:
 3112                 case O_XMIT:
 3113                 case O_VIA:
 3114                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
 3115                                 goto bad_size;
 3116                         break;
 3117 
 3118                 case O_ALTQ:
 3119                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
 3120                                 goto bad_size;
 3121                         break;
 3122 
 3123                 case O_PIPE:
 3124                 case O_QUEUE:
 3125                         if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
 3126                                 goto bad_size;
 3127                         goto check_action;
 3128 
 3129                 case O_FORWARD_IP:
 3130 #ifdef  IPFIREWALL_FORWARD
 3131                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
 3132                                 goto bad_size;
 3133                         goto check_action;
 3134 #else
 3135                         return EINVAL;
 3136 #endif
 3137 
 3138                 case O_DIVERT:
 3139                 case O_TEE:
 3140 #ifndef IPDIVERT
 3141                         return EINVAL;
 3142 #endif
 3143                 case O_FORWARD_MAC: /* XXX not implemented yet */
 3144                 case O_CHECK_STATE:
 3145                 case O_COUNT:
 3146                 case O_ACCEPT:
 3147                 case O_DENY:
 3148                 case O_REJECT:
 3149                 case O_SKIPTO:
 3150                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3151                                 goto bad_size;
 3152 check_action:
 3153                         if (have_action) {
 3154                                 printf("ipfw: opcode %d, multiple actions"
 3155                                         " not allowed\n",
 3156                                         cmd->opcode);
 3157                                 return EINVAL;
 3158                         }
 3159                         have_action = 1;
 3160                         if (l != cmdlen) {
 3161                                 printf("ipfw: opcode %d, action must be"
 3162                                         " last opcode\n",
 3163                                         cmd->opcode);
 3164                                 return EINVAL;
 3165                         }
 3166                         break;
 3167                 default:
 3168                         printf("ipfw: opcode %d, unknown opcode\n",
 3169                                 cmd->opcode);
 3170                         return EINVAL;
 3171                 }
 3172         }
 3173         if (have_action == 0) {
 3174                 printf("ipfw: missing action\n");
 3175                 return EINVAL;
 3176         }
 3177         return 0;
 3178 
 3179 bad_size:
 3180         printf("ipfw: opcode %d size %d wrong\n",
 3181                 cmd->opcode, cmdlen);
 3182         return EINVAL;
 3183 }
 3184 
 3185 /*
 3186  * Copy the static and dynamic rules to the supplied buffer
 3187  * and return the amount of space actually used.
 3188  */
 3189 static size_t
 3190 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
 3191 {
 3192         char *bp = buf;
 3193         char *ep = bp + space;
 3194         struct ip_fw *rule;
 3195         int i;
 3196 
 3197         /* XXX this can take a long time and locking will block packet flow */
 3198         IPFW_RLOCK(chain);
 3199         for (rule = chain->rules; rule ; rule = rule->next) {
 3200                 /*
 3201                  * Verify the entry fits in the buffer in case the
 3202                  * rules changed between calculating buffer space and
 3203                  * now.  This would be better done using a generation
 3204                  * number but should suffice for now.
 3205                  */
 3206                 i = RULESIZE(rule);
 3207                 if (bp + i <= ep) {
 3208                         bcopy(rule, bp, i);
 3209                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
 3210                             sizeof(set_disable));
 3211                         bp += i;
 3212                 }
 3213         }
 3214         IPFW_RUNLOCK(chain);
 3215         if (ipfw_dyn_v) {
 3216                 ipfw_dyn_rule *p, *last = NULL;
 3217 
 3218                 IPFW_DYN_LOCK();
 3219                 for (i = 0 ; i < curr_dyn_buckets; i++)
 3220                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
 3221                                 if (bp + sizeof *p <= ep) {
 3222                                         ipfw_dyn_rule *dst =
 3223                                                 (ipfw_dyn_rule *)bp;
 3224                                         bcopy(p, dst, sizeof *p);
 3225                                         bcopy(&(p->rule->rulenum), &(dst->rule),
 3226                                             sizeof(p->rule->rulenum));
 3227                                         /*
 3228                                          * store a non-null value in "next".
 3229                                          * The userland code will interpret a
 3230                                          * NULL here as a marker
 3231                                          * for the last dynamic rule.
 3232                                          */
 3233                                         bcopy(&dst, &dst->next, sizeof(dst));
 3234                                         last = dst;
 3235                                         dst->expire =
 3236                                             TIME_LEQ(dst->expire, time_second) ?
 3237                                                 0 : dst->expire - time_second ;
 3238                                         bp += sizeof(ipfw_dyn_rule);
 3239                                 }
 3240                         }
 3241                 IPFW_DYN_UNLOCK();
 3242                 if (last != NULL) /* mark last dynamic rule */
 3243                         bzero(&last->next, sizeof(last));
 3244         }
 3245         return (bp - (char *)buf);
 3246 }
 3247 
 3248 
 3249 /**
 3250  * {set|get}sockopt parser.
 3251  */
 3252 static int
 3253 ipfw_ctl(struct sockopt *sopt)
 3254 {
 3255 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
 3256         int error, rule_num;
 3257         size_t size;
 3258         struct ip_fw *buf, *rule;
 3259         u_int32_t rulenum[2];
 3260 
 3261         error = suser(sopt->sopt_td);
 3262         if (error)
 3263                 return (error);
 3264 
 3265         /*
 3266          * Disallow modifications in really-really secure mode, but still allow
 3267          * the logging counters to be reset.
 3268          */
 3269         if (sopt->sopt_name == IP_FW_ADD ||
 3270             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
 3271 #if __FreeBSD_version >= 500034
 3272                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
 3273                 if (error)
 3274                         return (error);
 3275 #else /* FreeBSD 4.x */
 3276                 if (securelevel >= 3)
 3277                         return (EPERM);
 3278 #endif
 3279         }
 3280 
 3281         error = 0;
 3282 
 3283         switch (sopt->sopt_name) {
 3284         case IP_FW_GET:
 3285                 /*
 3286                  * pass up a copy of the current rules. Static rules
 3287                  * come first (the last of which has number IPFW_DEFAULT_RULE),
 3288                  * followed by a possibly empty list of dynamic rule.
 3289                  * The last dynamic rule has NULL in the "next" field.
 3290                  *
 3291                  * Note that the calculated size is used to bound the
 3292                  * amount of data returned to the user.  The rule set may
 3293                  * change between calculating the size and returning the
 3294                  * data in which case we'll just return what fits.
 3295                  */
 3296                 size = static_len;      /* size of static rules */
 3297                 if (ipfw_dyn_v)         /* add size of dyn.rules */
 3298                         size += (dyn_count * sizeof(ipfw_dyn_rule));
 3299 
 3300                 /*
 3301                  * XXX todo: if the user passes a short length just to know
 3302                  * how much room is needed, do not bother filling up the
 3303                  * buffer, just jump to the sooptcopyout.
 3304                  */
 3305                 buf = malloc(size, M_TEMP, M_WAITOK);
 3306                 error = sooptcopyout(sopt, buf,
 3307                                 ipfw_getrules(&layer3_chain, buf, size));
 3308                 free(buf, M_TEMP);
 3309                 break;
 3310 
 3311         case IP_FW_FLUSH:
 3312                 /*
 3313                  * Normally we cannot release the lock on each iteration.
 3314                  * We could do it here only because we start from the head all
 3315                  * the times so there is no risk of missing some entries.
 3316                  * On the other hand, the risk is that we end up with
 3317                  * a very inconsistent ruleset, so better keep the lock
 3318                  * around the whole cycle.
 3319                  *
 3320                  * XXX this code can be improved by resetting the head of
 3321                  * the list to point to the default rule, and then freeing
 3322                  * the old list without the need for a lock.
 3323                  */
 3324 
 3325                 IPFW_WLOCK(&layer3_chain);
 3326                 layer3_chain.reap = NULL;
 3327                 free_chain(&layer3_chain, 0 /* keep default rule */);
 3328                 rule = layer3_chain.reap, layer3_chain.reap = NULL;
 3329                 IPFW_WUNLOCK(&layer3_chain);
 3330                 if (layer3_chain.reap != NULL)
 3331                         reap_rules(rule);
 3332                 break;
 3333 
 3334         case IP_FW_ADD:
 3335                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
 3336                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
 3337                         sizeof(struct ip_fw) );
 3338                 if (error == 0)
 3339                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
 3340                 if (error == 0) {
 3341                         error = add_rule(&layer3_chain, rule);
 3342                         size = RULESIZE(rule);
 3343                         if (!error && sopt->sopt_dir == SOPT_GET)
 3344                                 error = sooptcopyout(sopt, rule, size);
 3345                 }
 3346                 free(rule, M_TEMP);
 3347                 break;
 3348 
 3349         case IP_FW_DEL:
 3350                 /*
 3351                  * IP_FW_DEL is used for deleting single rules or sets,
 3352                  * and (ab)used to atomically manipulate sets. Argument size
 3353                  * is used to distinguish between the two:
 3354                  *    sizeof(u_int32_t)
 3355                  *      delete single rule or set of rules,
 3356                  *      or reassign rules (or sets) to a different set.
 3357                  *    2*sizeof(u_int32_t)
 3358                  *      atomic disable/enable sets.
 3359                  *      first u_int32_t contains sets to be disabled,
 3360                  *      second u_int32_t contains sets to be enabled.
 3361                  */
 3362                 error = sooptcopyin(sopt, rulenum,
 3363                         2*sizeof(u_int32_t), sizeof(u_int32_t));
 3364                 if (error)
 3365                         break;
 3366                 size = sopt->sopt_valsize;
 3367                 if (size == sizeof(u_int32_t))  /* delete or reassign */
 3368                         error = del_entry(&layer3_chain, rulenum[0]);
 3369                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
 3370                         set_disable =
 3371                             (set_disable | rulenum[0]) & ~rulenum[1] &
 3372                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
 3373                 else
 3374                         error = EINVAL;
 3375                 break;
 3376 
 3377         case IP_FW_ZERO:
 3378         case IP_FW_RESETLOG: /* argument is an int, the rule number */
 3379                 rule_num = 0;
 3380                 if (sopt->sopt_val != 0) {
 3381                     error = sooptcopyin(sopt, &rule_num,
 3382                             sizeof(int), sizeof(int));
 3383                     if (error)
 3384                         break;
 3385                 }
 3386                 error = zero_entry(&layer3_chain, rule_num,
 3387                         sopt->sopt_name == IP_FW_RESETLOG);
 3388                 break;
 3389 
 3390         case IP_FW_TABLE_ADD:
 3391                 {
 3392                         ipfw_table_entry ent;
 3393 
 3394                         error = sooptcopyin(sopt, &ent,
 3395                             sizeof(ent), sizeof(ent));
 3396                         if (error)
 3397                                 break;
 3398                         error = add_table_entry(ent.tbl, ent.addr,
 3399                             ent.masklen, ent.value);
 3400                 }
 3401                 break;
 3402 
 3403         case IP_FW_TABLE_DEL:
 3404                 {
 3405                         ipfw_table_entry ent;
 3406 
 3407                         error = sooptcopyin(sopt, &ent,
 3408                             sizeof(ent), sizeof(ent));
 3409                         if (error)
 3410                                 break;
 3411                         error = del_table_entry(ent.tbl, ent.addr, ent.masklen);
 3412                 }
 3413                 break;
 3414 
 3415         case IP_FW_TABLE_FLUSH:
 3416                 {
 3417                         u_int16_t tbl;
 3418 
 3419                         error = sooptcopyin(sopt, &tbl,
 3420                             sizeof(tbl), sizeof(tbl));
 3421                         if (error)
 3422                                 break;
 3423                         error = flush_table(tbl);
 3424                 }
 3425                 break;
 3426 
 3427         case IP_FW_TABLE_GETSIZE:
 3428                 {
 3429                         u_int32_t tbl, cnt;
 3430 
 3431                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
 3432                             sizeof(tbl))))
 3433                                 break;
 3434                         if ((error = count_table(tbl, &cnt)))
 3435                                 break;
 3436                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
 3437                 }
 3438                 break;
 3439 
 3440         case IP_FW_TABLE_LIST:
 3441                 {
 3442                         ipfw_table *tbl;
 3443 
 3444                         if (sopt->sopt_valsize < sizeof(*tbl)) {
 3445                                 error = EINVAL;
 3446                                 break;
 3447                         }
 3448                         size = sopt->sopt_valsize;
 3449                         tbl = malloc(size, M_TEMP, M_WAITOK);
 3450                         if (tbl == NULL) {
 3451                                 error = ENOMEM;
 3452                                 break;
 3453                         }
 3454                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
 3455                         if (error) {
 3456                                 free(tbl, M_TEMP);
 3457                                 break;
 3458                         }
 3459                         tbl->size = (size - sizeof(*tbl)) /
 3460                             sizeof(ipfw_table_entry);
 3461                         error = dump_table(tbl);
 3462                         if (error) {
 3463                                 free(tbl, M_TEMP);
 3464                                 break;
 3465                         }
 3466                         error = sooptcopyout(sopt, tbl, size);
 3467                         free(tbl, M_TEMP);
 3468                 }
 3469                 break;
 3470 
 3471         default:
 3472                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
 3473                 error = EINVAL;
 3474         }
 3475 
 3476         return (error);
 3477 #undef RULE_MAXSIZE
 3478 }
 3479 
 3480 /**
 3481  * dummynet needs a reference to the default rule, because rules can be
 3482  * deleted while packets hold a reference to them. When this happens,
 3483  * dummynet changes the reference to the default rule (it could well be a
 3484  * NULL pointer, but this way we do not need to check for the special
 3485  * case, plus here he have info on the default behaviour).
 3486  */
 3487 struct ip_fw *ip_fw_default_rule;
 3488 
 3489 /*
 3490  * This procedure is only used to handle keepalives. It is invoked
 3491  * every dyn_keepalive_period
 3492  */
 3493 static void
 3494 ipfw_tick(void * __unused unused)
 3495 {
 3496         struct mbuf *m0, *m, *mnext, **mtailp;
 3497         int i;
 3498         ipfw_dyn_rule *q;
 3499 
 3500         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
 3501                 goto done;
 3502 
 3503         /*
 3504          * We make a chain of packets to go out here -- not deferring
 3505          * until after we drop the IPFW dynamic rule lock would result
 3506          * in a lock order reversal with the normal packet input -> ipfw
 3507          * call stack.
 3508          */
 3509         m0 = NULL;
 3510         mtailp = &m0;
 3511         IPFW_DYN_LOCK();
 3512         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 3513                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
 3514                         if (q->dyn_type == O_LIMIT_PARENT)
 3515                                 continue;
 3516                         if (q->id.proto != IPPROTO_TCP)
 3517                                 continue;
 3518                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
 3519                                 continue;
 3520                         if (TIME_LEQ( time_second+dyn_keepalive_interval,
 3521                             q->expire))
 3522                                 continue;       /* too early */
 3523                         if (TIME_LEQ(q->expire, time_second))
 3524                                 continue;       /* too late, rule expired */
 3525 
 3526                         *mtailp = send_pkt(&(q->id), q->ack_rev - 1,
 3527                                 q->ack_fwd, TH_SYN);
 3528                         if (*mtailp != NULL)
 3529                                 mtailp = &(*mtailp)->m_nextpkt;
 3530                         *mtailp = send_pkt(&(q->id), q->ack_fwd - 1,
 3531                                 q->ack_rev, 0);
 3532                         if (*mtailp != NULL)
 3533                                 mtailp = &(*mtailp)->m_nextpkt;
 3534                 }
 3535         }
 3536         IPFW_DYN_UNLOCK();
 3537         for (m = mnext = m0; m != NULL; m = mnext) {
 3538                 mnext = m->m_nextpkt;
 3539                 m->m_nextpkt = NULL;
 3540                 ip_output(m, NULL, NULL, 0, NULL, NULL);
 3541         }
 3542 done:
 3543         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
 3544 }
 3545 
 3546 int
 3547 ipfw_init(void)
 3548 {
 3549         struct ip_fw default_rule;
 3550         int error;
 3551 
 3552         layer3_chain.rules = NULL;
 3553         layer3_chain.want_write = 0;
 3554         layer3_chain.busy_count = 0;
 3555         cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
 3556         IPFW_LOCK_INIT(&layer3_chain);
 3557         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
 3558             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
 3559             UMA_ALIGN_PTR, 0);
 3560         IPFW_DYN_LOCK_INIT();
 3561         callout_init(&ipfw_timeout, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
 3562 
 3563         bzero(&default_rule, sizeof default_rule);
 3564 
 3565         default_rule.act_ofs = 0;
 3566         default_rule.rulenum = IPFW_DEFAULT_RULE;
 3567         default_rule.cmd_len = 1;
 3568         default_rule.set = RESVD_SET;
 3569 
 3570         default_rule.cmd[0].len = 1;
 3571         default_rule.cmd[0].opcode =
 3572 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
 3573                                 1 ? O_ACCEPT :
 3574 #endif
 3575                                 O_DENY;
 3576 
 3577         error = add_rule(&layer3_chain, &default_rule);
 3578         if (error != 0) {
 3579                 printf("ipfw2: error %u initializing default rule "
 3580                         "(support disabled)\n", error);
 3581                 IPFW_DYN_LOCK_DESTROY();
 3582                 IPFW_LOCK_DESTROY(&layer3_chain);
 3583                 return (error);
 3584         }
 3585 
 3586         ip_fw_default_rule = layer3_chain.rules;
 3587         printf("ipfw2 initialized, divert %s, "
 3588                 "rule-based forwarding "
 3589 #ifdef IPFIREWALL_FORWARD
 3590                 "enabled, "
 3591 #else
 3592                 "disabled, "
 3593 #endif
 3594                 "default to %s, logging ",
 3595 #ifdef IPDIVERT
 3596                 "enabled",
 3597 #else
 3598                 "disabled",
 3599 #endif
 3600                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
 3601 
 3602 #ifdef IPFIREWALL_VERBOSE
 3603         fw_verbose = 1;
 3604 #endif
 3605 #ifdef IPFIREWALL_VERBOSE_LIMIT
 3606         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
 3607 #endif
 3608         if (fw_verbose == 0)
 3609                 printf("disabled\n");
 3610         else if (verbose_limit == 0)
 3611                 printf("unlimited\n");
 3612         else
 3613                 printf("limited to %d packets/entry by default\n",
 3614                     verbose_limit);
 3615 
 3616         init_tables();
 3617         ip_fw_ctl_ptr = ipfw_ctl;
 3618         ip_fw_chk_ptr = ipfw_chk;
 3619         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
 3620 
 3621         return (0);
 3622 }
 3623 
 3624 void
 3625 ipfw_destroy(void)
 3626 {
 3627         struct ip_fw *reap;
 3628 
 3629         ip_fw_chk_ptr = NULL;
 3630         ip_fw_ctl_ptr = NULL;
 3631         callout_drain(&ipfw_timeout);
 3632         IPFW_WLOCK(&layer3_chain);
 3633         layer3_chain.reap = NULL;
 3634         free_chain(&layer3_chain, 1 /* kill default rule */);
 3635         reap = layer3_chain.reap, layer3_chain.reap = NULL;
 3636         IPFW_WUNLOCK(&layer3_chain);
 3637         if (reap != NULL)
 3638                 reap_rules(reap);
 3639         flush_tables();
 3640         IPFW_DYN_LOCK_DESTROY();
 3641         uma_zdestroy(ipfw_dyn_rule_zone);
 3642         IPFW_LOCK_DESTROY(&layer3_chain);
 3643         printf("IP firewall unloaded\n");
 3644 }
 3645 
 3646 #endif /* IPFW2 */

Cache object: 35b4c7e719df7005c57a0e8e4657a724


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.