The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_fw2.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  */
   25 
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD: releng/7.4/sys/netinet/ip_fw2.c 192336 2009-05-18 20:23:16Z jhb $");
   28 
   29 #define        DEB(x)
   30 #define        DDB(x) x
   31 
   32 /*
   33  * Implement IP packet firewall (new version)
   34  */
   35 
   36 #if !defined(KLD_MODULE)
   37 #include "opt_ipfw.h"
   38 #include "opt_ipdivert.h"
   39 #include "opt_ipdn.h"
   40 #include "opt_inet.h"
   41 #ifndef INET
   42 #error IPFIREWALL requires INET.
   43 #endif /* INET */
   44 #endif
   45 #include "opt_inet6.h"
   46 #include "opt_ipsec.h"
   47 #include "opt_mac.h"
   48 
   49 #include <sys/param.h>
   50 #include <sys/systm.h>
   51 #include <sys/malloc.h>
   52 #include <sys/mbuf.h>
   53 #include <sys/kernel.h>
   54 #include <sys/lock.h>
   55 #include <sys/jail.h>
   56 #include <sys/module.h>
   57 #include <sys/priv.h>
   58 #include <sys/proc.h>
   59 #include <sys/socket.h>
   60 #include <sys/socketvar.h>
   61 #include <sys/sysctl.h>
   62 #include <sys/syslog.h>
   63 #include <sys/ucred.h>
   64 #include <net/ethernet.h> /* for ETHERTYPE_IP */
   65 #include <net/if.h>
   66 #include <net/radix.h>
   67 #include <net/route.h>
   68 #include <net/pf_mtag.h>
   69 
   70 #define IPFW_INTERNAL   /* Access to protected data structures in ip_fw.h. */
   71 
   72 #include <netinet/in.h>
   73 #include <netinet/in_var.h>
   74 #include <netinet/in_pcb.h>
   75 #include <netinet/ip.h>
   76 #include <netinet/ip_var.h>
   77 #include <netinet/ip_icmp.h>
   78 #include <netinet/ip_fw.h>
   79 #include <netinet/ip_divert.h>
   80 #include <netinet/ip_dummynet.h>
   81 #include <netinet/ip_carp.h>
   82 #include <netinet/pim.h>
   83 #include <netinet/tcp_var.h>
   84 #include <netinet/udp.h>
   85 #include <netinet/udp_var.h>
   86 #include <netinet/sctp.h>
   87 #include <netgraph/ng_ipfw.h>
   88 
   89 #include <netinet/ip6.h>
   90 #include <netinet/icmp6.h>
   91 #ifdef INET6
   92 #include <netinet6/scope6_var.h>
   93 #endif
   94 
   95 #include <machine/in_cksum.h>   /* XXX for in_cksum */
   96 
   97 #ifdef MAC
   98 #include <security/mac/mac_framework.h>
   99 #endif
  100 
  101 /*
  102  * set_disable contains one bit per set value (0..31).
  103  * If the bit is set, all rules with the corresponding set
  104  * are disabled. Set RESVD_SET(31) is reserved for the default rule
  105  * and rules that are not deleted by the flush command,
  106  * and CANNOT be disabled.
  107  * Rules in set RESVD_SET can only be deleted explicitly.
  108  */
  109 static u_int32_t set_disable;
  110 static int fw_verbose;
  111 static struct callout ipfw_timeout;
  112 static int verbose_limit;
  113 
  114 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
  115 static int default_to_accept = 1;
  116 #else
  117 static int default_to_accept;
  118 #endif
  119 static uma_zone_t ipfw_dyn_rule_zone;
  120 
  121 /*
  122  * Data structure to cache our ucred related
  123  * information. This structure only gets used if
  124  * the user specified UID/GID based constraints in
  125  * a firewall rule.
  126  */
  127 struct ip_fw_ugid {
  128         gid_t           fw_groups[NGROUPS];
  129         int             fw_ngroups;
  130         uid_t           fw_uid;
  131         int             fw_prid;
  132 };
  133 
  134 /*
  135  * list of rules for layer 3
  136  */
  137 struct ip_fw_chain layer3_chain;
  138 
  139 MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
  140 MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
  141 #define IPFW_NAT_LOADED (ipfw_nat_ptr != NULL)
  142 ipfw_nat_t *ipfw_nat_ptr = NULL;
  143 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
  144 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
  145 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
  146 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
  147 
  148 struct table_entry {
  149         struct radix_node       rn[2];
  150         struct sockaddr_in      addr, mask;
  151         u_int32_t               value;
  152 };
  153 
  154 static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
  155 
  156 extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
  157 
  158 #ifdef SYSCTL_NODE
  159 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
  160 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
  161     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
  162     ipfw_chg_hook, "I", "Enable ipfw");
  163 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
  164     &autoinc_step, 0, "Rule number autincrement step");
  165 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
  166     CTLFLAG_RW | CTLFLAG_SECURE3,
  167     &fw_one_pass, 0,
  168     "Only do a single pass through ipfw when using dummynet(4)");
  169 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
  170     CTLFLAG_RW | CTLFLAG_SECURE3,
  171     &fw_verbose, 0, "Log matches to ipfw rules");
  172 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
  173     &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
  174 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
  175     NULL, IPFW_DEFAULT_RULE, "The default/max possible rule number.");
  176 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
  177     NULL, IPFW_TABLES_MAX, "The maximum number of tables.");
  178 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
  179     &default_to_accept, 0, "Make the default rule accept all packets.");
  180 TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
  181 #endif /* SYSCTL_NODE */
  182 
  183 /*
  184  * Description of dynamic rules.
  185  *
  186  * Dynamic rules are stored in lists accessed through a hash table
  187  * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
  188  * be modified through the sysctl variable dyn_buckets which is
  189  * updated when the table becomes empty.
  190  *
  191  * XXX currently there is only one list, ipfw_dyn.
  192  *
  193  * When a packet is received, its address fields are first masked
  194  * with the mask defined for the rule, then hashed, then matched
  195  * against the entries in the corresponding list.
  196  * Dynamic rules can be used for different purposes:
  197  *  + stateful rules;
  198  *  + enforcing limits on the number of sessions;
  199  *  + in-kernel NAT (not implemented yet)
  200  *
  201  * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
  202  * measured in seconds and depending on the flags.
  203  *
  204  * The total number of dynamic rules is stored in dyn_count.
  205  * The max number of dynamic rules is dyn_max. When we reach
  206  * the maximum number of rules we do not create anymore. This is
  207  * done to avoid consuming too much memory, but also too much
  208  * time when searching on each packet (ideally, we should try instead
  209  * to put a limit on the length of the list on each bucket...).
  210  *
  211  * Each dynamic rule holds a pointer to the parent ipfw rule so
  212  * we know what action to perform. Dynamic rules are removed when
  213  * the parent rule is deleted. XXX we should make them survive.
  214  *
  215  * There are some limitations with dynamic rules -- we do not
  216  * obey the 'randomized match', and we do not do multiple
  217  * passes through the firewall. XXX check the latter!!!
  218  */
  219 static ipfw_dyn_rule **ipfw_dyn_v = NULL;
  220 static u_int32_t dyn_buckets = 256; /* must be power of 2 */
  221 static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
  222 
  223 static struct mtx ipfw_dyn_mtx;         /* mutex guarding dynamic rules */
  224 #define IPFW_DYN_LOCK_INIT() \
  225         mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
  226 #define IPFW_DYN_LOCK_DESTROY() mtx_destroy(&ipfw_dyn_mtx)
  227 #define IPFW_DYN_LOCK()         mtx_lock(&ipfw_dyn_mtx)
  228 #define IPFW_DYN_UNLOCK()       mtx_unlock(&ipfw_dyn_mtx)
  229 #define IPFW_DYN_LOCK_ASSERT()  mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
  230 
  231 /*
  232  * Timeouts for various events in handing dynamic rules.
  233  */
  234 static u_int32_t dyn_ack_lifetime = 300;
  235 static u_int32_t dyn_syn_lifetime = 20;
  236 static u_int32_t dyn_fin_lifetime = 1;
  237 static u_int32_t dyn_rst_lifetime = 1;
  238 static u_int32_t dyn_udp_lifetime = 10;
  239 static u_int32_t dyn_short_lifetime = 5;
  240 
  241 /*
  242  * Keepalives are sent if dyn_keepalive is set. They are sent every
  243  * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
  244  * seconds of lifetime of a rule.
  245  * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
  246  * than dyn_keepalive_period.
  247  */
  248 
  249 static u_int32_t dyn_keepalive_interval = 20;
  250 static u_int32_t dyn_keepalive_period = 5;
  251 static u_int32_t dyn_keepalive = 1;     /* do send keepalives */
  252 
  253 static u_int32_t static_count;  /* # of static rules */
  254 static u_int32_t static_len;    /* size in bytes of static rules */
  255 static u_int32_t dyn_count;             /* # of dynamic rules */
  256 static u_int32_t dyn_max = 4096;        /* max # of dynamic rules */
  257 
  258 #ifdef SYSCTL_NODE
  259 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
  260     &dyn_buckets, 0, "Number of dyn. buckets");
  261 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
  262     &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
  263 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
  264     &dyn_count, 0, "Number of dyn. rules");
  265 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
  266     &dyn_max, 0, "Max number of dyn. rules");
  267 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
  268     &static_count, 0, "Number of static rules");
  269 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
  270     &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
  271 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
  272     &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
  273 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
  274     &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
  275 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
  276     &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
  277 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
  278     &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
  279 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
  280     &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
  281 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
  282     &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
  283 #endif /* SYSCTL_NODE */
  284 
  285 #ifdef INET6
  286 /*
  287  * IPv6 specific variables
  288  */
  289 #ifdef SYSCTL_NODE
  290 SYSCTL_DECL(_net_inet6_ip6);
  291 #endif /* SYSCTL_NODE */
  292 
  293 static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
  294 static struct sysctl_oid *ip6_fw_sysctl_tree;
  295 #endif /* INET6 */
  296 
  297 static int fw_deny_unknown_exthdrs = 1;
  298 
  299 
  300 /*
  301  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
  302  * Other macros just cast void * into the appropriate type
  303  */
  304 #define L3HDR(T, ip)    ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
  305 #define TCP(p)          ((struct tcphdr *)(p))
  306 #define SCTP(p)         ((struct sctphdr *)(p))
  307 #define UDP(p)          ((struct udphdr *)(p))
  308 #define ICMP(p)         ((struct icmphdr *)(p))
  309 #define ICMP6(p)        ((struct icmp6_hdr *)(p))
  310 
  311 static __inline int
  312 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
  313 {
  314         int type = icmp->icmp_type;
  315 
  316         return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
  317 }
  318 
  319 #define TT      ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
  320     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
  321 
  322 static int
  323 is_icmp_query(struct icmphdr *icmp)
  324 {
  325         int type = icmp->icmp_type;
  326 
  327         return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
  328 }
  329 #undef TT
  330 
  331 /*
  332  * The following checks use two arrays of 8 or 16 bits to store the
  333  * bits that we want set or clear, respectively. They are in the
  334  * low and high half of cmd->arg1 or cmd->d[0].
  335  *
  336  * We scan options and store the bits we find set. We succeed if
  337  *
  338  *      (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
  339  *
  340  * The code is sometimes optimized not to store additional variables.
  341  */
  342 
  343 static int
  344 flags_match(ipfw_insn *cmd, u_int8_t bits)
  345 {
  346         u_char want_clear;
  347         bits = ~bits;
  348 
  349         if ( ((cmd->arg1 & 0xff) & bits) != 0)
  350                 return 0; /* some bits we want set were clear */
  351         want_clear = (cmd->arg1 >> 8) & 0xff;
  352         if ( (want_clear & bits) != want_clear)
  353                 return 0; /* some bits we want clear were set */
  354         return 1;
  355 }
  356 
  357 static int
  358 ipopts_match(struct ip *ip, ipfw_insn *cmd)
  359 {
  360         int optlen, bits = 0;
  361         u_char *cp = (u_char *)(ip + 1);
  362         int x = (ip->ip_hl << 2) - sizeof (struct ip);
  363 
  364         for (; x > 0; x -= optlen, cp += optlen) {
  365                 int opt = cp[IPOPT_OPTVAL];
  366 
  367                 if (opt == IPOPT_EOL)
  368                         break;
  369                 if (opt == IPOPT_NOP)
  370                         optlen = 1;
  371                 else {
  372                         optlen = cp[IPOPT_OLEN];
  373                         if (optlen <= 0 || optlen > x)
  374                                 return 0; /* invalid or truncated */
  375                 }
  376                 switch (opt) {
  377 
  378                 default:
  379                         break;
  380 
  381                 case IPOPT_LSRR:
  382                         bits |= IP_FW_IPOPT_LSRR;
  383                         break;
  384 
  385                 case IPOPT_SSRR:
  386                         bits |= IP_FW_IPOPT_SSRR;
  387                         break;
  388 
  389                 case IPOPT_RR:
  390                         bits |= IP_FW_IPOPT_RR;
  391                         break;
  392 
  393                 case IPOPT_TS:
  394                         bits |= IP_FW_IPOPT_TS;
  395                         break;
  396                 }
  397         }
  398         return (flags_match(cmd, bits));
  399 }
  400 
  401 static int
  402 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
  403 {
  404         int optlen, bits = 0;
  405         u_char *cp = (u_char *)(tcp + 1);
  406         int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
  407 
  408         for (; x > 0; x -= optlen, cp += optlen) {
  409                 int opt = cp[0];
  410                 if (opt == TCPOPT_EOL)
  411                         break;
  412                 if (opt == TCPOPT_NOP)
  413                         optlen = 1;
  414                 else {
  415                         optlen = cp[1];
  416                         if (optlen <= 0)
  417                                 break;
  418                 }
  419 
  420                 switch (opt) {
  421 
  422                 default:
  423                         break;
  424 
  425                 case TCPOPT_MAXSEG:
  426                         bits |= IP_FW_TCPOPT_MSS;
  427                         break;
  428 
  429                 case TCPOPT_WINDOW:
  430                         bits |= IP_FW_TCPOPT_WINDOW;
  431                         break;
  432 
  433                 case TCPOPT_SACK_PERMITTED:
  434                 case TCPOPT_SACK:
  435                         bits |= IP_FW_TCPOPT_SACK;
  436                         break;
  437 
  438                 case TCPOPT_TIMESTAMP:
  439                         bits |= IP_FW_TCPOPT_TS;
  440                         break;
  441 
  442                 }
  443         }
  444         return (flags_match(cmd, bits));
  445 }
  446 
  447 static int
  448 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
  449 {
  450         if (ifp == NULL)        /* no iface with this packet, match fails */
  451                 return 0;
  452         /* Check by name or by IP address */
  453         if (cmd->name[0] != '\0') { /* match by name */
  454                 /* Check name */
  455                 if (cmd->p.glob) {
  456                         if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
  457                                 return(1);
  458                 } else {
  459                         if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
  460                                 return(1);
  461                 }
  462         } else {
  463                 struct ifaddr *ia;
  464 
  465                 /* XXX lock? */
  466                 TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
  467                         if (ia->ifa_addr->sa_family != AF_INET)
  468                                 continue;
  469                         if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
  470                             (ia->ifa_addr))->sin_addr.s_addr)
  471                                 return(1);      /* match */
  472                 }
  473         }
  474         return(0);      /* no match, fail ... */
  475 }
  476 
  477 /*
  478  * The verify_path function checks if a route to the src exists and
  479  * if it is reachable via ifp (when provided).
  480  * 
  481  * The 'verrevpath' option checks that the interface that an IP packet
  482  * arrives on is the same interface that traffic destined for the
  483  * packet's source address would be routed out of.  The 'versrcreach'
  484  * option just checks that the source address is reachable via any route
  485  * (except default) in the routing table.  These two are a measure to block
  486  * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
  487  * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
  488  * is purposely reminiscent of the Cisco IOS command,
  489  *
  490  *   ip verify unicast reverse-path
  491  *   ip verify unicast source reachable-via any
  492  *
  493  * which implements the same functionality. But note that syntax is
  494  * misleading. The check may be performed on all IP packets whether unicast,
  495  * multicast, or broadcast.
  496  */
  497 static int
  498 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
  499 {
  500         struct route ro;
  501         struct sockaddr_in *dst;
  502 
  503         bzero(&ro, sizeof(ro));
  504 
  505         dst = (struct sockaddr_in *)&(ro.ro_dst);
  506         dst->sin_family = AF_INET;
  507         dst->sin_len = sizeof(*dst);
  508         dst->sin_addr = src;
  509         in_rtalloc_ign(&ro, RTF_CLONING, fib);
  510 
  511         if (ro.ro_rt == NULL)
  512                 return 0;
  513 
  514         /*
  515          * If ifp is provided, check for equality with rtentry.
  516          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
  517          * in order to pass packets injected back by if_simloop():
  518          * if useloopback == 1 routing entry (via lo0) for our own address
  519          * may exist, so we need to handle routing assymetry.
  520          */
  521         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
  522                 RTFREE(ro.ro_rt);
  523                 return 0;
  524         }
  525 
  526         /* if no ifp provided, check if rtentry is not default route */
  527         if (ifp == NULL &&
  528              satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
  529                 RTFREE(ro.ro_rt);
  530                 return 0;
  531         }
  532 
  533         /* or if this is a blackhole/reject route */
  534         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
  535                 RTFREE(ro.ro_rt);
  536                 return 0;
  537         }
  538 
  539         /* found valid route */
  540         RTFREE(ro.ro_rt);
  541         return 1;
  542 }
  543 
  544 #ifdef INET6
  545 /*
  546  * ipv6 specific rules here...
  547  */
  548 static __inline int
  549 icmp6type_match (int type, ipfw_insn_u32 *cmd)
  550 {
  551         return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
  552 }
  553 
  554 static int
  555 flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
  556 {
  557         int i;
  558         for (i=0; i <= cmd->o.arg1; ++i )
  559                 if (curr_flow == cmd->d[i] )
  560                         return 1;
  561         return 0;
  562 }
  563 
  564 /* support for IP6_*_ME opcodes */
  565 static int
  566 search_ip6_addr_net (struct in6_addr * ip6_addr)
  567 {
  568         struct ifnet *mdc;
  569         struct ifaddr *mdc2;
  570         struct in6_ifaddr *fdm;
  571         struct in6_addr copia;
  572 
  573         TAILQ_FOREACH(mdc, &ifnet, if_link)
  574                 TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
  575                         if (mdc2->ifa_addr->sa_family == AF_INET6) {
  576                                 fdm = (struct in6_ifaddr *)mdc2;
  577                                 copia = fdm->ia_addr.sin6_addr;
  578                                 /* need for leaving scope_id in the sock_addr */
  579                                 in6_clearscope(&copia);
  580                                 if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
  581                                         return 1;
  582                         }
  583                 }
  584         return 0;
  585 }
  586 
  587 static int
  588 verify_path6(struct in6_addr *src, struct ifnet *ifp)
  589 {
  590         struct route_in6 ro;
  591         struct sockaddr_in6 *dst;
  592 
  593         bzero(&ro, sizeof(ro));
  594 
  595         dst = (struct sockaddr_in6 * )&(ro.ro_dst);
  596         dst->sin6_family = AF_INET6;
  597         dst->sin6_len = sizeof(*dst);
  598         dst->sin6_addr = *src;
  599         /* XXX MRT 0 for ipv6 at this time */
  600         rtalloc_ign((struct route *)&ro, RTF_CLONING);
  601 
  602         if (ro.ro_rt == NULL)
  603                 return 0;
  604 
  605         /* 
  606          * if ifp is provided, check for equality with rtentry
  607          * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
  608          * to support the case of sending packets to an address of our own.
  609          * (where the former interface is the first argument of if_simloop()
  610          *  (=ifp), the latter is lo0)
  611          */
  612         if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
  613                 RTFREE(ro.ro_rt);
  614                 return 0;
  615         }
  616 
  617         /* if no ifp provided, check if rtentry is not default route */
  618         if (ifp == NULL &&
  619             IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
  620                 RTFREE(ro.ro_rt);
  621                 return 0;
  622         }
  623 
  624         /* or if this is a blackhole/reject route */
  625         if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
  626                 RTFREE(ro.ro_rt);
  627                 return 0;
  628         }
  629 
  630         /* found valid route */
  631         RTFREE(ro.ro_rt);
  632         return 1;
  633 
  634 }
  635 static __inline int
  636 hash_packet6(struct ipfw_flow_id *id)
  637 {
  638         u_int32_t i;
  639         i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
  640             (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
  641             (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
  642             (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
  643             (id->dst_port) ^ (id->src_port);
  644         return i;
  645 }
  646 
  647 static int
  648 is_icmp6_query(int icmp6_type)
  649 {
  650         if ((icmp6_type <= ICMP6_MAXTYPE) &&
  651             (icmp6_type == ICMP6_ECHO_REQUEST ||
  652             icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
  653             icmp6_type == ICMP6_WRUREQUEST ||
  654             icmp6_type == ICMP6_FQDN_QUERY ||
  655             icmp6_type == ICMP6_NI_QUERY))
  656                 return (1);
  657 
  658         return (0);
  659 }
  660 
  661 static void
  662 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
  663 {
  664         struct mbuf *m;
  665 
  666         m = args->m;
  667         if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
  668                 struct tcphdr *tcp;
  669                 tcp_seq ack, seq;
  670                 int flags;
  671                 struct {
  672                         struct ip6_hdr ip6;
  673                         struct tcphdr th;
  674                 } ti;
  675                 tcp = (struct tcphdr *)((char *)ip6 + hlen);
  676 
  677                 if ((tcp->th_flags & TH_RST) != 0) {
  678                         m_freem(m);
  679                         args->m = NULL;
  680                         return;
  681                 }
  682 
  683                 ti.ip6 = *ip6;
  684                 ti.th = *tcp;
  685                 ti.th.th_seq = ntohl(ti.th.th_seq);
  686                 ti.th.th_ack = ntohl(ti.th.th_ack);
  687                 ti.ip6.ip6_nxt = IPPROTO_TCP;
  688 
  689                 if (ti.th.th_flags & TH_ACK) {
  690                         ack = 0;
  691                         seq = ti.th.th_ack;
  692                         flags = TH_RST;
  693                 } else {
  694                         ack = ti.th.th_seq;
  695                         if ((m->m_flags & M_PKTHDR) != 0) {
  696                                 /*
  697                                  * total new data to ACK is:
  698                                  * total packet length,
  699                                  * minus the header length,
  700                                  * minus the tcp header length.
  701                                  */
  702                                 ack += m->m_pkthdr.len - hlen
  703                                         - (ti.th.th_off << 2);
  704                         } else if (ip6->ip6_plen) {
  705                                 ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
  706                                     hlen - (ti.th.th_off << 2);
  707                         } else {
  708                                 m_freem(m);
  709                                 return;
  710                         }
  711                         if (tcp->th_flags & TH_SYN)
  712                                 ack++;
  713                         seq = 0;
  714                         flags = TH_RST|TH_ACK;
  715                 }
  716                 bcopy(&ti, ip6, sizeof(ti));
  717                 /*
  718                  * m is only used to recycle the mbuf
  719                  * The data in it is never read so we don't need
  720                  * to correct the offsets or anything
  721                  */
  722                 tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
  723         } else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
  724 #if 0
  725                 /*
  726                  * Unlike above, the mbufs need to line up with the ip6 hdr,
  727                  * as the contents are read. We need to m_adj() the
  728                  * needed amount.
  729                  * The mbuf will however be thrown away so we can adjust it.
  730                  * Remember we did an m_pullup on it already so we
  731                  * can make some assumptions about contiguousness.
  732                  */
  733                 if (args->L3offset)
  734                         m_adj(m, args->L3offset);
  735 #endif
  736                 icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
  737         } else
  738                 m_freem(m);
  739 
  740         args->m = NULL;
  741 }
  742 
  743 #endif /* INET6 */
  744 
  745 static u_int64_t norule_counter;        /* counter for ipfw_log(NULL...) */
  746 
  747 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
  748 #define SNP(buf) buf, sizeof(buf)
  749 
  750 /*
  751  * We enter here when we have a rule with O_LOG.
  752  * XXX this function alone takes about 2Kbytes of code!
  753  */
  754 static void
  755 ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
  756     struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
  757     struct ip *ip)
  758 {
  759         struct ether_header *eh = args->eh;
  760         char *action;
  761         int limit_reached = 0;
  762         char action2[40], proto[128], fragment[32];
  763 
  764         fragment[0] = '\0';
  765         proto[0] = '\0';
  766 
  767         if (f == NULL) {        /* bogus pkt */
  768                 if (verbose_limit != 0 && norule_counter >= verbose_limit)
  769                         return;
  770                 norule_counter++;
  771                 if (norule_counter == verbose_limit)
  772                         limit_reached = verbose_limit;
  773                 action = "Refuse";
  774         } else {        /* O_LOG is the first action, find the real one */
  775                 ipfw_insn *cmd = ACTION_PTR(f);
  776                 ipfw_insn_log *l = (ipfw_insn_log *)cmd;
  777 
  778                 if (l->max_log != 0 && l->log_left == 0)
  779                         return;
  780                 l->log_left--;
  781                 if (l->log_left == 0)
  782                         limit_reached = l->max_log;
  783                 cmd += F_LEN(cmd);      /* point to first action */
  784                 if (cmd->opcode == O_ALTQ) {
  785                         ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
  786 
  787                         snprintf(SNPARGS(action2, 0), "Altq %d",
  788                                 altq->qid);
  789                         cmd += F_LEN(cmd);
  790                 }
  791                 if (cmd->opcode == O_PROB)
  792                         cmd += F_LEN(cmd);
  793 
  794                 if (cmd->opcode == O_TAG)
  795                         cmd += F_LEN(cmd);
  796 
  797                 action = action2;
  798                 switch (cmd->opcode) {
  799                 case O_DENY:
  800                         action = "Deny";
  801                         break;
  802 
  803                 case O_REJECT:
  804                         if (cmd->arg1==ICMP_REJECT_RST)
  805                                 action = "Reset";
  806                         else if (cmd->arg1==ICMP_UNREACH_HOST)
  807                                 action = "Reject";
  808                         else
  809                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  810                                         cmd->arg1);
  811                         break;
  812 
  813                 case O_UNREACH6:
  814                         if (cmd->arg1==ICMP6_UNREACH_RST)
  815                                 action = "Reset";
  816                         else
  817                                 snprintf(SNPARGS(action2, 0), "Unreach %d",
  818                                         cmd->arg1);
  819                         break;
  820 
  821                 case O_ACCEPT:
  822                         action = "Accept";
  823                         break;
  824                 case O_COUNT:
  825                         action = "Count";
  826                         break;
  827                 case O_DIVERT:
  828                         snprintf(SNPARGS(action2, 0), "Divert %d",
  829                                 cmd->arg1);
  830                         break;
  831                 case O_TEE:
  832                         snprintf(SNPARGS(action2, 0), "Tee %d",
  833                                 cmd->arg1);
  834                         break;
  835                 case O_SETFIB:
  836                         snprintf(SNPARGS(action2, 0), "SetFib %d",
  837                                 cmd->arg1);
  838                         break;
  839                 case O_SKIPTO:
  840                         snprintf(SNPARGS(action2, 0), "SkipTo %d",
  841                                 cmd->arg1);
  842                         break;
  843                 case O_PIPE:
  844                         snprintf(SNPARGS(action2, 0), "Pipe %d",
  845                                 cmd->arg1);
  846                         break;
  847                 case O_QUEUE:
  848                         snprintf(SNPARGS(action2, 0), "Queue %d",
  849                                 cmd->arg1);
  850                         break;
  851                 case O_FORWARD_IP: {
  852                         ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
  853                         int len;
  854                         struct in_addr dummyaddr;
  855                         if (sa->sa.sin_addr.s_addr == INADDR_ANY)
  856                                 dummyaddr.s_addr = htonl(tablearg);
  857                         else
  858                                 dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
  859 
  860                         len = snprintf(SNPARGS(action2, 0), "Forward to %s",
  861                                 inet_ntoa(dummyaddr));
  862 
  863                         if (sa->sa.sin_port)
  864                                 snprintf(SNPARGS(action2, len), ":%d",
  865                                     sa->sa.sin_port);
  866                         }
  867                         break;
  868                 case O_NETGRAPH:
  869                         snprintf(SNPARGS(action2, 0), "Netgraph %d",
  870                                 cmd->arg1);
  871                         break;
  872                 case O_NGTEE:
  873                         snprintf(SNPARGS(action2, 0), "Ngtee %d",
  874                                 cmd->arg1);
  875                         break;
  876                 case O_NAT:
  877                         action = "Nat";
  878                         break;
  879                 default:
  880                         action = "UNKNOWN";
  881                         break;
  882                 }
  883         }
  884 
  885         if (hlen == 0) {        /* non-ip */
  886                 snprintf(SNPARGS(proto, 0), "MAC");
  887 
  888         } else {
  889                 int len;
  890                 char src[48], dst[48];
  891                 struct icmphdr *icmp;
  892                 struct tcphdr *tcp;
  893                 struct udphdr *udp;
  894 #ifdef INET6
  895                 struct ip6_hdr *ip6 = NULL;
  896                 struct icmp6_hdr *icmp6;
  897 #endif
  898                 src[0] = '\0';
  899                 dst[0] = '\0';
  900 #ifdef INET6
  901                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
  902                         char ip6buf[INET6_ADDRSTRLEN];
  903                         snprintf(src, sizeof(src), "[%s]",
  904                             ip6_sprintf(ip6buf, &args->f_id.src_ip6));
  905                         snprintf(dst, sizeof(dst), "[%s]",
  906                             ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
  907 
  908                         ip6 = (struct ip6_hdr *)ip;
  909                         tcp = (struct tcphdr *)(((char *)ip) + hlen);
  910                         udp = (struct udphdr *)(((char *)ip) + hlen);
  911                 } else
  912 #endif
  913                 {
  914                         tcp = L3HDR(struct tcphdr, ip);
  915                         udp = L3HDR(struct udphdr, ip);
  916 
  917                         inet_ntoa_r(ip->ip_src, src);
  918                         inet_ntoa_r(ip->ip_dst, dst);
  919                 }
  920 
  921                 switch (args->f_id.proto) {
  922                 case IPPROTO_TCP:
  923                         len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
  924                         if (offset == 0)
  925                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  926                                     ntohs(tcp->th_sport),
  927                                     dst,
  928                                     ntohs(tcp->th_dport));
  929                         else
  930                                 snprintf(SNPARGS(proto, len), " %s", dst);
  931                         break;
  932 
  933                 case IPPROTO_UDP:
  934                         len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
  935                         if (offset == 0)
  936                                 snprintf(SNPARGS(proto, len), ":%d %s:%d",
  937                                     ntohs(udp->uh_sport),
  938                                     dst,
  939                                     ntohs(udp->uh_dport));
  940                         else
  941                                 snprintf(SNPARGS(proto, len), " %s", dst);
  942                         break;
  943 
  944                 case IPPROTO_ICMP:
  945                         icmp = L3HDR(struct icmphdr, ip);
  946                         if (offset == 0)
  947                                 len = snprintf(SNPARGS(proto, 0),
  948                                     "ICMP:%u.%u ",
  949                                     icmp->icmp_type, icmp->icmp_code);
  950                         else
  951                                 len = snprintf(SNPARGS(proto, 0), "ICMP ");
  952                         len += snprintf(SNPARGS(proto, len), "%s", src);
  953                         snprintf(SNPARGS(proto, len), " %s", dst);
  954                         break;
  955 #ifdef INET6
  956                 case IPPROTO_ICMPV6:
  957                         icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
  958                         if (offset == 0)
  959                                 len = snprintf(SNPARGS(proto, 0),
  960                                     "ICMPv6:%u.%u ",
  961                                     icmp6->icmp6_type, icmp6->icmp6_code);
  962                         else
  963                                 len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
  964                         len += snprintf(SNPARGS(proto, len), "%s", src);
  965                         snprintf(SNPARGS(proto, len), " %s", dst);
  966                         break;
  967 #endif
  968                 default:
  969                         len = snprintf(SNPARGS(proto, 0), "P:%d %s",
  970                             args->f_id.proto, src);
  971                         snprintf(SNPARGS(proto, len), " %s", dst);
  972                         break;
  973                 }
  974 
  975 #ifdef INET6
  976                 if (IS_IP6_FLOW_ID(&(args->f_id))) {
  977                         if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
  978                                 snprintf(SNPARGS(fragment, 0),
  979                                     " (frag %08x:%d@%d%s)",
  980                                     args->f_id.frag_id6,
  981                                     ntohs(ip6->ip6_plen) - hlen,
  982                                     ntohs(offset & IP6F_OFF_MASK) << 3,
  983                                     (offset & IP6F_MORE_FRAG) ? "+" : "");
  984                 } else
  985 #endif
  986                 {
  987                         int ip_off, ip_len;
  988                         if (eh != NULL) { /* layer 2 packets are as on the wire */
  989                                 ip_off = ntohs(ip->ip_off);
  990                                 ip_len = ntohs(ip->ip_len);
  991                         } else {
  992                                 ip_off = ip->ip_off;
  993                                 ip_len = ip->ip_len;
  994                         }
  995                         if (ip_off & (IP_MF | IP_OFFMASK))
  996                                 snprintf(SNPARGS(fragment, 0),
  997                                     " (frag %d:%d@%d%s)",
  998                                     ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
  999                                     offset << 3,
 1000                                     (ip_off & IP_MF) ? "+" : "");
 1001                 }
 1002         }
 1003         if (oif || m->m_pkthdr.rcvif)
 1004                 log(LOG_SECURITY | LOG_INFO,
 1005                     "ipfw: %d %s %s %s via %s%s\n",
 1006                     f ? f->rulenum : -1,
 1007                     action, proto, oif ? "out" : "in",
 1008                     oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
 1009                     fragment);
 1010         else
 1011                 log(LOG_SECURITY | LOG_INFO,
 1012                     "ipfw: %d %s %s [no if info]%s\n",
 1013                     f ? f->rulenum : -1,
 1014                     action, proto, fragment);
 1015         if (limit_reached)
 1016                 log(LOG_SECURITY | LOG_NOTICE,
 1017                     "ipfw: limit %d reached on entry %d\n",
 1018                     limit_reached, f ? f->rulenum : -1);
 1019 }
 1020 
 1021 /*
 1022  * IMPORTANT: the hash function for dynamic rules must be commutative
 1023  * in source and destination (ip,port), because rules are bidirectional
 1024  * and we want to find both in the same bucket.
 1025  */
 1026 static __inline int
 1027 hash_packet(struct ipfw_flow_id *id)
 1028 {
 1029         u_int32_t i;
 1030 
 1031 #ifdef INET6
 1032         if (IS_IP6_FLOW_ID(id)) 
 1033                 i = hash_packet6(id);
 1034         else
 1035 #endif /* INET6 */
 1036         i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
 1037         i &= (curr_dyn_buckets - 1);
 1038         return i;
 1039 }
 1040 
 1041 /**
 1042  * unlink a dynamic rule from a chain. prev is a pointer to
 1043  * the previous one, q is a pointer to the rule to delete,
 1044  * head is a pointer to the head of the queue.
 1045  * Modifies q and potentially also head.
 1046  */
 1047 #define UNLINK_DYN_RULE(prev, head, q) {                                \
 1048         ipfw_dyn_rule *old_q = q;                                       \
 1049                                                                         \
 1050         /* remove a refcount to the parent */                           \
 1051         if (q->dyn_type == O_LIMIT)                                     \
 1052                 q->parent->count--;                                     \
 1053         DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
 1054                 (q->id.src_ip), (q->id.src_port),                       \
 1055                 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )      \
 1056         if (prev != NULL)                                               \
 1057                 prev->next = q = q->next;                               \
 1058         else                                                            \
 1059                 head = q = q->next;                                     \
 1060         dyn_count--;                                                    \
 1061         uma_zfree(ipfw_dyn_rule_zone, old_q); }
 1062 
 1063 #define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
 1064 
 1065 /**
 1066  * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
 1067  *
 1068  * If keep_me == NULL, rules are deleted even if not expired,
 1069  * otherwise only expired rules are removed.
 1070  *
 1071  * The value of the second parameter is also used to point to identify
 1072  * a rule we absolutely do not want to remove (e.g. because we are
 1073  * holding a reference to it -- this is the case with O_LIMIT_PARENT
 1074  * rules). The pointer is only used for comparison, so any non-null
 1075  * value will do.
 1076  */
 1077 static void
 1078 remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
 1079 {
 1080         static u_int32_t last_remove = 0;
 1081 
 1082 #define FORCE (keep_me == NULL)
 1083 
 1084         ipfw_dyn_rule *prev, *q;
 1085         int i, pass = 0, max_pass = 0;
 1086 
 1087         IPFW_DYN_LOCK_ASSERT();
 1088 
 1089         if (ipfw_dyn_v == NULL || dyn_count == 0)
 1090                 return;
 1091         /* do not expire more than once per second, it is useless */
 1092         if (!FORCE && last_remove == time_uptime)
 1093                 return;
 1094         last_remove = time_uptime;
 1095 
 1096         /*
 1097          * because O_LIMIT refer to parent rules, during the first pass only
 1098          * remove child and mark any pending LIMIT_PARENT, and remove
 1099          * them in a second pass.
 1100          */
 1101 next_pass:
 1102         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 1103                 for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
 1104                         /*
 1105                          * Logic can become complex here, so we split tests.
 1106                          */
 1107                         if (q == keep_me)
 1108                                 goto next;
 1109                         if (rule != NULL && rule != q->rule)
 1110                                 goto next; /* not the one we are looking for */
 1111                         if (q->dyn_type == O_LIMIT_PARENT) {
 1112                                 /*
 1113                                  * handle parent in the second pass,
 1114                                  * record we need one.
 1115                                  */
 1116                                 max_pass = 1;
 1117                                 if (pass == 0)
 1118                                         goto next;
 1119                                 if (FORCE && q->count != 0 ) {
 1120                                         /* XXX should not happen! */
 1121                                         printf("ipfw: OUCH! cannot remove rule,"
 1122                                              " count %d\n", q->count);
 1123                                 }
 1124                         } else {
 1125                                 if (!FORCE &&
 1126                                     !TIME_LEQ( q->expire, time_uptime ))
 1127                                         goto next;
 1128                         }
 1129              if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
 1130                      UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
 1131                      continue;
 1132              }
 1133 next:
 1134                         prev=q;
 1135                         q=q->next;
 1136                 }
 1137         }
 1138         if (pass++ < max_pass)
 1139                 goto next_pass;
 1140 }
 1141 
 1142 
 1143 /**
 1144  * lookup a dynamic rule.
 1145  */
 1146 static ipfw_dyn_rule *
 1147 lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
 1148     struct tcphdr *tcp)
 1149 {
 1150         /*
 1151          * stateful ipfw extensions.
 1152          * Lookup into dynamic session queue
 1153          */
 1154 #define MATCH_REVERSE   0
 1155 #define MATCH_FORWARD   1
 1156 #define MATCH_NONE      2
 1157 #define MATCH_UNKNOWN   3
 1158         int i, dir = MATCH_NONE;
 1159         ipfw_dyn_rule *prev, *q=NULL;
 1160 
 1161         IPFW_DYN_LOCK_ASSERT();
 1162 
 1163         if (ipfw_dyn_v == NULL)
 1164                 goto done;      /* not found */
 1165         i = hash_packet( pkt );
 1166         for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
 1167                 if (q->dyn_type == O_LIMIT_PARENT && q->count)
 1168                         goto next;
 1169                 if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
 1170                         UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
 1171                         continue;
 1172                 }
 1173                 if (pkt->proto == q->id.proto &&
 1174                     q->dyn_type != O_LIMIT_PARENT) {
 1175                         if (IS_IP6_FLOW_ID(pkt)) {
 1176                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
 1177                                 &(q->id.src_ip6)) &&
 1178                             IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
 1179                                 &(q->id.dst_ip6)) &&
 1180                             pkt->src_port == q->id.src_port &&
 1181                             pkt->dst_port == q->id.dst_port ) {
 1182                                 dir = MATCH_FORWARD;
 1183                                 break;
 1184                             }
 1185                             if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
 1186                                     &(q->id.dst_ip6)) &&
 1187                                 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
 1188                                     &(q->id.src_ip6)) &&
 1189                                 pkt->src_port == q->id.dst_port &&
 1190                                 pkt->dst_port == q->id.src_port ) {
 1191                                     dir = MATCH_REVERSE;
 1192                                     break;
 1193                             }
 1194                         } else {
 1195                             if (pkt->src_ip == q->id.src_ip &&
 1196                                 pkt->dst_ip == q->id.dst_ip &&
 1197                                 pkt->src_port == q->id.src_port &&
 1198                                 pkt->dst_port == q->id.dst_port ) {
 1199                                     dir = MATCH_FORWARD;
 1200                                     break;
 1201                             }
 1202                             if (pkt->src_ip == q->id.dst_ip &&
 1203                                 pkt->dst_ip == q->id.src_ip &&
 1204                                 pkt->src_port == q->id.dst_port &&
 1205                                 pkt->dst_port == q->id.src_port ) {
 1206                                     dir = MATCH_REVERSE;
 1207                                     break;
 1208                             }
 1209                         }
 1210                 }
 1211 next:
 1212                 prev = q;
 1213                 q = q->next;
 1214         }
 1215         if (q == NULL)
 1216                 goto done; /* q = NULL, not found */
 1217 
 1218         if ( prev != NULL) { /* found and not in front */
 1219                 prev->next = q->next;
 1220                 q->next = ipfw_dyn_v[i];
 1221                 ipfw_dyn_v[i] = q;
 1222         }
 1223         if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
 1224                 u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
 1225 
 1226 #define BOTH_SYN        (TH_SYN | (TH_SYN << 8))
 1227 #define BOTH_FIN        (TH_FIN | (TH_FIN << 8))
 1228                 q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
 1229                 switch (q->state) {
 1230                 case TH_SYN:                            /* opening */
 1231                         q->expire = time_uptime + dyn_syn_lifetime;
 1232                         break;
 1233 
 1234                 case BOTH_SYN:                  /* move to established */
 1235                 case BOTH_SYN | TH_FIN :        /* one side tries to close */
 1236                 case BOTH_SYN | (TH_FIN << 8) :
 1237                         if (tcp) {
 1238 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
 1239                             u_int32_t ack = ntohl(tcp->th_ack);
 1240                             if (dir == MATCH_FORWARD) {
 1241                                 if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
 1242                                     q->ack_fwd = ack;
 1243                                 else { /* ignore out-of-sequence */
 1244                                     break;
 1245                                 }
 1246                             } else {
 1247                                 if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
 1248                                     q->ack_rev = ack;
 1249                                 else { /* ignore out-of-sequence */
 1250                                     break;
 1251                                 }
 1252                             }
 1253                         }
 1254                         q->expire = time_uptime + dyn_ack_lifetime;
 1255                         break;
 1256 
 1257                 case BOTH_SYN | BOTH_FIN:       /* both sides closed */
 1258                         if (dyn_fin_lifetime >= dyn_keepalive_period)
 1259                                 dyn_fin_lifetime = dyn_keepalive_period - 1;
 1260                         q->expire = time_uptime + dyn_fin_lifetime;
 1261                         break;
 1262 
 1263                 default:
 1264 #if 0
 1265                         /*
 1266                          * reset or some invalid combination, but can also
 1267                          * occur if we use keep-state the wrong way.
 1268                          */
 1269                         if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
 1270                                 printf("invalid state: 0x%x\n", q->state);
 1271 #endif
 1272                         if (dyn_rst_lifetime >= dyn_keepalive_period)
 1273                                 dyn_rst_lifetime = dyn_keepalive_period - 1;
 1274                         q->expire = time_uptime + dyn_rst_lifetime;
 1275                         break;
 1276                 }
 1277         } else if (pkt->proto == IPPROTO_UDP) {
 1278                 q->expire = time_uptime + dyn_udp_lifetime;
 1279         } else {
 1280                 /* other protocols */
 1281                 q->expire = time_uptime + dyn_short_lifetime;
 1282         }
 1283 done:
 1284         if (match_direction)
 1285                 *match_direction = dir;
 1286         return q;
 1287 }
 1288 
 1289 static ipfw_dyn_rule *
 1290 lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
 1291     struct tcphdr *tcp)
 1292 {
 1293         ipfw_dyn_rule *q;
 1294 
 1295         IPFW_DYN_LOCK();
 1296         q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
 1297         if (q == NULL)
 1298                 IPFW_DYN_UNLOCK();
 1299         /* NB: return table locked when q is not NULL */
 1300         return q;
 1301 }
 1302 
 1303 static void
 1304 realloc_dynamic_table(void)
 1305 {
 1306         IPFW_DYN_LOCK_ASSERT();
 1307 
 1308         /*
 1309          * Try reallocation, make sure we have a power of 2 and do
 1310          * not allow more than 64k entries. In case of overflow,
 1311          * default to 1024.
 1312          */
 1313 
 1314         if (dyn_buckets > 65536)
 1315                 dyn_buckets = 1024;
 1316         if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
 1317                 dyn_buckets = curr_dyn_buckets; /* reset */
 1318                 return;
 1319         }
 1320         curr_dyn_buckets = dyn_buckets;
 1321         if (ipfw_dyn_v != NULL)
 1322                 free(ipfw_dyn_v, M_IPFW);
 1323         for (;;) {
 1324                 ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
 1325                        M_IPFW, M_NOWAIT | M_ZERO);
 1326                 if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
 1327                         break;
 1328                 curr_dyn_buckets /= 2;
 1329         }
 1330 }
 1331 
 1332 /**
 1333  * Install state of type 'type' for a dynamic session.
 1334  * The hash table contains two type of rules:
 1335  * - regular rules (O_KEEP_STATE)
 1336  * - rules for sessions with limited number of sess per user
 1337  *   (O_LIMIT). When they are created, the parent is
 1338  *   increased by 1, and decreased on delete. In this case,
 1339  *   the third parameter is the parent rule and not the chain.
 1340  * - "parent" rules for the above (O_LIMIT_PARENT).
 1341  */
 1342 static ipfw_dyn_rule *
 1343 add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
 1344 {
 1345         ipfw_dyn_rule *r;
 1346         int i;
 1347 
 1348         IPFW_DYN_LOCK_ASSERT();
 1349 
 1350         if (ipfw_dyn_v == NULL ||
 1351             (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
 1352                 realloc_dynamic_table();
 1353                 if (ipfw_dyn_v == NULL)
 1354                         return NULL; /* failed ! */
 1355         }
 1356         i = hash_packet(id);
 1357 
 1358         r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
 1359         if (r == NULL) {
 1360                 printf ("ipfw: sorry cannot allocate state\n");
 1361                 return NULL;
 1362         }
 1363 
 1364         /* increase refcount on parent, and set pointer */
 1365         if (dyn_type == O_LIMIT) {
 1366                 ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
 1367                 if ( parent->dyn_type != O_LIMIT_PARENT)
 1368                         panic("invalid parent");
 1369                 parent->count++;
 1370                 r->parent = parent;
 1371                 rule = parent->rule;
 1372         }
 1373 
 1374         r->id = *id;
 1375         r->expire = time_uptime + dyn_syn_lifetime;
 1376         r->rule = rule;
 1377         r->dyn_type = dyn_type;
 1378         r->pcnt = r->bcnt = 0;
 1379         r->count = 0;
 1380 
 1381         r->bucket = i;
 1382         r->next = ipfw_dyn_v[i];
 1383         ipfw_dyn_v[i] = r;
 1384         dyn_count++;
 1385         DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
 1386            dyn_type,
 1387            (r->id.src_ip), (r->id.src_port),
 1388            (r->id.dst_ip), (r->id.dst_port),
 1389            dyn_count ); )
 1390         return r;
 1391 }
 1392 
 1393 /**
 1394  * lookup dynamic parent rule using pkt and rule as search keys.
 1395  * If the lookup fails, then install one.
 1396  */
 1397 static ipfw_dyn_rule *
 1398 lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
 1399 {
 1400         ipfw_dyn_rule *q;
 1401         int i;
 1402 
 1403         IPFW_DYN_LOCK_ASSERT();
 1404 
 1405         if (ipfw_dyn_v) {
 1406                 int is_v6 = IS_IP6_FLOW_ID(pkt);
 1407                 i = hash_packet( pkt );
 1408                 for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
 1409                         if (q->dyn_type == O_LIMIT_PARENT &&
 1410                             rule== q->rule &&
 1411                             pkt->proto == q->id.proto &&
 1412                             pkt->src_port == q->id.src_port &&
 1413                             pkt->dst_port == q->id.dst_port &&
 1414                             (
 1415                                 (is_v6 &&
 1416                                  IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
 1417                                         &(q->id.src_ip6)) &&
 1418                                  IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
 1419                                         &(q->id.dst_ip6))) ||
 1420                                 (!is_v6 &&
 1421                                  pkt->src_ip == q->id.src_ip &&
 1422                                  pkt->dst_ip == q->id.dst_ip)
 1423                             )
 1424                         ) {
 1425                                 q->expire = time_uptime + dyn_short_lifetime;
 1426                                 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
 1427                                 return q;
 1428                         }
 1429         }
 1430         return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
 1431 }
 1432 
 1433 /**
 1434  * Install dynamic state for rule type cmd->o.opcode
 1435  *
 1436  * Returns 1 (failure) if state is not installed because of errors or because
 1437  * session limitations are enforced.
 1438  */
 1439 static int
 1440 install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
 1441     struct ip_fw_args *args, uint32_t tablearg)
 1442 {
 1443         static int last_log;
 1444         ipfw_dyn_rule *q;
 1445         struct in_addr da;
 1446         char src[48], dst[48];
 1447 
 1448         src[0] = '\0';
 1449         dst[0] = '\0';
 1450 
 1451         DEB(
 1452         printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
 1453             __func__, cmd->o.opcode,
 1454             (args->f_id.src_ip), (args->f_id.src_port),
 1455             (args->f_id.dst_ip), (args->f_id.dst_port));
 1456         )
 1457 
 1458         IPFW_DYN_LOCK();
 1459 
 1460         q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1461 
 1462         if (q != NULL) {        /* should never occur */
 1463                 if (last_log != time_uptime) {
 1464                         last_log = time_uptime;
 1465                         printf("ipfw: %s: entry already present, done\n",
 1466                             __func__);
 1467                 }
 1468                 IPFW_DYN_UNLOCK();
 1469                 return (0);
 1470         }
 1471 
 1472         if (dyn_count >= dyn_max)
 1473                 /* Run out of slots, try to remove any expired rule. */
 1474                 remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
 1475 
 1476         if (dyn_count >= dyn_max) {
 1477                 if (last_log != time_uptime) {
 1478                         last_log = time_uptime;
 1479                         printf("ipfw: %s: Too many dynamic rules\n", __func__);
 1480                 }
 1481                 IPFW_DYN_UNLOCK();
 1482                 return (1);     /* cannot install, notify caller */
 1483         }
 1484 
 1485         switch (cmd->o.opcode) {
 1486         case O_KEEP_STATE:      /* bidir rule */
 1487                 add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
 1488                 break;
 1489 
 1490         case O_LIMIT: {         /* limit number of sessions */
 1491                 struct ipfw_flow_id id;
 1492                 ipfw_dyn_rule *parent;
 1493                 uint32_t conn_limit;
 1494                 uint16_t limit_mask = cmd->limit_mask;
 1495 
 1496                 conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
 1497                     tablearg : cmd->conn_limit;
 1498                   
 1499                 DEB(
 1500                 if (cmd->conn_limit == IP_FW_TABLEARG)
 1501                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
 1502                             "(tablearg)\n", __func__, conn_limit);
 1503                 else
 1504                         printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
 1505                             __func__, conn_limit);
 1506                 )
 1507 
 1508                 id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
 1509                 id.proto = args->f_id.proto;
 1510                 id.addr_type = args->f_id.addr_type;
 1511                 id.fib = M_GETFIB(args->m);
 1512 
 1513                 if (IS_IP6_FLOW_ID (&(args->f_id))) {
 1514                         if (limit_mask & DYN_SRC_ADDR)
 1515                                 id.src_ip6 = args->f_id.src_ip6;
 1516                         if (limit_mask & DYN_DST_ADDR)
 1517                                 id.dst_ip6 = args->f_id.dst_ip6;
 1518                 } else {
 1519                         if (limit_mask & DYN_SRC_ADDR)
 1520                                 id.src_ip = args->f_id.src_ip;
 1521                         if (limit_mask & DYN_DST_ADDR)
 1522                                 id.dst_ip = args->f_id.dst_ip;
 1523                 }
 1524                 if (limit_mask & DYN_SRC_PORT)
 1525                         id.src_port = args->f_id.src_port;
 1526                 if (limit_mask & DYN_DST_PORT)
 1527                         id.dst_port = args->f_id.dst_port;
 1528                 if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
 1529                         printf("ipfw: %s: add parent failed\n", __func__);
 1530                         IPFW_DYN_UNLOCK();
 1531                         return (1);
 1532                 }
 1533 
 1534                 if (parent->count >= conn_limit) {
 1535                         /* See if we can remove some expired rule. */
 1536                         remove_dyn_rule(rule, parent);
 1537                         if (parent->count >= conn_limit) {
 1538                                 if (fw_verbose && last_log != time_uptime) {
 1539                                         last_log = time_uptime;
 1540 #ifdef INET6
 1541                                         /*
 1542                                          * XXX IPv6 flows are not
 1543                                          * supported yet.
 1544                                          */
 1545                                         if (IS_IP6_FLOW_ID(&(args->f_id))) {
 1546                                                 char ip6buf[INET6_ADDRSTRLEN];
 1547                                                 snprintf(src, sizeof(src),
 1548                                                     "[%s]", ip6_sprintf(ip6buf,
 1549                                                         &args->f_id.src_ip6));
 1550                                                 snprintf(dst, sizeof(dst),
 1551                                                     "[%s]", ip6_sprintf(ip6buf,
 1552                                                         &args->f_id.dst_ip6));
 1553                                         } else
 1554 #endif
 1555                                         {
 1556                                                 da.s_addr =
 1557                                                     htonl(args->f_id.src_ip);
 1558                                                 inet_ntoa_r(da, src);
 1559                                                 da.s_addr =
 1560                                                     htonl(args->f_id.dst_ip);
 1561                                                 inet_ntoa_r(da, dst);
 1562                                         }
 1563                                         log(LOG_SECURITY | LOG_DEBUG,
 1564                                             "ipfw: %d %s %s:%u -> %s:%u, %s\n",
 1565                                             parent->rule->rulenum,
 1566                                             "drop session",
 1567                                             src, (args->f_id.src_port),
 1568                                             dst, (args->f_id.dst_port),
 1569                                             "too many entries");
 1570                                 }
 1571                                 IPFW_DYN_UNLOCK();
 1572                                 return (1);
 1573                         }
 1574                 }
 1575                 add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
 1576                 break;
 1577         }
 1578         default:
 1579                 printf("ipfw: %s: unknown dynamic rule type %u\n",
 1580                     __func__, cmd->o.opcode);
 1581                 IPFW_DYN_UNLOCK();
 1582                 return (1);
 1583         }
 1584 
 1585         /* XXX just set lifetime */
 1586         lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
 1587 
 1588         IPFW_DYN_UNLOCK();
 1589         return (0);
 1590 }
 1591 
 1592 /*
 1593  * Generate a TCP packet, containing either a RST or a keepalive.
 1594  * When flags & TH_RST, we are sending a RST packet, because of a
 1595  * "reset" action matched the packet.
 1596  * Otherwise we are sending a keepalive, and flags & TH_
 1597  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
 1598  * so that MAC can label the reply appropriately.
 1599  */
 1600 static struct mbuf *
 1601 send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
 1602     u_int32_t ack, int flags)
 1603 {
 1604         struct mbuf *m;
 1605         struct ip *ip;
 1606         struct tcphdr *tcp;
 1607 
 1608         MGETHDR(m, M_DONTWAIT, MT_DATA);
 1609         if (m == 0)
 1610                 return (NULL);
 1611         m->m_pkthdr.rcvif = (struct ifnet *)0;
 1612 
 1613         M_SETFIB(m, id->fib);
 1614 #ifdef MAC
 1615         if (replyto != NULL)
 1616                 mac_create_mbuf_netlayer(replyto, m);
 1617         else
 1618                 mac_create_mbuf_from_firewall(m);
 1619 #else
 1620         (void)replyto;          /* don't warn about unused arg */
 1621 #endif
 1622 
 1623         m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
 1624         m->m_data += max_linkhdr;
 1625 
 1626         ip = mtod(m, struct ip *);
 1627         bzero(ip, m->m_len);
 1628         tcp = (struct tcphdr *)(ip + 1); /* no IP options */
 1629         ip->ip_p = IPPROTO_TCP;
 1630         tcp->th_off = 5;
 1631         /*
 1632          * Assume we are sending a RST (or a keepalive in the reverse
 1633          * direction), swap src and destination addresses and ports.
 1634          */
 1635         ip->ip_src.s_addr = htonl(id->dst_ip);
 1636         ip->ip_dst.s_addr = htonl(id->src_ip);
 1637         tcp->th_sport = htons(id->dst_port);
 1638         tcp->th_dport = htons(id->src_port);
 1639         if (flags & TH_RST) {   /* we are sending a RST */
 1640                 if (flags & TH_ACK) {
 1641                         tcp->th_seq = htonl(ack);
 1642                         tcp->th_ack = htonl(0);
 1643                         tcp->th_flags = TH_RST;
 1644                 } else {
 1645                         if (flags & TH_SYN)
 1646                                 seq++;
 1647                         tcp->th_seq = htonl(0);
 1648                         tcp->th_ack = htonl(seq);
 1649                         tcp->th_flags = TH_RST | TH_ACK;
 1650                 }
 1651         } else {
 1652                 /*
 1653                  * We are sending a keepalive. flags & TH_SYN determines
 1654                  * the direction, forward if set, reverse if clear.
 1655                  * NOTE: seq and ack are always assumed to be correct
 1656                  * as set by the caller. This may be confusing...
 1657                  */
 1658                 if (flags & TH_SYN) {
 1659                         /*
 1660                          * we have to rewrite the correct addresses!
 1661                          */
 1662                         ip->ip_dst.s_addr = htonl(id->dst_ip);
 1663                         ip->ip_src.s_addr = htonl(id->src_ip);
 1664                         tcp->th_dport = htons(id->dst_port);
 1665                         tcp->th_sport = htons(id->src_port);
 1666                 }
 1667                 tcp->th_seq = htonl(seq);
 1668                 tcp->th_ack = htonl(ack);
 1669                 tcp->th_flags = TH_ACK;
 1670         }
 1671         /*
 1672          * set ip_len to the payload size so we can compute
 1673          * the tcp checksum on the pseudoheader
 1674          * XXX check this, could save a couple of words ?
 1675          */
 1676         ip->ip_len = htons(sizeof(struct tcphdr));
 1677         tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
 1678         /*
 1679          * now fill fields left out earlier
 1680          */
 1681         ip->ip_ttl = ip_defttl;
 1682         ip->ip_len = m->m_pkthdr.len;
 1683         m->m_flags |= M_SKIP_FIREWALL;
 1684         return (m);
 1685 }
 1686 
 1687 /*
 1688  * sends a reject message, consuming the mbuf passed as an argument.
 1689  */
 1690 static void
 1691 send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
 1692 {
 1693 
 1694 #if 0
 1695         /* XXX When ip is not guaranteed to be at mtod() we will
 1696          * need to account for this */
 1697          * The mbuf will however be thrown away so we can adjust it.
 1698          * Remember we did an m_pullup on it already so we
 1699          * can make some assumptions about contiguousness.
 1700          */
 1701         if (args->L3offset)
 1702                 m_adj(m, args->L3offset);
 1703 #endif
 1704         if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
 1705                 /* We need the IP header in host order for icmp_error(). */
 1706                 if (args->eh != NULL) {
 1707                         ip->ip_len = ntohs(ip->ip_len);
 1708                         ip->ip_off = ntohs(ip->ip_off);
 1709                 }
 1710                 icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
 1711         } else if (args->f_id.proto == IPPROTO_TCP) {
 1712                 struct tcphdr *const tcp =
 1713                     L3HDR(struct tcphdr, mtod(args->m, struct ip *));
 1714                 if ( (tcp->th_flags & TH_RST) == 0) {
 1715                         struct mbuf *m;
 1716                         m = send_pkt(args->m, &(args->f_id),
 1717                                 ntohl(tcp->th_seq), ntohl(tcp->th_ack),
 1718                                 tcp->th_flags | TH_RST);
 1719                         if (m != NULL)
 1720                                 ip_output(m, NULL, NULL, 0, NULL, NULL);
 1721                 }
 1722                 m_freem(args->m);
 1723         } else
 1724                 m_freem(args->m);
 1725         args->m = NULL;
 1726 }
 1727 
 1728 /**
 1729  *
 1730  * Given an ip_fw *, lookup_next_rule will return a pointer
 1731  * to the next rule, which can be either the jump
 1732  * target (for skipto instructions) or the next one in the list (in
 1733  * all other cases including a missing jump target).
 1734  * The result is also written in the "next_rule" field of the rule.
 1735  * Backward jumps are not allowed, so start looking from the next
 1736  * rule...
 1737  *
 1738  * This never returns NULL -- in case we do not have an exact match,
 1739  * the next rule is returned. When the ruleset is changed,
 1740  * pointers are flushed so we are always correct.
 1741  */
 1742 
 1743 static struct ip_fw *
 1744 lookup_next_rule(struct ip_fw *me, u_int32_t tablearg)
 1745 {
 1746         struct ip_fw *rule = NULL;
 1747         ipfw_insn *cmd;
 1748         u_int16_t       rulenum;
 1749 
 1750         /* look for action, in case it is a skipto */
 1751         cmd = ACTION_PTR(me);
 1752         if (cmd->opcode == O_LOG)
 1753                 cmd += F_LEN(cmd);
 1754         if (cmd->opcode == O_ALTQ)
 1755                 cmd += F_LEN(cmd);
 1756         if (cmd->opcode == O_TAG)
 1757                 cmd += F_LEN(cmd);
 1758         if (cmd->opcode == O_SKIPTO ) {
 1759                 if (tablearg != 0) {
 1760                         rulenum = (u_int16_t)tablearg;
 1761                 } else {
 1762                         rulenum = cmd->arg1;
 1763                 }
 1764                 for (rule = me->next; rule ; rule = rule->next) {
 1765                         if (rule->rulenum >= rulenum) {
 1766                                 break;
 1767                         }
 1768                 }
 1769         }
 1770         if (rule == NULL)                       /* failure or not a skipto */
 1771                 rule = me->next;
 1772         me->next_rule = rule;
 1773         return rule;
 1774 }
 1775 
 1776 static int
 1777 add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
 1778     uint8_t mlen, uint32_t value)
 1779 {
 1780         struct radix_node_head *rnh;
 1781         struct table_entry *ent;
 1782         struct radix_node *rn;
 1783 
 1784         if (tbl >= IPFW_TABLES_MAX)
 1785                 return (EINVAL);
 1786         rnh = ch->tables[tbl];
 1787         ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
 1788         if (ent == NULL)
 1789                 return (ENOMEM);
 1790         ent->value = value;
 1791         ent->addr.sin_len = ent->mask.sin_len = 8;
 1792         ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1793         ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
 1794         IPFW_WLOCK(ch);
 1795         rn = rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent);
 1796         if (rn == NULL) {
 1797                 IPFW_WUNLOCK(ch);
 1798                 free(ent, M_IPFW_TBL);
 1799                 return (EEXIST);
 1800         }
 1801         IPFW_WUNLOCK(ch);
 1802         return (0);
 1803 }
 1804 
 1805 static int
 1806 del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
 1807     uint8_t mlen)
 1808 {
 1809         struct radix_node_head *rnh;
 1810         struct table_entry *ent;
 1811         struct sockaddr_in sa, mask;
 1812 
 1813         if (tbl >= IPFW_TABLES_MAX)
 1814                 return (EINVAL);
 1815         rnh = ch->tables[tbl];
 1816         sa.sin_len = mask.sin_len = 8;
 1817         mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
 1818         sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
 1819         IPFW_WLOCK(ch);
 1820         ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
 1821         if (ent == NULL) {
 1822                 IPFW_WUNLOCK(ch);
 1823                 return (ESRCH);
 1824         }
 1825         IPFW_WUNLOCK(ch);
 1826         free(ent, M_IPFW_TBL);
 1827         return (0);
 1828 }
 1829 
 1830 static int
 1831 flush_table_entry(struct radix_node *rn, void *arg)
 1832 {
 1833         struct radix_node_head * const rnh = arg;
 1834         struct table_entry *ent;
 1835 
 1836         ent = (struct table_entry *)
 1837             rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
 1838         if (ent != NULL)
 1839                 free(ent, M_IPFW_TBL);
 1840         return (0);
 1841 }
 1842 
 1843 static int
 1844 flush_table(struct ip_fw_chain *ch, uint16_t tbl)
 1845 {
 1846         struct radix_node_head *rnh;
 1847 
 1848         IPFW_WLOCK_ASSERT(ch);
 1849 
 1850         if (tbl >= IPFW_TABLES_MAX)
 1851                 return (EINVAL);
 1852         rnh = ch->tables[tbl];
 1853         KASSERT(rnh != NULL, ("NULL IPFW table"));
 1854         rnh->rnh_walktree(rnh, flush_table_entry, rnh);
 1855         return (0);
 1856 }
 1857 
 1858 static void
 1859 flush_tables(struct ip_fw_chain *ch)
 1860 {
 1861         uint16_t tbl;
 1862 
 1863         IPFW_WLOCK_ASSERT(ch);
 1864 
 1865         for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
 1866                 flush_table(ch, tbl);
 1867 }
 1868 
 1869 static int
 1870 init_tables(struct ip_fw_chain *ch)
 1871 { 
 1872         int i;
 1873         uint16_t j;
 1874 
 1875         for (i = 0; i < IPFW_TABLES_MAX; i++) {
 1876                 if (!rn_inithead((void **)&ch->tables[i], 32)) {
 1877                         for (j = 0; j < i; j++) {
 1878                                 (void) flush_table(ch, j);
 1879                         }
 1880                         return (ENOMEM);
 1881                 }
 1882         }
 1883         return (0);
 1884 }
 1885 
 1886 static int
 1887 lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
 1888     uint32_t *val)
 1889 {
 1890         struct radix_node_head *rnh;
 1891         struct table_entry *ent;
 1892         struct sockaddr_in sa;
 1893 
 1894         if (tbl >= IPFW_TABLES_MAX)
 1895                 return (0);
 1896         rnh = ch->tables[tbl];
 1897         sa.sin_len = 8;
 1898         sa.sin_addr.s_addr = addr;
 1899         ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
 1900         if (ent != NULL) {
 1901                 *val = ent->value;
 1902                 return (1);
 1903         }
 1904         return (0);
 1905 }
 1906 
 1907 static int
 1908 count_table_entry(struct radix_node *rn, void *arg)
 1909 {
 1910         u_int32_t * const cnt = arg;
 1911 
 1912         (*cnt)++;
 1913         return (0);
 1914 }
 1915 
 1916 static int
 1917 count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
 1918 {
 1919         struct radix_node_head *rnh;
 1920 
 1921         if (tbl >= IPFW_TABLES_MAX)
 1922                 return (EINVAL);
 1923         rnh = ch->tables[tbl];
 1924         *cnt = 0;
 1925         rnh->rnh_walktree(rnh, count_table_entry, cnt);
 1926         return (0);
 1927 }
 1928 
 1929 static int
 1930 dump_table_entry(struct radix_node *rn, void *arg)
 1931 {
 1932         struct table_entry * const n = (struct table_entry *)rn;
 1933         ipfw_table * const tbl = arg;
 1934         ipfw_table_entry *ent;
 1935 
 1936         if (tbl->cnt == tbl->size)
 1937                 return (1);
 1938         ent = &tbl->ent[tbl->cnt];
 1939         ent->tbl = tbl->tbl;
 1940         if (in_nullhost(n->mask.sin_addr))
 1941                 ent->masklen = 0;
 1942         else
 1943                 ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
 1944         ent->addr = n->addr.sin_addr.s_addr;
 1945         ent->value = n->value;
 1946         tbl->cnt++;
 1947         return (0);
 1948 }
 1949 
 1950 static int
 1951 dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
 1952 {
 1953         struct radix_node_head *rnh;
 1954 
 1955         if (tbl->tbl >= IPFW_TABLES_MAX)
 1956                 return (EINVAL);
 1957         rnh = ch->tables[tbl->tbl];
 1958         tbl->cnt = 0;
 1959         rnh->rnh_walktree(rnh, dump_table_entry, tbl);
 1960         return (0);
 1961 }
 1962 
 1963 static void
 1964 fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
 1965 {
 1966         struct ucred *cr;
 1967 
 1968         cr = inp->inp_cred;
 1969         ugp->fw_prid = jailed(cr) ? cr->cr_prison->pr_id : -1;
 1970         ugp->fw_uid = cr->cr_uid;
 1971         ugp->fw_ngroups = cr->cr_ngroups;
 1972         bcopy(cr->cr_groups, ugp->fw_groups, sizeof(ugp->fw_groups));
 1973 }
 1974 
 1975 static int
 1976 check_uidgid(ipfw_insn_u32 *insn, int proto, struct ifnet *oif,
 1977     struct in_addr dst_ip, u_int16_t dst_port, struct in_addr src_ip,
 1978     u_int16_t src_port, struct ip_fw_ugid *ugp, int *ugid_lookupp,
 1979     struct inpcb *inp)
 1980 {
 1981         struct inpcbinfo *pi;
 1982         int wildcard;
 1983         struct inpcb *pcb;
 1984         int match;
 1985         gid_t *gp;
 1986 
 1987         /*
 1988          * Check to see if the UDP or TCP stack supplied us with
 1989          * the PCB. If so, rather then holding a lock and looking
 1990          * up the PCB, we can use the one that was supplied.
 1991          */
 1992         if (inp && *ugid_lookupp == 0) {
 1993                 INP_LOCK_ASSERT(inp);
 1994                 if (inp->inp_socket != NULL) {
 1995                         fill_ugid_cache(inp, ugp);
 1996                         *ugid_lookupp = 1;
 1997                 } else
 1998                         *ugid_lookupp = -1;
 1999         }
 2000         /*
 2001          * If we have already been here and the packet has no
 2002          * PCB entry associated with it, then we can safely
 2003          * assume that this is a no match.
 2004          */
 2005         if (*ugid_lookupp == -1)
 2006                 return (0);
 2007         if (proto == IPPROTO_TCP) {
 2008                 wildcard = 0;
 2009                 pi = &tcbinfo;
 2010         } else if (proto == IPPROTO_UDP) {
 2011                 wildcard = INPLOOKUP_WILDCARD;
 2012                 pi = &udbinfo;
 2013         } else
 2014                 return 0;
 2015         match = 0;
 2016         if (*ugid_lookupp == 0) {
 2017                 INP_INFO_RLOCK(pi);
 2018                 pcb =  (oif) ?
 2019                         in_pcblookup_hash(pi,
 2020                                 dst_ip, htons(dst_port),
 2021                                 src_ip, htons(src_port),
 2022                                 wildcard, oif) :
 2023                         in_pcblookup_hash(pi,
 2024                                 src_ip, htons(src_port),
 2025                                 dst_ip, htons(dst_port),
 2026                                 wildcard, NULL);
 2027                 if (pcb != NULL) {
 2028                         fill_ugid_cache(pcb, ugp);
 2029                         *ugid_lookupp = 1;
 2030                 }
 2031                 INP_INFO_RUNLOCK(pi);
 2032                 if (*ugid_lookupp == 0) {
 2033                         /*
 2034                          * If the lookup did not yield any results, there
 2035                          * is no sense in coming back and trying again. So
 2036                          * we can set lookup to -1 and ensure that we wont
 2037                          * bother the pcb system again.
 2038                          */
 2039                         *ugid_lookupp = -1;
 2040                         return (0);
 2041                 }
 2042         } 
 2043         if (insn->o.opcode == O_UID)
 2044                 match = (ugp->fw_uid == (uid_t)insn->d[0]);
 2045         else if (insn->o.opcode == O_GID) {
 2046                 for (gp = ugp->fw_groups;
 2047                         gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
 2048                         if (*gp == (gid_t)insn->d[0]) {
 2049                                 match = 1;
 2050                                 break;
 2051                         }
 2052         } else if (insn->o.opcode == O_JAIL)
 2053                 match = (ugp->fw_prid == (int)insn->d[0]);
 2054         return match;
 2055 }
 2056 
 2057 /*
 2058  * The main check routine for the firewall.
 2059  *
 2060  * All arguments are in args so we can modify them and return them
 2061  * back to the caller.
 2062  *
 2063  * Parameters:
 2064  *
 2065  *      args->m (in/out) The packet; we set to NULL when/if we nuke it.
 2066  *              Starts with the IP header.
 2067  *      args->eh (in)   Mac header if present, or NULL for layer3 packet.
 2068  *      args->L3offset  Number of bytes bypassed if we came from L2.
 2069  *                      e.g. often sizeof(eh)  ** NOTYET **
 2070  *      args->oif       Outgoing interface, or NULL if packet is incoming.
 2071  *              The incoming interface is in the mbuf. (in)
 2072  *      args->divert_rule (in/out)
 2073  *              Skip up to the first rule past this rule number;
 2074  *              upon return, non-zero port number for divert or tee.
 2075  *
 2076  *      args->rule      Pointer to the last matching rule (in/out)
 2077  *      args->next_hop  Socket we are forwarding to (out).
 2078  *      args->f_id      Addresses grabbed from the packet (out)
 2079  *      args->cookie    a cookie depending on rule action
 2080  *
 2081  * Return value:
 2082  *
 2083  *      IP_FW_PASS      the packet must be accepted
 2084  *      IP_FW_DENY      the packet must be dropped
 2085  *      IP_FW_DIVERT    divert packet, port in m_tag
 2086  *      IP_FW_TEE       tee packet, port in m_tag
 2087  *      IP_FW_DUMMYNET  to dummynet, pipe in args->cookie
 2088  *      IP_FW_NETGRAPH  into netgraph, cookie args->cookie
 2089  *
 2090  */
 2091 int
 2092 ipfw_chk(struct ip_fw_args *args)
 2093 {
 2094         /*
 2095          * Local variables holding state during the processing of a packet:
 2096          *
 2097          * IMPORTANT NOTE: to speed up the processing of rules, there
 2098          * are some assumption on the values of the variables, which
 2099          * are documented here. Should you change them, please check
 2100          * the implementation of the various instructions to make sure
 2101          * that they still work.
 2102          *
 2103          * args->eh     The MAC header. It is non-null for a layer2
 2104          *      packet, it is NULL for a layer-3 packet.
 2105          * **notyet**
 2106          * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
 2107          *
 2108          * m | args->m  Pointer to the mbuf, as received from the caller.
 2109          *      It may change if ipfw_chk() does an m_pullup, or if it
 2110          *      consumes the packet because it calls send_reject().
 2111          *      XXX This has to change, so that ipfw_chk() never modifies
 2112          *      or consumes the buffer.
 2113          * ip   is the beginning of the ip(4 or 6) header.
 2114          *      Calculated by adding the L3offset to the start of data.
 2115          *      (Until we start using L3offset, the packet is
 2116          *      supposed to start with the ip header).
 2117          */
 2118         struct mbuf *m = args->m;
 2119         struct ip *ip = mtod(m, struct ip *);
 2120 
 2121         /*
 2122          * For rules which contain uid/gid or jail constraints, cache
 2123          * a copy of the users credentials after the pcb lookup has been
 2124          * executed. This will speed up the processing of rules with
 2125          * these types of constraints, as well as decrease contention
 2126          * on pcb related locks.
 2127          */
 2128         struct ip_fw_ugid fw_ugid_cache;
 2129         int ugid_lookup = 0;
 2130 
 2131         /*
 2132          * divinput_flags       If non-zero, set to the IP_FW_DIVERT_*_FLAG
 2133          *      associated with a packet input on a divert socket.  This
 2134          *      will allow to distinguish traffic and its direction when
 2135          *      it originates from a divert socket.
 2136          */
 2137         u_int divinput_flags = 0;
 2138 
 2139         /*
 2140          * oif | args->oif      If NULL, ipfw_chk has been called on the
 2141          *      inbound path (ether_input, ip_input).
 2142          *      If non-NULL, ipfw_chk has been called on the outbound path
 2143          *      (ether_output, ip_output).
 2144          */
 2145         struct ifnet *oif = args->oif;
 2146 
 2147         struct ip_fw *f = NULL;         /* matching rule */
 2148         int retval = 0;
 2149 
 2150         /*
 2151          * hlen The length of the IP header.
 2152          */
 2153         u_int hlen = 0;         /* hlen >0 means we have an IP pkt */
 2154 
 2155         /*
 2156          * offset       The offset of a fragment. offset != 0 means that
 2157          *      we have a fragment at this offset of an IPv4 packet.
 2158          *      offset == 0 means that (if this is an IPv4 packet)
 2159          *      this is the first or only fragment.
 2160          *      For IPv6 offset == 0 means there is no Fragment Header. 
 2161          *      If offset != 0 for IPv6 always use correct mask to
 2162          *      get the correct offset because we add IP6F_MORE_FRAG
 2163          *      to be able to dectect the first fragment which would
 2164          *      otherwise have offset = 0.
 2165          */
 2166         u_short offset = 0;
 2167 
 2168         /*
 2169          * Local copies of addresses. They are only valid if we have
 2170          * an IP packet.
 2171          *
 2172          * proto        The protocol. Set to 0 for non-ip packets,
 2173          *      or to the protocol read from the packet otherwise.
 2174          *      proto != 0 means that we have an IPv4 packet.
 2175          *
 2176          * src_port, dst_port   port numbers, in HOST format. Only
 2177          *      valid for TCP and UDP packets.
 2178          *
 2179          * src_ip, dst_ip       ip addresses, in NETWORK format.
 2180          *      Only valid for IPv4 packets.
 2181          */
 2182         u_int8_t proto;
 2183         u_int16_t src_port = 0, dst_port = 0;   /* NOTE: host format    */
 2184         struct in_addr src_ip, dst_ip;          /* NOTE: network format */
 2185         u_int16_t ip_len=0;
 2186         int pktlen;
 2187         u_int16_t       etype = 0;      /* Host order stored ether type */
 2188 
 2189         /*
 2190          * dyn_dir = MATCH_UNKNOWN when rules unchecked,
 2191          *      MATCH_NONE when checked and not matched (q = NULL),
 2192          *      MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
 2193          */
 2194         int dyn_dir = MATCH_UNKNOWN;
 2195         ipfw_dyn_rule *q = NULL;
 2196         struct ip_fw_chain *chain = &layer3_chain;
 2197         struct m_tag *mtag;
 2198 
 2199         /*
 2200          * We store in ulp a pointer to the upper layer protocol header.
 2201          * In the ipv4 case this is easy to determine from the header,
 2202          * but for ipv6 we might have some additional headers in the middle.
 2203          * ulp is NULL if not found.
 2204          */
 2205         void *ulp = NULL;               /* upper layer protocol pointer. */
 2206         /* XXX ipv6 variables */
 2207         int is_ipv6 = 0;
 2208         u_int16_t ext_hd = 0;   /* bits vector for extension header filtering */
 2209         /* end of ipv6 variables */
 2210         int is_ipv4 = 0;
 2211 
 2212         if (m->m_flags & M_SKIP_FIREWALL)
 2213                 return (IP_FW_PASS);    /* accept */
 2214 
 2215         dst_ip.s_addr = 0;              /* make sure it is initialized */
 2216         src_ip.s_addr = 0;              /* make sure it is initialized */
 2217         pktlen = m->m_pkthdr.len;
 2218         args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
 2219         proto = args->f_id.proto = 0;   /* mark f_id invalid */
 2220                 /* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
 2221 
 2222 /*
 2223  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
 2224  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
 2225  * pointer might become stale after other pullups (but we never use it
 2226  * this way).
 2227  */
 2228 #define PULLUP_TO(_len, p, T)                                           \
 2229 do {                                                                    \
 2230         int x = (_len) + sizeof(T);                                     \
 2231         if ((m)->m_len < x) {                                           \
 2232                 args->m = m = m_pullup(m, x);                           \
 2233                 if (m == NULL)                                          \
 2234                         goto pullup_failed;                             \
 2235         }                                                               \
 2236         p = (mtod(m, char *) + (_len));                                 \
 2237 } while (0)
 2238 
 2239         /*
 2240          * if we have an ether header,
 2241          */
 2242         if (args->eh)
 2243                 etype = ntohs(args->eh->ether_type);
 2244 
 2245         /* Identify IP packets and fill up variables. */
 2246         if (pktlen >= sizeof(struct ip6_hdr) &&
 2247             (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
 2248                 struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
 2249                 is_ipv6 = 1;
 2250                 args->f_id.addr_type = 6;
 2251                 hlen = sizeof(struct ip6_hdr);
 2252                 proto = ip6->ip6_nxt;
 2253 
 2254                 /* Search extension headers to find upper layer protocols */
 2255                 while (ulp == NULL) {
 2256                         switch (proto) {
 2257                         case IPPROTO_ICMPV6:
 2258                                 PULLUP_TO(hlen, ulp, struct icmp6_hdr);
 2259                                 args->f_id.flags = ICMP6(ulp)->icmp6_type;
 2260                                 break;
 2261 
 2262                         case IPPROTO_TCP:
 2263                                 PULLUP_TO(hlen, ulp, struct tcphdr);
 2264                                 dst_port = TCP(ulp)->th_dport;
 2265                                 src_port = TCP(ulp)->th_sport;
 2266                                 args->f_id.flags = TCP(ulp)->th_flags;
 2267                                 break;
 2268 
 2269                         case IPPROTO_SCTP:
 2270                                 PULLUP_TO(hlen, ulp, struct sctphdr);
 2271                                 src_port = SCTP(ulp)->src_port;
 2272                                 dst_port = SCTP(ulp)->dest_port;
 2273                                 break;
 2274 
 2275                         case IPPROTO_UDP:
 2276                                 PULLUP_TO(hlen, ulp, struct udphdr);
 2277                                 dst_port = UDP(ulp)->uh_dport;
 2278                                 src_port = UDP(ulp)->uh_sport;
 2279                                 break;
 2280 
 2281                         case IPPROTO_HOPOPTS:   /* RFC 2460 */
 2282                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
 2283                                 ext_hd |= EXT_HOPOPTS;
 2284                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
 2285                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
 2286                                 ulp = NULL;
 2287                                 break;
 2288 
 2289                         case IPPROTO_ROUTING:   /* RFC 2460 */
 2290                                 PULLUP_TO(hlen, ulp, struct ip6_rthdr);
 2291                                 switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
 2292                                 case 0:
 2293                                         ext_hd |= EXT_RTHDR0;
 2294                                         break;
 2295                                 case 2:
 2296                                         ext_hd |= EXT_RTHDR2;
 2297                                         break;
 2298                                 default:
 2299                                         printf("IPFW2: IPV6 - Unknown Routing "
 2300                                             "Header type(%d)\n",
 2301                                             ((struct ip6_rthdr *)ulp)->ip6r_type);
 2302                                         if (fw_deny_unknown_exthdrs)
 2303                                             return (IP_FW_DENY);
 2304                                         break;
 2305                                 }
 2306                                 ext_hd |= EXT_ROUTING;
 2307                                 hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
 2308                                 proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
 2309                                 ulp = NULL;
 2310                                 break;
 2311 
 2312                         case IPPROTO_FRAGMENT:  /* RFC 2460 */
 2313                                 PULLUP_TO(hlen, ulp, struct ip6_frag);
 2314                                 ext_hd |= EXT_FRAGMENT;
 2315                                 hlen += sizeof (struct ip6_frag);
 2316                                 proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
 2317                                 offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
 2318                                         IP6F_OFF_MASK;
 2319                                 /* Add IP6F_MORE_FRAG for offset of first
 2320                                  * fragment to be != 0. */
 2321                                 offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
 2322                                         IP6F_MORE_FRAG;
 2323                                 if (offset == 0) {
 2324                                         printf("IPFW2: IPV6 - Invalid Fragment "
 2325                                             "Header\n");
 2326                                         if (fw_deny_unknown_exthdrs)
 2327                                             return (IP_FW_DENY);
 2328                                         break;
 2329                                 }
 2330                                 args->f_id.frag_id6 =
 2331                                     ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
 2332                                 ulp = NULL;
 2333                                 break;
 2334 
 2335                         case IPPROTO_DSTOPTS:   /* RFC 2460 */
 2336                                 PULLUP_TO(hlen, ulp, struct ip6_hbh);
 2337                                 ext_hd |= EXT_DSTOPTS;
 2338                                 hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
 2339                                 proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
 2340                                 ulp = NULL;
 2341                                 break;
 2342 
 2343                         case IPPROTO_AH:        /* RFC 2402 */
 2344                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2345                                 ext_hd |= EXT_AH;
 2346                                 hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
 2347                                 proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
 2348                                 ulp = NULL;
 2349                                 break;
 2350 
 2351                         case IPPROTO_ESP:       /* RFC 2406 */
 2352                                 PULLUP_TO(hlen, ulp, uint32_t); /* SPI, Seq# */
 2353                                 /* Anything past Seq# is variable length and
 2354                                  * data past this ext. header is encrypted. */
 2355                                 ext_hd |= EXT_ESP;
 2356                                 break;
 2357 
 2358                         case IPPROTO_NONE:      /* RFC 2460 */
 2359                                 /*
 2360                                  * Packet ends here, and IPv6 header has
 2361                                  * already been pulled up. If ip6e_len!=0
 2362                                  * then octets must be ignored.
 2363                                  */
 2364                                 ulp = ip; /* non-NULL to get out of loop. */
 2365                                 break;
 2366 
 2367                         case IPPROTO_OSPFIGP:
 2368                                 /* XXX OSPF header check? */
 2369                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2370                                 break;
 2371 
 2372                         case IPPROTO_PIM:
 2373                                 /* XXX PIM header check? */
 2374                                 PULLUP_TO(hlen, ulp, struct pim);
 2375                                 break;
 2376 
 2377                         case IPPROTO_CARP:
 2378                                 PULLUP_TO(hlen, ulp, struct carp_header);
 2379                                 if (((struct carp_header *)ulp)->carp_version !=
 2380                                     CARP_VERSION) 
 2381                                         return (IP_FW_DENY);
 2382                                 if (((struct carp_header *)ulp)->carp_type !=
 2383                                     CARP_ADVERTISEMENT) 
 2384                                         return (IP_FW_DENY);
 2385                                 break;
 2386 
 2387                         case IPPROTO_IPV6:      /* RFC 2893 */
 2388                                 PULLUP_TO(hlen, ulp, struct ip6_hdr);
 2389                                 break;
 2390 
 2391                         case IPPROTO_IPV4:      /* RFC 2893 */
 2392                                 PULLUP_TO(hlen, ulp, struct ip);
 2393                                 break;
 2394 
 2395                         default:
 2396                                 printf("IPFW2: IPV6 - Unknown Extension "
 2397                                     "Header(%d), ext_hd=%x\n", proto, ext_hd);
 2398                                 if (fw_deny_unknown_exthdrs)
 2399                                     return (IP_FW_DENY);
 2400                                 PULLUP_TO(hlen, ulp, struct ip6_ext);
 2401                                 break;
 2402                         } /*switch */
 2403                 }
 2404                 ip = mtod(m, struct ip *);
 2405                 ip6 = (struct ip6_hdr *)ip;
 2406                 args->f_id.src_ip6 = ip6->ip6_src;
 2407                 args->f_id.dst_ip6 = ip6->ip6_dst;
 2408                 args->f_id.src_ip = 0;
 2409                 args->f_id.dst_ip = 0;
 2410                 args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
 2411         } else if (pktlen >= sizeof(struct ip) &&
 2412             (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
 2413                 is_ipv4 = 1;
 2414                 hlen = ip->ip_hl << 2;
 2415                 args->f_id.addr_type = 4;
 2416 
 2417                 /*
 2418                  * Collect parameters into local variables for faster matching.
 2419                  */
 2420                 proto = ip->ip_p;
 2421                 src_ip = ip->ip_src;
 2422                 dst_ip = ip->ip_dst;
 2423                 if (args->eh != NULL) { /* layer 2 packets are as on the wire */
 2424                         offset = ntohs(ip->ip_off) & IP_OFFMASK;
 2425                         ip_len = ntohs(ip->ip_len);
 2426                 } else {
 2427                         offset = ip->ip_off & IP_OFFMASK;
 2428                         ip_len = ip->ip_len;
 2429                 }
 2430                 pktlen = ip_len < pktlen ? ip_len : pktlen;
 2431 
 2432                 if (offset == 0) {
 2433                         switch (proto) {
 2434                         case IPPROTO_TCP:
 2435                                 PULLUP_TO(hlen, ulp, struct tcphdr);
 2436                                 dst_port = TCP(ulp)->th_dport;
 2437                                 src_port = TCP(ulp)->th_sport;
 2438                                 args->f_id.flags = TCP(ulp)->th_flags;
 2439                                 break;
 2440 
 2441                         case IPPROTO_UDP:
 2442                                 PULLUP_TO(hlen, ulp, struct udphdr);
 2443                                 dst_port = UDP(ulp)->uh_dport;
 2444                                 src_port = UDP(ulp)->uh_sport;
 2445                                 break;
 2446 
 2447                         case IPPROTO_ICMP:
 2448                                 PULLUP_TO(hlen, ulp, struct icmphdr);
 2449                                 args->f_id.flags = ICMP(ulp)->icmp_type;
 2450                                 break;
 2451 
 2452                         default:
 2453                                 break;
 2454                         }
 2455                 }
 2456 
 2457                 ip = mtod(m, struct ip *);
 2458                 args->f_id.src_ip = ntohl(src_ip.s_addr);
 2459                 args->f_id.dst_ip = ntohl(dst_ip.s_addr);
 2460         }
 2461 #undef PULLUP_TO
 2462         if (proto) { /* we may have port numbers, store them */
 2463                 args->f_id.proto = proto;
 2464                 args->f_id.src_port = src_port = ntohs(src_port);
 2465                 args->f_id.dst_port = dst_port = ntohs(dst_port);
 2466         }
 2467 
 2468         IPFW_RLOCK(chain);
 2469         mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
 2470         if (args->rule) {
 2471                 /*
 2472                  * Packet has already been tagged. Look for the next rule
 2473                  * to restart processing.
 2474                  *
 2475                  * If fw_one_pass != 0 then just accept it.
 2476                  * XXX should not happen here, but optimized out in
 2477                  * the caller.
 2478                  */
 2479                 if (fw_one_pass) {
 2480                         IPFW_RUNLOCK(chain);
 2481                         return (IP_FW_PASS);
 2482                 }
 2483 
 2484                 f = args->rule->next_rule;
 2485                 if (f == NULL)
 2486                         f = lookup_next_rule(args->rule, 0);
 2487         } else {
 2488                 /*
 2489                  * Find the starting rule. It can be either the first
 2490                  * one, or the one after divert_rule if asked so.
 2491                  */
 2492                 int skipto = mtag ? divert_cookie(mtag) : 0;
 2493 
 2494                 f = chain->rules;
 2495                 if (args->eh == NULL && skipto != 0) {
 2496                         if (skipto >= IPFW_DEFAULT_RULE) {
 2497                                 IPFW_RUNLOCK(chain);
 2498                                 return (IP_FW_DENY); /* invalid */
 2499                         }
 2500                         while (f && f->rulenum <= skipto)
 2501                                 f = f->next;
 2502                         if (f == NULL) {        /* drop packet */
 2503                                 IPFW_RUNLOCK(chain);
 2504                                 return (IP_FW_DENY);
 2505                         }
 2506                 }
 2507         }
 2508         /* reset divert rule to avoid confusion later */
 2509         if (mtag) {
 2510                 divinput_flags = divert_info(mtag) &
 2511                     (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
 2512                 m_tag_delete(m, mtag);
 2513         }
 2514 
 2515         /*
 2516          * Now scan the rules, and parse microinstructions for each rule.
 2517          */
 2518         for (; f; f = f->next) {
 2519                 ipfw_insn *cmd;
 2520                 uint32_t tablearg = 0;
 2521                 int l, cmdlen, skip_or; /* skip rest of OR block */
 2522 
 2523 again:
 2524                 if (set_disable & (1 << f->set) )
 2525                         continue;
 2526 
 2527                 skip_or = 0;
 2528                 for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
 2529                     l -= cmdlen, cmd += cmdlen) {
 2530                         int match;
 2531 
 2532                         /*
 2533                          * check_body is a jump target used when we find a
 2534                          * CHECK_STATE, and need to jump to the body of
 2535                          * the target rule.
 2536                          */
 2537 
 2538 check_body:
 2539                         cmdlen = F_LEN(cmd);
 2540                         /*
 2541                          * An OR block (insn_1 || .. || insn_n) has the
 2542                          * F_OR bit set in all but the last instruction.
 2543                          * The first match will set "skip_or", and cause
 2544                          * the following instructions to be skipped until
 2545                          * past the one with the F_OR bit clear.
 2546                          */
 2547                         if (skip_or) {          /* skip this instruction */
 2548                                 if ((cmd->len & F_OR) == 0)
 2549                                         skip_or = 0;    /* next one is good */
 2550                                 continue;
 2551                         }
 2552                         match = 0; /* set to 1 if we succeed */
 2553 
 2554                         switch (cmd->opcode) {
 2555                         /*
 2556                          * The first set of opcodes compares the packet's
 2557                          * fields with some pattern, setting 'match' if a
 2558                          * match is found. At the end of the loop there is
 2559                          * logic to deal with F_NOT and F_OR flags associated
 2560                          * with the opcode.
 2561                          */
 2562                         case O_NOP:
 2563                                 match = 1;
 2564                                 break;
 2565 
 2566                         case O_FORWARD_MAC:
 2567                                 printf("ipfw: opcode %d unimplemented\n",
 2568                                     cmd->opcode);
 2569                                 break;
 2570 
 2571                         case O_GID:
 2572                         case O_UID:
 2573                         case O_JAIL:
 2574                                 /*
 2575                                  * We only check offset == 0 && proto != 0,
 2576                                  * as this ensures that we have a
 2577                                  * packet with the ports info.
 2578                                  */
 2579                                 if (offset!=0)
 2580                                         break;
 2581                                 if (is_ipv6) /* XXX to be fixed later */
 2582                                         break;
 2583                                 if (proto == IPPROTO_TCP ||
 2584                                     proto == IPPROTO_UDP)
 2585                                         match = check_uidgid(
 2586                                                     (ipfw_insn_u32 *)cmd,
 2587                                                     proto, oif,
 2588                                                     dst_ip, dst_port,
 2589                                                     src_ip, src_port, &fw_ugid_cache,
 2590                                                     &ugid_lookup, args->inp);
 2591                                 break;
 2592 
 2593                         case O_RECV:
 2594                                 match = iface_match(m->m_pkthdr.rcvif,
 2595                                     (ipfw_insn_if *)cmd);
 2596                                 break;
 2597 
 2598                         case O_XMIT:
 2599                                 match = iface_match(oif, (ipfw_insn_if *)cmd);
 2600                                 break;
 2601 
 2602                         case O_VIA:
 2603                                 match = iface_match(oif ? oif :
 2604                                     m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
 2605                                 break;
 2606 
 2607                         case O_MACADDR2:
 2608                                 if (args->eh != NULL) { /* have MAC header */
 2609                                         u_int32_t *want = (u_int32_t *)
 2610                                                 ((ipfw_insn_mac *)cmd)->addr;
 2611                                         u_int32_t *mask = (u_int32_t *)
 2612                                                 ((ipfw_insn_mac *)cmd)->mask;
 2613                                         u_int32_t *hdr = (u_int32_t *)args->eh;
 2614 
 2615                                         match =
 2616                                             ( want[0] == (hdr[0] & mask[0]) &&
 2617                                               want[1] == (hdr[1] & mask[1]) &&
 2618                                               want[2] == (hdr[2] & mask[2]) );
 2619                                 }
 2620                                 break;
 2621 
 2622                         case O_MAC_TYPE:
 2623                                 if (args->eh != NULL) {
 2624                                         u_int16_t *p =
 2625                                             ((ipfw_insn_u16 *)cmd)->ports;
 2626                                         int i;
 2627 
 2628                                         for (i = cmdlen - 1; !match && i>0;
 2629                                             i--, p += 2)
 2630                                                 match = (etype >= p[0] &&
 2631                                                     etype <= p[1]);
 2632                                 }
 2633                                 break;
 2634 
 2635                         case O_FRAG:
 2636                                 match = (offset != 0);
 2637                                 break;
 2638 
 2639                         case O_IN:      /* "out" is "not in" */
 2640                                 match = (oif == NULL);
 2641                                 break;
 2642 
 2643                         case O_LAYER2:
 2644                                 match = (args->eh != NULL);
 2645                                 break;
 2646 
 2647                         case O_DIVERTED:
 2648                                 match = (cmd->arg1 & 1 && divinput_flags &
 2649                                     IP_FW_DIVERT_LOOPBACK_FLAG) ||
 2650                                         (cmd->arg1 & 2 && divinput_flags &
 2651                                     IP_FW_DIVERT_OUTPUT_FLAG);
 2652                                 break;
 2653 
 2654                         case O_PROTO:
 2655                                 /*
 2656                                  * We do not allow an arg of 0 so the
 2657                                  * check of "proto" only suffices.
 2658                                  */
 2659                                 match = (proto == cmd->arg1);
 2660                                 break;
 2661 
 2662                         case O_IP_SRC:
 2663                                 match = is_ipv4 &&
 2664                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2665                                     src_ip.s_addr);
 2666                                 break;
 2667 
 2668                         case O_IP_SRC_LOOKUP:
 2669                         case O_IP_DST_LOOKUP:
 2670                                 if (is_ipv4) {
 2671                                     uint32_t a =
 2672                                         (cmd->opcode == O_IP_DST_LOOKUP) ?
 2673                                             dst_ip.s_addr : src_ip.s_addr;
 2674                                     uint32_t v = 0;
 2675 
 2676                                     match = lookup_table(chain, cmd->arg1, a,
 2677                                         &v);
 2678                                     if (!match)
 2679                                         break;
 2680                                     if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
 2681                                         match =
 2682                                             ((ipfw_insn_u32 *)cmd)->d[0] == v;
 2683                                     else
 2684                                         tablearg = v;
 2685                                 }
 2686                                 break;
 2687 
 2688                         case O_IP_SRC_MASK:
 2689                         case O_IP_DST_MASK:
 2690                                 if (is_ipv4) {
 2691                                     uint32_t a =
 2692                                         (cmd->opcode == O_IP_DST_MASK) ?
 2693                                             dst_ip.s_addr : src_ip.s_addr;
 2694                                     uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
 2695                                     int i = cmdlen-1;
 2696 
 2697                                     for (; !match && i>0; i-= 2, p+= 2)
 2698                                         match = (p[0] == (a & p[1]));
 2699                                 }
 2700                                 break;
 2701 
 2702                         case O_IP_SRC_ME:
 2703                                 if (is_ipv4) {
 2704                                         struct ifnet *tif;
 2705 
 2706                                         INADDR_TO_IFP(src_ip, tif);
 2707                                         match = (tif != NULL);
 2708                                 }
 2709                                 break;
 2710 
 2711                         case O_IP_DST_SET:
 2712                         case O_IP_SRC_SET:
 2713                                 if (is_ipv4) {
 2714                                         u_int32_t *d = (u_int32_t *)(cmd+1);
 2715                                         u_int32_t addr =
 2716                                             cmd->opcode == O_IP_DST_SET ?
 2717                                                 args->f_id.dst_ip :
 2718                                                 args->f_id.src_ip;
 2719 
 2720                                             if (addr < d[0])
 2721                                                     break;
 2722                                             addr -= d[0]; /* subtract base */
 2723                                             match = (addr < cmd->arg1) &&
 2724                                                 ( d[ 1 + (addr>>5)] &
 2725                                                   (1<<(addr & 0x1f)) );
 2726                                 }
 2727                                 break;
 2728 
 2729                         case O_IP_DST:
 2730                                 match = is_ipv4 &&
 2731                                     (((ipfw_insn_ip *)cmd)->addr.s_addr ==
 2732                                     dst_ip.s_addr);
 2733                                 break;
 2734 
 2735                         case O_IP_DST_ME:
 2736                                 if (is_ipv4) {
 2737                                         struct ifnet *tif;
 2738 
 2739                                         INADDR_TO_IFP(dst_ip, tif);
 2740                                         match = (tif != NULL);
 2741                                 }
 2742                                 break;
 2743 
 2744                         case O_IP_SRCPORT:
 2745                         case O_IP_DSTPORT:
 2746                                 /*
 2747                                  * offset == 0 && proto != 0 is enough
 2748                                  * to guarantee that we have a
 2749                                  * packet with port info.
 2750                                  */
 2751                                 if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
 2752                                     && offset == 0) {
 2753                                         u_int16_t x =
 2754                                             (cmd->opcode == O_IP_SRCPORT) ?
 2755                                                 src_port : dst_port ;
 2756                                         u_int16_t *p =
 2757                                             ((ipfw_insn_u16 *)cmd)->ports;
 2758                                         int i;
 2759 
 2760                                         for (i = cmdlen - 1; !match && i>0;
 2761                                             i--, p += 2)
 2762                                                 match = (x>=p[0] && x<=p[1]);
 2763                                 }
 2764                                 break;
 2765 
 2766                         case O_ICMPTYPE:
 2767                                 match = (offset == 0 && proto==IPPROTO_ICMP &&
 2768                                     icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
 2769                                 break;
 2770 
 2771 #ifdef INET6
 2772                         case O_ICMP6TYPE:
 2773                                 match = is_ipv6 && offset == 0 &&
 2774                                     proto==IPPROTO_ICMPV6 &&
 2775                                     icmp6type_match(
 2776                                         ICMP6(ulp)->icmp6_type,
 2777                                         (ipfw_insn_u32 *)cmd);
 2778                                 break;
 2779 #endif /* INET6 */
 2780 
 2781                         case O_IPOPT:
 2782                                 match = (is_ipv4 &&
 2783                                     ipopts_match(ip, cmd) );
 2784                                 break;
 2785 
 2786                         case O_IPVER:
 2787                                 match = (is_ipv4 &&
 2788                                     cmd->arg1 == ip->ip_v);
 2789                                 break;
 2790 
 2791                         case O_IPID:
 2792                         case O_IPLEN:
 2793                         case O_IPTTL:
 2794                                 if (is_ipv4) {  /* only for IP packets */
 2795                                     uint16_t x;
 2796                                     uint16_t *p;
 2797                                     int i;
 2798 
 2799                                     if (cmd->opcode == O_IPLEN)
 2800                                         x = ip_len;
 2801                                     else if (cmd->opcode == O_IPTTL)
 2802                                         x = ip->ip_ttl;
 2803                                     else /* must be IPID */
 2804                                         x = ntohs(ip->ip_id);
 2805                                     if (cmdlen == 1) {
 2806                                         match = (cmd->arg1 == x);
 2807                                         break;
 2808                                     }
 2809                                     /* otherwise we have ranges */
 2810                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2811                                     i = cmdlen - 1;
 2812                                     for (; !match && i>0; i--, p += 2)
 2813                                         match = (x >= p[0] && x <= p[1]);
 2814                                 }
 2815                                 break;
 2816 
 2817                         case O_IPPRECEDENCE:
 2818                                 match = (is_ipv4 &&
 2819                                     (cmd->arg1 == (ip->ip_tos & 0xe0)) );
 2820                                 break;
 2821 
 2822                         case O_IPTOS:
 2823                                 match = (is_ipv4 &&
 2824                                     flags_match(cmd, ip->ip_tos));
 2825                                 break;
 2826 
 2827                         case O_TCPDATALEN:
 2828                                 if (proto == IPPROTO_TCP && offset == 0) {
 2829                                     struct tcphdr *tcp;
 2830                                     uint16_t x;
 2831                                     uint16_t *p;
 2832                                     int i;
 2833 
 2834                                     tcp = TCP(ulp);
 2835                                     x = ip_len -
 2836                                         ((ip->ip_hl + tcp->th_off) << 2);
 2837                                     if (cmdlen == 1) {
 2838                                         match = (cmd->arg1 == x);
 2839                                         break;
 2840                                     }
 2841                                     /* otherwise we have ranges */
 2842                                     p = ((ipfw_insn_u16 *)cmd)->ports;
 2843                                     i = cmdlen - 1;
 2844                                     for (; !match && i>0; i--, p += 2)
 2845                                         match = (x >= p[0] && x <= p[1]);
 2846                                 }
 2847                                 break;
 2848 
 2849                         case O_TCPFLAGS:
 2850                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2851                                     flags_match(cmd, TCP(ulp)->th_flags));
 2852                                 break;
 2853 
 2854                         case O_TCPOPTS:
 2855                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2856                                     tcpopts_match(TCP(ulp), cmd));
 2857                                 break;
 2858 
 2859                         case O_TCPSEQ:
 2860                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2861                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2862                                         TCP(ulp)->th_seq);
 2863                                 break;
 2864 
 2865                         case O_TCPACK:
 2866                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2867                                     ((ipfw_insn_u32 *)cmd)->d[0] ==
 2868                                         TCP(ulp)->th_ack);
 2869                                 break;
 2870 
 2871                         case O_TCPWIN:
 2872                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2873                                     cmd->arg1 == TCP(ulp)->th_win);
 2874                                 break;
 2875 
 2876                         case O_ESTAB:
 2877                                 /* reject packets which have SYN only */
 2878                                 /* XXX should i also check for TH_ACK ? */
 2879                                 match = (proto == IPPROTO_TCP && offset == 0 &&
 2880                                     (TCP(ulp)->th_flags &
 2881                                      (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
 2882                                 break;
 2883 
 2884                         case O_ALTQ: {
 2885                                 struct pf_mtag *at;
 2886                                 ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
 2887 
 2888                                 match = 1;
 2889                                 at = pf_find_mtag(m);
 2890                                 if (at != NULL && at->qid != 0)
 2891                                         break;
 2892                                 at = pf_get_mtag(m);
 2893                                 if (at == NULL) {
 2894                                         /*
 2895                                          * Let the packet fall back to the
 2896                                          * default ALTQ.
 2897                                          */
 2898                                         break;
 2899                                 }
 2900                                 at->qid = altq->qid;
 2901                                 if (is_ipv4)
 2902                                         at->af = AF_INET;
 2903                                 else
 2904                                         at->af = AF_LINK;
 2905                                 at->hdr = ip;
 2906                                 break;
 2907                         }
 2908 
 2909                         case O_LOG:
 2910                                 if (fw_verbose)
 2911                                         ipfw_log(f, hlen, args, m,
 2912                                             oif, offset, tablearg, ip);
 2913                                 match = 1;
 2914                                 break;
 2915 
 2916                         case O_PROB:
 2917                                 match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
 2918                                 break;
 2919 
 2920                         case O_VERREVPATH:
 2921                                 /* Outgoing packets automatically pass/match */
 2922                                 match = ((oif != NULL) ||
 2923                                     (m->m_pkthdr.rcvif == NULL) ||
 2924                                     (
 2925 #ifdef INET6
 2926                                     is_ipv6 ?
 2927                                         verify_path6(&(args->f_id.src_ip6),
 2928                                             m->m_pkthdr.rcvif) :
 2929 #endif
 2930                                     verify_path(src_ip, m->m_pkthdr.rcvif,
 2931                                         args->f_id.fib)));
 2932                                 break;
 2933 
 2934                         case O_VERSRCREACH:
 2935                                 /* Outgoing packets automatically pass/match */
 2936                                 match = (hlen > 0 && ((oif != NULL) ||
 2937 #ifdef INET6
 2938                                     is_ipv6 ?
 2939                                         verify_path6(&(args->f_id.src_ip6),
 2940                                             NULL) :
 2941 #endif
 2942                                     verify_path(src_ip, NULL, args->f_id.fib)));
 2943                                 break;
 2944 
 2945                         case O_ANTISPOOF:
 2946                                 /* Outgoing packets automatically pass/match */
 2947                                 if (oif == NULL && hlen > 0 &&
 2948                                     (  (is_ipv4 && in_localaddr(src_ip))
 2949 #ifdef INET6
 2950                                     || (is_ipv6 &&
 2951                                         in6_localaddr(&(args->f_id.src_ip6)))
 2952 #endif
 2953                                     ))
 2954                                         match =
 2955 #ifdef INET6
 2956                                             is_ipv6 ? verify_path6(
 2957                                                 &(args->f_id.src_ip6),
 2958                                                 m->m_pkthdr.rcvif) :
 2959 #endif
 2960                                             verify_path(src_ip,
 2961                                                 m->m_pkthdr.rcvif,
 2962                                                 args->f_id.fib);
 2963                                 else
 2964                                         match = 1;
 2965                                 break;
 2966 
 2967                         case O_IPSEC:
 2968 #ifdef IPSEC
 2969                                 match = (m_tag_find(m,
 2970                                     PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
 2971 #endif
 2972                                 /* otherwise no match */
 2973                                 break;
 2974 
 2975 #ifdef INET6
 2976                         case O_IP6_SRC:
 2977                                 match = is_ipv6 &&
 2978                                     IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
 2979                                     &((ipfw_insn_ip6 *)cmd)->addr6);
 2980                                 break;
 2981 
 2982                         case O_IP6_DST:
 2983                                 match = is_ipv6 &&
 2984                                 IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
 2985                                     &((ipfw_insn_ip6 *)cmd)->addr6);
 2986                                 break;
 2987                         case O_IP6_SRC_MASK:
 2988                         case O_IP6_DST_MASK:
 2989                                 if (is_ipv6) {
 2990                                         int i = cmdlen - 1;
 2991                                         struct in6_addr p;
 2992                                         struct in6_addr *d =
 2993                                             &((ipfw_insn_ip6 *)cmd)->addr6;
 2994 
 2995                                         for (; !match && i > 0; d += 2,
 2996                                             i -= F_INSN_SIZE(struct in6_addr)
 2997                                             * 2) {
 2998                                                 p = (cmd->opcode ==
 2999                                                     O_IP6_SRC_MASK) ?
 3000                                                     args->f_id.src_ip6:
 3001                                                     args->f_id.dst_ip6;
 3002                                                 APPLY_MASK(&p, &d[1]);
 3003                                                 match =
 3004                                                     IN6_ARE_ADDR_EQUAL(&d[0],
 3005                                                     &p);
 3006                                         }
 3007                                 }
 3008                                 break;
 3009 
 3010                         case O_IP6_SRC_ME:
 3011                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
 3012                                 break;
 3013 
 3014                         case O_IP6_DST_ME:
 3015                                 match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
 3016                                 break;
 3017 
 3018                         case O_FLOW6ID:
 3019                                 match = is_ipv6 &&
 3020                                     flow6id_match(args->f_id.flow_id6,
 3021                                     (ipfw_insn_u32 *) cmd);
 3022                                 break;
 3023 
 3024                         case O_EXT_HDR:
 3025                                 match = is_ipv6 &&
 3026                                     (ext_hd & ((ipfw_insn *) cmd)->arg1);
 3027                                 break;
 3028 
 3029                         case O_IP6:
 3030                                 match = is_ipv6;
 3031                                 break;
 3032 #endif
 3033 
 3034                         case O_IP4:
 3035                                 match = is_ipv4;
 3036                                 break;
 3037 
 3038                         case O_TAG: {
 3039                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
 3040                                     tablearg : cmd->arg1;
 3041 
 3042                                 /* Packet is already tagged with this tag? */
 3043                                 mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
 3044 
 3045                                 /* We have `untag' action when F_NOT flag is
 3046                                  * present. And we must remove this mtag from
 3047                                  * mbuf and reset `match' to zero (`match' will
 3048                                  * be inversed later).
 3049                                  * Otherwise we should allocate new mtag and
 3050                                  * push it into mbuf.
 3051                                  */
 3052                                 if (cmd->len & F_NOT) { /* `untag' action */
 3053                                         if (mtag != NULL)
 3054                                                 m_tag_delete(m, mtag);
 3055                                 } else if (mtag == NULL) {
 3056                                         if ((mtag = m_tag_alloc(MTAG_IPFW,
 3057                                             tag, 0, M_NOWAIT)) != NULL)
 3058                                                 m_tag_prepend(m, mtag);
 3059                                 }
 3060                                 match = (cmd->len & F_NOT) ? 0: 1;
 3061                                 break;
 3062                         }
 3063 
 3064                         case O_FIB: /* try match the specified fib */
 3065                                 if (args->f_id.fib == cmd->arg1)
 3066                                         match = 1;
 3067                                 break;
 3068 
 3069                         case O_TAGGED: {
 3070                                 uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
 3071                                     tablearg : cmd->arg1;
 3072 
 3073                                 if (cmdlen == 1) {
 3074                                         match = m_tag_locate(m, MTAG_IPFW,
 3075                                             tag, NULL) != NULL;
 3076                                         break;
 3077                                 }
 3078 
 3079                                 /* we have ranges */
 3080                                 for (mtag = m_tag_first(m);
 3081                                     mtag != NULL && !match;
 3082                                     mtag = m_tag_next(m, mtag)) {
 3083                                         uint16_t *p;
 3084                                         int i;
 3085 
 3086                                         if (mtag->m_tag_cookie != MTAG_IPFW)
 3087                                                 continue;
 3088 
 3089                                         p = ((ipfw_insn_u16 *)cmd)->ports;
 3090                                         i = cmdlen - 1;
 3091                                         for(; !match && i > 0; i--, p += 2)
 3092                                                 match =
 3093                                                     mtag->m_tag_id >= p[0] &&
 3094                                                     mtag->m_tag_id <= p[1];
 3095                                 }
 3096                                 break;
 3097                         }
 3098                                 
 3099                         /*
 3100                          * The second set of opcodes represents 'actions',
 3101                          * i.e. the terminal part of a rule once the packet
 3102                          * matches all previous patterns.
 3103                          * Typically there is only one action for each rule,
 3104                          * and the opcode is stored at the end of the rule
 3105                          * (but there are exceptions -- see below).
 3106                          *
 3107                          * In general, here we set retval and terminate the
 3108                          * outer loop (would be a 'break 3' in some language,
 3109                          * but we need to do a 'goto done').
 3110                          *
 3111                          * Exceptions:
 3112                          * O_COUNT and O_SKIPTO actions:
 3113                          *   instead of terminating, we jump to the next rule
 3114                          *   ('goto next_rule', equivalent to a 'break 2'),
 3115                          *   or to the SKIPTO target ('goto again' after
 3116                          *   having set f, cmd and l), respectively.
 3117                          *
 3118                          * O_TAG, O_LOG and O_ALTQ action parameters:
 3119                          *   perform some action and set match = 1;
 3120                          *
 3121                          * O_LIMIT and O_KEEP_STATE: these opcodes are
 3122                          *   not real 'actions', and are stored right
 3123                          *   before the 'action' part of the rule.
 3124                          *   These opcodes try to install an entry in the
 3125                          *   state tables; if successful, we continue with
 3126                          *   the next opcode (match=1; break;), otherwise
 3127                          *   the packet *   must be dropped
 3128                          *   ('goto done' after setting retval);
 3129                          *
 3130                          * O_PROBE_STATE and O_CHECK_STATE: these opcodes
 3131                          *   cause a lookup of the state table, and a jump
 3132                          *   to the 'action' part of the parent rule
 3133                          *   ('goto check_body') if an entry is found, or
 3134                          *   (CHECK_STATE only) a jump to the next rule if
 3135                          *   the entry is not found ('goto next_rule').
 3136                          *   The result of the lookup is cached to make
 3137                          *   further instances of these opcodes are
 3138                          *   effectively NOPs.
 3139                          */
 3140                         case O_LIMIT:
 3141                         case O_KEEP_STATE:
 3142                                 if (install_state(f,
 3143                                     (ipfw_insn_limit *)cmd, args, tablearg)) {
 3144                                         retval = IP_FW_DENY;
 3145                                         goto done; /* error/limit violation */
 3146                                 }
 3147                                 match = 1;
 3148                                 break;
 3149 
 3150                         case O_PROBE_STATE:
 3151                         case O_CHECK_STATE:
 3152                                 /*
 3153                                  * dynamic rules are checked at the first
 3154                                  * keep-state or check-state occurrence,
 3155                                  * with the result being stored in dyn_dir.
 3156                                  * The compiler introduces a PROBE_STATE
 3157                                  * instruction for us when we have a
 3158                                  * KEEP_STATE (because PROBE_STATE needs
 3159                                  * to be run first).
 3160                                  */
 3161                                 if (dyn_dir == MATCH_UNKNOWN &&
 3162                                     (q = lookup_dyn_rule(&args->f_id,
 3163                                      &dyn_dir, proto == IPPROTO_TCP ?
 3164                                         TCP(ulp) : NULL))
 3165                                         != NULL) {
 3166                                         /*
 3167                                          * Found dynamic entry, update stats
 3168                                          * and jump to the 'action' part of
 3169                                          * the parent rule.
 3170                                          */
 3171                                         q->pcnt++;
 3172                                         q->bcnt += pktlen;
 3173                                         f = q->rule;
 3174                                         cmd = ACTION_PTR(f);
 3175                                         l = f->cmd_len - f->act_ofs;
 3176                                         IPFW_DYN_UNLOCK();
 3177                                         goto check_body;
 3178                                 }
 3179                                 /*
 3180                                  * Dynamic entry not found. If CHECK_STATE,
 3181                                  * skip to next rule, if PROBE_STATE just
 3182                                  * ignore and continue with next opcode.
 3183                                  */
 3184                                 if (cmd->opcode == O_CHECK_STATE)
 3185                                         goto next_rule;
 3186                                 match = 1;
 3187                                 break;
 3188 
 3189                         case O_ACCEPT:
 3190                                 retval = 0;     /* accept */
 3191                                 goto done;
 3192 
 3193                         case O_PIPE:
 3194                         case O_QUEUE:
 3195                                 args->rule = f; /* report matching rule */
 3196                                 if (cmd->arg1 == IP_FW_TABLEARG)
 3197                                         args->cookie = tablearg;
 3198                                 else
 3199                                         args->cookie = cmd->arg1;
 3200                                 retval = IP_FW_DUMMYNET;
 3201                                 goto done;
 3202 
 3203                         case O_DIVERT:
 3204                         case O_TEE: {
 3205                                 struct divert_tag *dt;
 3206 
 3207                                 if (args->eh) /* not on layer 2 */
 3208                                         break;
 3209                                 mtag = m_tag_get(PACKET_TAG_DIVERT,
 3210                                                 sizeof(struct divert_tag),
 3211                                                 M_NOWAIT);
 3212                                 if (mtag == NULL) {
 3213                                         /* XXX statistic */
 3214                                         /* drop packet */
 3215                                         IPFW_RUNLOCK(chain);
 3216                                         return (IP_FW_DENY);
 3217                                 }
 3218                                 dt = (struct divert_tag *)(mtag+1);
 3219                                 dt->cookie = f->rulenum;
 3220                                 if (cmd->arg1 == IP_FW_TABLEARG)
 3221                                         dt->info = tablearg;
 3222                                 else
 3223                                         dt->info = cmd->arg1;
 3224                                 m_tag_prepend(m, mtag);
 3225                                 retval = (cmd->opcode == O_DIVERT) ?
 3226                                     IP_FW_DIVERT : IP_FW_TEE;
 3227                                 goto done;
 3228                         }
 3229 
 3230                         case O_COUNT:
 3231                         case O_SKIPTO:
 3232                                 f->pcnt++;      /* update stats */
 3233                                 f->bcnt += pktlen;
 3234                                 f->timestamp = time_uptime;
 3235                                 if (cmd->opcode == O_COUNT)
 3236                                         goto next_rule;
 3237                                 /* handle skipto */
 3238                                 if (cmd->arg1 == IP_FW_TABLEARG) {
 3239                                         f = lookup_next_rule(f, tablearg);
 3240                                 } else {
 3241                                         if (f->next_rule == NULL)
 3242                                                 lookup_next_rule(f, 0);
 3243                                         f = f->next_rule;
 3244                                 }
 3245                                 goto again;
 3246 
 3247                         case O_REJECT:
 3248                                 /*
 3249                                  * Drop the packet and send a reject notice
 3250                                  * if the packet is not ICMP (or is an ICMP
 3251                                  * query), and it is not multicast/broadcast.
 3252                                  */
 3253                                 if (hlen > 0 && is_ipv4 && offset == 0 &&
 3254                                     (proto != IPPROTO_ICMP ||
 3255                                      is_icmp_query(ICMP(ulp))) &&
 3256                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 3257                                     !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
 3258                                         send_reject(args, cmd->arg1, ip_len, ip);
 3259                                         m = args->m;
 3260                                 }
 3261                                 /* FALLTHROUGH */
 3262 #ifdef INET6
 3263                         case O_UNREACH6:
 3264                                 if (hlen > 0 && is_ipv6 &&
 3265                                     ((offset & IP6F_OFF_MASK) == 0) &&
 3266                                     (proto != IPPROTO_ICMPV6 ||
 3267                                      (is_icmp6_query(args->f_id.flags) == 1)) &&
 3268                                     !(m->m_flags & (M_BCAST|M_MCAST)) &&
 3269                                     !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
 3270                                         send_reject6(
 3271                                             args, cmd->arg1, hlen,
 3272                                             (struct ip6_hdr *)ip);
 3273                                         m = args->m;
 3274                                 }
 3275                                 /* FALLTHROUGH */
 3276 #endif
 3277                         case O_DENY:
 3278                                 retval = IP_FW_DENY;
 3279                                 goto done;
 3280 
 3281                         case O_FORWARD_IP: {
 3282                                 struct sockaddr_in *sa;
 3283                                 sa = &(((ipfw_insn_sa *)cmd)->sa);
 3284                                 if (args->eh)   /* not valid on layer2 pkts */
 3285                                         break;
 3286                                 if (!q || dyn_dir == MATCH_FORWARD) {
 3287                                         if (sa->sin_addr.s_addr == INADDR_ANY) {
 3288                                                 bcopy(sa, &args->hopstore,
 3289                                                         sizeof(*sa));
 3290                                                 args->hopstore.sin_addr.s_addr =
 3291                                                     htonl(tablearg);
 3292                                                 args->next_hop =
 3293                                                     &args->hopstore;
 3294                                         } else {
 3295                                                 args->next_hop = sa;
 3296                                         }
 3297                                 }
 3298                                 retval = IP_FW_PASS;
 3299                             }
 3300                             goto done;
 3301 
 3302                         case O_NETGRAPH:
 3303                         case O_NGTEE:
 3304                                 args->rule = f; /* report matching rule */
 3305                                 if (cmd->arg1 == IP_FW_TABLEARG)
 3306                                         args->cookie = tablearg;
 3307                                 else
 3308                                         args->cookie = cmd->arg1;
 3309                                 retval = (cmd->opcode == O_NETGRAPH) ?
 3310                                     IP_FW_NETGRAPH : IP_FW_NGTEE;
 3311                                 goto done;
 3312 
 3313                         case O_SETFIB:
 3314                                 f->pcnt++;      /* update stats */
 3315                                 f->bcnt += pktlen;
 3316                                 f->timestamp = time_uptime;
 3317                                 M_SETFIB(m, cmd->arg1);
 3318                                 args->f_id.fib = cmd->arg1;
 3319                                 goto next_rule;
 3320 
 3321                         case O_NAT: {
 3322                                 struct cfg_nat *t;
 3323                                 int nat_id;
 3324 
 3325                                 if (IPFW_NAT_LOADED) {
 3326                                         args->rule = f; /* Report matching rule. */
 3327                                         t = ((ipfw_insn_nat *)cmd)->nat;
 3328                                         if (t == NULL) {
 3329                                                 nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
 3330                                                     tablearg : cmd->arg1;
 3331                                                 LOOKUP_NAT(layer3_chain, nat_id, t);
 3332                                                 if (t == NULL) {
 3333                                                         retval = IP_FW_DENY;
 3334                                                         goto done;
 3335                                                 }
 3336                                                 if (cmd->arg1 != IP_FW_TABLEARG)
 3337                                                         ((ipfw_insn_nat *)cmd)->nat = t;
 3338                                         }
 3339                                         retval = ipfw_nat_ptr(args, t, m);
 3340                                 } else
 3341                                         retval = IP_FW_DENY;
 3342                                 goto done;
 3343                         }
 3344 
 3345                         default:
 3346                                 panic("-- unknown opcode %d\n", cmd->opcode);
 3347                         } /* end of switch() on opcodes */
 3348 
 3349                         if (cmd->len & F_NOT)
 3350                                 match = !match;
 3351 
 3352                         if (match) {
 3353                                 if (cmd->len & F_OR)
 3354                                         skip_or = 1;
 3355                         } else {
 3356                                 if (!(cmd->len & F_OR)) /* not an OR block, */
 3357                                         break;          /* try next rule    */
 3358                         }
 3359 
 3360                 }       /* end of inner for, scan opcodes */
 3361 
 3362 next_rule:;             /* try next rule                */
 3363 
 3364         }               /* end of outer for, scan rules */
 3365         printf("ipfw: ouch!, skip past end of rules, denying packet\n");
 3366         IPFW_RUNLOCK(chain);
 3367         return (IP_FW_DENY);
 3368 
 3369 done:
 3370         /* Update statistics */
 3371         f->pcnt++;
 3372         f->bcnt += pktlen;
 3373         f->timestamp = time_uptime;
 3374         IPFW_RUNLOCK(chain);
 3375         return (retval);
 3376 
 3377 pullup_failed:
 3378         if (fw_verbose)
 3379                 printf("ipfw: pullup failed\n");
 3380         return (IP_FW_DENY);
 3381 }
 3382 
 3383 /*
 3384  * When a rule is added/deleted, clear the next_rule pointers in all rules.
 3385  * These will be reconstructed on the fly as packets are matched.
 3386  */
 3387 static void
 3388 flush_rule_ptrs(struct ip_fw_chain *chain)
 3389 {
 3390         struct ip_fw *rule;
 3391 
 3392         IPFW_WLOCK_ASSERT(chain);
 3393 
 3394         for (rule = chain->rules; rule; rule = rule->next)
 3395                 rule->next_rule = NULL;
 3396 }
 3397 
 3398 /*
 3399  * Add a new rule to the list. Copy the rule into a malloc'ed area, then
 3400  * possibly create a rule number and add the rule to the list.
 3401  * Update the rule_number in the input struct so the caller knows it as well.
 3402  */
 3403 static int
 3404 add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
 3405 {
 3406         struct ip_fw *rule, *f, *prev;
 3407         int l = RULESIZE(input_rule);
 3408 
 3409         if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
 3410                 return (EINVAL);
 3411 
 3412         rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
 3413         if (rule == NULL)
 3414                 return (ENOSPC);
 3415 
 3416         bcopy(input_rule, rule, l);
 3417 
 3418         rule->next = NULL;
 3419         rule->next_rule = NULL;
 3420 
 3421         rule->pcnt = 0;
 3422         rule->bcnt = 0;
 3423         rule->timestamp = 0;
 3424 
 3425         IPFW_WLOCK(chain);
 3426 
 3427         if (chain->rules == NULL) {     /* default rule */
 3428                 chain->rules = rule;
 3429                 goto done;
 3430         }
 3431 
 3432         /*
 3433          * If rulenum is 0, find highest numbered rule before the
 3434          * default rule, and add autoinc_step
 3435          */
 3436         if (autoinc_step < 1)
 3437                 autoinc_step = 1;
 3438         else if (autoinc_step > 1000)
 3439                 autoinc_step = 1000;
 3440         if (rule->rulenum == 0) {
 3441                 /*
 3442                  * locate the highest numbered rule before default
 3443                  */
 3444                 for (f = chain->rules; f; f = f->next) {
 3445                         if (f->rulenum == IPFW_DEFAULT_RULE)
 3446                                 break;
 3447                         rule->rulenum = f->rulenum;
 3448                 }
 3449                 if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
 3450                         rule->rulenum += autoinc_step;
 3451                 input_rule->rulenum = rule->rulenum;
 3452         }
 3453 
 3454         /*
 3455          * Now insert the new rule in the right place in the sorted list.
 3456          */
 3457         for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
 3458                 if (f->rulenum > rule->rulenum) { /* found the location */
 3459                         if (prev) {
 3460                                 rule->next = f;
 3461                                 prev->next = rule;
 3462                         } else { /* head insert */
 3463                                 rule->next = chain->rules;
 3464                                 chain->rules = rule;
 3465                         }
 3466                         break;
 3467                 }
 3468         }
 3469         flush_rule_ptrs(chain);
 3470 done:
 3471         static_count++;
 3472         static_len += l;
 3473         IPFW_WUNLOCK(chain);
 3474         DEB(printf("ipfw: installed rule %d, static count now %d\n",
 3475                 rule->rulenum, static_count);)
 3476         return (0);
 3477 }
 3478 
 3479 /**
 3480  * Remove a static rule (including derived * dynamic rules)
 3481  * and place it on the ``reap list'' for later reclamation.
 3482  * The caller is in charge of clearing rule pointers to avoid
 3483  * dangling pointers.
 3484  * @return a pointer to the next entry.
 3485  * Arguments are not checked, so they better be correct.
 3486  */
 3487 static struct ip_fw *
 3488 remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule,
 3489     struct ip_fw *prev)
 3490 {
 3491         struct ip_fw *n;
 3492         int l = RULESIZE(rule);
 3493 
 3494         IPFW_WLOCK_ASSERT(chain);
 3495 
 3496         n = rule->next;
 3497         IPFW_DYN_LOCK();
 3498         remove_dyn_rule(rule, NULL /* force removal */);
 3499         IPFW_DYN_UNLOCK();
 3500         if (prev == NULL)
 3501                 chain->rules = n;
 3502         else
 3503                 prev->next = n;
 3504         static_count--;
 3505         static_len -= l;
 3506 
 3507         rule->next = chain->reap;
 3508         chain->reap = rule;
 3509 
 3510         return n;
 3511 }
 3512 
 3513 /**
 3514  * Reclaim storage associated with a list of rules.  This is
 3515  * typically the list created using remove_rule.
 3516  */
 3517 static void
 3518 reap_rules(struct ip_fw *head)
 3519 {
 3520         struct ip_fw *rule;
 3521 
 3522         while ((rule = head) != NULL) {
 3523                 head = head->next;
 3524                 if (DUMMYNET_LOADED)
 3525                         ip_dn_ruledel_ptr(rule);
 3526                 free(rule, M_IPFW);
 3527         }
 3528 }
 3529 
 3530 /*
 3531  * Remove all rules from a chain (except rules in set RESVD_SET
 3532  * unless kill_default = 1).  The caller is responsible for
 3533  * reclaiming storage for the rules left in chain->reap.
 3534  */
 3535 static void
 3536 free_chain(struct ip_fw_chain *chain, int kill_default)
 3537 {
 3538         struct ip_fw *prev, *rule;
 3539 
 3540         IPFW_WLOCK_ASSERT(chain);
 3541 
 3542         flush_rule_ptrs(chain); /* more efficient to do outside the loop */
 3543         for (prev = NULL, rule = chain->rules; rule ; )
 3544                 if (kill_default || rule->set != RESVD_SET)
 3545                         rule = remove_rule(chain, rule, prev);
 3546                 else {
 3547                         prev = rule;
 3548                         rule = rule->next;
 3549                 }
 3550 }
 3551 
 3552 /**
 3553  * Remove all rules with given number, and also do set manipulation.
 3554  * Assumes chain != NULL && *chain != NULL.
 3555  *
 3556  * The argument is an u_int32_t. The low 16 bit are the rule or set number,
 3557  * the next 8 bits are the new set, the top 8 bits are the command:
 3558  *
 3559  *      0       delete rules with given number
 3560  *      1       delete rules with given set number
 3561  *      2       move rules with given number to new set
 3562  *      3       move rules with given set number to new set
 3563  *      4       swap sets with given numbers
 3564  *      5       delete rules with given number and with given set number
 3565  */
 3566 static int
 3567 del_entry(struct ip_fw_chain *chain, u_int32_t arg)
 3568 {
 3569         struct ip_fw *prev = NULL, *rule;
 3570         u_int16_t rulenum;      /* rule or old_set */
 3571         u_int8_t cmd, new_set;
 3572 
 3573         rulenum = arg & 0xffff;
 3574         cmd = (arg >> 24) & 0xff;
 3575         new_set = (arg >> 16) & 0xff;
 3576 
 3577         if (cmd > 5 || new_set > RESVD_SET)
 3578                 return EINVAL;
 3579         if (cmd == 0 || cmd == 2 || cmd == 5) {
 3580                 if (rulenum >= IPFW_DEFAULT_RULE)
 3581                         return EINVAL;
 3582         } else {
 3583                 if (rulenum > RESVD_SET)        /* old_set */
 3584                         return EINVAL;
 3585         }
 3586 
 3587         IPFW_WLOCK(chain);
 3588         rule = chain->rules;
 3589         chain->reap = NULL;
 3590         switch (cmd) {
 3591         case 0: /* delete rules with given number */
 3592                 /*
 3593                  * locate first rule to delete
 3594                  */
 3595                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
 3596                         ;
 3597                 if (rule->rulenum != rulenum) {
 3598                         IPFW_WUNLOCK(chain);
 3599                         return EINVAL;
 3600                 }
 3601 
 3602                 /*
 3603                  * flush pointers outside the loop, then delete all matching
 3604                  * rules. prev remains the same throughout the cycle.
 3605                  */
 3606                 flush_rule_ptrs(chain);
 3607                 while (rule->rulenum == rulenum)
 3608                         rule = remove_rule(chain, rule, prev);
 3609                 break;
 3610 
 3611         case 1: /* delete all rules with given set number */
 3612                 flush_rule_ptrs(chain);
 3613                 rule = chain->rules;
 3614                 while (rule->rulenum < IPFW_DEFAULT_RULE)
 3615                         if (rule->set == rulenum)
 3616                                 rule = remove_rule(chain, rule, prev);
 3617                         else {
 3618                                 prev = rule;
 3619                                 rule = rule->next;
 3620                         }
 3621                 break;
 3622 
 3623         case 2: /* move rules with given number to new set */
 3624                 rule = chain->rules;
 3625                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 3626                         if (rule->rulenum == rulenum)
 3627                                 rule->set = new_set;
 3628                 break;
 3629 
 3630         case 3: /* move rules with given set number to new set */
 3631                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 3632                         if (rule->set == rulenum)
 3633                                 rule->set = new_set;
 3634                 break;
 3635 
 3636         case 4: /* swap two sets */
 3637                 for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
 3638                         if (rule->set == rulenum)
 3639                                 rule->set = new_set;
 3640                         else if (rule->set == new_set)
 3641                                 rule->set = rulenum;
 3642                 break;
 3643         case 5: /* delete rules with given number and with given set number.
 3644                  * rulenum - given rule number;
 3645                  * new_set - given set number.
 3646                  */
 3647                 for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
 3648                         ;
 3649                 if (rule->rulenum != rulenum) {
 3650                         IPFW_WUNLOCK(chain);
 3651                         return (EINVAL);
 3652                 }
 3653                 flush_rule_ptrs(chain);
 3654                 while (rule->rulenum == rulenum) {
 3655                         if (rule->set == new_set)
 3656                                 rule = remove_rule(chain, rule, prev);
 3657                         else {
 3658                                 prev = rule;
 3659                                 rule = rule->next;
 3660                         }
 3661                 }
 3662         }
 3663         /*
 3664          * Look for rules to reclaim.  We grab the list before
 3665          * releasing the lock then reclaim them w/o the lock to
 3666          * avoid a LOR with dummynet.
 3667          */
 3668         rule = chain->reap;
 3669         chain->reap = NULL;
 3670         IPFW_WUNLOCK(chain);
 3671         if (rule)
 3672                 reap_rules(rule);
 3673         return 0;
 3674 }
 3675 
 3676 /*
 3677  * Clear counters for a specific rule.
 3678  * The enclosing "table" is assumed locked.
 3679  */
 3680 static void
 3681 clear_counters(struct ip_fw *rule, int log_only)
 3682 {
 3683         ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
 3684 
 3685         if (log_only == 0) {
 3686                 rule->bcnt = rule->pcnt = 0;
 3687                 rule->timestamp = 0;
 3688         }
 3689         if (l->o.opcode == O_LOG)
 3690                 l->log_left = l->max_log;
 3691 }
 3692 
 3693 /**
 3694  * Reset some or all counters on firewall rules.
 3695  * The argument `arg' is an u_int32_t. The low 16 bit are the rule number,
 3696  * the next 8 bits are the set number, the top 8 bits are the command:
 3697  *      0       work with rules from all set's;
 3698  *      1       work with rules only from specified set.
 3699  * Specified rule number is zero if we want to clear all entries.
 3700  * log_only is 1 if we only want to reset logs, zero otherwise.
 3701  */
 3702 static int
 3703 zero_entry(struct ip_fw_chain *chain, u_int32_t arg, int log_only)
 3704 {
 3705         struct ip_fw *rule;
 3706         char *msg;
 3707 
 3708         uint16_t rulenum = arg & 0xffff;
 3709         uint8_t set = (arg >> 16) & 0xff;
 3710         uint8_t cmd = (arg >> 24) & 0xff;
 3711 
 3712         if (cmd > 1)
 3713                 return (EINVAL);
 3714         if (cmd == 1 && set > RESVD_SET)
 3715                 return (EINVAL);
 3716 
 3717         IPFW_WLOCK(chain);
 3718         if (rulenum == 0) {
 3719                 norule_counter = 0;
 3720                 for (rule = chain->rules; rule; rule = rule->next) {
 3721                         /* Skip rules from another set. */
 3722                         if (cmd == 1 && rule->set != set)
 3723                                 continue;
 3724                         clear_counters(rule, log_only);
 3725                 }
 3726                 msg = log_only ? "All logging counts reset" :
 3727                     "Accounting cleared";
 3728         } else {
 3729                 int cleared = 0;
 3730                 /*
 3731                  * We can have multiple rules with the same number, so we
 3732                  * need to clear them all.
 3733                  */
 3734                 for (rule = chain->rules; rule; rule = rule->next)
 3735                         if (rule->rulenum == rulenum) {
 3736                                 while (rule && rule->rulenum == rulenum) {
 3737                                         if (cmd == 0 || rule->set == set)
 3738                                                 clear_counters(rule, log_only);
 3739                                         rule = rule->next;
 3740                                 }
 3741                                 cleared = 1;
 3742                                 break;
 3743                         }
 3744                 if (!cleared) { /* we did not find any matching rules */
 3745                         IPFW_WUNLOCK(chain);
 3746                         return (EINVAL);
 3747                 }
 3748                 msg = log_only ? "logging count reset" : "cleared";
 3749         }
 3750         IPFW_WUNLOCK(chain);
 3751 
 3752         if (fw_verbose) {
 3753                 int lev = LOG_SECURITY | LOG_NOTICE;
 3754 
 3755                 if (rulenum)
 3756                         log(lev, "ipfw: Entry %d %s.\n", rulenum, msg);
 3757                 else
 3758                         log(lev, "ipfw: %s.\n", msg);
 3759         }
 3760         return (0);
 3761 }
 3762 
 3763 /*
 3764  * Check validity of the structure before insert.
 3765  * Fortunately rules are simple, so this mostly need to check rule sizes.
 3766  */
 3767 static int
 3768 check_ipfw_struct(struct ip_fw *rule, int size)
 3769 {
 3770         int l, cmdlen = 0;
 3771         int have_action=0;
 3772         ipfw_insn *cmd;
 3773 
 3774         if (size < sizeof(*rule)) {
 3775                 printf("ipfw: rule too short\n");
 3776                 return (EINVAL);
 3777         }
 3778         /* first, check for valid size */
 3779         l = RULESIZE(rule);
 3780         if (l != size) {
 3781                 printf("ipfw: size mismatch (have %d want %d)\n", size, l);
 3782                 return (EINVAL);
 3783         }
 3784         if (rule->act_ofs >= rule->cmd_len) {
 3785                 printf("ipfw: bogus action offset (%u > %u)\n",
 3786                     rule->act_ofs, rule->cmd_len - 1);
 3787                 return (EINVAL);
 3788         }
 3789         /*
 3790          * Now go for the individual checks. Very simple ones, basically only
 3791          * instruction sizes.
 3792          */
 3793         for (l = rule->cmd_len, cmd = rule->cmd ;
 3794                         l > 0 ; l -= cmdlen, cmd += cmdlen) {
 3795                 cmdlen = F_LEN(cmd);
 3796                 if (cmdlen > l) {
 3797                         printf("ipfw: opcode %d size truncated\n",
 3798                             cmd->opcode);
 3799                         return EINVAL;
 3800                 }
 3801                 DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
 3802                 switch (cmd->opcode) {
 3803                 case O_PROBE_STATE:
 3804                 case O_KEEP_STATE:
 3805                 case O_PROTO:
 3806                 case O_IP_SRC_ME:
 3807                 case O_IP_DST_ME:
 3808                 case O_LAYER2:
 3809                 case O_IN:
 3810                 case O_FRAG:
 3811                 case O_DIVERTED:
 3812                 case O_IPOPT:
 3813                 case O_IPTOS:
 3814                 case O_IPPRECEDENCE:
 3815                 case O_IPVER:
 3816                 case O_TCPWIN:
 3817                 case O_TCPFLAGS:
 3818                 case O_TCPOPTS:
 3819                 case O_ESTAB:
 3820                 case O_VERREVPATH:
 3821                 case O_VERSRCREACH:
 3822                 case O_ANTISPOOF:
 3823                 case O_IPSEC:
 3824 #ifdef INET6
 3825                 case O_IP6_SRC_ME:
 3826                 case O_IP6_DST_ME:
 3827                 case O_EXT_HDR:
 3828                 case O_IP6:
 3829 #endif
 3830                 case O_IP4:
 3831                 case O_TAG:
 3832                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3833                                 goto bad_size;
 3834                         break;
 3835 
 3836                 case O_FIB:
 3837                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3838                                 goto bad_size;
 3839                         if (cmd->arg1 >= rt_numfibs) {
 3840                                 printf("ipfw: invalid fib number %d\n",
 3841                                         cmd->arg1);
 3842                                 return EINVAL;
 3843                         }
 3844                         break;
 3845 
 3846                 case O_SETFIB:
 3847                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3848                                 goto bad_size;
 3849                         if (cmd->arg1 >= rt_numfibs) {
 3850                                 printf("ipfw: invalid fib number %d\n",
 3851                                         cmd->arg1);
 3852                                 return EINVAL;
 3853                         }
 3854                         goto check_action;
 3855 
 3856                 case O_UID:
 3857                 case O_GID:
 3858                 case O_JAIL:
 3859                 case O_IP_SRC:
 3860                 case O_IP_DST:
 3861                 case O_TCPSEQ:
 3862                 case O_TCPACK:
 3863                 case O_PROB:
 3864                 case O_ICMPTYPE:
 3865                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 3866                                 goto bad_size;
 3867                         break;
 3868 
 3869                 case O_LIMIT:
 3870                         if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
 3871                                 goto bad_size;
 3872                         break;
 3873 
 3874                 case O_LOG:
 3875                         if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
 3876                                 goto bad_size;
 3877 
 3878                         ((ipfw_insn_log *)cmd)->log_left =
 3879                             ((ipfw_insn_log *)cmd)->max_log;
 3880 
 3881                         break;
 3882 
 3883                 case O_IP_SRC_MASK:
 3884                 case O_IP_DST_MASK:
 3885                         /* only odd command lengths */
 3886                         if ( !(cmdlen & 1) || cmdlen > 31)
 3887                                 goto bad_size;
 3888                         break;
 3889 
 3890                 case O_IP_SRC_SET:
 3891                 case O_IP_DST_SET:
 3892                         if (cmd->arg1 == 0 || cmd->arg1 > 256) {
 3893                                 printf("ipfw: invalid set size %d\n",
 3894                                         cmd->arg1);
 3895                                 return EINVAL;
 3896                         }
 3897                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 3898                             (cmd->arg1+31)/32 )
 3899                                 goto bad_size;
 3900                         break;
 3901 
 3902                 case O_IP_SRC_LOOKUP:
 3903                 case O_IP_DST_LOOKUP:
 3904                         if (cmd->arg1 >= IPFW_TABLES_MAX) {
 3905                                 printf("ipfw: invalid table number %d\n",
 3906                                     cmd->arg1);
 3907                                 return (EINVAL);
 3908                         }
 3909                         if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
 3910                             cmdlen != F_INSN_SIZE(ipfw_insn_u32))
 3911                                 goto bad_size;
 3912                         break;
 3913 
 3914                 case O_MACADDR2:
 3915                         if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
 3916                                 goto bad_size;
 3917                         break;
 3918 
 3919                 case O_NOP:
 3920                 case O_IPID:
 3921                 case O_IPTTL:
 3922                 case O_IPLEN:
 3923                 case O_TCPDATALEN:
 3924                 case O_TAGGED:
 3925                         if (cmdlen < 1 || cmdlen > 31)
 3926                                 goto bad_size;
 3927                         break;
 3928 
 3929                 case O_MAC_TYPE:
 3930                 case O_IP_SRCPORT:
 3931                 case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
 3932                         if (cmdlen < 2 || cmdlen > 31)
 3933                                 goto bad_size;
 3934                         break;
 3935 
 3936                 case O_RECV:
 3937                 case O_XMIT:
 3938                 case O_VIA:
 3939                         if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
 3940                                 goto bad_size;
 3941                         break;
 3942 
 3943                 case O_ALTQ:
 3944                         if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
 3945                                 goto bad_size;
 3946                         break;
 3947 
 3948                 case O_PIPE:
 3949                 case O_QUEUE:
 3950                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3951                                 goto bad_size;
 3952                         goto check_action;
 3953 
 3954                 case O_FORWARD_IP:
 3955 #ifdef  IPFIREWALL_FORWARD
 3956                         if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
 3957                                 goto bad_size;
 3958                         goto check_action;
 3959 #else
 3960                         return EINVAL;
 3961 #endif
 3962 
 3963                 case O_DIVERT:
 3964                 case O_TEE:
 3965                         if (ip_divert_ptr == NULL)
 3966                                 return EINVAL;
 3967                         else
 3968                                 goto check_size;
 3969                 case O_NETGRAPH:
 3970                 case O_NGTEE:
 3971                         if (!NG_IPFW_LOADED)
 3972                                 return EINVAL;
 3973                         else
 3974                                 goto check_size;
 3975                 case O_NAT:
 3976                         if (!IPFW_NAT_LOADED)
 3977                                 return EINVAL;
 3978                         if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
 3979                                 goto bad_size;          
 3980                         goto check_action;
 3981                 case O_FORWARD_MAC: /* XXX not implemented yet */
 3982                 case O_CHECK_STATE:
 3983                 case O_COUNT:
 3984                 case O_ACCEPT:
 3985                 case O_DENY:
 3986                 case O_REJECT:
 3987 #ifdef INET6
 3988                 case O_UNREACH6:
 3989 #endif
 3990                 case O_SKIPTO:
 3991 check_size:
 3992                         if (cmdlen != F_INSN_SIZE(ipfw_insn))
 3993                                 goto bad_size;
 3994 check_action:
 3995                         if (have_action) {
 3996                                 printf("ipfw: opcode %d, multiple actions"
 3997                                         " not allowed\n",
 3998                                         cmd->opcode);
 3999                                 return EINVAL;
 4000                         }
 4001                         have_action = 1;
 4002                         if (l != cmdlen) {
 4003                                 printf("ipfw: opcode %d, action must be"
 4004                                         " last opcode\n",
 4005                                         cmd->opcode);
 4006                                 return EINVAL;
 4007                         }
 4008                         break;
 4009 #ifdef INET6
 4010                 case O_IP6_SRC:
 4011                 case O_IP6_DST:
 4012                         if (cmdlen != F_INSN_SIZE(struct in6_addr) +
 4013                             F_INSN_SIZE(ipfw_insn))
 4014                                 goto bad_size;
 4015                         break;
 4016 
 4017                 case O_FLOW6ID:
 4018                         if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
 4019                             ((ipfw_insn_u32 *)cmd)->o.arg1)
 4020                                 goto bad_size;
 4021                         break;
 4022 
 4023                 case O_IP6_SRC_MASK:
 4024                 case O_IP6_DST_MASK:
 4025                         if ( !(cmdlen & 1) || cmdlen > 127)
 4026                                 goto bad_size;
 4027                         break;
 4028                 case O_ICMP6TYPE:
 4029                         if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
 4030                                 goto bad_size;
 4031                         break;
 4032 #endif
 4033 
 4034                 default:
 4035                         switch (cmd->opcode) {
 4036 #ifndef INET6
 4037                         case O_IP6_SRC_ME:
 4038                         case O_IP6_DST_ME:
 4039                         case O_EXT_HDR:
 4040                         case O_IP6:
 4041                         case O_UNREACH6:
 4042                         case O_IP6_SRC:
 4043                         case O_IP6_DST:
 4044                         case O_FLOW6ID:
 4045                         case O_IP6_SRC_MASK:
 4046                         case O_IP6_DST_MASK:
 4047                         case O_ICMP6TYPE:
 4048                                 printf("ipfw: no IPv6 support in kernel\n");
 4049                                 return EPROTONOSUPPORT;
 4050 #endif
 4051                         default:
 4052                                 printf("ipfw: opcode %d, unknown opcode\n",
 4053                                         cmd->opcode);
 4054                                 return EINVAL;
 4055                         }
 4056                 }
 4057         }
 4058         if (have_action == 0) {
 4059                 printf("ipfw: missing action\n");
 4060                 return EINVAL;
 4061         }
 4062         return 0;
 4063 
 4064 bad_size:
 4065         printf("ipfw: opcode %d size %d wrong\n",
 4066                 cmd->opcode, cmdlen);
 4067         return EINVAL;
 4068 }
 4069 
 4070 /*
 4071  * Copy the static and dynamic rules to the supplied buffer
 4072  * and return the amount of space actually used.
 4073  */
 4074 static size_t
 4075 ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
 4076 {
 4077         char *bp = buf;
 4078         char *ep = bp + space;
 4079         struct ip_fw *rule;
 4080         int i;
 4081         time_t  boot_seconds;
 4082 
 4083         boot_seconds = boottime.tv_sec;
 4084         /* XXX this can take a long time and locking will block packet flow */
 4085         IPFW_RLOCK(chain);
 4086         for (rule = chain->rules; rule ; rule = rule->next) {
 4087                 /*
 4088                  * Verify the entry fits in the buffer in case the
 4089                  * rules changed between calculating buffer space and
 4090                  * now.  This would be better done using a generation
 4091                  * number but should suffice for now.
 4092                  */
 4093                 i = RULESIZE(rule);
 4094                 if (bp + i <= ep) {
 4095                         bcopy(rule, bp, i);
 4096                         /*
 4097                          * XXX HACK. Store the disable mask in the "next" pointer
 4098                          * in a wild attempt to keep the ABI the same.
 4099                          * Why do we do this on EVERY rule?
 4100                          */
 4101                         bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
 4102                             sizeof(set_disable));
 4103                         if (((struct ip_fw *)bp)->timestamp)
 4104                                 ((struct ip_fw *)bp)->timestamp += boot_seconds;
 4105                         bp += i;
 4106                 }
 4107         }
 4108         IPFW_RUNLOCK(chain);
 4109         if (ipfw_dyn_v) {
 4110                 ipfw_dyn_rule *p, *last = NULL;
 4111 
 4112                 IPFW_DYN_LOCK();
 4113                 for (i = 0 ; i < curr_dyn_buckets; i++)
 4114                         for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
 4115                                 if (bp + sizeof *p <= ep) {
 4116                                         ipfw_dyn_rule *dst =
 4117                                                 (ipfw_dyn_rule *)bp;
 4118                                         bcopy(p, dst, sizeof *p);
 4119                                         bcopy(&(p->rule->rulenum), &(dst->rule),
 4120                                             sizeof(p->rule->rulenum));
 4121                                         /*
 4122                                          * store set number into high word of
 4123                                          * dst->rule pointer.
 4124                                          */
 4125                                         bcopy(&(p->rule->set),
 4126                                             (char *)&dst->rule +
 4127                                             sizeof(p->rule->rulenum),
 4128                                             sizeof(p->rule->set));
 4129                                         /*
 4130                                          * store a non-null value in "next".
 4131                                          * The userland code will interpret a
 4132                                          * NULL here as a marker
 4133                                          * for the last dynamic rule.
 4134                                          */
 4135                                         bcopy(&dst, &dst->next, sizeof(dst));
 4136                                         last = dst;
 4137                                         dst->expire =
 4138                                             TIME_LEQ(dst->expire, time_uptime) ?
 4139                                                 0 : dst->expire - time_uptime ;
 4140                                         bp += sizeof(ipfw_dyn_rule);
 4141                                 }
 4142                         }
 4143                 IPFW_DYN_UNLOCK();
 4144                 if (last != NULL) /* mark last dynamic rule */
 4145                         bzero(&last->next, sizeof(last));
 4146         }
 4147         return (bp - (char *)buf);
 4148 }
 4149 
 4150 
 4151 /**
 4152  * {set|get}sockopt parser.
 4153  */
 4154 static int
 4155 ipfw_ctl(struct sockopt *sopt)
 4156 {
 4157 #define RULE_MAXSIZE    (256*sizeof(u_int32_t))
 4158         int error;
 4159         size_t size;
 4160         struct ip_fw *buf, *rule;
 4161         u_int32_t rulenum[2];
 4162 
 4163         error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
 4164         if (error)
 4165                 return (error);
 4166 
 4167         /*
 4168          * Disallow modifications in really-really secure mode, but still allow
 4169          * the logging counters to be reset.
 4170          */
 4171         if (sopt->sopt_name == IP_FW_ADD ||
 4172             (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
 4173                 error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
 4174                 if (error)
 4175                         return (error);
 4176         }
 4177 
 4178         error = 0;
 4179 
 4180         switch (sopt->sopt_name) {
 4181         case IP_FW_GET:
 4182                 /*
 4183                  * pass up a copy of the current rules. Static rules
 4184                  * come first (the last of which has number IPFW_DEFAULT_RULE),
 4185                  * followed by a possibly empty list of dynamic rule.
 4186                  * The last dynamic rule has NULL in the "next" field.
 4187                  *
 4188                  * Note that the calculated size is used to bound the
 4189                  * amount of data returned to the user.  The rule set may
 4190                  * change between calculating the size and returning the
 4191                  * data in which case we'll just return what fits.
 4192                  */
 4193                 size = static_len;      /* size of static rules */
 4194                 if (ipfw_dyn_v)         /* add size of dyn.rules */
 4195                         size += (dyn_count * sizeof(ipfw_dyn_rule));
 4196 
 4197                 /*
 4198                  * XXX todo: if the user passes a short length just to know
 4199                  * how much room is needed, do not bother filling up the
 4200                  * buffer, just jump to the sooptcopyout.
 4201                  */
 4202                 buf = malloc(size, M_TEMP, M_WAITOK);
 4203                 error = sooptcopyout(sopt, buf,
 4204                                 ipfw_getrules(&layer3_chain, buf, size));
 4205                 free(buf, M_TEMP);
 4206                 break;
 4207 
 4208         case IP_FW_FLUSH:
 4209                 /*
 4210                  * Normally we cannot release the lock on each iteration.
 4211                  * We could do it here only because we start from the head all
 4212                  * the times so there is no risk of missing some entries.
 4213                  * On the other hand, the risk is that we end up with
 4214                  * a very inconsistent ruleset, so better keep the lock
 4215                  * around the whole cycle.
 4216                  *
 4217                  * XXX this code can be improved by resetting the head of
 4218                  * the list to point to the default rule, and then freeing
 4219                  * the old list without the need for a lock.
 4220                  */
 4221 
 4222                 IPFW_WLOCK(&layer3_chain);
 4223                 layer3_chain.reap = NULL;
 4224                 free_chain(&layer3_chain, 0 /* keep default rule */);
 4225                 rule = layer3_chain.reap;
 4226                 layer3_chain.reap = NULL;
 4227                 IPFW_WUNLOCK(&layer3_chain);
 4228                 if (rule != NULL)
 4229                         reap_rules(rule);
 4230                 break;
 4231 
 4232         case IP_FW_ADD:
 4233                 rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
 4234                 error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
 4235                         sizeof(struct ip_fw) );
 4236                 if (error == 0)
 4237                         error = check_ipfw_struct(rule, sopt->sopt_valsize);
 4238                 if (error == 0) {
 4239                         error = add_rule(&layer3_chain, rule);
 4240                         size = RULESIZE(rule);
 4241                         if (!error && sopt->sopt_dir == SOPT_GET)
 4242                                 error = sooptcopyout(sopt, rule, size);
 4243                 }
 4244                 free(rule, M_TEMP);
 4245                 break;
 4246 
 4247         case IP_FW_DEL:
 4248                 /*
 4249                  * IP_FW_DEL is used for deleting single rules or sets,
 4250                  * and (ab)used to atomically manipulate sets. Argument size
 4251                  * is used to distinguish between the two:
 4252                  *    sizeof(u_int32_t)
 4253                  *      delete single rule or set of rules,
 4254                  *      or reassign rules (or sets) to a different set.
 4255                  *    2*sizeof(u_int32_t)
 4256                  *      atomic disable/enable sets.
 4257                  *      first u_int32_t contains sets to be disabled,
 4258                  *      second u_int32_t contains sets to be enabled.
 4259                  */
 4260                 error = sooptcopyin(sopt, rulenum,
 4261                         2*sizeof(u_int32_t), sizeof(u_int32_t));
 4262                 if (error)
 4263                         break;
 4264                 size = sopt->sopt_valsize;
 4265                 if (size == sizeof(u_int32_t))  /* delete or reassign */
 4266                         error = del_entry(&layer3_chain, rulenum[0]);
 4267                 else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
 4268                         set_disable =
 4269                             (set_disable | rulenum[0]) & ~rulenum[1] &
 4270                             ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
 4271                 else
 4272                         error = EINVAL;
 4273                 break;
 4274 
 4275         case IP_FW_ZERO:
 4276         case IP_FW_RESETLOG: /* argument is an u_int_32, the rule number */
 4277                 rulenum[0] = 0;
 4278                 if (sopt->sopt_val != 0) {
 4279                     error = sooptcopyin(sopt, rulenum,
 4280                             sizeof(u_int32_t), sizeof(u_int32_t));
 4281                     if (error)
 4282                         break;
 4283                 }
 4284                 error = zero_entry(&layer3_chain, rulenum[0],
 4285                         sopt->sopt_name == IP_FW_RESETLOG);
 4286                 break;
 4287 
 4288         case IP_FW_TABLE_ADD:
 4289                 {
 4290                         ipfw_table_entry ent;
 4291 
 4292                         error = sooptcopyin(sopt, &ent,
 4293                             sizeof(ent), sizeof(ent));
 4294                         if (error)
 4295                                 break;
 4296                         error = add_table_entry(&layer3_chain, ent.tbl,
 4297                             ent.addr, ent.masklen, ent.value);
 4298                 }
 4299                 break;
 4300 
 4301         case IP_FW_TABLE_DEL:
 4302                 {
 4303                         ipfw_table_entry ent;
 4304 
 4305                         error = sooptcopyin(sopt, &ent,
 4306                             sizeof(ent), sizeof(ent));
 4307                         if (error)
 4308                                 break;
 4309                         error = del_table_entry(&layer3_chain, ent.tbl,
 4310                             ent.addr, ent.masklen);
 4311                 }
 4312                 break;
 4313 
 4314         case IP_FW_TABLE_FLUSH:
 4315                 {
 4316                         u_int16_t tbl;
 4317 
 4318                         error = sooptcopyin(sopt, &tbl,
 4319                             sizeof(tbl), sizeof(tbl));
 4320                         if (error)
 4321                                 break;
 4322                         IPFW_WLOCK(&layer3_chain);
 4323                         error = flush_table(&layer3_chain, tbl);
 4324                         IPFW_WUNLOCK(&layer3_chain);
 4325                 }
 4326                 break;
 4327 
 4328         case IP_FW_TABLE_GETSIZE:
 4329                 {
 4330                         u_int32_t tbl, cnt;
 4331 
 4332                         if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
 4333                             sizeof(tbl))))
 4334                                 break;
 4335                         IPFW_RLOCK(&layer3_chain);
 4336                         error = count_table(&layer3_chain, tbl, &cnt);
 4337                         IPFW_RUNLOCK(&layer3_chain);
 4338                         if (error)
 4339                                 break;
 4340                         error = sooptcopyout(sopt, &cnt, sizeof(cnt));
 4341                 }
 4342                 break;
 4343 
 4344         case IP_FW_TABLE_LIST:
 4345                 {
 4346                         ipfw_table *tbl;
 4347 
 4348                         if (sopt->sopt_valsize < sizeof(*tbl)) {
 4349                                 error = EINVAL;
 4350                                 break;
 4351                         }
 4352                         size = sopt->sopt_valsize;
 4353                         tbl = malloc(size, M_TEMP, M_WAITOK);
 4354                         error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
 4355                         if (error) {
 4356                                 free(tbl, M_TEMP);
 4357                                 break;
 4358                         }
 4359                         tbl->size = (size - sizeof(*tbl)) /
 4360                             sizeof(ipfw_table_entry);
 4361                         IPFW_RLOCK(&layer3_chain);
 4362                         error = dump_table(&layer3_chain, tbl);
 4363                         IPFW_RUNLOCK(&layer3_chain);
 4364                         if (error) {
 4365                                 free(tbl, M_TEMP);
 4366                                 break;
 4367                         }
 4368                         error = sooptcopyout(sopt, tbl, size);
 4369                         free(tbl, M_TEMP);
 4370                 }
 4371                 break;
 4372 
 4373         case IP_FW_NAT_CFG:
 4374                 if (IPFW_NAT_LOADED)
 4375                         error = ipfw_nat_cfg_ptr(sopt);
 4376                 else {
 4377                         printf("IP_FW_NAT_CFG: %s\n",
 4378                                 "ipfw_nat not present, please load it");
 4379                         error = EINVAL;
 4380                 }
 4381                 break;
 4382 
 4383         case IP_FW_NAT_DEL:
 4384                 if (IPFW_NAT_LOADED)
 4385                         error = ipfw_nat_del_ptr(sopt);
 4386                 else {
 4387                         printf("IP_FW_NAT_DEL: %s\n",
 4388                                 "ipfw_nat not present, please load it");
 4389                         error = EINVAL;
 4390                 }
 4391                 break;
 4392 
 4393         case IP_FW_NAT_GET_CONFIG:
 4394                 if (IPFW_NAT_LOADED)
 4395                         error = ipfw_nat_get_cfg_ptr(sopt);
 4396                 else {
 4397                         printf("IP_FW_NAT_GET_CFG: %s\n",
 4398                                 "ipfw_nat not present, please load it");
 4399                         error = EINVAL;
 4400                 }
 4401                 break;
 4402 
 4403         case IP_FW_NAT_GET_LOG:
 4404                 if (IPFW_NAT_LOADED)
 4405                         error = ipfw_nat_get_log_ptr(sopt);
 4406                 else {
 4407                         printf("IP_FW_NAT_GET_LOG: %s\n",
 4408                                 "ipfw_nat not present, please load it");
 4409                         error = EINVAL;
 4410                 }
 4411                 break;
 4412 
 4413         default:
 4414                 printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
 4415                 error = EINVAL;
 4416         }
 4417 
 4418         return (error);
 4419 #undef RULE_MAXSIZE
 4420 }
 4421 
 4422 /**
 4423  * dummynet needs a reference to the default rule, because rules can be
 4424  * deleted while packets hold a reference to them. When this happens,
 4425  * dummynet changes the reference to the default rule (it could well be a
 4426  * NULL pointer, but this way we do not need to check for the special
 4427  * case, plus here he have info on the default behaviour).
 4428  */
 4429 struct ip_fw *ip_fw_default_rule;
 4430 
 4431 /*
 4432  * This procedure is only used to handle keepalives. It is invoked
 4433  * every dyn_keepalive_period
 4434  */
 4435 static void
 4436 ipfw_tick(void * __unused unused)
 4437 {
 4438         struct mbuf *m0, *m, *mnext, **mtailp;
 4439         int i;
 4440         ipfw_dyn_rule *q;
 4441 
 4442         if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
 4443                 goto done;
 4444 
 4445         /*
 4446          * We make a chain of packets to go out here -- not deferring
 4447          * until after we drop the IPFW dynamic rule lock would result
 4448          * in a lock order reversal with the normal packet input -> ipfw
 4449          * call stack.
 4450          */
 4451         m0 = NULL;
 4452         mtailp = &m0;
 4453         IPFW_DYN_LOCK();
 4454         for (i = 0 ; i < curr_dyn_buckets ; i++) {
 4455                 for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
 4456                         if (q->dyn_type == O_LIMIT_PARENT)
 4457                                 continue;
 4458                         if (q->id.proto != IPPROTO_TCP)
 4459                                 continue;
 4460                         if ( (q->state & BOTH_SYN) != BOTH_SYN)
 4461                                 continue;
 4462                         if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
 4463                             q->expire))
 4464                                 continue;       /* too early */
 4465                         if (TIME_LEQ(q->expire, time_uptime))
 4466                                 continue;       /* too late, rule expired */
 4467 
 4468                         *mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
 4469                                 q->ack_fwd, TH_SYN);
 4470                         if (*mtailp != NULL)
 4471                                 mtailp = &(*mtailp)->m_nextpkt;
 4472                         *mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
 4473                                 q->ack_rev, 0);
 4474                         if (*mtailp != NULL)
 4475                                 mtailp = &(*mtailp)->m_nextpkt;
 4476                 }
 4477         }
 4478         IPFW_DYN_UNLOCK();
 4479         for (m = mnext = m0; m != NULL; m = mnext) {
 4480                 mnext = m->m_nextpkt;
 4481                 m->m_nextpkt = NULL;
 4482                 ip_output(m, NULL, NULL, 0, NULL, NULL);
 4483         }
 4484 done:
 4485         callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
 4486 }
 4487 
 4488 int
 4489 ipfw_init(void)
 4490 {
 4491         struct ip_fw default_rule;
 4492         int error;
 4493 
 4494 #ifdef INET6
 4495         /* Setup IPv6 fw sysctl tree. */
 4496         sysctl_ctx_init(&ip6_fw_sysctl_ctx);
 4497         ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
 4498             SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
 4499             CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
 4500         SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
 4501             OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
 4502             &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
 4503         SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
 4504             OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
 4505             &fw_deny_unknown_exthdrs, 0,
 4506             "Deny packets with unknown IPv6 Extension Headers");
 4507 #endif
 4508 
 4509         layer3_chain.rules = NULL;
 4510         IPFW_LOCK_INIT(&layer3_chain);
 4511         ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
 4512             sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
 4513             UMA_ALIGN_PTR, 0);
 4514         IPFW_DYN_LOCK_INIT();
 4515         callout_init(&ipfw_timeout, CALLOUT_MPSAFE);
 4516 
 4517         bzero(&default_rule, sizeof default_rule);
 4518 
 4519         default_rule.act_ofs = 0;
 4520         default_rule.rulenum = IPFW_DEFAULT_RULE;
 4521         default_rule.cmd_len = 1;
 4522         default_rule.set = RESVD_SET;
 4523 
 4524         default_rule.cmd[0].len = 1;
 4525         default_rule.cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
 4526 
 4527         error = add_rule(&layer3_chain, &default_rule);
 4528         if (error != 0) {
 4529                 printf("ipfw2: error %u initializing default rule "
 4530                         "(support disabled)\n", error);
 4531                 IPFW_DYN_LOCK_DESTROY();
 4532                 IPFW_LOCK_DESTROY(&layer3_chain);
 4533                 uma_zdestroy(ipfw_dyn_rule_zone);
 4534                 return (error);
 4535         }
 4536 
 4537         ip_fw_default_rule = layer3_chain.rules;
 4538         printf("ipfw2 "
 4539 #ifdef INET6
 4540                 "(+ipv6) "
 4541 #endif
 4542                 "initialized, divert %s, nat %s, "
 4543                 "rule-based forwarding "
 4544 #ifdef IPFIREWALL_FORWARD
 4545                 "enabled, "
 4546 #else
 4547                 "disabled, "
 4548 #endif
 4549                 "default to %s, logging ",
 4550 #ifdef IPDIVERT
 4551                 "enabled",
 4552 #else
 4553                 "loadable",
 4554 #endif
 4555 #ifdef IPFIREWALL_NAT
 4556                 "enabled",
 4557 #else
 4558                 "loadable",
 4559 #endif
 4560 
 4561                 default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
 4562 
 4563 #ifdef IPFIREWALL_VERBOSE
 4564         fw_verbose = 1;
 4565 #endif
 4566 #ifdef IPFIREWALL_VERBOSE_LIMIT
 4567         verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
 4568 #endif
 4569         if (fw_verbose == 0)
 4570                 printf("disabled\n");
 4571         else if (verbose_limit == 0)
 4572                 printf("unlimited\n");
 4573         else
 4574                 printf("limited to %d packets/entry by default\n",
 4575                     verbose_limit);
 4576 
 4577         error = init_tables(&layer3_chain);
 4578         if (error) {
 4579                 IPFW_DYN_LOCK_DESTROY();
 4580                 IPFW_LOCK_DESTROY(&layer3_chain);
 4581                 uma_zdestroy(ipfw_dyn_rule_zone);
 4582                 return (error);
 4583         }
 4584         ip_fw_ctl_ptr = ipfw_ctl;
 4585         ip_fw_chk_ptr = ipfw_chk;
 4586         callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);      
 4587         LIST_INIT(&layer3_chain.nat);
 4588         return (0);
 4589 }
 4590 
 4591 void
 4592 ipfw_destroy(void)
 4593 {
 4594         struct ip_fw *reap;
 4595 
 4596         ip_fw_chk_ptr = NULL;
 4597         ip_fw_ctl_ptr = NULL;
 4598         callout_drain(&ipfw_timeout);
 4599         IPFW_WLOCK(&layer3_chain);
 4600         flush_tables(&layer3_chain);
 4601         layer3_chain.reap = NULL;
 4602         free_chain(&layer3_chain, 1 /* kill default rule */);
 4603         reap = layer3_chain.reap, layer3_chain.reap = NULL;
 4604         IPFW_WUNLOCK(&layer3_chain);
 4605         if (reap != NULL)
 4606                 reap_rules(reap);
 4607         IPFW_DYN_LOCK_DESTROY();
 4608         uma_zdestroy(ipfw_dyn_rule_zone);
 4609         if (ipfw_dyn_v != NULL)
 4610                 free(ipfw_dyn_v, M_IPFW);
 4611         IPFW_LOCK_DESTROY(&layer3_chain);
 4612 
 4613 #ifdef INET6
 4614         /* Free IPv6 fw sysctl tree. */
 4615         sysctl_ctx_free(&ip6_fw_sysctl_ctx);
 4616 #endif
 4617 
 4618         printf("IP firewall unloaded\n");
 4619 }

Cache object: 4da7f8f9ee17fa4e08b296514c3ba53c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.