The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_fw2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  * $FreeBSD: releng/6.2/sys/netinet/ip_fw2.c 163211 2006-10-10 18:39:38Z bz $
   26  */
   27 
   28 #define        DEB(x)
   29 #define        DDB(x) x
   30 
   31 /*
   32  * Implement IP packet firewall (new version)
   33  */
   34 
   35 #if !defined(KLD_MODULE)
   36 #include "opt_ipfw.h"
   37 #include "opt_ip6fw.h"
   38 #include "opt_ipdn.h"
   39 #include "opt_inet.h"
   40 #ifndef INET
   41 #error IPFIREWALL requires INET.
   42 #endif /* INET */
   43 #endif
   44 #include "opt_inet6.h"
   45 #include "opt_ipsec.h"
   46 #include "opt_mac.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/condvar.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mbuf.h>
   53 #include <sys/kernel.h>
   54 #include <sys/jail.h>
   55 #include <sys/mac.h>
   56 #include <sys/module.h>
   57 #include <sys/proc.h>
   58 #include <sys/socket.h>
   59 #include <sys/socketvar.h>
   60 #include <sys/sysctl.h>
   61 #include <sys/syslog.h>
   62 #include <sys/ucred.h>
   63 #include <net/if.h>
   64 #include <net/radix.h>
   65 #include <net/route.h>
   66 #include <netinet/in.h>
   67 #include <netinet/in_systm.h>
   68 #include <netinet/in_var.h>
   69 #include <netinet/in_pcb.h>
   70 #include <netinet/ip.h>
   71 #include <netinet/ip_var.h>
   72 #include <netinet/ip_icmp.h>
   73 #include <netinet/ip_fw.h>
   74 #include <netinet/ip_divert.h>
   75 #include <netinet/ip_dummynet.h>
   76 #include <netinet/ip_carp.h>
   77 #include <netinet/pim.h>
   78 #include <netinet/tcp.h>
   79 #include <netinet/tcp_timer.h>
   80 #include <netinet/tcp_var.h>
   81 #include <netinet/tcpip.h>
   82 #include <netinet/udp.h>
   83 #include <netinet/udp_var.h>
   84 
   85 #include <netgraph/ng_ipfw.h>
   86 
   87 #include <altq/if_altq.h>
   88 
   89 #ifdef IPSEC
   90 #include <netinet6/ipsec.h>
   91 #endif
   92 
   93 #include <netinet/ip6.h>
   94 #include <netinet/icmp6.h>
   95 #ifdef INET6
   96 #include <netinet6/scope6_var.h>
   97 #endif
   98 
   99 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
  100 
  101 #include <machine/in_cksum.h>   /* XXX for in_cksum */
  102 
  103 /*
  104  * set_disable contains one bit per set value (0..31).
  105  * If the bit is set, all rules with the corresponding set
  106  * are disabled. Set RESVD_SET(31) is reserved for the default rule
  107  * and rules that are not deleted by the flush command,
  108  * and CANNOT be disabled.
  109  * Rules in set RESVD_SET can only be deleted explicitly.
  110  */
  111 static u_int32_t set_disable;
  112 
  113 static int fw_verbose;
  114 static int verbose_limit;
  115 
  116 static struct callout ipfw_timeout;
  117 static uma_zone_t ipfw_dyn_rule_zone;
  118 #define IPFW_DEFAULT_RULE       65535
  119 
  120 /*
  121  * Data structure to cache our ucred related
  122  * information. This structure only gets used if
  123  * the user specified UID/GID based constraints in
  124  * a firewall rule.
  125  */
  126 struct ip_fw_ugid {
  127         gid_t           fw_groups[NGROUPS];
  128         int             fw_ngroups;
  129         uid_t           fw_uid;
  130         int             fw_prid;
  131 };
  132 
  133 #define IPFW_TABLES_MAX         128
  134 struct ip_fw_chain {
  135         struct ip_fw    *rules;         /* list of rules */
  136         struct ip_fw    *reap;          /* list of rules to reap */
  137         struct radix_node_head *tables[IPFW_TABLES_MAX];
  138         struct mtx      mtx;            /* lock guarding rule list */
  139         int             busy_count;     /* busy count for rw locks */
  140         int             want_write;
  141         struct cv       cv;
  142 };
  143 #define IPFW_LOCK_INIT(_chain) \
  144         mtx_init(&(_chain)->mtx, "IPFW static rules", NULL, \
  145                 MTX_DEF | MTX_RECURSE)
  146 #define IPFW_LOCK_DESTROY(_chain)       mtx_destroy(&(_chain)->mtx)
  147 #define IPFW_WLOCK_ASSERT(_chain)       do {                            \
  148         mtx_assert(&(_chain)->mtx, MA_OWNED);                           \
  149         NET_ASSERT_GIANT();                                             \
  150 } while (0)
  151 
  152 static __inline void
  153 IPFW_RLOCK(struct ip_fw_chain *chain)
  154 {
  155         mtx_lock(&chain->mtx);
  156         chain->busy_count++;
  157         mtx_unlock(&chain->mtx);
  158 }
  159 
  160 static __inline void
  161 IPFW_RUNLOCK(struct ip_fw_chain *chain)
  162 {
  163         mtx_lock(&chain->mtx);
  164         chain->busy_count--;
  165         if (chain->busy_count == 0 && chain->want_write)
  166                 cv_signal(&chain->cv);
  167         mtx_unlock(&chain->mtx);
  168 }
  169 
  170 static __inline void
  171 IPFW_WLOCK(struct ip_fw_chain *chain)
  172 {
  173         mtx_lock(&chain->mtx);
  174         chain->want_write++;
  175         while (chain->busy_count > 0)
  176                 cv_wait(&chain->cv, &chain->mtx);
  177 }
  178 
  179 static __inline void
  180 IPFW_WUNLOCK(struct ip_fw_chain *chain)
  181 {
  182         chain->want_write--;
  183         cv_signal(&chain->cv);
  184         mtx_unlock(&chain->mtx);
  185 }
  186 
  187 /*
  188  * list of rules for layer 3
  189  */
  190 static struct ip_fw_chain layer3_chain;
  191 
  192 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
  193 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
  194 
  195 struct table_entry {
  196         struct radix_node       rn[2];
  197         struct sockaddr_in      addr, mask;
  198         u_int32_t               value;
  199 };
  200 
  201 static int fw_debug = 1;
  202 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
  203 
  204 #ifdef SYSCTL_NODE
  205 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
  206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, enable,
  207     CTLFLAG_RW | CTLFLAG_SECURE3,
  208     &fw_enable, 0, "Enable ipfw");
  209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
  210     &autoinc_step, 0, "Rule number autincrement step");
  211 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
  212     CTLFLAG_RW | CTLFLAG_SECURE3,
  213     &fw_one_pass, 0,
  214     "Only do a single pass through ipfw when using dummynet(4)");
  215 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
  216     &fw_debug, 0, "Enable printing of debug ip_fw statements");
  217 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
  218     CTLFLAG_RW | CTLFLAG_SECURE3,
  219     &fw_verbose, 0, "Log matches to ipfw rules");
  220 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
  221     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
  222 
  223 /*
  224  * Description of dynamic rules.
  225  *
  226  * Dynamic rules are stored in lists accessed through a hash table
  227  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
  228  * be modified through the sysctl variable dyn_buckets which is
  229  * updated when the table becomes empty.
  230  *
  231  * XXX currently there is only one list, ipfw_dyn.
  232  *
  233  * When a packet is received, its address fields are first masked
  234  * with the mask defined for the rule, then hashed, then matched
  235  * against the entries in the corresponding list.
  236  * Dynamic rules can be used for different purposes:
  237  *  + stateful rules;
  238  *  + enforcing limits on the number of sessions;
  239  *  + in-kernel NAT (not implemented yet)
  240  *
  241  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
  242  * measured in seconds and depending on the flags.
  243  *
  244  * The total number of dynamic rules is stored in dyn_count.
  245  * The max number of dynamic rules is dyn_max. When we reach
  246  * the maximum number of rules we do not create anymore. This is
  247  * done to avoid consuming too much memory, but also too much
  248  * time when searching on each packet (ideally, we should try instead
  249  * to put a limit on the length of the list on each bucket...).
  250  *
  251  * Each dynamic rule holds a pointer to the parent ipfw rule so
  252  * we know what action to perform. Dynamic rules are removed when
  253  * the parent rule is deleted. XXX we should make them survive.
  254  *
  255  * There are some limitations with dynamic rules -- we do not
  256  * obey the 'randomized match', and we do not do multiple
  257  * passes through the firewall. XXX check the latter!!!
  258  */
  259 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
  260 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
  261 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
  262 
  263 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
  264 #define IPFW_DYN_LOCK_INIT() \
  265         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
  266 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
  267 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
  268 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
  269 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
  270 
  271 /*
  272  * Timeouts for various events in handing dynamic rules.
  273  */
  274 static u_int32_t dyn_ack_lifetime = 300;
  275 static u_int32_t dyn_syn_lifetime = 20;
  276 static u_int32_t dyn_fin_lifetime = 1;
  277 static u_int32_t dyn_rst_lifetime = 1;
  278 static u_int32_t dyn_udp_lifetime = 10;
  279 static u_int32_t dyn_short_lifetime = 5;
  280 
  281 /*
  282  * Keepalives are sent if dyn_keepalive is set. They are sent every
  283  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
  284  * seconds of lifetime of a rule.
  285  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
  286  * than dyn_keepalive_period.
  287  */
  288 
  289 static u_int32_t dyn_keepalive_interval = 20;
  290 static u_int32_t dyn_keepalive_period = 5;
  291 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
  292 
  293 static u_int32_t static_count;  /* # of static rules */
  294 static u_int32_t static_len;    /* size in bytes of static rules */
  295 static u_int32_t dyn_count;             /* # of dynamic rules */
  296 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
  297 
  298 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
  299     &dyn_buckets, 0, "Number of dyn. buckets");
  300 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
  301     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
  302 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
  303     &dyn_count, 0, "Number of dyn. rules");
  304 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
  305     &dyn_max, 0, "Max number of dyn. rules");
  306 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
  307     &static_count, 0, "Number of static rules");
  308 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
  309     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
  310 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
  311     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
  312 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
  313     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
  314 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
  315     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
  316 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
  317     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
  318 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
  319     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
  320 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
  321     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
  322 
  323 #ifdef INET6
  324 /*
  325  * IPv6 specific variables
  326  */
  327 SYSCTL_DECL(_net_inet6_ip6);
  328 
  329 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
  330 static struct sysctl_oid *ip6_fw_sysctl_tree;
  331 #endif /* INET6 */
  332 #endif /* SYSCTL_NODE */
  333 
  334 static int fw_deny_unknown_exthdrs = 1;
  335 
  336 
  337 /*
  338  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
  339  * Other macros just cast void * into the appropriate type
  340  */
  341 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
  342 #define TCP(p)          ((struct tcphdr *)(p))
  343 #define UDP(p)          ((struct udphdr *)(p))
  344 #define ICMP(p)         ((struct icmphdr *)(p))
  345 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
  346 
  347 static __inline int
  348 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
  349 {
  350         int type = icmp->icmp_type;
  351 
  352         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
  353 }
  354 
  355 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
  356     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
  357 
  358 static int
  359 is_icmp_query(struct icmphdr *icmp)
  360 {
  361         int type = icmp->icmp_type;
  362 
  363         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
  364 }
  365 #undef TT
  366 
  367 /*
  368  * The following checks use two arrays of 8 or 16 bits to store the
  369  * bits that we want set or clear, respectively. They are in the
  370  * low and high half of cmd->arg1 or cmd->d[0].
  371  *
  372  * We scan options and store the bits we find set. We succeed if
  373  *
  374  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
  375  *
  376  * The code is sometimes optimized not to store additional variables.
  377  */
  378 
  379 static int
  380 flags_match(ipfw_insn *cmd, u_int8_t bits)
  381 {
  382         u_char want_clear;
  383         bits = ~bits;
  384 
  385         if ( ((cmd->arg1 & 0xff) & bits) != 0)
  386                 return 0; /* some bits we want set were clear */
  387         want_clear = (cmd->arg1 >> 8) & 0xff;
  388         if ( (want_clear & bits) != want_clear)
  389                 return 0; /* some bits we want clear were set */
  390         return 1;
  391 }
  392 
  393 static int
  394 ipopts_match(struct ip *ip, ipfw_insn *cmd)
  395 {
  396         int optlen, bits = 0;
  397         u_char *cp = (u_char *)(ip + 1);
  398         int x = (ip->ip_hl << 2) - sizeof (struct ip);
  399 
  400         for (; x > 0; x -= optlen, cp += optlen) {
  401                 int opt = cp[IPOPT_OPTVAL];
  402 
  403                 if (opt == IPOPT_EOL)
  404                         break;
  405                 if (opt == IPOPT_NOP)
  406                         optlen = 1;
  407                 else {
  408                         optlen = cp[IPOPT_OLEN];
  409                         if (optlen <= 0 || optlen > x)
  410                                 return 0; /* invalid or truncated */
  411                 }
  412                 switch (opt) {
  413 
  414                 default:
  415                         break;
  416 
  417                 case IPOPT_LSRR:
  418                         bits |= IP_FW_IPOPT_LSRR;
  419                         break;
  420 
  421                 case IPOPT_SSRR:
  422                         bits |= IP_FW_IPOPT_SSRR;
  423                         break;
  424 
  425                 case IPOPT_RR:
  426                         bits |= IP_FW_IPOPT_RR;
  427                         break;
  428 
  429                 case IPOPT_TS:
  430                         bits |= IP_FW_IPOPT_TS;
  431                         break;
  432                 }
  433         }
  434         return (flags_match(cmd, bits));
  435 }
  436 
  437 static int
  438 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
  439 {
  440         int optlen, bits = 0;
  441         u_char *cp = (u_char *)(tcp + 1);
  442         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
  443 
  444         for (; x > 0; x -= optlen, cp += optlen) {
  445                 int opt = cp[0];
  446                 if (opt == TCPOPT_EOL)
  447                         break;
  448                 if (opt == TCPOPT_NOP)
  449                         optlen = 1;
  450                 else {
  451                         optlen = cp[1];
  452                         if (optlen <= 0)
  453                                 break;
  454                 }
  455 
  456                 switch (opt) {
  457 
  458                 default:
  459                         break;
  460 
  461                 case TCPOPT_MAXSEG:
  462                         bits |= IP_FW_TCPOPT_MSS;
  463                         break;
  464 
  465                 case TCPOPT_WINDOW:
  466                         bits |= IP_FW_TCPOPT_WINDOW;
  467                         break;
  468 
  469                 case TCPOPT_SACK_PERMITTED:
  470                 case TCPOPT_SACK:
  471                         bits |= IP_FW_TCPOPT_SACK;
  472                         break;
  473 
  474                 case TCPOPT_TIMESTAMP:
  475                         bits |= IP_FW_TCPOPT_TS;
  476                         break;
  477 
  478                 }
  479         }
  480         return (flags_match(cmd, bits));
  481 }
  482 
  483 static int
  484 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
  485 {
  486         if (ifp == NULL)        /* no iface with this packet, match fails */
  487                 return 0;
  488         /* Check by name or by IP address */
  489         if (cmd->name[0] != '\0') { /* match by name */
  490                 /* Check name */
  491                 if (cmd->p.glob) {
  492                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
  493                                 return(1);
  494                 } else {
  495                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
  496                                 return(1);
  497                 }
  498         } else {
  499                 struct ifaddr *ia;
  500 
  501                 /* XXX lock? */
  502                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
  503                         if (ia->ifa_addr == NULL)
  504                                 continue;
  505                         if (ia->ifa_addr->sa_family != AF_INET)
  506                                 continue;
  507                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
  508                             (ia->ifa_addr))->sin_addr.s_addr)
  509                                 return(1);      /* match */
  510                 }
  511         }
  512         return(0);      /* no match, fail ... */
  513 }
  514 
  515 /*
  516  * The verify_path function checks if a route to the src exists and
  517  * if it is reachable via ifp (when provided).
  518  * 
  519  * The 'verrevpath' option checks that the interface that an IP packet
  520  * arrives on is the same interface that traffic destined for the
  521  * packet's source address would be routed out of.  The 'versrcreach'
  522  * option just checks that the source address is reachable via any route
  523  * (except default) in the routing table.  These two are a measure to block
  524  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
  525  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
  526  * is purposely reminiscent of the Cisco IOS command,
  527  *
  528  *   ip verify unicast reverse-path
  529  *   ip verify unicast source reachable-via any
  530  *
  531  * which implements the same functionality. But note that syntax is
  532  * misleading. The check may be performed on all IP packets whether unicast,
  533  * multicast, or broadcast.
  534  */
  535 static int
  536 verify_path(struct in_addr src, struct ifnet *ifp)
  537 {
  538         struct route ro;
  539         struct sockaddr_in *dst;
  540 
  541         bzero(&ro, sizeof(ro));
  542 
  543         dst = (struct sockaddr_in *)&(ro.ro_dst);
  544         dst->sin_family = AF_INET;
  545         dst->sin_len = sizeof(*dst);
  546         dst->sin_addr = src;
  547         rtalloc_ign(&ro, RTF_CLONING);
  548 
  549         if (ro.ro_rt == NULL)
  550                 return 0;
  551 
  552         /*
  553          * If ifp is provided, check for equality with rtentry.
  554          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
  555          * in order to pass packets injected back by if_simloop():
  556          * if useloopback == 1 routing entry (via lo0) for our own address
  557          * may exist, so we need to handle routing assymetry.
  558          */
  559         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
  560                 RTFREE(ro.ro_rt);
  561                 return 0;
  562         }
  563 
  564         /* if no ifp provided, check if rtentry is not default route */
  565         if (ifp == NULL &&
  566              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
  567                 RTFREE(ro.ro_rt);
  568                 return 0;
  569         }
  570 
  571         /* or if this is a blackhole/reject route */
  572         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
  573                 RTFREE(ro.ro_rt);
  574                 return 0;
  575         }
  576 
  577         /* found valid route */
  578         RTFREE(ro.ro_rt);
  579         return 1;
  580 }
  581 
  582 #ifdef INET6
  583 /*
  584  * ipv6 specific rules here...
  585  */
  586 static __inline int
  587 icmp6type_match (int type, ipfw_insn_u32 *cmd)
  588 {
  589         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
  590 }
  591 
  592 static int
  593 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
  594 {
  595         int i;
  596         for (i=0; i <= cmd->o.arg1; ++i )
  597                 if (curr_flow == cmd->d[i] )
  598                         return 1;
  599         return 0;
  600 }
  601 
  602 /* support for IP6_*_ME opcodes */
  603 static int
  604 search_ip6_addr_net (struct in6_addr * ip6_addr)
  605 {
  606         struct ifnet *mdc;
  607         struct ifaddr *mdc2;
  608         struct in6_ifaddr *fdm;
  609         struct in6_addr copia;
  610 
  611         TAILQ_FOREACH(mdc, &ifnet, if_link)
  612                 for (mdc2 = mdc->if_addrlist.tqh_first; mdc2;
  613                     mdc2 = mdc2->ifa_list.tqe_next) {
  614                         if (!mdc2->ifa_addr)
  615                                 continue;
  616                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
  617                                 fdm = (struct in6_ifaddr *)mdc2;
  618                                 copia = fdm->ia_addr.sin6_addr;
  619                                 /* need for leaving scope_id in the sock_addr */
  620                                 in6_clearscope(&copia);
  621                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
  622                                         return 1;
  623                         }
  624                 }
  625         return 0;
  626 }
  627 
  628 static int
  629 verify_path6(struct in6_addr *src, struct ifnet *ifp)
  630 {
  631         struct route_in6 ro;
  632         struct sockaddr_in6 *dst;
  633 
  634         bzero(&ro, sizeof(ro));
  635 
  636         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
  637         dst->sin6_family = AF_INET6;
  638         dst->sin6_len = sizeof(*dst);
  639         dst->sin6_addr = *src;
  640         rtalloc_ign((struct route *)&ro, RTF_CLONING);
  641 
  642         if (ro.ro_rt == NULL)
  643                 return 0;
  644 
  645         /* 
  646          * if ifp is provided, check for equality with rtentry
  647          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
  648          * to support the case of sending packets to an address of our own.
  649          * (where the former interface is the first argument of if_simloop()
  650          *  (=ifp), the latter is lo0)
  651          */
  652         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
  653                 RTFREE(ro.ro_rt);
  654                 return 0;
  655         }
  656 
  657         /* if no ifp provided, check if rtentry is not default route */
  658         if (ifp == NULL &&
  659             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
  660                 RTFREE(ro.ro_rt);
  661                 return 0;
  662         }
  663 
  664         /* or if this is a blackhole/reject route */
  665         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
  666                 RTFREE(ro.ro_rt);
  667                 return 0;
  668         }
  669 
  670         /* found valid route */
  671         RTFREE(ro.ro_rt);
  672         return 1;
  673 
  674 }
  675 static __inline int
  676 hash_packet6(struct ipfw_flow_id *id)
  677 {
  678         u_int32_t i;
  679         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
  680             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
  681             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
  682             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
  683             (id->dst_port) ^ (id->src_port);
  684         return i;
  685 }
  686 
  687 static int
  688 is_icmp6_query(int icmp6_type)
  689 {
  690         if ((icmp6_type <= ICMP6_MAXTYPE) &&
  691             (icmp6_type == ICMP6_ECHO_REQUEST ||
  692             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
  693             icmp6_type == ICMP6_WRUREQUEST ||
  694             icmp6_type == ICMP6_FQDN_QUERY ||
  695             icmp6_type == ICMP6_NI_QUERY))
  696                 return (1);
  697 
  698         return (0);
  699 }
  700 
  701 static void
  702 send_reject6(struct ip_fw_args *args, int code, u_short offset, u_int hlen)
  703 {
  704         if (code == ICMP6_UNREACH_RST && offset == 0 &&
  705             args->f_id.proto == IPPROTO_TCP) {
  706                 struct ip6_hdr *ip6;
  707                 struct tcphdr *tcp;
  708                 tcp_seq ack, seq;
  709                 int flags;
  710                 struct {
  711                         struct ip6_hdr ip6;
  712                         struct tcphdr th;
  713                 } ti;
  714 
  715                 if (args->m->m_len < (hlen+sizeof(struct tcphdr))) {
  716                         args->m = m_pullup(args->m, hlen+sizeof(struct tcphdr));
  717                         if (args->m == NULL)
  718                                 return;
  719                 }
  720 
  721                 ip6 = mtod(args->m, struct ip6_hdr *);
  722                 tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
  723 
  724                 if ((tcp->th_flags & TH_RST) != 0) {
  725                         m_freem(args->m);
  726                         return;
  727                 }
  728 
  729                 ti.ip6 = *ip6;
  730                 ti.th = *tcp;
  731                 ti.th.th_seq = ntohl(ti.th.th_seq);
  732                 ti.th.th_ack = ntohl(ti.th.th_ack);
  733                 ti.ip6.ip6_nxt = IPPROTO_TCP;
  734 
  735                 if (ti.th.th_flags & TH_ACK) {
  736                         ack = 0;
  737                         seq = ti.th.th_ack;
  738                         flags = TH_RST;
  739                 } else {
  740                         ack = ti.th.th_seq;
  741                         if (((args->m)->m_flags & M_PKTHDR) != 0) {
  742                                 ack += (args->m)->m_pkthdr.len - hlen
  743                                         - (ti.th.th_off << 2);
  744                         } else if (ip6->ip6_plen) {
  745                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6)
  746                                         - hlen - (ti.th.th_off << 2);
  747                         } else {
  748                                 m_freem(args->m);
  749                                 return;
  750                         }
  751                         if (tcp->th_flags & TH_SYN)
  752                                 ack++;
  753                         seq = 0;
  754                         flags = TH_RST|TH_ACK;
  755                 }
  756                 bcopy(&ti, ip6, sizeof(ti));
  757                 tcp_respond(NULL, ip6, (struct tcphdr *)(ip6 + 1),
  758                         args->m, ack, seq, flags);
  759 
  760         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
  761                 icmp6_error(args->m, ICMP6_DST_UNREACH, code, 0);
  762 
  763         } else
  764                 m_freem(args->m);
  765 
  766         args->m = NULL;
  767 }
  768 
  769 #endif /* INET6 */
  770 
  771 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
  772 
  773 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
  774 #define SNP(buf) buf, sizeof(buf)
  775 
  776 /*
  777  * We enter here when we have a rule with O_LOG.
  778  * XXX this function alone takes about 2Kbytes of code!
  779  */
  780 static void
  781 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
  782         struct mbuf *m, struct ifnet *oif, u_short offset)
  783 {
  784         struct ether_header *eh = args->eh;
  785         char *action;
  786         int limit_reached = 0;
  787         char action2[40], proto[128], fragment[32];
  788 
  789         fragment[0] = '\0';
  790         proto[0] = '\0';
  791 
  792         if (f == NULL) {        /* bogus pkt */
  793                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
  794                         return;
  795                 norule_counter++;
  796                 if (norule_counter == verbose_limit)
  797                         limit_reached = verbose_limit;
  798                 action = "Refuse";
  799         } else {        /* O_LOG is the first action, find the real one */
  800                 ipfw_insn *cmd = ACTION_PTR(f);
  801                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
  802 
  803                 if (l->max_log != 0 && l->log_left == 0)
  804                         return;
  805                 l->log_left--;
  806                 if (l->log_left == 0)
  807                         limit_reached = l->max_log;
  808                 cmd += F_LEN(cmd);      /* point to first action */
  809                 if (cmd->opcode == O_ALTQ) {
  810                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
  811 
  812                         snprintf(SNPARGS(action2, 0), "Altq %d",
  813                                 altq->qid);
  814                         cmd += F_LEN(cmd);
  815                 }
  816                 if (cmd->opcode == O_PROB)
  817                         cmd += F_LEN(cmd);
  818 
  819                 if (cmd->opcode == O_TAG)
  820                         cmd += F_LEN(cmd);
  821 
  822                 action = action2;
  823                 switch (cmd->opcode) {
  824                 case O_DENY:
  825                         action = "Deny";
  826                         break;
  827 
  828                 case O_REJECT:
  829                         if (cmd->arg1==ICMP_REJECT_RST)
  830                                 action = "Reset";
  831                         else if (cmd->arg1==ICMP_UNREACH_HOST)
  832                                 action = "Reject";
  833                         else
  834                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  835                                         cmd->arg1);
  836                         break;
  837 
  838                 case O_UNREACH6:
  839                         if (cmd->arg1==ICMP6_UNREACH_RST)
  840                                 action = "Reset";
  841                         else
  842                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  843                                         cmd->arg1);
  844                         break;
  845 
  846                 case O_ACCEPT:
  847                         action = "Accept";
  848                         break;
  849                 case O_COUNT:
  850                         action = "Count";
  851                         break;
  852                 case O_DIVERT:
  853                         snprintf(SNPARGS(action2, 0), "Divert %d",
  854                                 cmd->arg1);
  855                         break;
  856                 case O_TEE:
  857                         snprintf(SNPARGS(action2, 0), "Tee %d",
  858                                 cmd->arg1);
  859                         break;
  860                 case O_SKIPTO:
  861                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
  862                                 cmd->arg1);
  863                         break;
  864                 case O_PIPE:
  865                         snprintf(SNPARGS(action2, 0), "Pipe %d",
  866                                 cmd->arg1);
  867                         break;
  868                 case O_QUEUE:
  869                         snprintf(SNPARGS(action2, 0), "Queue %d",
  870                                 cmd->arg1);
  871                         break;
  872                 case O_FORWARD_IP: {
  873                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
  874                         int len;
  875 
  876                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
  877                                 inet_ntoa(sa->sa.sin_addr));
  878                         if (sa->sa.sin_port)
  879                                 snprintf(SNPARGS(action2, len), ":%d",
  880                                     sa->sa.sin_port);
  881                         }
  882                         break;
  883                 case O_NETGRAPH:
  884                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
  885                                 cmd->arg1);
  886                         break;
  887                 case O_NGTEE:
  888                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
  889                                 cmd->arg1);
  890                         break;
  891                 default:
  892                         action = "UNKNOWN";
  893                         break;
  894                 }
  895         }
  896 
  897         if (hlen == 0) {        /* non-ip */
  898                 snprintf(SNPARGS(proto, 0), "MAC");
  899 
  900         } else {
  901                 int len;
  902                 char src[48], dst[48];
  903                 struct icmphdr *icmp;
  904                 struct tcphdr *tcp;
  905                 struct udphdr *udp;
  906                 /* Initialize to make compiler happy. */
  907                 struct ip *ip = NULL;
  908 #ifdef INET6
  909                 struct ip6_hdr *ip6 = NULL;
  910                 struct icmp6_hdr *icmp6;
  911 #endif
  912                 src[0] = '\0';
  913                 dst[0] = '\0';
  914 #ifdef INET6
  915                 if (args->f_id.addr_type == 6) {
  916                         snprintf(src, sizeof(src), "[%s]",
  917                             ip6_sprintf(&args->f_id.src_ip6));
  918                         snprintf(dst, sizeof(dst), "[%s]",
  919                             ip6_sprintf(&args->f_id.dst_ip6));
  920 
  921                         ip6 = (struct ip6_hdr *)mtod(m, struct ip6_hdr *);
  922                         tcp = (struct tcphdr *)(mtod(args->m, char *) + hlen);
  923                         udp = (struct udphdr *)(mtod(args->m, char *) + hlen);
  924                 } else
  925 #endif
  926                 {
  927                         ip = mtod(m, struct ip *);
  928                         tcp = L3HDR(struct tcphdr, ip);
  929                         udp = L3HDR(struct udphdr, ip);
  930 
  931                         inet_ntoa_r(ip->ip_src, src);
  932                         inet_ntoa_r(ip->ip_dst, dst);
  933                 }
  934 
  935                 switch (args->f_id.proto) {
  936                 case IPPROTO_TCP:
  937                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
  938                         if (offset == 0)
  939                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  940                                     ntohs(tcp->th_sport),
  941                                     dst,
  942                                     ntohs(tcp->th_dport));
  943                         else
  944                                 snprintf(SNPARGS(proto, len), " %s", dst);
  945                         break;
  946 
  947                 case IPPROTO_UDP:
  948                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
  949                         if (offset == 0)
  950                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  951                                     ntohs(udp->uh_sport),
  952                                     dst,
  953                                     ntohs(udp->uh_dport));
  954                         else
  955                                 snprintf(SNPARGS(proto, len), " %s", dst);
  956                         break;
  957 
  958                 case IPPROTO_ICMP:
  959                         icmp = L3HDR(struct icmphdr, ip);
  960                         if (offset == 0)
  961                                 len = snprintf(SNPARGS(proto, 0),
  962                                     "ICMP:%u.%u ",
  963                                     icmp->icmp_type, icmp->icmp_code);
  964                         else
  965                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
  966                         len += snprintf(SNPARGS(proto, len), "%s", src);
  967                         snprintf(SNPARGS(proto, len), " %s", dst);
  968                         break;
  969 #ifdef INET6
  970                 case IPPROTO_ICMPV6:
  971                         icmp6 = (struct icmp6_hdr *)(mtod(args->m, char *) + hlen);
  972                         if (offset == 0)
  973                                 len = snprintf(SNPARGS(proto, 0),
  974                                     "ICMPv6:%u.%u ",
  975                                     icmp6->icmp6_type, icmp6->icmp6_code);
  976                         else
  977                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
  978                         len += snprintf(SNPARGS(proto, len), "%s", src);
  979                         snprintf(SNPARGS(proto, len), " %s", dst);
  980                         break;
  981 #endif
  982                 default:
  983                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
  984                             args->f_id.proto, src);
  985                         snprintf(SNPARGS(proto, len), " %s", dst);
  986                         break;
  987                 }
  988 
  989 #ifdef INET6
  990                 if (args->f_id.addr_type == 6) {
  991                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
  992                                 snprintf(SNPARGS(fragment, 0),
  993                                     " (frag %08x:%d@%d%s)",
  994                                     args->f_id.frag_id6,
  995                                     ntohs(ip6->ip6_plen) - hlen,
  996                                     ntohs(offset & IP6F_OFF_MASK) << 3,
  997                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
  998                 } else
  999 #endif
 1000                 {
 1001                         int ip_off, ip_len;
 1002                         if (eh != NULL) { /* layer 2 packets are as on the wire */
 1003                                 ip_off = ntohs(ip->ip_off);
 1004                                 ip_len = ntohs(ip->ip_len);
 1005                         } else {
 1006                                 ip_off = ip->ip_off;
 1007                                 ip_len = ip->ip_len;
 1008                         }
 1009                         if (ip_off & (IP_MF | IP_OFFMASK))
 1010                                 snprintf(SNPARGS(fragment, 0),
 1011                                     " (frag %d:%d@%d%s)",
 1012                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
 1013                                     offset << 3,
 1014                                     (ip_off & IP_MF) ? "+" : "");
 1015                 }
 1016         }
 1017         if (oif || m->m_pkthdr.rcvif)
 1018                 log(LOG_SECURITY | LOG_INFO,
 1019                     "ipfw: %d %s %s %s via %s%s\n",
 1020                     f ? f->rulenum : -1,
 1021                     action, proto, oif ? "out" : "in",
 1022                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
 1023                     fragment);
 1024         else
 1025                 log(LOG_SECURITY | LOG_INFO,
 1026                     "ipfw: %d %s %s [no if info]%s\n",
 1027                     f ? f->rulenum : -1,
 1028                     action, proto, fragment);
 1029         if (limit_reached)
 1030                 log(LOG_SECURITY | LOG_NOTICE,
 1031                     "ipfw: limit %d reached on entry %d\n",
 1032                     limit_reached, f ? f->rulenum : -1);
 1033 }
 1034 
 1035 /*
 1036  * IMPORTANT: the hash function for dynamic rules must be commutative
 1037  * in source and destination (ip,port), because rules are bidirectional
 1038  * and we want to find both in the same bucket.
 1039  */
 1040 static __inline int
 1041 hash_packet(struct ipfw_flow_id *id)
 1042 {
 1043         u_int32_t i;
 1044 
 1045 #ifdef INET6
 1046         if (IS_IP6_FLOW_ID(id)) 
 1047                 i = hash_packet6(id);
 1048         else
 1049 #endif /* INET6 */
 1050         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
 1051         i &= (curr_dyn_buckets - 1);
 1052         return i;
 1053 }
 1054 
 1055 /**
 1056  * unlink a dynamic rule from a chain. prev is a pointer to
 1057  * the previous one, q is a pointer to the rule to delete,
 1058  * head is a pointer to the head of the queue.
 1059  * Modifies q and potentially also head.
 1060  */
 1061 #define UNLINK_DYN_RULE(prev, head, q) {                                \
 1062         ipfw_dyn_rule *old_q = q;                                       \
 1063                                                                         \
 1064         /* remove a refcount to the parent */                           \
 1065         if (q->dyn_type == O_LIMIT)                                     \
 1066                 q->parent->count--;                                     \
 1067         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
 1068                 (q->id.src_ip), (q->id.src_port),                       \
 1069                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
 1070         if (prev != NULL)                                               \
 1071                 prev->next = q = q->next;                               \
 1072         else                                                            \
 1073                 head = q = q->next;                                     \
 1074         dyn_count--;                                                    \
 1075         uma_zfree(ipfw_dyn_rule_zone, old_q); }
 1076 
 1077 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
 1078 
 1079 /**
 1080  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
 1081  *
 1082  * If keep_me == NULL, rules are deleted even if not expired,
 1083  * otherwise only expired rules are removed.
 1084  *
 1085  * The value of the second parameter is also used to point to identify
 1086  * a rule we absolutely do not want to remove (e.g. because we are
 1087  * holding a reference to it -- this is the case with O_LIMIT_PARENT
 1088  * rules). The pointer is only used for comparison, so any non-null
 1089  * value will do.
 1090  */
 1091 static void
 1092 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
 1093 {
 1094         static u_int32_t last_remove = 0;
 1095 
 1096 #define FORCE (keep_me == NULL)
 1097 
 1098         ipfw_dyn_rule *prev, *q;
 1099         int i, pass = 0, max_pass = 0;
 1100 
 1101         IPFW_DYN_LOCK_ASSERT();
 1102 
 1103         if (ipfw_dyn_v == NULL || dyn_count == 0)
 1104                 return;
 1105         /* do not expire more than once per second, it is useless */
 1106         if (!FORCE && last_remove == time_second)
 1107                 return;
 1108         last_remove = time_second;
 1109 
 1110         /*
 1111          * because O_LIMIT refer to parent rules, during the first pass only
 1112          * remove child and mark any pending LIMIT_PARENT, and remove
 1113          * them in a second pass.
 1114          */
 1115 next_pass:
 1116         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 1117                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
 1118                         /*
 1119                          * Logic can become complex here, so we split tests.
 1120                          */
 1121                         if (q == keep_me)
 1122                                 goto next;
 1123                         if (rule != NULL && rule != q->rule)
 1124                                 goto next; /* not the one we are looking for */
 1125                         if (q->dyn_type == O_LIMIT_PARENT) {
 1126                                 /*
 1127                                  * handle parent in the second pass,
 1128                                  * record we need one.
 1129                                  */
 1130                                 max_pass = 1;
 1131                                 if (pass == 0)
 1132                                         goto next;
 1133                                 if (FORCE && q->count != 0 ) {
 1134                                         /* XXX should not happen! */
 1135                                         printf("ipfw: OUCH! cannot remove rule,"
 1136                                              " count %d\n", q->count);
 1137                                 }
 1138                         } else {
 1139                                 if (!FORCE &&
 1140                                     !TIME_LEQ( q->expire, time_second ))
 1141                                         goto next;
 1142                         }
 1143              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
 1144                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
 1145                      continue;
 1146              }
 1147 next:
 1148                         prev=q;
 1149                         q=q->next;
 1150                 }
 1151         }
 1152         if (pass++ < max_pass)
 1153                 goto next_pass;
 1154 }
 1155 
 1156 
 1157 /**
 1158  * lookup a dynamic rule.
 1159  */
 1160 static ipfw_dyn_rule *
 1161 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
 1162         struct tcphdr *tcp)
 1163 {
 1164         /*
 1165          * stateful ipfw extensions.
 1166          * Lookup into dynamic session queue
 1167          */
 1168 #define MATCH_REVERSE   0
 1169 #define MATCH_FORWARD   1
 1170 #define MATCH_NONE      2
 1171 #define MATCH_UNKNOWN   3
 1172         int i, dir = MATCH_NONE;
 1173         ipfw_dyn_rule *prev, *q=NULL;
 1174 
 1175         IPFW_DYN_LOCK_ASSERT();
 1176 
 1177         if (ipfw_dyn_v == NULL)
 1178                 goto done;      /* not found */
 1179         i = hash_packet( pkt );
 1180         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
 1181                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
 1182                         goto next;
 1183                 if (TIME_LEQ( q->expire, time_second)) { /* expire entry */
 1184                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
 1185                         continue;
 1186                 }
 1187                 if (pkt->proto == q->id.proto &&
 1188                     q->dyn_type != O_LIMIT_PARENT) {
 1189                         if (IS_IP6_FLOW_ID(pkt)) {
 1190                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
 1191                                 &(q->id.src_ip6)) &&
 1192                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
 1193                                 &(q->id.dst_ip6)) &&
 1194                             pkt->src_port == q->id.src_port &&
 1195                             pkt->dst_port == q->id.dst_port ) {
 1196                                 dir = MATCH_FORWARD;
 1197                                 break;
 1198                             }
 1199                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
 1200                                     &(q->id.dst_ip6)) &&
 1201                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
 1202                                     &(q->id.src_ip6)) &&
 1203                                 pkt->src_port == q->id.dst_port &&
 1204                                 pkt->dst_port == q->id.src_port ) {
 1205                                     dir = MATCH_REVERSE;
 1206                                     break;
 1207                             }
 1208                         } else {
 1209                             if (pkt->src_ip == q->id.src_ip &&
 1210                                 pkt->dst_ip == q->id.dst_ip &&
 1211                                 pkt->src_port == q->id.src_port &&
 1212                                 pkt->dst_port == q->id.dst_port ) {
 1213                                     dir = MATCH_FORWARD;
 1214                                     break;
 1215                             }
 1216                             if (pkt->src_ip == q->id.dst_ip &&
 1217                                 pkt->dst_ip == q->id.src_ip &&
 1218                                 pkt->src_port == q->id.dst_port &&
 1219                                 pkt->dst_port == q->id.src_port ) {
 1220                                     dir = MATCH_REVERSE;
 1221                                     break;
 1222                             }
 1223                         }
 1224                 }
 1225 next:
 1226                 prev = q;
 1227                 q = q->next;
 1228         }
 1229         if (q == NULL)
 1230                 goto done; /* q = NULL, not found */
 1231 
 1232         if ( prev != NULL) { /* found and not in front */
 1233                 prev->next = q->next;
 1234                 q->next = ipfw_dyn_v[i];
 1235                 ipfw_dyn_v[i] = q;
 1236         }
 1237         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
 1238                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
 1239 
 1240 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
 1241 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
 1242                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
 1243                 switch (q->state) {
 1244                 case TH_SYN:                            /* opening */
 1245                         q->expire = time_second + dyn_syn_lifetime;
 1246                         break;
 1247 
 1248                 case BOTH_SYN:                  /* move to established */
 1249                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
 1250                 case BOTH_SYN | (TH_FIN << 8) :
 1251                         if (tcp) {
 1252 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
 1253                             u_int32_t ack = ntohl(tcp->th_ack);
 1254                             if (dir == MATCH_FORWARD) {
 1255                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
 1256                                     q->ack_fwd = ack;
 1257                                 else { /* ignore out-of-sequence */
 1258                                     break;
 1259                                 }
 1260                             } else {
 1261                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
 1262                                     q->ack_rev = ack;
 1263                                 else { /* ignore out-of-sequence */
 1264                                     break;
 1265                                 }
 1266                             }
 1267                         }
 1268                         q->expire = time_second + dyn_ack_lifetime;
 1269                         break;
 1270 
 1271                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
 1272                         if (dyn_fin_lifetime >= dyn_keepalive_period)
 1273                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
 1274                         q->expire = time_second + dyn_fin_lifetime;
 1275                         break;
 1276 
 1277                 default:
 1278 #if 0
 1279                         /*
 1280                          * reset or some invalid combination, but can also
 1281                          * occur if we use keep-state the wrong way.
 1282                          */
 1283                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
 1284                                 printf("invalid state: 0x%x\n", q->state);
 1285 #endif
 1286                         if (dyn_rst_lifetime >= dyn_keepalive_period)
 1287                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
 1288                         q->expire = time_second + dyn_rst_lifetime;
 1289                         break;
 1290                 }
 1291         } else if (pkt->proto == IPPROTO_UDP) {
 1292                 q->expire = time_second + dyn_udp_lifetime;
 1293         } else {
 1294                 /* other protocols */
 1295                 q->expire = time_second + dyn_short_lifetime;
 1296         }
 1297 done:
 1298         if (match_direction)
 1299                 *match_direction = dir;
 1300         return q;
 1301 }
 1302 
 1303 static ipfw_dyn_rule *
 1304 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
 1305         struct tcphdr *tcp)
 1306 {
 1307         ipfw_dyn_rule *q;
 1308 
 1309         IPFW_DYN_LOCK();
 1310         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
 1311         if (q == NULL)
 1312                 IPFW_DYN_UNLOCK();
 1313         /* NB: return table locked when q is not NULL */
 1314         return q;
 1315 }
 1316 
 1317 static void
 1318 realloc_dynamic_table(void)
 1319 {
 1320         IPFW_DYN_LOCK_ASSERT();
 1321 
 1322         /*
 1323          * Try reallocation, make sure we have a power of 2 and do
 1324          * not allow more than 64k entries. In case of overflow,
 1325          * default to 1024.
 1326          */
 1327 
 1328         if (dyn_buckets > 65536)
 1329                 dyn_buckets = 1024;
 1330         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
 1331                 dyn_buckets = curr_dyn_buckets; /* reset */
 1332                 return;
 1333         }
 1334         curr_dyn_buckets = dyn_buckets;
 1335         if (ipfw_dyn_v != NULL)
 1336                 free(ipfw_dyn_v, M_IPFW);
 1337         for (;;) {
 1338                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
 1339                        M_IPFW, M_NOWAIT | M_ZERO);
 1340                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
 1341                         break;
 1342                 curr_dyn_buckets /= 2;
 1343         }
 1344 }
 1345 
 1346 /**
 1347  * Install state of type 'type' for a dynamic session.
 1348  * The hash table contains two type of rules:
 1349  * - regular rules (O_KEEP_STATE)
 1350  * - rules for sessions with limited number of sess per user
 1351  *   (O_LIMIT). When they are created, the parent is
 1352  *   increased by 1, and decreased on delete. In this case,
 1353  *   the third parameter is the parent rule and not the chain.
 1354  * - "parent" rules for the above (O_LIMIT_PARENT).
 1355  */
 1356 static ipfw_dyn_rule *
 1357 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
 1358 {
 1359         ipfw_dyn_rule *r;
 1360         int i;
 1361 
 1362         IPFW_DYN_LOCK_ASSERT();
 1363 
 1364         if (ipfw_dyn_v == NULL ||
 1365             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
 1366                 realloc_dynamic_table();
 1367                 if (ipfw_dyn_v == NULL)
 1368                         return NULL; /* failed ! */
 1369         }
 1370         i = hash_packet(id);
 1371 
 1372         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
 1373         if (r == NULL) {
 1374                 printf ("ipfw: sorry cannot allocate state\n");
 1375                 return NULL;
 1376         }
 1377 
 1378         /* increase refcount on parent, and set pointer */
 1379         if (dyn_type == O_LIMIT) {
 1380                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
 1381                 if ( parent->dyn_type != O_LIMIT_PARENT)
 1382                         panic("invalid parent");
 1383                 parent->count++;
 1384                 r->parent = parent;
 1385                 rule = parent->rule;
 1386         }
 1387 
 1388         r->id = *id;
 1389         r->expire = time_second + dyn_syn_lifetime;
 1390         r->rule = rule;
 1391         r->dyn_type = dyn_type;
 1392         r->pcnt = r->bcnt = 0;
 1393         r->count = 0;
 1394 
 1395         r->bucket = i;
 1396         r->next = ipfw_dyn_v[i];
 1397         ipfw_dyn_v[i] = r;
 1398         dyn_count++;
 1399         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
 1400            dyn_type,
 1401            (r->id.src_ip), (r->id.src_port),
 1402            (r->id.dst_ip), (r->id.dst_port),
 1403            dyn_count ); )
 1404         return r;
 1405 }
 1406 
 1407 /**
 1408  * lookup dynamic parent rule using pkt and rule as search keys.
 1409  * If the lookup fails, then install one.
 1410  */
 1411 static ipfw_dyn_rule *
 1412 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
 1413 {
 1414         ipfw_dyn_rule *q;
 1415         int i;
 1416 
 1417         IPFW_DYN_LOCK_ASSERT();
 1418 
 1419         if (ipfw_dyn_v) {
 1420                 int is_v6 = IS_IP6_FLOW_ID(pkt);
 1421                 i = hash_packet( pkt );
 1422                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
 1423                         if (q->dyn_type == O_LIMIT_PARENT &&
 1424                             rule== q->rule &&
 1425                             pkt->proto == q->id.proto &&
 1426                             pkt->src_port == q->id.src_port &&
 1427                             pkt->dst_port == q->id.dst_port &&
 1428                             (
 1429                                 (is_v6 &&
 1430                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
 1431                                         &(q->id.src_ip6)) &&
 1432                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
 1433                                         &(q->id.dst_ip6))) ||
 1434                                 (!is_v6 &&
 1435                                  pkt->src_ip == q->id.src_ip &&
 1436                                  pkt->dst_ip == q->id.dst_ip)
 1437                             )
 1438                         ) {
 1439                                 q->expire = time_second + dyn_short_lifetime;
 1440                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
 1441                                 return q;
 1442                         }
 1443         }
 1444         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
 1445 }
 1446 
 1447 /**
 1448  * Install dynamic state for rule type cmd->o.opcode
 1449  *
 1450  * Returns 1 (failure) if state is not installed because of errors or because
 1451  * session limitations are enforced.
 1452  */
 1453 static int
 1454 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
 1455     struct ip_fw_args *args, uint32_t tablearg)
 1456 {
 1457         static int last_log;
 1458 
 1459         ipfw_dyn_rule *q;
 1460 
 1461         DEB(
 1462         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
 1463             __func__, cmd->o.opcode,
 1464             (args->f_id.src_ip), (args->f_id.src_port),
 1465             (args->f_id.dst_ip), (args->f_id.dst_port));
 1466         )
 1467 
 1468         IPFW_DYN_LOCK();
 1469 
 1470         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1471 
 1472         if (q != NULL) {        /* should never occur */
 1473                 if (last_log != time_second) {
 1474                         last_log = time_second;
 1475                         printf("ipfw: %s: entry already present, done\n",
 1476                             __func__);
 1477                 }
 1478                 IPFW_DYN_UNLOCK();
 1479                 return (0);
 1480         }
 1481 
 1482         if (dyn_count >= dyn_max)
 1483                 /* Run out of slots, try to remove any expired rule. */
 1484                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
 1485 
 1486         if (dyn_count >= dyn_max) {
 1487                 if (last_log != time_second) {
 1488                         last_log = time_second;
 1489                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
 1490                 }
 1491                 IPFW_DYN_UNLOCK();
 1492                 return (1);     /* cannot install, notify caller */
 1493         }
 1494 
 1495         switch (cmd->o.opcode) {
 1496         case O_KEEP_STATE:      /* bidir rule */
 1497                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
 1498                 break;
 1499 
 1500         case O_LIMIT: {         /* limit number of sessions */
 1501                 struct ipfw_flow_id id;
 1502                 ipfw_dyn_rule *parent;
 1503                 uint32_t conn_limit;
 1504                 uint16_t limit_mask = cmd->limit_mask;
 1505 
 1506                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
 1507                     tablearg : cmd->conn_limit;
 1508                   
 1509                 DEB(
 1510                 if (cmd->conn_limit == IP_FW_TABLEARG)
 1511                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
 1512                             "(tablearg)\n", __func__, conn_limit);
 1513                 else
 1514                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
 1515                             __func__, conn_limit);
 1516                 )
 1517 
 1518                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
 1519                 id.proto = args->f_id.proto;
 1520                 id.addr_type = args->f_id.addr_type;
 1521 
 1522                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
 1523                         if (limit_mask & DYN_SRC_ADDR)
 1524                                 id.src_ip6 = args->f_id.src_ip6;
 1525                         if (limit_mask & DYN_DST_ADDR)
 1526                                 id.dst_ip6 = args->f_id.dst_ip6;
 1527                 } else {
 1528                         if (limit_mask & DYN_SRC_ADDR)
 1529                                 id.src_ip = args->f_id.src_ip;
 1530                         if (limit_mask & DYN_DST_ADDR)
 1531                                 id.dst_ip = args->f_id.dst_ip;
 1532                 }
 1533                 if (limit_mask & DYN_SRC_PORT)
 1534                         id.src_port = args->f_id.src_port;
 1535                 if (limit_mask & DYN_DST_PORT)
 1536                         id.dst_port = args->f_id.dst_port;
 1537                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
 1538                         printf("ipfw: %s: add parent failed\n", __func__);
 1539                         IPFW_DYN_UNLOCK();
 1540                         return (1);
 1541                 }
 1542 
 1543                 if (parent->count >= conn_limit) {
 1544                         /* See if we can remove some expired rule. */
 1545                         remove_dyn_rule(rule, parent);
 1546                         if (parent->count >= conn_limit) {
 1547                                 if (fw_verbose && last_log != time_second) {
 1548                                         last_log = time_second;
 1549                                         log(LOG_SECURITY | LOG_DEBUG,
 1550                                             "drop session, too many entries\n");
 1551                                 }
 1552                                 IPFW_DYN_UNLOCK();
 1553                                 return (1);
 1554                         }
 1555                 }
 1556                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
 1557                 break;
 1558         }
 1559         default:
 1560                 printf("ipfw: %s: unknown dynamic rule type %u\n",
 1561                     __func__, cmd->o.opcode);
 1562                 IPFW_DYN_UNLOCK();
 1563                 return (1);
 1564         }
 1565 
 1566         /* XXX just set lifetime */
 1567         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1568 
 1569         IPFW_DYN_UNLOCK();
 1570         return (0);
 1571 }
 1572 
 1573 /*
 1574  * Generate a TCP packet, containing either a RST or a keepalive.
 1575  * When flags & TH_RST, we are sending a RST packet, because of a
 1576  * "reset" action matched the packet.
 1577  * Otherwise we are sending a keepalive, and flags & TH_
 1578  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
 1579  * so that MAC can label the reply appropriately.
 1580  */
 1581 static struct mbuf *
 1582 send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
 1583     u_int32_t ack, int flags)
 1584 {
 1585         struct mbuf *m;
 1586         struct ip *ip;
 1587         struct tcphdr *tcp;
 1588 
 1589         MGETHDR(m, M_DONTWAIT, MT_HEADER);
 1590         if (m == 0)
 1591                 return (NULL);
 1592         m->m_pkthdr.rcvif = (struct ifnet *)0;
 1593 
 1594 #ifdef MAC
 1595         if (replyto != NULL)
 1596                 mac_create_mbuf_netlayer(replyto, m);
 1597         else
 1598                 mac_create_mbuf_from_firewall(m);
 1599 #else
 1600         (void)replyto;          /* don't warn about unused arg */
 1601 #endif
 1602 
 1603         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
 1604         m->m_data += max_linkhdr;
 1605 
 1606         ip = mtod(m, struct ip *);
 1607         bzero(ip, m->m_len);
 1608         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
 1609         ip->ip_p = IPPROTO_TCP;
 1610         tcp->th_off = 5;
 1611         /*
 1612          * Assume we are sending a RST (or a keepalive in the reverse
 1613          * direction), swap src and destination addresses and ports.
 1614          */
 1615         ip->ip_src.s_addr = htonl(id->dst_ip);
 1616         ip->ip_dst.s_addr = htonl(id->src_ip);
 1617         tcp->th_sport = htons(id->dst_port);
 1618         tcp->th_dport = htons(id->src_port);
 1619         if (flags & TH_RST) {   /* we are sending a RST */
 1620                 if (flags & TH_ACK) {
 1621                         tcp->th_seq = htonl(ack);
 1622                         tcp->th_ack = htonl(0);
 1623                         tcp->th_flags = TH_RST;
 1624                 } else {
 1625                         if (flags & TH_SYN)
 1626                                 seq++;
 1627                         tcp->th_seq = htonl(0);
 1628                         tcp->th_ack = htonl(seq);
 1629                         tcp->th_flags = TH_RST | TH_ACK;
 1630                 }
 1631         } else {
 1632                 /*
 1633                  * We are sending a keepalive. flags & TH_SYN determines
 1634                  * the direction, forward if set, reverse if clear.
 1635                  * NOTE: seq and ack are always assumed to be correct
 1636                  * as set by the caller. This may be confusing...
 1637                  */
 1638                 if (flags & TH_SYN) {
 1639                         /*
 1640                          * we have to rewrite the correct addresses!
 1641                          */
 1642                         ip->ip_dst.s_addr = htonl(id->dst_ip);
 1643                         ip->ip_src.s_addr = htonl(id->src_ip);
 1644                         tcp->th_dport = htons(id->dst_port);
 1645                         tcp->th_sport = htons(id->src_port);
 1646                 }
 1647                 tcp->th_seq = htonl(seq);
 1648                 tcp->th_ack = htonl(ack);
 1649                 tcp->th_flags = TH_ACK;
 1650         }
 1651         /*
 1652          * set ip_len to the payload size so we can compute
 1653          * the tcp checksum on the pseudoheader
 1654          * XXX check this, could save a couple of words ?
 1655          */
 1656         ip->ip_len = htons(sizeof(struct tcphdr));
 1657         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
 1658         /*
 1659          * now fill fields left out earlier
 1660          */
 1661         ip->ip_ttl = ip_defttl;
 1662         ip->ip_len = m->m_pkthdr.len;
 1663         m->m_flags |= M_SKIP_FIREWALL;
 1664         return (m);
 1665 }
 1666 
 1667 /*
 1668  * sends a reject message, consuming the mbuf passed as an argument.
 1669  */
 1670 static void
 1671 send_reject(struct ip_fw_args *args, int code, u_short offset, int ip_len)
 1672 {
 1673 
 1674         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
 1675                 /* We need the IP header in host order for icmp_error(). */
 1676                 if (args->eh != NULL) {
 1677                         struct ip *ip = mtod(args->m, struct ip *);
 1678                         ip->ip_len = ntohs(ip->ip_len);
 1679                         ip->ip_off = ntohs(ip->ip_off);
 1680                 }
 1681                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
 1682         } else if (offset == 0 && args->f_id.proto == IPPROTO_TCP) {
 1683                 struct tcphdr *const tcp =
 1684                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
 1685                 if ( (tcp->th_flags & TH_RST) == 0) {
 1686                         struct mbuf *m;
 1687                         m = send_pkt(args->m, &(args->f_id),
 1688                                 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
 1689                                 tcp->th_flags | TH_RST);
 1690                         if (m != NULL)
 1691                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
 1692                 }
 1693                 m_freem(args->m);
 1694         } else
 1695                 m_freem(args->m);
 1696         args->m = NULL;
 1697 }
 1698 
 1699 /**
 1700  *
 1701  * Given an ip_fw *, lookup_next_rule will return a pointer
 1702  * to the next rule, which can be either the jump
 1703  * target (for skipto instructions) or the next one in the list (in
 1704  * all other cases including a missing jump target).
 1705  * The result is also written in the "next_rule" field of the rule.
 1706  * Backward jumps are not allowed, so start looking from the next
 1707  * rule...
 1708  *
 1709  * This never returns NULL -- in case we do not have an exact match,
 1710  * the next rule is returned. When the ruleset is changed,
 1711  * pointers are flushed so we are always correct.
 1712  */
 1713 
 1714 static struct ip_fw *
 1715 lookup_next_rule(struct ip_fw *me)
 1716 {
 1717         struct ip_fw *rule = NULL;
 1718         ipfw_insn *cmd;
 1719 
 1720         /* look for action, in case it is a skipto */
 1721         cmd = ACTION_PTR(me);
 1722         if (cmd->opcode == O_LOG)
 1723                 cmd += F_LEN(cmd);
 1724         if (cmd->opcode == O_ALTQ)
 1725                 cmd += F_LEN(cmd);
 1726         if (cmd->opcode == O_TAG)
 1727                 cmd += F_LEN(cmd);
 1728         if ( cmd->opcode == O_SKIPTO )
 1729                 for (rule = me->next; rule ; rule = rule->next)
 1730                         if (rule->rulenum >= cmd->arg1)
 1731                                 break;
 1732         if (rule == NULL)                       /* failure or not a skipto */
 1733                 rule = me->next;
 1734         me->next_rule = rule;
 1735         return rule;
 1736 }
 1737 
 1738 static int
 1739 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
 1740         uint8_t mlen, uint32_t value)
 1741 {
 1742         struct radix_node_head *rnh;
 1743         struct table_entry *ent;
 1744 
 1745         if (tbl >= IPFW_TABLES_MAX)
 1746                 return (EINVAL);
 1747         rnh = ch->tables[tbl];
 1748         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
 1749         if (ent == NULL)
 1750                 return (ENOMEM);
 1751         ent->value = value;
 1752         ent->addr.sin_len = ent->mask.sin_len = 8;
 1753         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1754         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
 1755         IPFW_WLOCK(&layer3_chain);
 1756         if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
 1757             NULL) {
 1758                 IPFW_WUNLOCK(&layer3_chain);
 1759                 free(ent, M_IPFW_TBL);
 1760                 return (EEXIST);
 1761         }
 1762         IPFW_WUNLOCK(&layer3_chain);
 1763         return (0);
 1764 }
 1765 
 1766 static int
 1767 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
 1768         uint8_t mlen)
 1769 {
 1770         struct radix_node_head *rnh;
 1771         struct table_entry *ent;
 1772         struct sockaddr_in sa, mask;
 1773 
 1774         if (tbl >= IPFW_TABLES_MAX)
 1775                 return (EINVAL);
 1776         rnh = ch->tables[tbl];
 1777         sa.sin_len = mask.sin_len = 8;
 1778         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1779         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
 1780         IPFW_WLOCK(ch);
 1781         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
 1782         if (ent == NULL) {
 1783                 IPFW_WUNLOCK(ch);
 1784                 return (ESRCH);
 1785         }
 1786         IPFW_WUNLOCK(ch);
 1787         free(ent, M_IPFW_TBL);
 1788         return (0);
 1789 }
 1790 
 1791 static int
 1792 flush_table_entry(struct radix_node *rn, void *arg)
 1793 {
 1794         struct radix_node_head * const rnh = arg;
 1795         struct table_entry *ent;
 1796 
 1797         ent = (struct table_entry *)
 1798             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
 1799         if (ent != NULL)
 1800                 free(ent, M_IPFW_TBL);
 1801         return (0);
 1802 }
 1803 
 1804 static int
 1805 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
 1806 {
 1807         struct radix_node_head *rnh;
 1808 
 1809         IPFW_WLOCK_ASSERT(ch);
 1810 
 1811         if (tbl >= IPFW_TABLES_MAX)
 1812                 return (EINVAL);
 1813         rnh = ch->tables[tbl];
 1814         KASSERT(rnh != NULL, ("NULL IPFW table"));
 1815         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
 1816         return (0);
 1817 }
 1818 
 1819 static void
 1820 flush_tables(struct ip_fw_chain *ch)
 1821 {
 1822         uint16_t tbl;
 1823 
 1824         IPFW_WLOCK_ASSERT(ch);
 1825 
 1826         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
 1827                 flush_table(ch, tbl);
 1828 }
 1829 
 1830 static int
 1831 init_tables(struct ip_fw_chain *ch)
 1832 { 
 1833         int i;
 1834         uint16_t j;
 1835 
 1836         for (i = 0; i < IPFW_TABLES_MAX; i++) {
 1837                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
 1838                         for (j = 0; j < i; j++) {
 1839                                 (void) flush_table(ch, j);
 1840                         }
 1841                         return (ENOMEM);
 1842                 }
 1843         }
 1844         return (0);
 1845 }
 1846 
 1847 static int
 1848 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
 1849         uint32_t *val)
 1850 {
 1851         struct radix_node_head *rnh;
 1852         struct table_entry *ent;
 1853         struct sockaddr_in sa;
 1854 
 1855         if (tbl >= IPFW_TABLES_MAX)
 1856                 return (0);
 1857         rnh = ch->tables[tbl];
 1858         sa.sin_len = 8;
 1859         sa.sin_addr.s_addr = addr;
 1860         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
 1861         if (ent != NULL) {
 1862                 *val = ent->value;
 1863                 return (1);
 1864         }
 1865         return (0);
 1866 }
 1867 
 1868 static int
 1869 count_table_entry(struct radix_node *rn, void *arg)
 1870 {
 1871         u_int32_t * const cnt = arg;
 1872 
 1873         (*cnt)++;
 1874         return (0);
 1875 }
 1876 
 1877 static int
 1878 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
 1879 {
 1880         struct radix_node_head *rnh;
 1881 
 1882         if (tbl >= IPFW_TABLES_MAX)
 1883                 return (EINVAL);
 1884         rnh = ch->tables[tbl];
 1885         *cnt = 0;
 1886         rnh->rnh_walktree(rnh, count_table_entry, cnt);
 1887         return (0);
 1888 }
 1889 
 1890 static int
 1891 dump_table_entry(struct radix_node *rn, void *arg)
 1892 {
 1893         struct table_entry * const n = (struct table_entry *)rn;
 1894         ipfw_table * const tbl = arg;
 1895         ipfw_table_entry *ent;
 1896 
 1897         if (tbl->cnt == tbl->size)
 1898                 return (1);
 1899         ent = &tbl->ent[tbl->cnt];
 1900         ent->tbl = tbl->tbl;
 1901         if (in_nullhost(n->mask.sin_addr))
 1902                 ent->masklen = 0;
 1903         else
 1904                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
 1905         ent->addr = n->addr.sin_addr.s_addr;
 1906         ent->value = n->value;
 1907         tbl->cnt++;
 1908         return (0);
 1909 }
 1910 
 1911 static int
 1912 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
 1913 {
 1914         struct radix_node_head *rnh;
 1915 
 1916         if (tbl->tbl >= IPFW_TABLES_MAX)
 1917                 return (EINVAL);
 1918         rnh = ch->tables[tbl->tbl];
 1919         tbl->cnt = 0;
 1920         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
 1921         return (0);
 1922 }
 1923 
 1924 static void
 1925 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
 1926 {
 1927         struct ucred *cr;
 1928 
 1929         if (inp->inp_socket != NULL) {
 1930                 cr = inp->inp_socket->so_cred;
 1931                 ugp->fw_prid = jailed(cr) ?
 1932                     cr->cr_prison->pr_id : -1;
 1933                 ugp->fw_uid = cr->cr_uid;
 1934                 ugp->fw_ngroups = cr->cr_ngroups;
 1935                 bcopy(cr->cr_groups, ugp->fw_groups,
 1936                     sizeof(ugp->fw_groups));
 1937         }
 1938 }
 1939 
 1940 static int
 1941 check_uidgid(ipfw_insn_u32 *insn,
 1942         int proto, struct ifnet *oif,
 1943         struct in_addr dst_ip, u_int16_t dst_port,
 1944         struct in_addr src_ip, u_int16_t src_port,
 1945         struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
 1946 {
 1947         struct inpcbinfo *pi;
 1948         int wildcard;
 1949         struct inpcb *pcb;
 1950         int match;
 1951         gid_t *gp;
 1952 
 1953         /*
 1954          * Check to see if the UDP or TCP stack supplied us with
 1955          * the PCB. If so, rather then holding a lock and looking
 1956          * up the PCB, we can use the one that was supplied.
 1957          */
 1958         if (inp && *lookup == 0) {
 1959                 INP_LOCK_ASSERT(inp);
 1960                 if (inp->inp_socket != NULL) {
 1961                         fill_ugid_cache(inp, ugp);
 1962                         *lookup = 1;
 1963                 }
 1964         }
 1965         /*
 1966          * If we have already been here and the packet has no
 1967          * PCB entry associated with it, then we can safely
 1968          * assume that this is a no match.
 1969          */
 1970         if (*lookup == -1)
 1971                 return (0);
 1972         if (proto == IPPROTO_TCP) {
 1973                 wildcard = 0;
 1974                 pi = &tcbinfo;
 1975         } else if (proto == IPPROTO_UDP) {
 1976                 wildcard = 1;
 1977                 pi = &udbinfo;
 1978         } else
 1979                 return 0;
 1980         match = 0;
 1981         if (*lookup == 0) {
 1982                 INP_INFO_RLOCK(pi);
 1983                 pcb =  (oif) ?
 1984                         in_pcblookup_hash(pi,
 1985                                 dst_ip, htons(dst_port),
 1986                                 src_ip, htons(src_port),
 1987                                 wildcard, oif) :
 1988                         in_pcblookup_hash(pi,
 1989                                 src_ip, htons(src_port),
 1990                                 dst_ip, htons(dst_port),
 1991                                 wildcard, NULL);
 1992                 if (pcb != NULL) {
 1993                         INP_LOCK(pcb);
 1994                         if (pcb->inp_socket != NULL) {
 1995                                 fill_ugid_cache(pcb, ugp);
 1996                                 *lookup = 1;
 1997                         }
 1998                         INP_UNLOCK(pcb);
 1999                 }
 2000                 INP_INFO_RUNLOCK(pi);
 2001                 if (*lookup == 0) {
 2002                         /*
 2003                          * If the lookup did not yield any results, there
 2004                          * is no sense in coming back and trying again. So
 2005                          * we can set lookup to -1 and ensure that we wont
 2006                          * bother the pcb system again.
 2007                          */
 2008                         *lookup = -1;
 2009                         return (0);
 2010                 }
 2011         } 
 2012         if (insn->o.opcode == O_UID)
 2013                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
 2014         else if (insn->o.opcode == O_GID) {
 2015                 for (gp = ugp->fw_groups;
 2016                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
 2017                         if (*gp == (gid_t)insn->d[0]) {
 2018                                 match = 1;
 2019                                 break;
 2020                         }
 2021         } else if (insn->o.opcode == O_JAIL)
 2022                 match = (ugp->fw_prid == (int)insn->d[0]);
 2023         return match;
 2024 }
 2025 
 2026 /*
 2027  * The main check routine for the firewall.
 2028  *
 2029  * All arguments are in args so we can modify them and return them
 2030  * back to the caller.
 2031  *
 2032  * Parameters:
 2033  *
 2034  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
 2035  *              Starts with the IP header.
 2036  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
 2037  *      args->oif       Outgoing interface, or NULL if packet is incoming.
 2038  *              The incoming interface is in the mbuf. (in)
 2039  *      args->divert_rule (in/out)
 2040  *              Skip up to the first rule past this rule number;
 2041  *              upon return, non-zero port number for divert or tee.
 2042  *
 2043  *      args->rule      Pointer to the last matching rule (in/out)
 2044  *      args->next_hop  Socket we are forwarding to (out).
 2045  *      args->f_id      Addresses grabbed from the packet (out)
 2046  *      args->cookie    a cookie depending on rule action
 2047  *
 2048  * Return value:
 2049  *
 2050  *      IP_FW_PASS      the packet must be accepted
 2051  *      IP_FW_DENY      the packet must be dropped
 2052  *      IP_FW_DIVERT    divert packet, port in m_tag
 2053  *      IP_FW_TEE       tee packet, port in m_tag
 2054  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
 2055  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
 2056  *
 2057  */
 2058 
 2059 int
 2060 ipfw_chk(struct ip_fw_args *args)
 2061 {
 2062         /*
 2063          * Local variables hold state during the processing of a packet.
 2064          *
 2065          * IMPORTANT NOTE: to speed up the processing of rules, there
 2066          * are some assumption on the values of the variables, which
 2067          * are documented here. Should you change them, please check
 2068          * the implementation of the various instructions to make sure
 2069          * that they still work.
 2070          *
 2071          * args->eh     The MAC header. It is non-null for a layer2
 2072          *      packet, it is NULL for a layer-3 packet.
 2073          *
 2074          * m | args->m  Pointer to the mbuf, as received from the caller.
 2075          *      It may change if ipfw_chk() does an m_pullup, or if it
 2076          *      consumes the packet because it calls send_reject().
 2077          *      XXX This has to change, so that ipfw_chk() never modifies
 2078          *      or consumes the buffer.
 2079          * ip   is simply an alias of the value of m, and it is kept
 2080          *      in sync with it (the packet is  supposed to start with
 2081          *      the ip header).
 2082          */
 2083         struct mbuf *m = args->m;
 2084         struct ip *ip = mtod(m, struct ip *);
 2085 
 2086         /*
 2087          * For rules which contain uid/gid or jail constraints, cache
 2088          * a copy of the users credentials after the pcb lookup has been
 2089          * executed. This will speed up the processing of rules with
 2090          * these types of constraints, as well as decrease contention
 2091          * on pcb related locks.
 2092          */
 2093         struct ip_fw_ugid fw_ugid_cache;
 2094         int ugid_lookup = 0;
 2095 
 2096         /*
 2097          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
 2098          *      associated with a packet input on a divert socket.  This
 2099          *      will allow to distinguish traffic and its direction when
 2100          *      it originates from a divert socket.
 2101          */
 2102         u_int divinput_flags = 0;
 2103 
 2104         /*
 2105          * oif | args->oif      If NULL, ipfw_chk has been called on the
 2106          *      inbound path (ether_input, bdg_forward, ip_input).
 2107          *      If non-NULL, ipfw_chk has been called on the outbound path
 2108          *      (ether_output, ip_output).
 2109          */
 2110         struct ifnet *oif = args->oif;
 2111 
 2112         struct ip_fw *f = NULL;         /* matching rule */
 2113         int retval = 0;
 2114 
 2115         /*
 2116          * hlen The length of the IP header.
 2117          */
 2118         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
 2119 
 2120         /*
 2121          * offset       The offset of a fragment. offset != 0 means that
 2122          *      we have a fragment at this offset of an IPv4 packet.
 2123          *      offset == 0 means that (if this is an IPv4 packet)
 2124          *      this is the first or only fragment.
 2125          *      For IPv6 offset == 0 means there is no Fragment Header. 
 2126          *      If offset != 0 for IPv6 always use correct mask to
 2127          *      get the correct offset because we add IP6F_MORE_FRAG
 2128          *      to be able to dectect the first fragment which would
 2129          *      otherwise have offset = 0.
 2130          */
 2131         u_short offset = 0;
 2132 
 2133         /*
 2134          * Local copies of addresses. They are only valid if we have
 2135          * an IP packet.
 2136          *
 2137          * proto        The protocol. Set to 0 for non-ip packets,
 2138          *      or to the protocol read from the packet otherwise.
 2139          *      proto != 0 means that we have an IPv4 packet.
 2140          *
 2141          * src_port, dst_port   port numbers, in HOST format. Only
 2142          *      valid for TCP and UDP packets.
 2143          *
 2144          * src_ip, dst_ip       ip addresses, in NETWORK format.
 2145          *      Only valid for IPv4 packets.
 2146          */
 2147         u_int8_t proto;
 2148         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
 2149         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
 2150         u_int16_t ip_len=0;
 2151         int pktlen;
 2152 
 2153         /*
 2154          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
 2155          *      MATCH_NONE when checked and not matched (q = NULL),
 2156          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
 2157          */
 2158         int dyn_dir = MATCH_UNKNOWN;
 2159         ipfw_dyn_rule *q = NULL;
 2160         struct ip_fw_chain *chain = &layer3_chain;
 2161         struct m_tag *mtag;
 2162 
 2163         /*
 2164          * We store in ulp a pointer to the upper layer protocol header.
 2165          * In the ipv4 case this is easy to determine from the header,
 2166          * but for ipv6 we might have some additional headers in the middle.
 2167          * ulp is NULL if not found.
 2168          */
 2169         void *ulp = NULL;               /* upper layer protocol pointer. */
 2170         /* XXX ipv6 variables */
 2171         int is_ipv6 = 0;
 2172         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
 2173         /* end of ipv6 variables */
 2174         int is_ipv4 = 0;
 2175 
 2176         if (m->m_flags & M_SKIP_FIREWALL)
 2177                 return (IP_FW_PASS);    /* accept */
 2178 
 2179         pktlen = m->m_pkthdr.len;
 2180         proto = args->f_id.proto = 0;   /* mark f_id invalid */
 2181                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
 2182 
 2183 /*
 2184  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
 2185  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
 2186  * pointer might become stale after other pullups (but we never use it
 2187  * this way).
 2188  */
 2189 #define PULLUP_TO(len, p, T)                                            \
 2190 do {                                                                    \
 2191         int x = (len) + sizeof(T);                                      \
 2192         if ((m)->m_len < x) {                                           \
 2193                 args->m = m = m_pullup(m, x);                           \
 2194                 if (m == NULL)                                          \
 2195                         goto pullup_failed;                             \
 2196         }                                                               \
 2197         p = (mtod(m, char *) + (len));                                  \
 2198 } while (0)
 2199 
 2200         /* Identify IP packets and fill up variables. */
 2201         if (pktlen >= sizeof(struct ip6_hdr) &&
 2202             (args->eh == NULL || ntohs(args->eh->ether_type)==ETHERTYPE_IPV6) &&
 2203             mtod(m, struct ip *)->ip_v == 6) {
 2204                 is_ipv6 = 1;
 2205                 args->f_id.addr_type = 6;
 2206                 hlen = sizeof(struct ip6_hdr);
 2207                 proto = mtod(m, struct ip6_hdr *)->ip6_nxt;
 2208 
 2209                 /* Search extension headers to find upper layer protocols */
 2210                 while (ulp == NULL) {
 2211                         switch (proto) {
 2212                         case IPPROTO_ICMPV6:
 2213                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
 2214                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
 2215                                 break;
 2216 
 2217                         case IPPROTO_TCP:
 2218                                 PULLUP_TO(hlen, ulp, struct tcphdr);
 2219                                 dst_port = TCP(ulp)->th_dport;
 2220                                 src_port = TCP(ulp)->th_sport;
 2221                                 args->f_id.flags = TCP(ulp)->th_flags;
 2222                                 break;
 2223 
 2224                         case IPPROTO_UDP:
 2225                                 PULLUP_TO(hlen, ulp, struct udphdr);
 2226                                 dst_port = UDP(ulp)->uh_dport;
 2227                                 src_port = UDP(ulp)->uh_sport;
 2228                                 break;
 2229 
 2230                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
 2231                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
 2232                                 ext_hd |= EXT_HOPOPTS;
 2233                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
 2234                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
 2235                                 ulp = NULL;
 2236                                 break;
 2237 
 2238                         case IPPROTO_ROUTING:   /* RFC 2460 */
 2239                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
 2240                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
 2241                                 case 0:
 2242                                         break;
 2243                                 default:
 2244                                         printf("IPFW2: IPV6 - Unknown Routing "
 2245                                             "Header type(%d)\n",
 2246                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
 2247                                         if (fw_deny_unknown_exthdrs)
 2248                                             return (IP_FW_DENY);
 2249                                         break;
 2250                                 }
 2251                                 ext_hd |= EXT_ROUTING;
 2252                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
 2253                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
 2254                                 ulp = NULL;
 2255                                 break;
 2256 
 2257                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
 2258                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
 2259                                 ext_hd |= EXT_FRAGMENT;
 2260                                 hlen += sizeof (struct ip6_frag);
 2261                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
 2262                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
 2263                                         IP6F_OFF_MASK;
 2264                                 /* Add IP6F_MORE_FRAG for offset of first
 2265                                  * fragment to be != 0. */
 2266                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
 2267                                         IP6F_MORE_FRAG;
 2268                                 if (offset == 0) {
 2269                                         printf("IPFW2: IPV6 - Invalid Fragment "
 2270                                             "Header\n");
 2271                                         if (fw_deny_unknown_exthdrs)
 2272                                             return (IP_FW_DENY);
 2273                                         break;
 2274                                 }
 2275                                 args->f_id.frag_id6 =
 2276                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
 2277                                 ulp = NULL;
 2278                                 break;
 2279 
 2280                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
 2281                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
 2282                                 ext_hd |= EXT_DSTOPTS;
 2283                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
 2284                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
 2285                                 ulp = NULL;
 2286                                 break;
 2287 
 2288                         case IPPROTO_AH:        /* RFC 2402 */
 2289                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2290                                 ext_hd |= EXT_AH;
 2291                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
 2292                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
 2293                                 ulp = NULL;
 2294                                 break;
 2295 
 2296                         case IPPROTO_ESP:       /* RFC 2406 */
 2297                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
 2298                                 /* Anything past Seq# is variable length and
 2299                                  * data past this ext. header is encrypted. */
 2300                                 ext_hd |= EXT_ESP;
 2301                                 break;
 2302 
 2303                         case IPPROTO_NONE:      /* RFC 2460 */
 2304                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2305                                 /* Packet ends here. if ip6e_len!=0 octets
 2306                                  * must be ignored. */
 2307                                 break;
 2308 
 2309                         case IPPROTO_OSPFIGP:
 2310                                 /* XXX OSPF header check? */
 2311                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2312                                 break;
 2313 
 2314                         case IPPROTO_PIM:
 2315                                 /* XXX PIM header check? */
 2316                                 PULLUP_TO(hlen, ulp, struct pim);
 2317                                 break;
 2318 
 2319                         case IPPROTO_CARP:
 2320                                 PULLUP_TO(hlen, ulp, struct carp_header);
 2321                                 if (((struct carp_header *)ulp)->carp_version !=
 2322                                     CARP_VERSION) 
 2323                                         return (IP_FW_DENY);
 2324                                 if (((struct carp_header *)ulp)->carp_type !=
 2325                                     CARP_ADVERTISEMENT) 
 2326                                         return (IP_FW_DENY);
 2327                                 break;
 2328 
 2329                         case IPPROTO_IPV6:      /* RFC 2893 */
 2330                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
 2331                                 break;
 2332 
 2333                         case IPPROTO_IPV4:      /* RFC 2893 */
 2334                                 PULLUP_TO(hlen, ulp, struct ip);
 2335                                 break;
 2336 
 2337                         default:
 2338                                 printf("IPFW2: IPV6 - Unknown Extension "
 2339                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
 2340                                 if (fw_deny_unknown_exthdrs)
 2341                                     return (IP_FW_DENY);
 2342                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2343                                 break;
 2344                         } /*switch */
 2345                 }
 2346                 args->f_id.src_ip6 = mtod(m,struct ip6_hdr *)->ip6_src;
 2347                 args->f_id.dst_ip6 = mtod(m,struct ip6_hdr *)->ip6_dst;
 2348                 args->f_id.src_ip = 0;
 2349                 args->f_id.dst_ip = 0;
 2350                 args->f_id.flow_id6 = ntohl(mtod(m, struct ip6_hdr *)->ip6_flow);
 2351         } else if (pktlen >= sizeof(struct ip) &&
 2352             (args->eh == NULL || ntohs(args->eh->ether_type) == ETHERTYPE_IP) &&
 2353             mtod(m, struct ip *)->ip_v == 4) {
 2354                 is_ipv4 = 1;
 2355                 ip = mtod(m, struct ip *);
 2356                 hlen = ip->ip_hl << 2;
 2357                 args->f_id.addr_type = 4;
 2358 
 2359                 /*
 2360                  * Collect parameters into local variables for faster matching.
 2361                  */
 2362                 proto = ip->ip_p;
 2363                 src_ip = ip->ip_src;
 2364                 dst_ip = ip->ip_dst;
 2365                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
 2366                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
 2367                         ip_len = ntohs(ip->ip_len);
 2368                 } else {
 2369                         offset = ip->ip_off & IP_OFFMASK;
 2370                         ip_len = ip->ip_len;
 2371                 }
 2372                 pktlen = ip_len < pktlen ? ip_len : pktlen;
 2373 
 2374                 if (offset == 0) {
 2375                         switch (proto) {
 2376                         case IPPROTO_TCP:
 2377                                 PULLUP_TO(hlen, ulp, struct tcphdr);
 2378                                 dst_port = TCP(ulp)->th_dport;
 2379                                 src_port = TCP(ulp)->th_sport;
 2380                                 args->f_id.flags = TCP(ulp)->th_flags;
 2381                                 break;
 2382 
 2383                         case IPPROTO_UDP:
 2384                                 PULLUP_TO(hlen, ulp, struct udphdr);
 2385                                 dst_port = UDP(ulp)->uh_dport;
 2386                                 src_port = UDP(ulp)->uh_sport;
 2387                                 break;
 2388 
 2389                         case IPPROTO_ICMP:
 2390                                 PULLUP_TO(hlen, ulp, struct icmphdr);
 2391                                 args->f_id.flags = ICMP(ulp)->icmp_type;
 2392                                 break;
 2393 
 2394                         default:
 2395                                 break;
 2396                         }
 2397                 }
 2398 
 2399                 args->f_id.src_ip = ntohl(src_ip.s_addr);
 2400                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
 2401         }
 2402 #undef PULLUP_TO
 2403         if (proto) { /* we may have port numbers, store them */
 2404                 args->f_id.proto = proto;
 2405                 args->f_id.src_port = src_port = ntohs(src_port);
 2406                 args->f_id.dst_port = dst_port = ntohs(dst_port);
 2407         }
 2408 
 2409         IPFW_RLOCK(chain);
 2410         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
 2411         if (args->rule) {
 2412                 /*
 2413                  * Packet has already been tagged. Look for the next rule
 2414                  * to restart processing.
 2415                  *
 2416                  * If fw_one_pass != 0 then just accept it.
 2417                  * XXX should not happen here, but optimized out in
 2418                  * the caller.
 2419                  */
 2420                 if (fw_one_pass) {
 2421                         IPFW_RUNLOCK(chain);
 2422                         return (IP_FW_PASS);
 2423                 }
 2424 
 2425                 f = args->rule->next_rule;
 2426                 if (f == NULL)
 2427                         f = lookup_next_rule(args->rule);
 2428         } else {
 2429                 /*
 2430                  * Find the starting rule. It can be either the first
 2431                  * one, or the one after divert_rule if asked so.
 2432                  */
 2433                 int skipto = mtag ? divert_cookie(mtag) : 0;
 2434 
 2435                 f = chain->rules;
 2436                 if (args->eh == NULL && skipto != 0) {
 2437                         if (skipto >= IPFW_DEFAULT_RULE) {
 2438                                 IPFW_RUNLOCK(chain);
 2439                                 return (IP_FW_DENY); /* invalid */
 2440                         }
 2441                         while (f && f->rulenum <= skipto)
 2442                                 f = f->next;
 2443                         if (f == NULL) {        /* drop packet */
 2444                                 IPFW_RUNLOCK(chain);
 2445                                 return (IP_FW_DENY);
 2446                         }
 2447                 }
 2448         }
 2449         /* reset divert rule to avoid confusion later */
 2450         if (mtag) {
 2451                 divinput_flags = divert_info(mtag) &
 2452                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
 2453                 m_tag_delete(m, mtag);
 2454         }
 2455 
 2456         /*
 2457          * Now scan the rules, and parse microinstructions for each rule.
 2458          */
 2459         for (; f; f = f->next) {
 2460                 ipfw_insn *cmd;
 2461                 uint32_t tablearg = 0;
 2462                 int l, cmdlen, skip_or; /* skip rest of OR block */
 2463 
 2464 again:
 2465                 if (set_disable & (1 << f->set) )
 2466                         continue;
 2467 
 2468                 skip_or = 0;
 2469                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
 2470                     l -= cmdlen, cmd += cmdlen) {
 2471                         int match;
 2472 
 2473                         /*
 2474                          * check_body is a jump target used when we find a
 2475                          * CHECK_STATE, and need to jump to the body of
 2476                          * the target rule.
 2477                          */
 2478 
 2479 check_body:
 2480                         cmdlen = F_LEN(cmd);
 2481                         /*
 2482                          * An OR block (insn_1 || .. || insn_n) has the
 2483                          * F_OR bit set in all but the last instruction.
 2484                          * The first match will set "skip_or", and cause
 2485                          * the following instructions to be skipped until
 2486                          * past the one with the F_OR bit clear.
 2487                          */
 2488                         if (skip_or) {          /* skip this instruction */
 2489                                 if ((cmd->len & F_OR) == 0)
 2490                                         skip_or = 0;    /* next one is good */
 2491                                 continue;
 2492                         }
 2493                         match = 0; /* set to 1 if we succeed */
 2494 
 2495                         switch (cmd->opcode) {
 2496                         /*
 2497                          * The first set of opcodes compares the packet's
 2498                          * fields with some pattern, setting 'match' if a
 2499                          * match is found. At the end of the loop there is
 2500                          * logic to deal with F_NOT and F_OR flags associated
 2501                          * with the opcode.
 2502                          */
 2503                         case O_NOP:
 2504                                 match = 1;
 2505                                 break;
 2506 
 2507                         case O_FORWARD_MAC:
 2508                                 printf("ipfw: opcode %d unimplemented\n",
 2509                                     cmd->opcode);
 2510                                 break;
 2511 
 2512                         case O_GID:
 2513                         case O_UID:
 2514                         case O_JAIL:
 2515                                 /*
 2516                                  * We only check offset == 0 && proto != 0,
 2517                                  * as this ensures that we have a
 2518                                  * packet with the ports info.
 2519                                  */
 2520                                 if (offset!=0)
 2521                                         break;
 2522                                 if (is_ipv6) /* XXX to be fixed later */
 2523                                         break;
 2524                                 if (proto == IPPROTO_TCP ||
 2525                                     proto == IPPROTO_UDP)
 2526                                         match = check_uidgid(
 2527                                                     (ipfw_insn_u32 *)cmd,
 2528                                                     proto, oif,
 2529                                                     dst_ip, dst_port,
 2530                                                     src_ip, src_port, &fw_ugid_cache,
 2531                                                     &ugid_lookup, args->inp);
 2532                                 break;
 2533 
 2534                         case O_RECV:
 2535                                 match = iface_match(m->m_pkthdr.rcvif,
 2536                                     (ipfw_insn_if *)cmd);
 2537                                 break;
 2538 
 2539                         case O_XMIT:
 2540                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
 2541                                 break;
 2542 
 2543                         case O_VIA:
 2544                                 match = iface_match(oif ? oif :
 2545                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
 2546                                 break;
 2547 
 2548                         case O_MACADDR2:
 2549                                 if (args->eh != NULL) { /* have MAC header */
 2550                                         u_int32_t *want = (u_int32_t *)
 2551                                                 ((ipfw_insn_mac *)cmd)->addr;
 2552                                         u_int32_t *mask = (u_int32_t *)
 2553                                                 ((ipfw_insn_mac *)cmd)->mask;
 2554                                         u_int32_t *hdr = (u_int32_t *)args->eh;
 2555 
 2556                                         match =
 2557                                             ( want[0] == (hdr[0] & mask[0]) &&
 2558                                               want[1] == (hdr[1] & mask[1]) &&
 2559                                               want[2] == (hdr[2] & mask[2]) );
 2560                                 }
 2561                                 break;
 2562 
 2563                         case O_MAC_TYPE:
 2564                                 if (args->eh != NULL) {
 2565                                         u_int16_t t =
 2566                                             ntohs(args->eh->ether_type);
 2567                                         u_int16_t *p =
 2568                                             ((ipfw_insn_u16 *)cmd)->ports;
 2569                                         int i;
 2570 
 2571                                         for (i = cmdlen - 1; !match && i>0;
 2572                                             i--, p += 2)
 2573                                                 match = (t>=p[0] && t<=p[1]);
 2574                                 }
 2575                                 break;
 2576 
 2577                         case O_FRAG:
 2578                                 match = (offset != 0);
 2579                                 break;
 2580 
 2581                         case O_IN:      /* "out" is "not in" */
 2582                                 match = (oif == NULL);
 2583                                 break;
 2584 
 2585                         case O_LAYER2:
 2586                                 match = (args->eh != NULL);
 2587                                 break;
 2588 
 2589                         case O_DIVERTED:
 2590                                 match = (cmd->arg1 & 1 && divinput_flags &
 2591                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
 2592                                         (cmd->arg1 & 2 && divinput_flags &
 2593                                     IP_FW_DIVERT_OUTPUT_FLAG);
 2594                                 break;
 2595 
 2596                         case O_PROTO:
 2597                                 /*
 2598                                  * We do not allow an arg of 0 so the
 2599                                  * check of "proto" only suffices.
 2600                                  */
 2601                                 match = (proto == cmd->arg1);
 2602                                 break;
 2603 
 2604                         case O_IP_SRC:
 2605                                 match = is_ipv4 &&
 2606                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2607                                     src_ip.s_addr);
 2608                                 break;
 2609 
 2610                         case O_IP_SRC_LOOKUP:
 2611                         case O_IP_DST_LOOKUP:
 2612                                 if (is_ipv4) {
 2613                                     uint32_t a =
 2614                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
 2615                                             dst_ip.s_addr : src_ip.s_addr;
 2616                                     uint32_t v;
 2617 
 2618                                     match = lookup_table(chain, cmd->arg1, a,
 2619                                         &v);
 2620                                     if (!match)
 2621                                         break;
 2622                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
 2623                                         match =
 2624                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
 2625                                     else
 2626                                         tablearg = v;
 2627                                 }
 2628                                 break;
 2629 
 2630                         case O_IP_SRC_MASK:
 2631                         case O_IP_DST_MASK:
 2632                                 if (is_ipv4) {
 2633                                     uint32_t a =
 2634                                         (cmd->opcode == O_IP_DST_MASK) ?
 2635                                             dst_ip.s_addr : src_ip.s_addr;
 2636                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
 2637                                     int i = cmdlen-1;
 2638 
 2639                                     for (; !match && i>0; i-= 2, p+= 2)
 2640                                         match = (p[0] == (a & p[1]));
 2641                                 }
 2642                                 break;
 2643 
 2644                         case O_IP_SRC_ME:
 2645                                 if (is_ipv4) {
 2646                                         struct ifnet *tif;
 2647 
 2648                                         INADDR_TO_IFP(src_ip, tif);
 2649                                         match = (tif != NULL);
 2650                                 }
 2651                                 break;
 2652 
 2653                         case O_IP_DST_SET:
 2654                         case O_IP_SRC_SET:
 2655                                 if (is_ipv4) {
 2656                                         u_int32_t *d = (u_int32_t *)(cmd+1);
 2657                                         u_int32_t addr =
 2658                                             cmd->opcode == O_IP_DST_SET ?
 2659                                                 args->f_id.dst_ip :
 2660                                                 args->f_id.src_ip;
 2661 
 2662                                             if (addr < d[0])
 2663                                                     break;
 2664                                             addr -= d[0]; /* subtract base */
 2665                                             match = (addr < cmd->arg1) &&
 2666                                                 ( d[ 1 + (addr>>5)] &
 2667                                                   (1<<(addr & 0x1f)) );
 2668                                 }
 2669                                 break;
 2670 
 2671                         case O_IP_DST:
 2672                                 match = is_ipv4 &&
 2673                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2674                                     dst_ip.s_addr);
 2675                                 break;
 2676 
 2677                         case O_IP_DST_ME:
 2678                                 if (is_ipv4) {
 2679                                         struct ifnet *tif;
 2680 
 2681                                         INADDR_TO_IFP(dst_ip, tif);
 2682                                         match = (tif != NULL);
 2683                                 }
 2684                                 break;
 2685 
 2686                         case O_IP_SRCPORT:
 2687                         case O_IP_DSTPORT:
 2688                                 /*
 2689                                  * offset == 0 && proto != 0 is enough
 2690                                  * to guarantee that we have a
 2691                                  * packet with port info.
 2692                                  */
 2693                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
 2694                                     && offset == 0) {
 2695                                         u_int16_t x =
 2696                                             (cmd->opcode == O_IP_SRCPORT) ?
 2697                                                 src_port : dst_port ;
 2698                                         u_int16_t *p =
 2699                                             ((ipfw_insn_u16 *)cmd)->ports;
 2700                                         int i;
 2701 
 2702                                         for (i = cmdlen - 1; !match && i>0;
 2703                                             i--, p += 2)
 2704                                                 match = (x>=p[0] && x<=p[1]);
 2705                                 }
 2706                                 break;
 2707 
 2708                         case O_ICMPTYPE:
 2709                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
 2710                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
 2711                                 break;
 2712 
 2713 #ifdef INET6
 2714                         case O_ICMP6TYPE:
 2715                                 match = is_ipv6 && offset == 0 &&
 2716                                     proto==IPPROTO_ICMPV6 &&
 2717                                     icmp6type_match(
 2718                                         ICMP6(ulp)->icmp6_type,
 2719                                         (ipfw_insn_u32 *)cmd);
 2720                                 break;
 2721 #endif /* INET6 */
 2722 
 2723                         case O_IPOPT:
 2724                                 match = (is_ipv4 &&
 2725                                     ipopts_match(mtod(m, struct ip *), cmd) );
 2726                                 break;
 2727 
 2728                         case O_IPVER:
 2729                                 match = (is_ipv4 &&
 2730                                     cmd->arg1 == mtod(m, struct ip *)->ip_v);
 2731                                 break;
 2732 
 2733                         case O_IPID:
 2734                         case O_IPLEN:
 2735                         case O_IPTTL:
 2736                                 if (is_ipv4) {  /* only for IP packets */
 2737                                     uint16_t x;
 2738                                     uint16_t *p;
 2739                                     int i;
 2740 
 2741                                     if (cmd->opcode == O_IPLEN)
 2742                                         x = ip_len;
 2743                                     else if (cmd->opcode == O_IPTTL)
 2744                                         x = mtod(m, struct ip *)->ip_ttl;
 2745                                     else /* must be IPID */
 2746                                         x = ntohs(mtod(m, struct ip *)->ip_id);
 2747                                     if (cmdlen == 1) {
 2748                                         match = (cmd->arg1 == x);
 2749                                         break;
 2750                                     }
 2751                                     /* otherwise we have ranges */
 2752                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2753                                     i = cmdlen - 1;
 2754                                     for (; !match && i>0; i--, p += 2)
 2755                                         match = (x >= p[0] && x <= p[1]);
 2756                                 }
 2757                                 break;
 2758 
 2759                         case O_IPPRECEDENCE:
 2760                                 match = (is_ipv4 &&
 2761                                     (cmd->arg1 == (mtod(m, struct ip *)->ip_tos & 0xe0)) );
 2762                                 break;
 2763 
 2764                         case O_IPTOS:
 2765                                 match = (is_ipv4 &&
 2766                                     flags_match(cmd, mtod(m, struct ip *)->ip_tos));
 2767                                 break;
 2768 
 2769                         case O_TCPDATALEN:
 2770                                 if (proto == IPPROTO_TCP && offset == 0) {
 2771                                     struct tcphdr *tcp;
 2772                                     uint16_t x;
 2773                                     uint16_t *p;
 2774                                     int i;
 2775 
 2776                                     tcp = TCP(ulp);
 2777                                     x = ip_len -
 2778                                         ((ip->ip_hl + tcp->th_off) << 2);
 2779                                     if (cmdlen == 1) {
 2780                                         match = (cmd->arg1 == x);
 2781                                         break;
 2782                                     }
 2783                                     /* otherwise we have ranges */
 2784                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2785                                     i = cmdlen - 1;
 2786                                     for (; !match && i>0; i--, p += 2)
 2787                                         match = (x >= p[0] && x <= p[1]);
 2788                                 }
 2789                                 break;
 2790 
 2791                         case O_TCPFLAGS:
 2792                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2793                                     flags_match(cmd, TCP(ulp)->th_flags));
 2794                                 break;
 2795 
 2796                         case O_TCPOPTS:
 2797                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2798                                     tcpopts_match(TCP(ulp), cmd));
 2799                                 break;
 2800 
 2801                         case O_TCPSEQ:
 2802                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2803                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2804                                         TCP(ulp)->th_seq);
 2805                                 break;
 2806 
 2807                         case O_TCPACK:
 2808                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2809                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2810                                         TCP(ulp)->th_ack);
 2811                                 break;
 2812 
 2813                         case O_TCPWIN:
 2814                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2815                                     cmd->arg1 == TCP(ulp)->th_win);
 2816                                 break;
 2817 
 2818                         case O_ESTAB:
 2819                                 /* reject packets which have SYN only */
 2820                                 /* XXX should i also check for TH_ACK ? */
 2821                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2822                                     (TCP(ulp)->th_flags &
 2823                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
 2824                                 break;
 2825 
 2826                         case O_ALTQ: {
 2827                                 struct altq_tag *at;
 2828                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
 2829 
 2830                                 match = 1;
 2831                                 mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
 2832                                 if (mtag != NULL)
 2833                                         break;
 2834                                 mtag = m_tag_get(PACKET_TAG_PF_QID,
 2835                                                 sizeof(struct altq_tag),
 2836                                                 M_NOWAIT);
 2837                                 if (mtag == NULL) {
 2838                                         /*
 2839                                          * Let the packet fall back to the
 2840                                          * default ALTQ.
 2841                                          */
 2842                                         break;
 2843                                 }
 2844                                 at = (struct altq_tag *)(mtag+1);
 2845                                 at->qid = altq->qid;
 2846                                 if (is_ipv4)
 2847                                         at->af = AF_INET;
 2848                                 else
 2849                                         at->af = AF_LINK;
 2850                                 at->hdr = ip;
 2851                                 m_tag_prepend(m, mtag);
 2852                                 break;
 2853                         }
 2854 
 2855                         case O_LOG:
 2856                                 if (fw_verbose)
 2857                                         ipfw_log(f, hlen, args, m, oif, offset);
 2858                                 match = 1;
 2859                                 break;
 2860 
 2861                         case O_PROB:
 2862                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
 2863                                 break;
 2864 
 2865                         case O_VERREVPATH:
 2866                                 /* Outgoing packets automatically pass/match */
 2867                                 match = ((oif != NULL) ||
 2868                                     (m->m_pkthdr.rcvif == NULL) ||
 2869                                     (
 2870 #ifdef INET6
 2871                                     is_ipv6 ?
 2872                                         verify_path6(&(args->f_id.src_ip6),
 2873                                             m->m_pkthdr.rcvif) :
 2874 #endif
 2875                                     verify_path(src_ip, m->m_pkthdr.rcvif)));
 2876                                 break;
 2877 
 2878                         case O_VERSRCREACH:
 2879                                 /* Outgoing packets automatically pass/match */
 2880                                 match = (hlen > 0 && ((oif != NULL) ||
 2881 #ifdef INET6
 2882                                     is_ipv6 ?
 2883                                         verify_path6(&(args->f_id.src_ip6),
 2884                                             NULL) :
 2885 #endif
 2886                                     verify_path(src_ip, NULL)));
 2887                                 break;
 2888 
 2889                         case O_ANTISPOOF:
 2890                                 /* Outgoing packets automatically pass/match */
 2891                                 if (oif == NULL && hlen > 0 &&
 2892                                     (  (is_ipv4 && in_localaddr(src_ip))
 2893 #ifdef INET6
 2894                                     || (is_ipv6 &&
 2895                                         in6_localaddr(&(args->f_id.src_ip6)))
 2896 #endif
 2897                                     ))
 2898                                         match =
 2899 #ifdef INET6
 2900                                             is_ipv6 ? verify_path6(
 2901                                                 &(args->f_id.src_ip6),
 2902                                                 m->m_pkthdr.rcvif) :
 2903 #endif
 2904                                             verify_path(src_ip,
 2905                                                 m->m_pkthdr.rcvif);
 2906                                 else
 2907                                         match = 1;
 2908                                 break;
 2909 
 2910                         case O_IPSEC:
 2911 #ifdef FAST_IPSEC
 2912                                 match = (m_tag_find(m,
 2913                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
 2914 #endif
 2915 #ifdef IPSEC
 2916                                 match = (ipsec_getnhist(m) != 0);
 2917 #endif
 2918                                 /* otherwise no match */
 2919                                 break;
 2920 
 2921 #ifdef INET6
 2922                         case O_IP6_SRC:
 2923                                 match = is_ipv6 &&
 2924                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
 2925                                     &((ipfw_insn_ip6 *)cmd)->addr6);
 2926                                 break;
 2927 
 2928                         case O_IP6_DST:
 2929                                 match = is_ipv6 &&
 2930                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
 2931                                     &((ipfw_insn_ip6 *)cmd)->addr6);
 2932                                 break;
 2933                         case O_IP6_SRC_MASK:
 2934                         case O_IP6_DST_MASK:
 2935                                 if (is_ipv6) {
 2936                                         int i = cmdlen - 1;
 2937                                         struct in6_addr p;
 2938                                         struct in6_addr *d =
 2939                                             &((ipfw_insn_ip6 *)cmd)->addr6;
 2940 
 2941                                         for (; !match && i > 0; d += 2,
 2942                                             i -= F_INSN_SIZE(struct in6_addr)
 2943                                             * 2) {
 2944                                                 p = (cmd->opcode ==
 2945                                                     O_IP6_SRC_MASK) ?
 2946                                                     args->f_id.src_ip6:
 2947                                                     args->f_id.dst_ip6;
 2948                                                 APPLY_MASK(&p, &d[1]);
 2949                                                 match =
 2950                                                     IN6_ARE_ADDR_EQUAL(&d[0],
 2951                                                     &p);
 2952                                         }
 2953                                 }
 2954                                 break;
 2955 
 2956                         case O_IP6_SRC_ME:
 2957                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
 2958                                 break;
 2959 
 2960                         case O_IP6_DST_ME:
 2961                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
 2962                                 break;
 2963 
 2964                         case O_FLOW6ID:
 2965                                 match = is_ipv6 &&
 2966                                     flow6id_match(args->f_id.flow_id6,
 2967                                     (ipfw_insn_u32 *) cmd);
 2968                                 break;
 2969 
 2970                         case O_EXT_HDR:
 2971                                 match = is_ipv6 &&
 2972                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
 2973                                 break;
 2974 
 2975                         case O_IP6:
 2976                                 match = is_ipv6;
 2977                                 break;
 2978 #endif
 2979 
 2980                         case O_IP4:
 2981                                 match = is_ipv4;
 2982                                 break;
 2983 
 2984                         case O_TAG: {
 2985                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
 2986                                     tablearg : cmd->arg1;
 2987 
 2988                                 /* Packet is already tagged with this tag? */
 2989                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
 2990 
 2991                                 /* We have `untag' action when F_NOT flag is
 2992                                  * present. And we must remove this mtag from
 2993                                  * mbuf and reset `match' to zero (`match' will
 2994                                  * be inversed later).
 2995                                  * Otherwise we should allocate new mtag and
 2996                                  * push it into mbuf.
 2997                                  */
 2998                                 if (cmd->len & F_NOT) { /* `untag' action */
 2999                                         if (mtag != NULL)
 3000                                                 m_tag_delete(m, mtag);
 3001                                 } else if (mtag == NULL) {
 3002                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
 3003                                             tag, 0, M_NOWAIT)) != NULL)
 3004                                                 m_tag_prepend(m, mtag);
 3005                                 }
 3006                                 match = (cmd->len & F_NOT) ? 0: 1;
 3007                                 break;
 3008                         }
 3009 
 3010                         case O_TAGGED: {
 3011                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
 3012                                     tablearg : cmd->arg1;
 3013 
 3014                                 if (cmdlen == 1) {
 3015                                         match = m_tag_locate(m, MTAG_IPFW,
 3016                                             tag, NULL) != NULL;
 3017                                         break;
 3018                                 }
 3019 
 3020                                 /* we have ranges */
 3021                                 for (mtag = m_tag_first(m);
 3022                                     mtag != NULL && !match;
 3023                                     mtag = m_tag_next(m, mtag)) {
 3024                                         uint16_t *p;
 3025                                         int i;
 3026 
 3027                                         if (mtag->m_tag_cookie != MTAG_IPFW)
 3028                                                 continue;
 3029 
 3030                                         p = ((ipfw_insn_u16 *)cmd)->ports;
 3031                                         i = cmdlen - 1;
 3032                                         for(; !match && i > 0; i--, p += 2)
 3033                                                 match =
 3034                                                     mtag->m_tag_id >= p[0] &&
 3035                                                     mtag->m_tag_id <= p[1];
 3036                                 }
 3037                                 break;
 3038                         }
 3039                                 
 3040                         /*
 3041                          * The second set of opcodes represents 'actions',
 3042                          * i.e. the terminal part of a rule once the packet
 3043                          * matches all previous patterns.
 3044                          * Typically there is only one action for each rule,
 3045                          * and the opcode is stored at the end of the rule
 3046                          * (but there are exceptions -- see below).
 3047                          *
 3048                          * In general, here we set retval and terminate the
 3049                          * outer loop (would be a 'break 3' in some language,
 3050                          * but we need to do a 'goto done').
 3051                          *
 3052                          * Exceptions:
 3053                          * O_COUNT and O_SKIPTO actions:
 3054                          *   instead of terminating, we jump to the next rule
 3055                          *   ('goto next_rule', equivalent to a 'break 2'),
 3056                          *   or to the SKIPTO target ('goto again' after
 3057                          *   having set f, cmd and l), respectively.
 3058                          *
 3059                          * O_TAG, O_LOG and O_ALTQ action parameters:
 3060                          *   perform some action and set match = 1;
 3061                          *
 3062                          * O_LIMIT and O_KEEP_STATE: these opcodes are
 3063                          *   not real 'actions', and are stored right
 3064                          *   before the 'action' part of the rule.
 3065                          *   These opcodes try to install an entry in the
 3066                          *   state tables; if successful, we continue with
 3067                          *   the next opcode (match=1; break;), otherwise
 3068                          *   the packet *   must be dropped
 3069                          *   ('goto done' after setting retval);
 3070                          *
 3071                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
 3072                          *   cause a lookup of the state table, and a jump
 3073                          *   to the 'action' part of the parent rule
 3074                          *   ('goto check_body') if an entry is found, or
 3075                          *   (CHECK_STATE only) a jump to the next rule if
 3076                          *   the entry is not found ('goto next_rule').
 3077                          *   The result of the lookup is cached to make
 3078                          *   further instances of these opcodes are
 3079                          *   effectively NOPs.
 3080                          */
 3081                         case O_LIMIT:
 3082                         case O_KEEP_STATE:
 3083                                 if (install_state(f,
 3084                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
 3085                                         retval = IP_FW_DENY;
 3086                                         goto done; /* error/limit violation */
 3087                                 }
 3088                                 match = 1;
 3089                                 break;
 3090 
 3091                         case O_PROBE_STATE:
 3092                         case O_CHECK_STATE:
 3093                                 /*
 3094                                  * dynamic rules are checked at the first
 3095                                  * keep-state or check-state occurrence,
 3096                                  * with the result being stored in dyn_dir.
 3097                                  * The compiler introduces a PROBE_STATE
 3098                                  * instruction for us when we have a
 3099                                  * KEEP_STATE (because PROBE_STATE needs
 3100                                  * to be run first).
 3101                                  */
 3102                                 if (dyn_dir == MATCH_UNKNOWN &&
 3103                                     (q = lookup_dyn_rule(&args->f_id,
 3104                                      &dyn_dir, proto == IPPROTO_TCP ?
 3105                                         TCP(ulp) : NULL))
 3106                                         != NULL) {
 3107                                         /*
 3108                                          * Found dynamic entry, update stats
 3109                                          * and jump to the 'action' part of
 3110                                          * the parent rule.
 3111                                          */
 3112                                         q->pcnt++;
 3113                                         q->bcnt += pktlen;
 3114                                         f = q->rule;
 3115                                         cmd = ACTION_PTR(f);
 3116                                         l = f->cmd_len - f->act_ofs;
 3117                                         IPFW_DYN_UNLOCK();
 3118                                         goto check_body;
 3119                                 }
 3120                                 /*
 3121                                  * Dynamic entry not found. If CHECK_STATE,
 3122                                  * skip to next rule, if PROBE_STATE just
 3123                                  * ignore and continue with next opcode.
 3124                                  */
 3125                                 if (cmd->opcode == O_CHECK_STATE)
 3126                                         goto next_rule;
 3127                                 match = 1;
 3128                                 break;
 3129 
 3130                         case O_ACCEPT:
 3131                                 retval = 0;     /* accept */
 3132                                 goto done;
 3133 
 3134                         case O_PIPE:
 3135                         case O_QUEUE:
 3136                                 args->rule = f; /* report matching rule */
 3137                                 if (cmd->arg1 == IP_FW_TABLEARG)
 3138                                         args->cookie = tablearg;
 3139                                 else
 3140                                         args->cookie = cmd->arg1;
 3141                                 retval = IP_FW_DUMMYNET;
 3142                                 goto done;
 3143 
 3144                         case O_DIVERT:
 3145                         case O_TEE: {
 3146                                 struct divert_tag *dt;
 3147 
 3148                                 if (args->eh) /* not on layer 2 */
 3149                                         break;
 3150                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
 3151                                                 sizeof(struct divert_tag),
 3152                                                 M_NOWAIT);
 3153                                 if (mtag == NULL) {
 3154                                         /* XXX statistic */
 3155                                         /* drop packet */
 3156                                         IPFW_RUNLOCK(chain);
 3157                                         return (IP_FW_DENY);
 3158                                 }
 3159                                 dt = (struct divert_tag *)(mtag+1);
 3160                                 dt->cookie = f->rulenum;
 3161                                 if (cmd->arg1 == IP_FW_TABLEARG)
 3162                                         dt->info = tablearg;
 3163                                 else
 3164                                         dt->info = cmd->arg1;
 3165                                 m_tag_prepend(m, mtag);
 3166                                 retval = (cmd->opcode == O_DIVERT) ?
 3167                                     IP_FW_DIVERT : IP_FW_TEE;
 3168                                 goto done;
 3169                         }
 3170 
 3171                         case O_COUNT:
 3172                         case O_SKIPTO:
 3173                                 f->pcnt++;      /* update stats */
 3174                                 f->bcnt += pktlen;
 3175                                 f->timestamp = time_second;
 3176                                 if (cmd->opcode == O_COUNT)
 3177                                         goto next_rule;
 3178                                 /* handle skipto */
 3179                                 if (f->next_rule == NULL)
 3180                                         lookup_next_rule(f);
 3181                                 f = f->next_rule;
 3182                                 goto again;
 3183 
 3184                         case O_REJECT:
 3185                                 /*
 3186                                  * Drop the packet and send a reject notice
 3187                                  * if the packet is not ICMP (or is an ICMP
 3188                                  * query), and it is not multicast/broadcast.
 3189                                  */
 3190                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
 3191                                     (proto != IPPROTO_ICMP ||
 3192                                      is_icmp_query(ICMP(ulp))) &&
 3193                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 3194                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
 3195                                         send_reject(args, cmd->arg1,
 3196                                             offset,ip_len);
 3197                                         m = args->m;
 3198                                 }
 3199                                 /* FALLTHROUGH */
 3200 #ifdef INET6
 3201                         case O_UNREACH6:
 3202                                 if (hlen > 0 && is_ipv6 &&
 3203                                     (proto != IPPROTO_ICMPV6 ||
 3204                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
 3205                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 3206                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
 3207                                         send_reject6(args, cmd->arg1,
 3208                                             offset, hlen);
 3209                                         m = args->m;
 3210                                 }
 3211                                 /* FALLTHROUGH */
 3212 #endif
 3213                         case O_DENY:
 3214                                 retval = IP_FW_DENY;
 3215                                 goto done;
 3216 
 3217                         case O_FORWARD_IP:
 3218                                 if (args->eh)   /* not valid on layer2 pkts */
 3219                                         break;
 3220                                 if (!q || dyn_dir == MATCH_FORWARD)
 3221                                         args->next_hop =
 3222                                             &((ipfw_insn_sa *)cmd)->sa;
 3223                                 retval = IP_FW_PASS;
 3224                                 goto done;
 3225 
 3226                         case O_NETGRAPH:
 3227                         case O_NGTEE:
 3228                                 args->rule = f; /* report matching rule */
 3229                                 if (cmd->arg1 == IP_FW_TABLEARG)
 3230                                         args->cookie = tablearg;
 3231                                 else
 3232                                         args->cookie = cmd->arg1;
 3233                                 retval = (cmd->opcode == O_NETGRAPH) ?
 3234                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
 3235                                 goto done;
 3236 
 3237                         default:
 3238                                 panic("-- unknown opcode %d\n", cmd->opcode);
 3239                         } /* end of switch() on opcodes */
 3240 
 3241                         if (cmd->len & F_NOT)
 3242                                 match = !match;
 3243 
 3244                         if (match) {
 3245                                 if (cmd->len & F_OR)
 3246                                         skip_or = 1;
 3247                         } else {
 3248                                 if (!(cmd->len & F_OR)) /* not an OR block, */
 3249                                         break;          /* try next rule    */
 3250                         }
 3251 
 3252                 }       /* end of inner for, scan opcodes */
 3253 
 3254 next_rule:;             /* try next rule                */
 3255 
 3256         }               /* end of outer for, scan rules */
 3257         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
 3258         IPFW_RUNLOCK(chain);
 3259         return (IP_FW_DENY);
 3260 
 3261 done:
 3262         /* Update statistics */
 3263         f->pcnt++;
 3264         f->bcnt += pktlen;
 3265         f->timestamp = time_second;
 3266         IPFW_RUNLOCK(chain);
 3267         return (retval);
 3268 
 3269 pullup_failed:
 3270         if (fw_verbose)
 3271                 printf("ipfw: pullup failed\n");
 3272         return (IP_FW_DENY);
 3273 }
 3274 
 3275 /*
 3276  * When a rule is added/deleted, clear the next_rule pointers in all rules.
 3277  * These will be reconstructed on the fly as packets are matched.
 3278  */
 3279 static void
 3280 flush_rule_ptrs(struct ip_fw_chain *chain)
 3281 {
 3282         struct ip_fw *rule;
 3283 
 3284         IPFW_WLOCK_ASSERT(chain);
 3285 
 3286         for (rule = chain->rules; rule; rule = rule->next)
 3287                 rule->next_rule = NULL;
 3288 }
 3289 
 3290 /*
 3291  * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
 3292  * pipe/queue, or to all of them (match == NULL).
 3293  */
 3294 void
 3295 flush_pipe_ptrs(struct dn_flow_set *match)
 3296 {
 3297         struct ip_fw *rule;
 3298 
 3299         IPFW_WLOCK(&layer3_chain);
 3300         for (rule = layer3_chain.rules; rule; rule = rule->next) {
 3301                 ipfw_insn_pipe *cmd = (ipfw_insn_pipe *)ACTION_PTR(rule);
 3302 
 3303                 if (cmd->o.opcode != O_PIPE && cmd->o.opcode != O_QUEUE)
 3304                         continue;
 3305                 /*
 3306                  * XXX Use bcmp/bzero to handle pipe_ptr to overcome
 3307                  * possible alignment problems on 64-bit architectures.
 3308                  * This code is seldom used so we do not worry too
 3309                  * much about efficiency.
 3310                  */
 3311                 if (match == NULL ||
 3312                     !bcmp(&cmd->pipe_ptr, &match, sizeof(match)) )
 3313                         bzero(&cmd->pipe_ptr, sizeof(cmd->pipe_ptr));
 3314         }
 3315         IPFW_WUNLOCK(&layer3_chain);
 3316 }
 3317 
 3318 /*
 3319  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
 3320  * possibly create a rule number and add the rule to the list.
 3321  * Update the rule_number in the input struct so the caller knows it as well.
 3322  */
 3323 static int
 3324 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
 3325 {
 3326         struct ip_fw *rule, *f, *prev;
 3327         int l = RULESIZE(input_rule);
 3328 
 3329         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
 3330                 return (EINVAL);
 3331 
 3332         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
 3333         if (rule == NULL)
 3334                 return (ENOSPC);
 3335 
 3336         bcopy(input_rule, rule, l);
 3337 
 3338         rule->next = NULL;
 3339         rule->next_rule = NULL;
 3340 
 3341         rule->pcnt = 0;
 3342         rule->bcnt = 0;
 3343         rule->timestamp = 0;
 3344 
 3345         IPFW_WLOCK(chain);
 3346 
 3347         if (chain->rules == NULL) {     /* default rule */
 3348                 chain->rules = rule;
 3349                 goto done;
 3350         }
 3351 
 3352         /*
 3353          * If rulenum is 0, find highest numbered rule before the
 3354          * default rule, and add autoinc_step
 3355          */
 3356         if (autoinc_step < 1)
 3357                 autoinc_step = 1;
 3358         else if (autoinc_step > 1000)
 3359                 autoinc_step = 1000;
 3360         if (rule->rulenum == 0) {
 3361                 /*
 3362                  * locate the highest numbered rule before default
 3363                  */
 3364                 for (f = chain->rules; f; f = f->next) {
 3365                         if (f->rulenum == IPFW_DEFAULT_RULE)
 3366                                 break;
 3367                         rule->rulenum = f->rulenum;
 3368                 }
 3369                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
 3370                         rule->rulenum += autoinc_step;
 3371                 input_rule->rulenum = rule->rulenum;
 3372         }
 3373 
 3374         /*
 3375          * Now insert the new rule in the right place in the sorted list.
 3376          */
 3377         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
 3378                 if (f->rulenum > rule->rulenum) { /* found the location */
 3379                         if (prev) {
 3380                                 rule->next = f;
 3381                                 prev->next = rule;
 3382                         } else { /* head insert */
 3383                                 rule->next = chain->rules;
 3384                                 chain->rules = rule;
 3385                         }
 3386                         break;
 3387                 }
 3388         }
 3389         flush_rule_ptrs(chain);
 3390 done:
 3391         static_count++;
 3392         static_len += l;
 3393         IPFW_WUNLOCK(chain);
 3394         DEB(printf("ipfw: installed rule %d, static count now %d\n",
 3395                 rule->rulenum, static_count);)
 3396         return (0);
 3397 }
 3398 
 3399 /**
 3400  * Remove a static rule (including derived * dynamic rules)
 3401  * and place it on the ``reap list'' for later reclamation.
 3402  * The caller is in charge of clearing rule pointers to avoid
 3403  * dangling pointers.
 3404  * @return a pointer to the next entry.
 3405  * Arguments are not checked, so they better be correct.
 3406  */
 3407 static struct ip_fw *
 3408 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
 3409 {
 3410         struct ip_fw *n;
 3411         int l = RULESIZE(rule);
 3412 
 3413         IPFW_WLOCK_ASSERT(chain);
 3414 
 3415         n = rule->next;
 3416         IPFW_DYN_LOCK();
 3417         remove_dyn_rule(rule, NULL /* force removal */);
 3418         IPFW_DYN_UNLOCK();
 3419         if (prev == NULL)
 3420                 chain->rules = n;
 3421         else
 3422                 prev->next = n;
 3423         static_count--;
 3424         static_len -= l;
 3425 
 3426         rule->next = chain->reap;
 3427         chain->reap = rule;
 3428 
 3429         return n;
 3430 }
 3431 
 3432 /**
 3433  * Reclaim storage associated with a list of rules.  This is
 3434  * typically the list created using remove_rule.
 3435  */
 3436 static void
 3437 reap_rules(struct ip_fw *head)
 3438 {
 3439         struct ip_fw *rule;
 3440 
 3441         while ((rule = head) != NULL) {
 3442                 head = head->next;
 3443                 if (DUMMYNET_LOADED)
 3444                         ip_dn_ruledel_ptr(rule);
 3445                 free(rule, M_IPFW);
 3446         }
 3447 }
 3448 
 3449 /*
 3450  * Remove all rules from a chain (except rules in set RESVD_SET
 3451  * unless kill_default = 1).  The caller is responsible for
 3452  * reclaiming storage for the rules left in chain->reap.
 3453  */
 3454 static void
 3455 free_chain(struct ip_fw_chain *chain, int kill_default)
 3456 {
 3457         struct ip_fw *prev, *rule;
 3458 
 3459         IPFW_WLOCK_ASSERT(chain);
 3460 
 3461         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
 3462         for (prev = NULL, rule = chain->rules; rule ; )
 3463                 if (kill_default || rule->set != RESVD_SET)
 3464                         rule = remove_rule(chain, rule, prev);
 3465                 else {
 3466                         prev = rule;
 3467                         rule = rule->next;
 3468                 }
 3469 }
 3470 
 3471 /**
 3472  * Remove all rules with given number, and also do set manipulation.
 3473  * Assumes chain != NULL && *chain != NULL.
 3474  *
 3475  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
 3476  * the next 8 bits are the new set, the top 8 bits are the command:
 3477  *
 3478  *      0       delete rules with given number
 3479  *      1       delete rules with given set number
 3480  *      2       move rules with given number to new set
 3481  *      3       move rules with given set number to new set
 3482  *      4       swap sets with given numbers
 3483  */
 3484 static int
 3485 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
 3486 {
 3487         struct ip_fw *prev = NULL, *rule;
 3488         u_int16_t rulenum;      /* rule or old_set */
 3489         u_int8_t cmd, new_set;
 3490 
 3491         rulenum = arg & 0xffff;
 3492         cmd = (arg >> 24) & 0xff;
 3493         new_set = (arg >> 16) & 0xff;
 3494 
 3495         if (cmd > 4)
 3496                 return EINVAL;
 3497         if (new_set > RESVD_SET)
 3498                 return EINVAL;
 3499         if (cmd == 0 || cmd == 2) {
 3500                 if (rulenum >= IPFW_DEFAULT_RULE)
 3501                         return EINVAL;
 3502         } else {
 3503                 if (rulenum > RESVD_SET)        /* old_set */
 3504                         return EINVAL;
 3505         }
 3506 
 3507         IPFW_WLOCK(chain);
 3508         rule = chain->rules;
 3509         chain->reap = NULL;
 3510         switch (cmd) {
 3511         case 0: /* delete rules with given number */
 3512                 /*
 3513                  * locate first rule to delete
 3514                  */
 3515                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
 3516                         ;
 3517                 if (rule->rulenum != rulenum) {
 3518                         IPFW_WUNLOCK(chain);
 3519                         return EINVAL;
 3520                 }
 3521 
 3522                 /*
 3523                  * flush pointers outside the loop, then delete all matching
 3524                  * rules. prev remains the same throughout the cycle.
 3525                  */
 3526                 flush_rule_ptrs(chain);
 3527                 while (rule->rulenum == rulenum)
 3528                         rule = remove_rule(chain, rule, prev);
 3529                 break;
 3530 
 3531         case 1: /* delete all rules with given set number */
 3532                 flush_rule_ptrs(chain);
 3533                 rule = chain->rules;
 3534                 while (rule->rulenum < IPFW_DEFAULT_RULE)
 3535                         if (rule->set == rulenum)
 3536                                 rule = remove_rule(chain, rule, prev);
 3537                         else {
 3538                                 prev = rule;
 3539                                 rule = rule->next;
 3540                         }
 3541                 break;
 3542 
 3543         case 2: /* move rules with given number to new set */
 3544                 rule = chain->rules;
 3545                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 3546                         if (rule->rulenum == rulenum)
 3547                                 rule->set = new_set;
 3548                 break;
 3549 
 3550         case 3: /* move rules with given set number to new set */
 3551                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 3552                         if (rule->set == rulenum)
 3553                                 rule->set = new_set;
 3554                 break;
 3555 
 3556         case 4: /* swap two sets */
 3557                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 3558                         if (rule->set == rulenum)
 3559                                 rule->set = new_set;
 3560                         else if (rule->set == new_set)
 3561                                 rule->set = rulenum;
 3562                 break;
 3563         }
 3564         /*
 3565          * Look for rules to reclaim.  We grab the list before
 3566          * releasing the lock then reclaim them w/o the lock to
 3567          * avoid a LOR with dummynet.
 3568          */
 3569         rule = chain->reap;
 3570         chain->reap = NULL;
 3571         IPFW_WUNLOCK(chain);
 3572         if (rule)
 3573                 reap_rules(rule);
 3574         return 0;
 3575 }
 3576 
 3577 /*
 3578  * Clear counters for a specific rule.
 3579  * The enclosing "table" is assumed locked.
 3580  */
 3581 static void
 3582 clear_counters(struct ip_fw *rule, int log_only)
 3583 {
 3584         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
 3585 
 3586         if (log_only == 0) {
 3587                 rule->bcnt = rule->pcnt = 0;
 3588                 rule->timestamp = 0;
 3589         }
 3590         if (l->o.opcode == O_LOG)
 3591                 l->log_left = l->max_log;
 3592 }
 3593 
 3594 /**
 3595  * Reset some or all counters on firewall rules.
 3596  * @arg frwl is null to clear all entries, or contains a specific
 3597  * rule number.
 3598  * @arg log_only is 1 if we only want to reset logs, zero otherwise.
 3599  */
 3600 static int
 3601 zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
 3602 {
 3603         struct ip_fw *rule;
 3604         char *msg;
 3605 
 3606         IPFW_WLOCK(chain);
 3607         if (rulenum == 0) {
 3608                 norule_counter = 0;
 3609                 for (rule = chain->rules; rule; rule = rule->next)
 3610                         clear_counters(rule, log_only);
 3611                 msg = log_only ? "ipfw: All logging counts reset.\n" :
 3612                                 "ipfw: Accounting cleared.\n";
 3613         } else {
 3614                 int cleared = 0;
 3615                 /*
 3616                  * We can have multiple rules with the same number, so we
 3617                  * need to clear them all.
 3618                  */
 3619                 for (rule = chain->rules; rule; rule = rule->next)
 3620                         if (rule->rulenum == rulenum) {
 3621                                 while (rule && rule->rulenum == rulenum) {
 3622                                         clear_counters(rule, log_only);
 3623                                         rule = rule->next;
 3624                                 }
 3625                                 cleared = 1;
 3626                                 break;
 3627                         }
 3628                 if (!cleared) { /* we did not find any matching rules */
 3629                         IPFW_WUNLOCK(chain);
 3630                         return (EINVAL);
 3631                 }
 3632                 msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
 3633                                 "ipfw: Entry %d cleared.\n";
 3634         }
 3635         IPFW_WUNLOCK(chain);
 3636 
 3637         if (fw_verbose)
 3638                 log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
 3639         return (0);
 3640 }
 3641 
 3642 /*
 3643  * Check validity of the structure before insert.
 3644  * Fortunately rules are simple, so this mostly need to check rule sizes.
 3645  */
 3646 static int
 3647 check_ipfw_struct(struct ip_fw *rule, int size)
 3648 {
 3649         int l, cmdlen = 0;
 3650         int have_action=0;
 3651         ipfw_insn *cmd;
 3652 
 3653         if (size < sizeof(*rule)) {
 3654                 printf("ipfw: rule too short\n");
 3655                 return (EINVAL);
 3656         }
 3657         /* first, check for valid size */
 3658         l = RULESIZE(rule);
 3659         if (l != size) {
 3660                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
 3661                 return (EINVAL);
 3662         }
 3663         if (rule->act_ofs >= rule->cmd_len) {
 3664                 printf("ipfw: bogus action offset (%u > %u)\n",
 3665                     rule->act_ofs, rule->cmd_len - 1);
 3666                 return (EINVAL);
 3667         }
 3668         /*
 3669          * Now go for the individual checks. Very simple ones, basically only
 3670          * instruction sizes.
 3671          */
 3672         for (l = rule->cmd_len, cmd = rule->cmd ;
 3673                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
 3674                 cmdlen = F_LEN(cmd);
 3675                 if (cmdlen > l) {
 3676                         printf("ipfw: opcode %d size truncated\n",
 3677                             cmd->opcode);
 3678                         return EINVAL;
 3679                 }
 3680                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
 3681                 switch (cmd->opcode) {
 3682                 case O_PROBE_STATE:
 3683                 case O_KEEP_STATE:
 3684                 case O_PROTO:
 3685                 case O_IP_SRC_ME:
 3686                 case O_IP_DST_ME:
 3687                 case O_LAYER2:
 3688                 case O_IN:
 3689                 case O_FRAG:
 3690                 case O_DIVERTED:
 3691                 case O_IPOPT:
 3692                 case O_IPTOS:
 3693                 case O_IPPRECEDENCE:
 3694                 case O_IPVER:
 3695                 case O_TCPWIN:
 3696                 case O_TCPFLAGS:
 3697                 case O_TCPOPTS:
 3698                 case O_ESTAB:
 3699                 case O_VERREVPATH:
 3700                 case O_VERSRCREACH:
 3701                 case O_ANTISPOOF:
 3702                 case O_IPSEC:
 3703 #ifdef INET6
 3704                 case O_IP6_SRC_ME:
 3705                 case O_IP6_DST_ME:
 3706                 case O_EXT_HDR:
 3707                 case O_IP6:
 3708 #endif
 3709                 case O_IP4:
 3710                 case O_TAG:
 3711                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3712                                 goto bad_size;
 3713                         break;
 3714 
 3715                 case O_UID:
 3716                 case O_GID:
 3717                 case O_JAIL:
 3718                 case O_IP_SRC:
 3719                 case O_IP_DST:
 3720                 case O_TCPSEQ:
 3721                 case O_TCPACK:
 3722                 case O_PROB:
 3723                 case O_ICMPTYPE:
 3724                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 3725                                 goto bad_size;
 3726                         break;
 3727 
 3728                 case O_LIMIT:
 3729                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
 3730                                 goto bad_size;
 3731                         break;
 3732 
 3733                 case O_LOG:
 3734                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
 3735                                 goto bad_size;
 3736 
 3737                         ((ipfw_insn_log *)cmd)->log_left =
 3738                             ((ipfw_insn_log *)cmd)->max_log;
 3739 
 3740                         break;
 3741 
 3742                 case O_IP_SRC_MASK:
 3743                 case O_IP_DST_MASK:
 3744                         /* only odd command lengths */
 3745                         if ( !(cmdlen & 1) || cmdlen > 31)
 3746                                 goto bad_size;
 3747                         break;
 3748 
 3749                 case O_IP_SRC_SET:
 3750                 case O_IP_DST_SET:
 3751                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
 3752                                 printf("ipfw: invalid set size %d\n",
 3753                                         cmd->arg1);
 3754                                 return EINVAL;
 3755                         }
 3756                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 3757                             (cmd->arg1+31)/32 )
 3758                                 goto bad_size;
 3759                         break;
 3760 
 3761                 case O_IP_SRC_LOOKUP:
 3762                 case O_IP_DST_LOOKUP:
 3763                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
 3764                                 printf("ipfw: invalid table number %d\n",
 3765                                     cmd->arg1);
 3766                                 return (EINVAL);
 3767                         }
 3768                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
 3769                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 3770                                 goto bad_size;
 3771                         break;
 3772 
 3773                 case O_MACADDR2:
 3774                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
 3775                                 goto bad_size;
 3776                         break;
 3777 
 3778                 case O_NOP:
 3779                 case O_IPID:
 3780                 case O_IPTTL:
 3781                 case O_IPLEN:
 3782                 case O_TCPDATALEN:
 3783                 case O_TAGGED:
 3784                         if (cmdlen < 1 || cmdlen > 31)
 3785                                 goto bad_size;
 3786                         break;
 3787 
 3788                 case O_MAC_TYPE:
 3789                 case O_IP_SRCPORT:
 3790                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
 3791                         if (cmdlen < 2 || cmdlen > 31)
 3792                                 goto bad_size;
 3793                         break;
 3794 
 3795                 case O_RECV:
 3796                 case O_XMIT:
 3797                 case O_VIA:
 3798                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
 3799                                 goto bad_size;
 3800                         break;
 3801 
 3802                 case O_ALTQ:
 3803                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
 3804                                 goto bad_size;
 3805                         break;
 3806 
 3807                 case O_PIPE:
 3808                 case O_QUEUE:
 3809                         if (cmdlen != F_INSN_SIZE(ipfw_insn_pipe))
 3810                                 goto bad_size;
 3811                         goto check_action;
 3812 
 3813                 case O_FORWARD_IP:
 3814 #ifdef  IPFIREWALL_FORWARD
 3815                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
 3816                                 goto bad_size;
 3817                         goto check_action;
 3818 #else
 3819                         return EINVAL;
 3820 #endif
 3821 
 3822                 case O_DIVERT:
 3823                 case O_TEE:
 3824                         if (ip_divert_ptr == NULL)
 3825                                 return EINVAL;
 3826                         else
 3827                                 goto check_size;
 3828                 case O_NETGRAPH:
 3829                 case O_NGTEE:
 3830                         if (!NG_IPFW_LOADED)
 3831                                 return EINVAL;
 3832                         else
 3833                                 goto check_size;
 3834                 case O_FORWARD_MAC: /* XXX not implemented yet */
 3835                 case O_CHECK_STATE:
 3836                 case O_COUNT:
 3837                 case O_ACCEPT:
 3838                 case O_DENY:
 3839                 case O_REJECT:
 3840 #ifdef INET6
 3841                 case O_UNREACH6:
 3842 #endif
 3843                 case O_SKIPTO:
 3844 check_size:
 3845                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3846                                 goto bad_size;
 3847 check_action:
 3848                         if (have_action) {
 3849                                 printf("ipfw: opcode %d, multiple actions"
 3850                                         " not allowed\n",
 3851                                         cmd->opcode);
 3852                                 return EINVAL;
 3853                         }
 3854                         have_action = 1;
 3855                         if (l != cmdlen) {
 3856                                 printf("ipfw: opcode %d, action must be"
 3857                                         " last opcode\n",
 3858                                         cmd->opcode);
 3859                                 return EINVAL;
 3860                         }
 3861                         break;
 3862 #ifdef INET6
 3863                 case O_IP6_SRC:
 3864                 case O_IP6_DST:
 3865                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
 3866                             F_INSN_SIZE(ipfw_insn))
 3867                                 goto bad_size;
 3868                         break;
 3869 
 3870                 case O_FLOW6ID:
 3871                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 3872                             ((ipfw_insn_u32 *)cmd)->o.arg1)
 3873                                 goto bad_size;
 3874                         break;
 3875 
 3876                 case O_IP6_SRC_MASK:
 3877                 case O_IP6_DST_MASK:
 3878                         if ( !(cmdlen & 1) || cmdlen > 127)
 3879                                 goto bad_size;
 3880                         break;
 3881                 case O_ICMP6TYPE:
 3882                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
 3883                                 goto bad_size;
 3884                         break;
 3885 #endif
 3886 
 3887                 default:
 3888                         switch (cmd->opcode) {
 3889 #ifndef INET6
 3890                         case O_IP6_SRC_ME:
 3891                         case O_IP6_DST_ME:
 3892                         case O_EXT_HDR:
 3893                         case O_IP6:
 3894                         case O_UNREACH6:
 3895                         case O_IP6_SRC:
 3896                         case O_IP6_DST:
 3897                         case O_FLOW6ID:
 3898                         case O_IP6_SRC_MASK:
 3899                         case O_IP6_DST_MASK:
 3900                         case O_ICMP6TYPE:
 3901                                 printf("ipfw: no IPv6 support in kernel\n");
 3902                                 return EPROTONOSUPPORT;
 3903 #endif
 3904                         default:
 3905                                 printf("ipfw: opcode %d, unknown opcode\n",
 3906                                         cmd->opcode);
 3907                                 return EINVAL;
 3908                         }
 3909                 }
 3910         }
 3911         if (have_action == 0) {
 3912                 printf("ipfw: missing action\n");
 3913                 return EINVAL;
 3914         }
 3915         return 0;
 3916 
 3917 bad_size:
 3918         printf("ipfw: opcode %d size %d wrong\n",
 3919                 cmd->opcode, cmdlen);
 3920         return EINVAL;
 3921 }
 3922 
 3923 /*
 3924  * Copy the static and dynamic rules to the supplied buffer
 3925  * and return the amount of space actually used.
 3926  */
 3927 static size_t
 3928 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
 3929 {
 3930         char *bp = buf;
 3931         char *ep = bp + space;
 3932         struct ip_fw *rule;
 3933         int i;
 3934 
 3935         /* XXX this can take a long time and locking will block packet flow */
 3936         IPFW_RLOCK(chain);
 3937         for (rule = chain->rules; rule ; rule = rule->next) {
 3938                 /*
 3939                  * Verify the entry fits in the buffer in case the
 3940                  * rules changed between calculating buffer space and
 3941                  * now.  This would be better done using a generation
 3942                  * number but should suffice for now.
 3943                  */
 3944                 i = RULESIZE(rule);
 3945                 if (bp + i <= ep) {
 3946                         bcopy(rule, bp, i);
 3947                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
 3948                             sizeof(set_disable));
 3949                         bp += i;
 3950                 }
 3951         }
 3952         IPFW_RUNLOCK(chain);
 3953         if (ipfw_dyn_v) {
 3954                 ipfw_dyn_rule *p, *last = NULL;
 3955 
 3956                 IPFW_DYN_LOCK();
 3957                 for (i = 0 ; i < curr_dyn_buckets; i++)
 3958                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
 3959                                 if (bp + sizeof *p <= ep) {
 3960                                         ipfw_dyn_rule *dst =
 3961                                                 (ipfw_dyn_rule *)bp;
 3962                                         bcopy(p, dst, sizeof *p);
 3963                                         bcopy(&(p->rule->rulenum), &(dst->rule),
 3964                                             sizeof(p->rule->rulenum));
 3965                                         /*
 3966                                          * store a non-null value in "next".
 3967                                          * The userland code will interpret a
 3968                                          * NULL here as a marker
 3969                                          * for the last dynamic rule.
 3970                                          */
 3971                                         bcopy(&dst, &dst->next, sizeof(dst));
 3972                                         last = dst;
 3973                                         dst->expire =
 3974                                             TIME_LEQ(dst->expire, time_second) ?
 3975                                                 0 : dst->expire - time_second ;
 3976                                         bp += sizeof(ipfw_dyn_rule);
 3977                                 }
 3978                         }
 3979                 IPFW_DYN_UNLOCK();
 3980                 if (last != NULL) /* mark last dynamic rule */
 3981                         bzero(&last->next, sizeof(last));
 3982         }
 3983         return (bp - (char *)buf);
 3984 }
 3985 
 3986 
 3987 /**
 3988  * {set|get}sockopt parser.
 3989  */
 3990 static int
 3991 ipfw_ctl(struct sockopt *sopt)
 3992 {
 3993 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
 3994         int error, rule_num;
 3995         size_t size;
 3996         struct ip_fw *buf, *rule;
 3997         u_int32_t rulenum[2];
 3998 
 3999         error = suser(sopt->sopt_td);
 4000         if (error)
 4001                 return (error);
 4002 
 4003         /*
 4004          * Disallow modifications in really-really secure mode, but still allow
 4005          * the logging counters to be reset.
 4006          */
 4007         if (sopt->sopt_name == IP_FW_ADD ||
 4008             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
 4009 #if __FreeBSD_version >= 500034
 4010                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
 4011                 if (error)
 4012                         return (error);
 4013 #else /* FreeBSD 4.x */
 4014                 if (securelevel >= 3)
 4015                         return (EPERM);
 4016 #endif
 4017         }
 4018 
 4019         error = 0;
 4020 
 4021         switch (sopt->sopt_name) {
 4022         case IP_FW_GET:
 4023                 /*
 4024                  * pass up a copy of the current rules. Static rules
 4025                  * come first (the last of which has number IPFW_DEFAULT_RULE),
 4026                  * followed by a possibly empty list of dynamic rule.
 4027                  * The last dynamic rule has NULL in the "next" field.
 4028                  *
 4029                  * Note that the calculated size is used to bound the
 4030                  * amount of data returned to the user.  The rule set may
 4031                  * change between calculating the size and returning the
 4032                  * data in which case we'll just return what fits.
 4033                  */
 4034                 size = static_len;      /* size of static rules */
 4035                 if (ipfw_dyn_v)         /* add size of dyn.rules */
 4036                         size += (dyn_count * sizeof(ipfw_dyn_rule));
 4037 
 4038                 /*
 4039                  * XXX todo: if the user passes a short length just to know
 4040                  * how much room is needed, do not bother filling up the
 4041                  * buffer, just jump to the sooptcopyout.
 4042                  */
 4043                 buf = malloc(size, M_TEMP, M_WAITOK);
 4044                 error = sooptcopyout(sopt, buf,
 4045                                 ipfw_getrules(&layer3_chain, buf, size));
 4046                 free(buf, M_TEMP);
 4047                 break;
 4048 
 4049         case IP_FW_FLUSH:
 4050                 /*
 4051                  * Normally we cannot release the lock on each iteration.
 4052                  * We could do it here only because we start from the head all
 4053                  * the times so there is no risk of missing some entries.
 4054                  * On the other hand, the risk is that we end up with
 4055                  * a very inconsistent ruleset, so better keep the lock
 4056                  * around the whole cycle.
 4057                  *
 4058                  * XXX this code can be improved by resetting the head of
 4059                  * the list to point to the default rule, and then freeing
 4060                  * the old list without the need for a lock.
 4061                  */
 4062 
 4063                 IPFW_WLOCK(&layer3_chain);
 4064                 layer3_chain.reap = NULL;
 4065                 free_chain(&layer3_chain, 0 /* keep default rule */);
 4066                 rule = layer3_chain.reap;
 4067                 layer3_chain.reap = NULL;
 4068                 IPFW_WUNLOCK(&layer3_chain);
 4069                 if (rule != NULL)
 4070                         reap_rules(rule);
 4071                 break;
 4072 
 4073         case IP_FW_ADD:
 4074                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
 4075                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
 4076                         sizeof(struct ip_fw) );
 4077                 if (error == 0)
 4078                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
 4079                 if (error == 0) {
 4080                         error = add_rule(&layer3_chain, rule);
 4081                         size = RULESIZE(rule);
 4082                         if (!error && sopt->sopt_dir == SOPT_GET)
 4083                                 error = sooptcopyout(sopt, rule, size);
 4084                 }
 4085                 free(rule, M_TEMP);
 4086                 break;
 4087 
 4088         case IP_FW_DEL:
 4089                 /*
 4090                  * IP_FW_DEL is used for deleting single rules or sets,
 4091                  * and (ab)used to atomically manipulate sets. Argument size
 4092                  * is used to distinguish between the two:
 4093                  *    sizeof(u_int32_t)
 4094                  *      delete single rule or set of rules,
 4095                  *      or reassign rules (or sets) to a different set.
 4096                  *    2*sizeof(u_int32_t)
 4097                  *      atomic disable/enable sets.
 4098                  *      first u_int32_t contains sets to be disabled,
 4099                  *      second u_int32_t contains sets to be enabled.
 4100                  */
 4101                 error = sooptcopyin(sopt, rulenum,
 4102                         2*sizeof(u_int32_t), sizeof(u_int32_t));
 4103                 if (error)
 4104                         break;
 4105                 size = sopt->sopt_valsize;
 4106                 if (size == sizeof(u_int32_t))  /* delete or reassign */
 4107                         error = del_entry(&layer3_chain, rulenum[0]);
 4108                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
 4109                         set_disable =
 4110                             (set_disable | rulenum[0]) & ~rulenum[1] &
 4111                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
 4112                 else
 4113                         error = EINVAL;
 4114                 break;
 4115 
 4116         case IP_FW_ZERO:
 4117         case IP_FW_RESETLOG: /* argument is an int, the rule number */
 4118                 rule_num = 0;
 4119                 if (sopt->sopt_val != 0) {
 4120                     error = sooptcopyin(sopt, &rule_num,
 4121                             sizeof(int), sizeof(int));
 4122                     if (error)
 4123                         break;
 4124                 }
 4125                 error = zero_entry(&layer3_chain, rule_num,
 4126                         sopt->sopt_name == IP_FW_RESETLOG);
 4127                 break;
 4128 
 4129         case IP_FW_TABLE_ADD:
 4130                 {
 4131                         ipfw_table_entry ent;
 4132 
 4133                         error = sooptcopyin(sopt, &ent,
 4134                             sizeof(ent), sizeof(ent));
 4135                         if (error)
 4136                                 break;
 4137                         error = add_table_entry(&layer3_chain, ent.tbl,
 4138                             ent.addr, ent.masklen, ent.value);
 4139                 }
 4140                 break;
 4141 
 4142         case IP_FW_TABLE_DEL:
 4143                 {
 4144                         ipfw_table_entry ent;
 4145 
 4146                         error = sooptcopyin(sopt, &ent,
 4147                             sizeof(ent), sizeof(ent));
 4148                         if (error)
 4149                                 break;
 4150                         error = del_table_entry(&layer3_chain, ent.tbl,
 4151                             ent.addr, ent.masklen);
 4152                 }
 4153                 break;
 4154 
 4155         case IP_FW_TABLE_FLUSH:
 4156                 {
 4157                         u_int16_t tbl;
 4158 
 4159                         error = sooptcopyin(sopt, &tbl,
 4160                             sizeof(tbl), sizeof(tbl));
 4161                         if (error)
 4162                                 break;
 4163                         IPFW_WLOCK(&layer3_chain);
 4164                         error = flush_table(&layer3_chain, tbl);
 4165                         IPFW_WUNLOCK(&layer3_chain);
 4166                 }
 4167                 break;
 4168 
 4169         case IP_FW_TABLE_GETSIZE:
 4170                 {
 4171                         u_int32_t tbl, cnt;
 4172 
 4173                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
 4174                             sizeof(tbl))))
 4175                                 break;
 4176                         IPFW_RLOCK(&layer3_chain);
 4177                         error = count_table(&layer3_chain, tbl, &cnt);
 4178                         IPFW_RUNLOCK(&layer3_chain);
 4179                         if (error)
 4180                                 break;
 4181                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
 4182                 }
 4183                 break;
 4184 
 4185         case IP_FW_TABLE_LIST:
 4186                 {
 4187                         ipfw_table *tbl;
 4188 
 4189                         if (sopt->sopt_valsize < sizeof(*tbl)) {
 4190                                 error = EINVAL;
 4191                                 break;
 4192                         }
 4193                         size = sopt->sopt_valsize;
 4194                         tbl = malloc(size, M_TEMP, M_WAITOK);
 4195                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
 4196                         if (error) {
 4197                                 free(tbl, M_TEMP);
 4198                                 break;
 4199                         }
 4200                         tbl->size = (size - sizeof(*tbl)) /
 4201                             sizeof(ipfw_table_entry);
 4202                         IPFW_RLOCK(&layer3_chain);
 4203                         error = dump_table(&layer3_chain, tbl);
 4204                         IPFW_RUNLOCK(&layer3_chain);
 4205                         if (error) {
 4206                                 free(tbl, M_TEMP);
 4207                                 break;
 4208                         }
 4209                         error = sooptcopyout(sopt, tbl, size);
 4210                         free(tbl, M_TEMP);
 4211                 }
 4212                 break;
 4213 
 4214         default:
 4215                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
 4216                 error = EINVAL;
 4217         }
 4218 
 4219         return (error);
 4220 #undef RULE_MAXSIZE
 4221 }
 4222 
 4223 /**
 4224  * dummynet needs a reference to the default rule, because rules can be
 4225  * deleted while packets hold a reference to them. When this happens,
 4226  * dummynet changes the reference to the default rule (it could well be a
 4227  * NULL pointer, but this way we do not need to check for the special
 4228  * case, plus here he have info on the default behaviour).
 4229  */
 4230 struct ip_fw *ip_fw_default_rule;
 4231 
 4232 /*
 4233  * This procedure is only used to handle keepalives. It is invoked
 4234  * every dyn_keepalive_period
 4235  */
 4236 static void
 4237 ipfw_tick(void * __unused unused)
 4238 {
 4239         struct mbuf *m0, *m, *mnext, **mtailp;
 4240         int i;
 4241         ipfw_dyn_rule *q;
 4242 
 4243         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
 4244                 goto done;
 4245 
 4246         /*
 4247          * We make a chain of packets to go out here -- not deferring
 4248          * until after we drop the IPFW dynamic rule lock would result
 4249          * in a lock order reversal with the normal packet input -> ipfw
 4250          * call stack.
 4251          */
 4252         m0 = NULL;
 4253         mtailp = &m0;
 4254         IPFW_DYN_LOCK();
 4255         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 4256                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
 4257                         if (q->dyn_type == O_LIMIT_PARENT)
 4258                                 continue;
 4259                         if (q->id.proto != IPPROTO_TCP)
 4260                                 continue;
 4261                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
 4262                                 continue;
 4263                         if (TIME_LEQ( time_second+dyn_keepalive_interval,
 4264                             q->expire))
 4265                                 continue;       /* too early */
 4266                         if (TIME_LEQ(q->expire, time_second))
 4267                                 continue;       /* too late, rule expired */
 4268 
 4269                         *mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
 4270                                 q->ack_fwd, TH_SYN);
 4271                         if (*mtailp != NULL)
 4272                                 mtailp = &(*mtailp)->m_nextpkt;
 4273                         *mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
 4274                                 q->ack_rev, 0);
 4275                         if (*mtailp != NULL)
 4276                                 mtailp = &(*mtailp)->m_nextpkt;
 4277                 }
 4278         }
 4279         IPFW_DYN_UNLOCK();
 4280         for (m = mnext = m0; m != NULL; m = mnext) {
 4281                 mnext = m->m_nextpkt;
 4282                 m->m_nextpkt = NULL;
 4283                 ip_output(m, NULL, NULL, 0, NULL, NULL);
 4284         }
 4285 done:
 4286         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
 4287 }
 4288 
 4289 int
 4290 ipfw_init(void)
 4291 {
 4292         struct ip_fw default_rule;
 4293         int error;
 4294 
 4295 #ifdef INET6
 4296         /* Setup IPv6 fw sysctl tree. */
 4297         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
 4298         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
 4299                 SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
 4300                 CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
 4301         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
 4302                 OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
 4303                 &fw_deny_unknown_exthdrs, 0,
 4304                 "Deny packets with unknown IPv6 Extension Headers");
 4305 #endif
 4306 
 4307         layer3_chain.rules = NULL;
 4308         layer3_chain.want_write = 0;
 4309         layer3_chain.busy_count = 0;
 4310         cv_init(&layer3_chain.cv, "Condition variable for IPFW rw locks");
 4311         IPFW_LOCK_INIT(&layer3_chain);
 4312         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule zone",
 4313             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
 4314             UMA_ALIGN_PTR, 0);
 4315         IPFW_DYN_LOCK_INIT();
 4316         callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
 4317 
 4318         bzero(&default_rule, sizeof default_rule);
 4319 
 4320         default_rule.act_ofs = 0;
 4321         default_rule.rulenum = IPFW_DEFAULT_RULE;
 4322         default_rule.cmd_len = 1;
 4323         default_rule.set = RESVD_SET;
 4324 
 4325         default_rule.cmd[0].len = 1;
 4326         default_rule.cmd[0].opcode =
 4327 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
 4328                                 1 ? O_ACCEPT :
 4329 #endif
 4330                                 O_DENY;
 4331 
 4332         error = add_rule(&layer3_chain, &default_rule);
 4333         if (error != 0) {
 4334                 printf("ipfw2: error %u initializing default rule "
 4335                         "(support disabled)\n", error);
 4336                 IPFW_DYN_LOCK_DESTROY();
 4337                 IPFW_LOCK_DESTROY(&layer3_chain);
 4338                 uma_zdestroy(ipfw_dyn_rule_zone);
 4339                 return (error);
 4340         }
 4341 
 4342         ip_fw_default_rule = layer3_chain.rules;
 4343         printf("ipfw2 (+ipv6) initialized, divert %s, "
 4344                 "rule-based forwarding "
 4345 #ifdef IPFIREWALL_FORWARD
 4346                 "enabled, "
 4347 #else
 4348                 "disabled, "
 4349 #endif
 4350                 "default to %s, logging ",
 4351 #ifdef IPDIVERT
 4352                 "enabled",
 4353 #else
 4354                 "loadable",
 4355 #endif
 4356                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
 4357 
 4358 #ifdef IPFIREWALL_VERBOSE
 4359         fw_verbose = 1;
 4360 #endif
 4361 #ifdef IPFIREWALL_VERBOSE_LIMIT
 4362         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
 4363 #endif
 4364         if (fw_verbose == 0)
 4365                 printf("disabled\n");
 4366         else if (verbose_limit == 0)
 4367                 printf("unlimited\n");
 4368         else
 4369                 printf("limited to %d packets/entry by default\n",
 4370                     verbose_limit);
 4371 
 4372         error = init_tables(&layer3_chain);
 4373         if (error) {
 4374                 IPFW_DYN_LOCK_DESTROY();
 4375                 IPFW_LOCK_DESTROY(&layer3_chain);
 4376                 uma_zdestroy(ipfw_dyn_rule_zone);
 4377                 return (error);
 4378         }
 4379         ip_fw_ctl_ptr = ipfw_ctl;
 4380         ip_fw_chk_ptr = ipfw_chk;
 4381         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
 4382 
 4383         return (0);
 4384 }
 4385 
 4386 void
 4387 ipfw_destroy(void)
 4388 {
 4389         struct ip_fw *reap;
 4390 
 4391         ip_fw_chk_ptr = NULL;
 4392         ip_fw_ctl_ptr = NULL;
 4393         callout_drain(&ipfw_timeout);
 4394         IPFW_WLOCK(&layer3_chain);
 4395         flush_tables(&layer3_chain);
 4396         layer3_chain.reap = NULL;
 4397         free_chain(&layer3_chain, 1 /* kill default rule */);
 4398         reap = layer3_chain.reap, layer3_chain.reap = NULL;
 4399         IPFW_WUNLOCK(&layer3_chain);
 4400         if (reap != NULL)
 4401                 reap_rules(reap);
 4402         IPFW_DYN_LOCK_DESTROY();
 4403         uma_zdestroy(ipfw_dyn_rule_zone);
 4404         IPFW_LOCK_DESTROY(&layer3_chain);
 4405 
 4406 #ifdef INET6
 4407         /* Free IPv6 fw sysctl tree. */
 4408         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
 4409 #endif
 4410 
 4411         printf("IP firewall unloaded\n");
 4412 }

Cache object: ede406e01e0df9bd5b5ada0f2e4b922a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.