The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.0/sys/netinet/ip_input.c 255523 2013-09-13 18:45:10Z trociny $");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_kdtrace.h"
   40 #include "opt_route.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/malloc.h>
   46 #include <sys/domain.h>
   47 #include <sys/protosw.h>
   48 #include <sys/socket.h>
   49 #include <sys/time.h>
   50 #include <sys/kernel.h>
   51 #include <sys/lock.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/sdt.h>
   54 #include <sys/syslog.h>
   55 #include <sys/sysctl.h>
   56 
   57 #include <net/pfil.h>
   58 #include <net/if.h>
   59 #include <net/if_types.h>
   60 #include <net/if_var.h>
   61 #include <net/if_dl.h>
   62 #include <net/route.h>
   63 #include <net/netisr.h>
   64 #include <net/vnet.h>
   65 #include <net/flowtable.h>
   66 
   67 #include <netinet/in.h>
   68 #include <netinet/in_kdtrace.h>
   69 #include <netinet/in_systm.h>
   70 #include <netinet/in_var.h>
   71 #include <netinet/ip.h>
   72 #include <netinet/in_pcb.h>
   73 #include <netinet/ip_var.h>
   74 #include <netinet/ip_fw.h>
   75 #include <netinet/ip_icmp.h>
   76 #include <netinet/ip_options.h>
   77 #include <machine/in_cksum.h>
   78 #include <netinet/ip_carp.h>
   79 #ifdef IPSEC
   80 #include <netinet/ip_ipsec.h>
   81 #endif /* IPSEC */
   82 
   83 #include <sys/socketvar.h>
   84 
   85 #include <security/mac/mac_framework.h>
   86 
   87 #ifdef CTASSERT
   88 CTASSERT(sizeof(struct ip) == 20);
   89 #endif
   90 
   91 struct  rwlock in_ifaddr_lock;
   92 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
   93 
   94 VNET_DEFINE(int, rsvp_on);
   95 
   96 VNET_DEFINE(int, ipforwarding);
   97 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   98     &VNET_NAME(ipforwarding), 0,
   99     "Enable IP forwarding between interfaces");
  100 
  101 static VNET_DEFINE(int, ipsendredirects) = 1;   /* XXX */
  102 #define V_ipsendredirects       VNET(ipsendredirects)
  103 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
  104     &VNET_NAME(ipsendredirects), 0,
  105     "Enable sending IP redirects");
  106 
  107 static VNET_DEFINE(int, ip_keepfaith);
  108 #define V_ip_keepfaith          VNET(ip_keepfaith)
  109 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  110     &VNET_NAME(ip_keepfaith), 0,
  111     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  112 
  113 static VNET_DEFINE(int, ip_sendsourcequench);
  114 #define V_ip_sendsourcequench   VNET(ip_sendsourcequench)
  115 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  116     &VNET_NAME(ip_sendsourcequench), 0,
  117     "Enable the transmission of source quench packets");
  118 
  119 VNET_DEFINE(int, ip_do_randomid);
  120 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  121     &VNET_NAME(ip_do_randomid), 0,
  122     "Assign random ip_id values");
  123 
  124 /*
  125  * XXX - Setting ip_checkinterface mostly implements the receive side of
  126  * the Strong ES model described in RFC 1122, but since the routing table
  127  * and transmit implementation do not implement the Strong ES model,
  128  * setting this to 1 results in an odd hybrid.
  129  *
  130  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  131  * to translate the destination address to another local interface.
  132  *
  133  * XXX - ip_checkinterface must be disabled if you add IP aliases
  134  * to the loopback interface instead of the interface where the
  135  * packets for those addresses are received.
  136  */
  137 static VNET_DEFINE(int, ip_checkinterface);
  138 #define V_ip_checkinterface     VNET(ip_checkinterface)
  139 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  140     &VNET_NAME(ip_checkinterface), 0,
  141     "Verify packet arrives on correct interface");
  142 
  143 VNET_DEFINE(struct pfil_head, inet_pfil_hook);  /* Packet filter hooks */
  144 
  145 static struct netisr_handler ip_nh = {
  146         .nh_name = "ip",
  147         .nh_handler = ip_input,
  148         .nh_proto = NETISR_IP,
  149         .nh_policy = NETISR_POLICY_FLOW,
  150 };
  151 
  152 extern  struct domain inetdomain;
  153 extern  struct protosw inetsw[];
  154 u_char  ip_protox[IPPROTO_MAX];
  155 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
  156 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
  157 VNET_DEFINE(u_long, in_ifaddrhmask);            /* mask for hash table */
  158 
  159 static VNET_DEFINE(uma_zone_t, ipq_zone);
  160 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
  161 static struct mtx ipqlock;
  162 
  163 #define V_ipq_zone              VNET(ipq_zone)
  164 #define V_ipq                   VNET(ipq)
  165 
  166 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  167 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  168 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  169 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  170 
  171 static void     maxnipq_update(void);
  172 static void     ipq_zone_change(void *);
  173 static void     ip_drain_locked(void);
  174 
  175 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
  176 static VNET_DEFINE(int, nipq);                  /* Total # of reass queues */
  177 #define V_maxnipq               VNET(maxnipq)
  178 #define V_nipq                  VNET(nipq)
  179 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  180     &VNET_NAME(nipq), 0,
  181     "Current number of IPv4 fragment reassembly queue entries");
  182 
  183 static VNET_DEFINE(int, maxfragsperpacket);
  184 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  185 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  186     &VNET_NAME(maxfragsperpacket), 0,
  187     "Maximum number of IPv4 fragments allowed per packet");
  188 
  189 #ifdef IPCTL_DEFMTU
  190 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  191     &ip_mtu, 0, "Default MTU");
  192 #endif
  193 
  194 #ifdef IPSTEALTH
  195 VNET_DEFINE(int, ipstealth);
  196 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  197     &VNET_NAME(ipstealth), 0,
  198     "IP stealth mode, no TTL decrementation on forwarding");
  199 #endif
  200 
  201 #ifdef FLOWTABLE
  202 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
  203 VNET_DEFINE(struct flowtable *, ip_ft);
  204 #define V_ip_output_flowtable_size      VNET(ip_output_flowtable_size)
  205 
  206 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
  207     &VNET_NAME(ip_output_flowtable_size), 2048,
  208     "number of entries in the per-cpu output flow caches");
  209 #endif
  210 
  211 static void     ip_freef(struct ipqhead *, struct ipq *);
  212 
  213 /*
  214  * IP statistics are stored in the "array" of counter(9)s.
  215  */
  216 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
  217 VNET_PCPUSTAT_SYSINIT(ipstat);
  218 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
  219     "IP statistics (struct ipstat, netinet/ip_var.h)");
  220 
  221 #ifdef VIMAGE
  222 VNET_PCPUSTAT_SYSUNINIT(ipstat);
  223 #endif /* VIMAGE */
  224 
  225 /*
  226  * Kernel module interface for updating ipstat.  The argument is an index
  227  * into ipstat treated as an array.
  228  */
  229 void
  230 kmod_ipstat_inc(int statnum)
  231 {
  232 
  233         counter_u64_add(VNET(ipstat)[statnum], 1);
  234 }
  235 
  236 void
  237 kmod_ipstat_dec(int statnum)
  238 {
  239 
  240         counter_u64_add(VNET(ipstat)[statnum], -1);
  241 }
  242 
  243 static int
  244 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
  245 {
  246         int error, qlimit;
  247 
  248         netisr_getqlimit(&ip_nh, &qlimit);
  249         error = sysctl_handle_int(oidp, &qlimit, 0, req);
  250         if (error || !req->newptr)
  251                 return (error);
  252         if (qlimit < 1)
  253                 return (EINVAL);
  254         return (netisr_setqlimit(&ip_nh, qlimit));
  255 }
  256 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
  257     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
  258     "Maximum size of the IP input queue");
  259 
  260 static int
  261 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
  262 {
  263         u_int64_t qdrops_long;
  264         int error, qdrops;
  265 
  266         netisr_getqdrops(&ip_nh, &qdrops_long);
  267         qdrops = qdrops_long;
  268         error = sysctl_handle_int(oidp, &qdrops, 0, req);
  269         if (error || !req->newptr)
  270                 return (error);
  271         if (qdrops != 0)
  272                 return (EINVAL);
  273         netisr_clearqdrops(&ip_nh);
  274         return (0);
  275 }
  276 
  277 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
  278     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
  279     "Number of packets dropped from the IP input queue");
  280 
  281 /*
  282  * IP initialization: fill in IP protocol switch table.
  283  * All protocols not implemented in kernel go to raw IP protocol handler.
  284  */
  285 void
  286 ip_init(void)
  287 {
  288         struct protosw *pr;
  289         int i;
  290 
  291         V_ip_id = time_second & 0xffff;
  292 
  293         TAILQ_INIT(&V_in_ifaddrhead);
  294         V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
  295 
  296         /* Initialize IP reassembly queue. */
  297         for (i = 0; i < IPREASS_NHASH; i++)
  298                 TAILQ_INIT(&V_ipq[i]);
  299         V_maxnipq = nmbclusters / 32;
  300         V_maxfragsperpacket = 16;
  301         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  302             NULL, UMA_ALIGN_PTR, 0);
  303         maxnipq_update();
  304 
  305         /* Initialize packet filter hooks. */
  306         V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  307         V_inet_pfil_hook.ph_af = AF_INET;
  308         if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
  309                 printf("%s: WARNING: unable to register pfil hook, "
  310                         "error %d\n", __func__, i);
  311 
  312 #ifdef FLOWTABLE
  313         if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
  314                 &V_ip_output_flowtable_size)) {
  315                 if (V_ip_output_flowtable_size < 256)
  316                         V_ip_output_flowtable_size = 256;
  317                 if (!powerof2(V_ip_output_flowtable_size)) {
  318                         printf("flowtable must be power of 2 size\n");
  319                         V_ip_output_flowtable_size = 2048;
  320                 }
  321         } else {
  322                 /*
  323                  * round up to the next power of 2
  324                  */
  325                 V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
  326         }
  327         V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
  328 #endif
  329 
  330         /* Skip initialization of globals for non-default instances. */
  331         if (!IS_DEFAULT_VNET(curvnet))
  332                 return;
  333 
  334         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  335         if (pr == NULL)
  336                 panic("ip_init: PF_INET not found");
  337 
  338         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  339         for (i = 0; i < IPPROTO_MAX; i++)
  340                 ip_protox[i] = pr - inetsw;
  341         /*
  342          * Cycle through IP protocols and put them into the appropriate place
  343          * in ip_protox[].
  344          */
  345         for (pr = inetdomain.dom_protosw;
  346             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  347                 if (pr->pr_domain->dom_family == PF_INET &&
  348                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  349                         /* Be careful to only index valid IP protocols. */
  350                         if (pr->pr_protocol < IPPROTO_MAX)
  351                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  352                 }
  353 
  354         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  355                 NULL, EVENTHANDLER_PRI_ANY);
  356 
  357         /* Initialize various other remaining things. */
  358         IPQ_LOCK_INIT();
  359         netisr_register(&ip_nh);
  360 }
  361 
  362 #ifdef VIMAGE
  363 void
  364 ip_destroy(void)
  365 {
  366         int i;
  367 
  368         if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
  369                 printf("%s: WARNING: unable to unregister pfil hook, "
  370                     "error %d\n", __func__, i);
  371 
  372         /* Cleanup in_ifaddr hash table; should be empty. */
  373         hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
  374 
  375         IPQ_LOCK();
  376         ip_drain_locked();
  377         IPQ_UNLOCK();
  378 
  379         uma_zdestroy(V_ipq_zone);
  380 }
  381 #endif
  382 
  383 /*
  384  * Ip input routine.  Checksum and byte swap header.  If fragmented
  385  * try to reassemble.  Process options.  Pass to next level.
  386  */
  387 void
  388 ip_input(struct mbuf *m)
  389 {
  390         struct ip *ip = NULL;
  391         struct in_ifaddr *ia = NULL;
  392         struct ifaddr *ifa;
  393         struct ifnet *ifp;
  394         int    checkif, hlen = 0;
  395         uint16_t sum, ip_len;
  396         int dchg = 0;                           /* dest changed after fw */
  397         struct in_addr odst;                    /* original dst address */
  398 
  399         M_ASSERTPKTHDR(m);
  400 
  401         if (m->m_flags & M_FASTFWD_OURS) {
  402                 m->m_flags &= ~M_FASTFWD_OURS;
  403                 /* Set up some basics that will be used later. */
  404                 ip = mtod(m, struct ip *);
  405                 hlen = ip->ip_hl << 2;
  406                 ip_len = ntohs(ip->ip_len);
  407                 goto ours;
  408         }
  409 
  410         IPSTAT_INC(ips_total);
  411 
  412         if (m->m_pkthdr.len < sizeof(struct ip))
  413                 goto tooshort;
  414 
  415         if (m->m_len < sizeof (struct ip) &&
  416             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  417                 IPSTAT_INC(ips_toosmall);
  418                 return;
  419         }
  420         ip = mtod(m, struct ip *);
  421 
  422         if (ip->ip_v != IPVERSION) {
  423                 IPSTAT_INC(ips_badvers);
  424                 goto bad;
  425         }
  426 
  427         hlen = ip->ip_hl << 2;
  428         if (hlen < sizeof(struct ip)) { /* minimum header length */
  429                 IPSTAT_INC(ips_badhlen);
  430                 goto bad;
  431         }
  432         if (hlen > m->m_len) {
  433                 if ((m = m_pullup(m, hlen)) == NULL) {
  434                         IPSTAT_INC(ips_badhlen);
  435                         return;
  436                 }
  437                 ip = mtod(m, struct ip *);
  438         }
  439 
  440         IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
  441 
  442         /* 127/8 must not appear on wire - RFC1122 */
  443         ifp = m->m_pkthdr.rcvif;
  444         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  445             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  446                 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
  447                         IPSTAT_INC(ips_badaddr);
  448                         goto bad;
  449                 }
  450         }
  451 
  452         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  453                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  454         } else {
  455                 if (hlen == sizeof(struct ip)) {
  456                         sum = in_cksum_hdr(ip);
  457                 } else {
  458                         sum = in_cksum(m, hlen);
  459                 }
  460         }
  461         if (sum) {
  462                 IPSTAT_INC(ips_badsum);
  463                 goto bad;
  464         }
  465 
  466 #ifdef ALTQ
  467         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  468                 /* packet is dropped by traffic conditioner */
  469                 return;
  470 #endif
  471 
  472         ip_len = ntohs(ip->ip_len);
  473         if (ip_len < hlen) {
  474                 IPSTAT_INC(ips_badlen);
  475                 goto bad;
  476         }
  477 
  478         /*
  479          * Check that the amount of data in the buffers
  480          * is as at least much as the IP header would have us expect.
  481          * Trim mbufs if longer than we expect.
  482          * Drop packet if shorter than we expect.
  483          */
  484         if (m->m_pkthdr.len < ip_len) {
  485 tooshort:
  486                 IPSTAT_INC(ips_tooshort);
  487                 goto bad;
  488         }
  489         if (m->m_pkthdr.len > ip_len) {
  490                 if (m->m_len == m->m_pkthdr.len) {
  491                         m->m_len = ip_len;
  492                         m->m_pkthdr.len = ip_len;
  493                 } else
  494                         m_adj(m, ip_len - m->m_pkthdr.len);
  495         }
  496 #ifdef IPSEC
  497         /*
  498          * Bypass packet filtering for packets previously handled by IPsec.
  499          */
  500         if (ip_ipsec_filtertunnel(m))
  501                 goto passin;
  502 #endif /* IPSEC */
  503 
  504         /*
  505          * Run through list of hooks for input packets.
  506          *
  507          * NB: Beware of the destination address changing (e.g.
  508          *     by NAT rewriting).  When this happens, tell
  509          *     ip_forward to do the right thing.
  510          */
  511 
  512         /* Jump over all PFIL processing if hooks are not active. */
  513         if (!PFIL_HOOKED(&V_inet_pfil_hook))
  514                 goto passin;
  515 
  516         odst = ip->ip_dst;
  517         if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
  518                 return;
  519         if (m == NULL)                  /* consumed by filter */
  520                 return;
  521 
  522         ip = mtod(m, struct ip *);
  523         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  524         ifp = m->m_pkthdr.rcvif;
  525 
  526         if (m->m_flags & M_FASTFWD_OURS) {
  527                 m->m_flags &= ~M_FASTFWD_OURS;
  528                 goto ours;
  529         }
  530         if (m->m_flags & M_IP_NEXTHOP) {
  531                 dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);
  532                 if (dchg != 0) {
  533                         /*
  534                          * Directly ship the packet on.  This allows
  535                          * forwarding packets originally destined to us
  536                          * to some other directly connected host.
  537                          */
  538                         ip_forward(m, 1);
  539                         return;
  540                 }
  541         }
  542 passin:
  543 
  544         /*
  545          * Process options and, if not destined for us,
  546          * ship it on.  ip_dooptions returns 1 when an
  547          * error was detected (causing an icmp message
  548          * to be sent and the original packet to be freed).
  549          */
  550         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  551                 return;
  552 
  553         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  554          * matter if it is destined to another node, or whether it is 
  555          * a multicast one, RSVP wants it! and prevents it from being forwarded
  556          * anywhere else. Also checks if the rsvp daemon is running before
  557          * grabbing the packet.
  558          */
  559         if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  560                 goto ours;
  561 
  562         /*
  563          * Check our list of addresses, to see if the packet is for us.
  564          * If we don't have any addresses, assume any unicast packet
  565          * we receive might be for us (and let the upper layers deal
  566          * with it).
  567          */
  568         if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
  569             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  570                 goto ours;
  571 
  572         /*
  573          * Enable a consistency check between the destination address
  574          * and the arrival interface for a unicast packet (the RFC 1122
  575          * strong ES model) if IP forwarding is disabled and the packet
  576          * is not locally generated and the packet is not subject to
  577          * 'ipfw fwd'.
  578          *
  579          * XXX - Checking also should be disabled if the destination
  580          * address is ipnat'ed to a different interface.
  581          *
  582          * XXX - Checking is incompatible with IP aliases added
  583          * to the loopback interface instead of the interface where
  584          * the packets are received.
  585          *
  586          * XXX - This is the case for carp vhost IPs as well so we
  587          * insert a workaround. If the packet got here, we already
  588          * checked with carp_iamatch() and carp_forus().
  589          */
  590         checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 
  591             ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
  592             ifp->if_carp == NULL && (dchg == 0);
  593 
  594         /*
  595          * Check for exact addresses in the hash bucket.
  596          */
  597         /* IN_IFADDR_RLOCK(); */
  598         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  599                 /*
  600                  * If the address matches, verify that the packet
  601                  * arrived via the correct interface if checking is
  602                  * enabled.
  603                  */
  604                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  605                     (!checkif || ia->ia_ifp == ifp)) {
  606                         ifa_ref(&ia->ia_ifa);
  607                         /* IN_IFADDR_RUNLOCK(); */
  608                         goto ours;
  609                 }
  610         }
  611         /* IN_IFADDR_RUNLOCK(); */
  612 
  613         /*
  614          * Check for broadcast addresses.
  615          *
  616          * Only accept broadcast packets that arrive via the matching
  617          * interface.  Reception of forwarded directed broadcasts would
  618          * be handled via ip_forward() and ether_output() with the loopback
  619          * into the stack for SIMPLEX interfaces handled by ether_output().
  620          */
  621         if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
  622                 IF_ADDR_RLOCK(ifp);
  623                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  624                         if (ifa->ifa_addr->sa_family != AF_INET)
  625                                 continue;
  626                         ia = ifatoia(ifa);
  627                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  628                             ip->ip_dst.s_addr) {
  629                                 ifa_ref(ifa);
  630                                 IF_ADDR_RUNLOCK(ifp);
  631                                 goto ours;
  632                         }
  633 #ifdef BOOTP_COMPAT
  634                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
  635                                 ifa_ref(ifa);
  636                                 IF_ADDR_RUNLOCK(ifp);
  637                                 goto ours;
  638                         }
  639 #endif
  640                 }
  641                 IF_ADDR_RUNLOCK(ifp);
  642                 ia = NULL;
  643         }
  644         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  645         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  646                 IPSTAT_INC(ips_cantforward);
  647                 m_freem(m);
  648                 return;
  649         }
  650         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  651                 if (V_ip_mrouter) {
  652                         /*
  653                          * If we are acting as a multicast router, all
  654                          * incoming multicast packets are passed to the
  655                          * kernel-level multicast forwarding function.
  656                          * The packet is returned (relatively) intact; if
  657                          * ip_mforward() returns a non-zero value, the packet
  658                          * must be discarded, else it may be accepted below.
  659                          */
  660                         if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
  661                                 IPSTAT_INC(ips_cantforward);
  662                                 m_freem(m);
  663                                 return;
  664                         }
  665 
  666                         /*
  667                          * The process-level routing daemon needs to receive
  668                          * all multicast IGMP packets, whether or not this
  669                          * host belongs to their destination groups.
  670                          */
  671                         if (ip->ip_p == IPPROTO_IGMP)
  672                                 goto ours;
  673                         IPSTAT_INC(ips_forward);
  674                 }
  675                 /*
  676                  * Assume the packet is for us, to avoid prematurely taking
  677                  * a lock on the in_multi hash. Protocols must perform
  678                  * their own filtering and update statistics accordingly.
  679                  */
  680                 goto ours;
  681         }
  682         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  683                 goto ours;
  684         if (ip->ip_dst.s_addr == INADDR_ANY)
  685                 goto ours;
  686 
  687         /*
  688          * FAITH(Firewall Aided Internet Translator)
  689          */
  690         if (ifp && ifp->if_type == IFT_FAITH) {
  691                 if (V_ip_keepfaith) {
  692                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  693                                 goto ours;
  694                 }
  695                 m_freem(m);
  696                 return;
  697         }
  698 
  699         /*
  700          * Not for us; forward if possible and desirable.
  701          */
  702         if (V_ipforwarding == 0) {
  703                 IPSTAT_INC(ips_cantforward);
  704                 m_freem(m);
  705         } else {
  706 #ifdef IPSEC
  707                 if (ip_ipsec_fwd(m))
  708                         goto bad;
  709 #endif /* IPSEC */
  710                 ip_forward(m, dchg);
  711         }
  712         return;
  713 
  714 ours:
  715 #ifdef IPSTEALTH
  716         /*
  717          * IPSTEALTH: Process non-routing options only
  718          * if the packet is destined for us.
  719          */
  720         if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
  721                 if (ia != NULL)
  722                         ifa_free(&ia->ia_ifa);
  723                 return;
  724         }
  725 #endif /* IPSTEALTH */
  726 
  727         /* Count the packet in the ip address stats */
  728         if (ia != NULL) {
  729                 ia->ia_ifa.if_ipackets++;
  730                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  731                 ifa_free(&ia->ia_ifa);
  732         }
  733 
  734         /*
  735          * Attempt reassembly; if it succeeds, proceed.
  736          * ip_reass() will return a different mbuf.
  737          */
  738         if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
  739                 m = ip_reass(m);
  740                 if (m == NULL)
  741                         return;
  742                 ip = mtod(m, struct ip *);
  743                 /* Get the header length of the reassembled packet */
  744                 hlen = ip->ip_hl << 2;
  745         }
  746 
  747 #ifdef IPSEC
  748         /*
  749          * enforce IPsec policy checking if we are seeing last header.
  750          * note that we do not visit this with protocols with pcb layer
  751          * code - like udp/tcp/raw ip.
  752          */
  753         if (ip_ipsec_input(m))
  754                 goto bad;
  755 #endif /* IPSEC */
  756 
  757         /*
  758          * Switch out to protocol's input routine.
  759          */
  760         IPSTAT_INC(ips_delivered);
  761 
  762         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  763         return;
  764 bad:
  765         m_freem(m);
  766 }
  767 
  768 /*
  769  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  770  * max has slightly different semantics than the sysctl, for historical
  771  * reasons.
  772  */
  773 static void
  774 maxnipq_update(void)
  775 {
  776 
  777         /*
  778          * -1 for unlimited allocation.
  779          */
  780         if (V_maxnipq < 0)
  781                 uma_zone_set_max(V_ipq_zone, 0);
  782         /*
  783          * Positive number for specific bound.
  784          */
  785         if (V_maxnipq > 0)
  786                 uma_zone_set_max(V_ipq_zone, V_maxnipq);
  787         /*
  788          * Zero specifies no further fragment queue allocation -- set the
  789          * bound very low, but rely on implementation elsewhere to actually
  790          * prevent allocation and reclaim current queues.
  791          */
  792         if (V_maxnipq == 0)
  793                 uma_zone_set_max(V_ipq_zone, 1);
  794 }
  795 
  796 static void
  797 ipq_zone_change(void *tag)
  798 {
  799 
  800         if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
  801                 V_maxnipq = nmbclusters / 32;
  802                 maxnipq_update();
  803         }
  804 }
  805 
  806 static int
  807 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  808 {
  809         int error, i;
  810 
  811         i = V_maxnipq;
  812         error = sysctl_handle_int(oidp, &i, 0, req);
  813         if (error || !req->newptr)
  814                 return (error);
  815 
  816         /*
  817          * XXXRW: Might be a good idea to sanity check the argument and place
  818          * an extreme upper bound.
  819          */
  820         if (i < -1)
  821                 return (EINVAL);
  822         V_maxnipq = i;
  823         maxnipq_update();
  824         return (0);
  825 }
  826 
  827 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  828     NULL, 0, sysctl_maxnipq, "I",
  829     "Maximum number of IPv4 fragment reassembly queue entries");
  830 
  831 /*
  832  * Take incoming datagram fragment and try to reassemble it into
  833  * whole datagram.  If the argument is the first fragment or one
  834  * in between the function will return NULL and store the mbuf
  835  * in the fragment chain.  If the argument is the last fragment
  836  * the packet will be reassembled and the pointer to the new
  837  * mbuf returned for further processing.  Only m_tags attached
  838  * to the first packet/fragment are preserved.
  839  * The IP header is *NOT* adjusted out of iplen.
  840  */
  841 struct mbuf *
  842 ip_reass(struct mbuf *m)
  843 {
  844         struct ip *ip;
  845         struct mbuf *p, *q, *nq, *t;
  846         struct ipq *fp = NULL;
  847         struct ipqhead *head;
  848         int i, hlen, next;
  849         u_int8_t ecn, ecn0;
  850         u_short hash;
  851 
  852         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  853         if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
  854                 IPSTAT_INC(ips_fragments);
  855                 IPSTAT_INC(ips_fragdropped);
  856                 m_freem(m);
  857                 return (NULL);
  858         }
  859 
  860         ip = mtod(m, struct ip *);
  861         hlen = ip->ip_hl << 2;
  862 
  863         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  864         head = &V_ipq[hash];
  865         IPQ_LOCK();
  866 
  867         /*
  868          * Look for queue of fragments
  869          * of this datagram.
  870          */
  871         TAILQ_FOREACH(fp, head, ipq_list)
  872                 if (ip->ip_id == fp->ipq_id &&
  873                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  874                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  875 #ifdef MAC
  876                     mac_ipq_match(m, fp) &&
  877 #endif
  878                     ip->ip_p == fp->ipq_p)
  879                         goto found;
  880 
  881         fp = NULL;
  882 
  883         /*
  884          * Attempt to trim the number of allocated fragment queues if it
  885          * exceeds the administrative limit.
  886          */
  887         if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
  888                 /*
  889                  * drop something from the tail of the current queue
  890                  * before proceeding further
  891                  */
  892                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  893                 if (q == NULL) {   /* gak */
  894                         for (i = 0; i < IPREASS_NHASH; i++) {
  895                                 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
  896                                 if (r) {
  897                                         IPSTAT_ADD(ips_fragtimeout,
  898                                             r->ipq_nfrags);
  899                                         ip_freef(&V_ipq[i], r);
  900                                         break;
  901                                 }
  902                         }
  903                 } else {
  904                         IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
  905                         ip_freef(head, q);
  906                 }
  907         }
  908 
  909 found:
  910         /*
  911          * Adjust ip_len to not reflect header,
  912          * convert offset of this to bytes.
  913          */
  914         ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
  915         if (ip->ip_off & htons(IP_MF)) {
  916                 /*
  917                  * Make sure that fragments have a data length
  918                  * that's a non-zero multiple of 8 bytes.
  919                  */
  920                 if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
  921                         IPSTAT_INC(ips_toosmall); /* XXX */
  922                         goto dropfrag;
  923                 }
  924                 m->m_flags |= M_IP_FRAG;
  925         } else
  926                 m->m_flags &= ~M_IP_FRAG;
  927         ip->ip_off = htons(ntohs(ip->ip_off) << 3);
  928 
  929         /*
  930          * Attempt reassembly; if it succeeds, proceed.
  931          * ip_reass() will return a different mbuf.
  932          */
  933         IPSTAT_INC(ips_fragments);
  934         m->m_pkthdr.PH_loc.ptr = ip;
  935 
  936         /* Previous ip_reass() started here. */
  937         /*
  938          * Presence of header sizes in mbufs
  939          * would confuse code below.
  940          */
  941         m->m_data += hlen;
  942         m->m_len -= hlen;
  943 
  944         /*
  945          * If first fragment to arrive, create a reassembly queue.
  946          */
  947         if (fp == NULL) {
  948                 fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  949                 if (fp == NULL)
  950                         goto dropfrag;
  951 #ifdef MAC
  952                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  953                         uma_zfree(V_ipq_zone, fp);
  954                         fp = NULL;
  955                         goto dropfrag;
  956                 }
  957                 mac_ipq_create(m, fp);
  958 #endif
  959                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  960                 V_nipq++;
  961                 fp->ipq_nfrags = 1;
  962                 fp->ipq_ttl = IPFRAGTTL;
  963                 fp->ipq_p = ip->ip_p;
  964                 fp->ipq_id = ip->ip_id;
  965                 fp->ipq_src = ip->ip_src;
  966                 fp->ipq_dst = ip->ip_dst;
  967                 fp->ipq_frags = m;
  968                 m->m_nextpkt = NULL;
  969                 goto done;
  970         } else {
  971                 fp->ipq_nfrags++;
  972 #ifdef MAC
  973                 mac_ipq_update(m, fp);
  974 #endif
  975         }
  976 
  977 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
  978 
  979         /*
  980          * Handle ECN by comparing this segment with the first one;
  981          * if CE is set, do not lose CE.
  982          * drop if CE and not-ECT are mixed for the same packet.
  983          */
  984         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  985         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  986         if (ecn == IPTOS_ECN_CE) {
  987                 if (ecn0 == IPTOS_ECN_NOTECT)
  988                         goto dropfrag;
  989                 if (ecn0 != IPTOS_ECN_CE)
  990                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  991         }
  992         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  993                 goto dropfrag;
  994 
  995         /*
  996          * Find a segment which begins after this one does.
  997          */
  998         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  999                 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
 1000                         break;
 1001 
 1002         /*
 1003          * If there is a preceding segment, it may provide some of
 1004          * our data already.  If so, drop the data from the incoming
 1005          * segment.  If it provides all of our data, drop us, otherwise
 1006          * stick new segment in the proper place.
 1007          *
 1008          * If some of the data is dropped from the preceding
 1009          * segment, then it's checksum is invalidated.
 1010          */
 1011         if (p) {
 1012                 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
 1013                     ntohs(ip->ip_off);
 1014                 if (i > 0) {
 1015                         if (i >= ntohs(ip->ip_len))
 1016                                 goto dropfrag;
 1017                         m_adj(m, i);
 1018                         m->m_pkthdr.csum_flags = 0;
 1019                         ip->ip_off = htons(ntohs(ip->ip_off) + i);
 1020                         ip->ip_len = htons(ntohs(ip->ip_len) - i);
 1021                 }
 1022                 m->m_nextpkt = p->m_nextpkt;
 1023                 p->m_nextpkt = m;
 1024         } else {
 1025                 m->m_nextpkt = fp->ipq_frags;
 1026                 fp->ipq_frags = m;
 1027         }
 1028 
 1029         /*
 1030          * While we overlap succeeding segments trim them or,
 1031          * if they are completely covered, dequeue them.
 1032          */
 1033         for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
 1034             ntohs(GETIP(q)->ip_off); q = nq) {
 1035                 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
 1036                     ntohs(GETIP(q)->ip_off);
 1037                 if (i < ntohs(GETIP(q)->ip_len)) {
 1038                         GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
 1039                         GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
 1040                         m_adj(q, i);
 1041                         q->m_pkthdr.csum_flags = 0;
 1042                         break;
 1043                 }
 1044                 nq = q->m_nextpkt;
 1045                 m->m_nextpkt = nq;
 1046                 IPSTAT_INC(ips_fragdropped);
 1047                 fp->ipq_nfrags--;
 1048                 m_freem(q);
 1049         }
 1050 
 1051         /*
 1052          * Check for complete reassembly and perform frag per packet
 1053          * limiting.
 1054          *
 1055          * Frag limiting is performed here so that the nth frag has
 1056          * a chance to complete the packet before we drop the packet.
 1057          * As a result, n+1 frags are actually allowed per packet, but
 1058          * only n will ever be stored. (n = maxfragsperpacket.)
 1059          *
 1060          */
 1061         next = 0;
 1062         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
 1063                 if (ntohs(GETIP(q)->ip_off) != next) {
 1064                         if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1065                                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1066                                 ip_freef(head, fp);
 1067                         }
 1068                         goto done;
 1069                 }
 1070                 next += ntohs(GETIP(q)->ip_len);
 1071         }
 1072         /* Make sure the last packet didn't have the IP_MF flag */
 1073         if (p->m_flags & M_IP_FRAG) {
 1074                 if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1075                         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1076                         ip_freef(head, fp);
 1077                 }
 1078                 goto done;
 1079         }
 1080 
 1081         /*
 1082          * Reassembly is complete.  Make sure the packet is a sane size.
 1083          */
 1084         q = fp->ipq_frags;
 1085         ip = GETIP(q);
 1086         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
 1087                 IPSTAT_INC(ips_toolong);
 1088                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1089                 ip_freef(head, fp);
 1090                 goto done;
 1091         }
 1092 
 1093         /*
 1094          * Concatenate fragments.
 1095          */
 1096         m = q;
 1097         t = m->m_next;
 1098         m->m_next = NULL;
 1099         m_cat(m, t);
 1100         nq = q->m_nextpkt;
 1101         q->m_nextpkt = NULL;
 1102         for (q = nq; q != NULL; q = nq) {
 1103                 nq = q->m_nextpkt;
 1104                 q->m_nextpkt = NULL;
 1105                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1106                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1107                 m_cat(m, q);
 1108         }
 1109         /*
 1110          * In order to do checksumming faster we do 'end-around carry' here
 1111          * (and not in for{} loop), though it implies we are not going to
 1112          * reassemble more than 64k fragments.
 1113          */
 1114         m->m_pkthdr.csum_data =
 1115             (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
 1116 #ifdef MAC
 1117         mac_ipq_reassemble(fp, m);
 1118         mac_ipq_destroy(fp);
 1119 #endif
 1120 
 1121         /*
 1122          * Create header for new ip packet by modifying header of first
 1123          * packet;  dequeue and discard fragment reassembly header.
 1124          * Make header visible.
 1125          */
 1126         ip->ip_len = htons((ip->ip_hl << 2) + next);
 1127         ip->ip_src = fp->ipq_src;
 1128         ip->ip_dst = fp->ipq_dst;
 1129         TAILQ_REMOVE(head, fp, ipq_list);
 1130         V_nipq--;
 1131         uma_zfree(V_ipq_zone, fp);
 1132         m->m_len += (ip->ip_hl << 2);
 1133         m->m_data -= (ip->ip_hl << 2);
 1134         /* some debugging cruft by sklower, below, will go away soon */
 1135         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1136                 m_fixhdr(m);
 1137         IPSTAT_INC(ips_reassembled);
 1138         IPQ_UNLOCK();
 1139         return (m);
 1140 
 1141 dropfrag:
 1142         IPSTAT_INC(ips_fragdropped);
 1143         if (fp != NULL)
 1144                 fp->ipq_nfrags--;
 1145         m_freem(m);
 1146 done:
 1147         IPQ_UNLOCK();
 1148         return (NULL);
 1149 
 1150 #undef GETIP
 1151 }
 1152 
 1153 /*
 1154  * Free a fragment reassembly header and all
 1155  * associated datagrams.
 1156  */
 1157 static void
 1158 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1159 {
 1160         struct mbuf *q;
 1161 
 1162         IPQ_LOCK_ASSERT();
 1163 
 1164         while (fp->ipq_frags) {
 1165                 q = fp->ipq_frags;
 1166                 fp->ipq_frags = q->m_nextpkt;
 1167                 m_freem(q);
 1168         }
 1169         TAILQ_REMOVE(fhp, fp, ipq_list);
 1170         uma_zfree(V_ipq_zone, fp);
 1171         V_nipq--;
 1172 }
 1173 
 1174 /*
 1175  * IP timer processing;
 1176  * if a timer expires on a reassembly
 1177  * queue, discard it.
 1178  */
 1179 void
 1180 ip_slowtimo(void)
 1181 {
 1182         VNET_ITERATOR_DECL(vnet_iter);
 1183         struct ipq *fp;
 1184         int i;
 1185 
 1186         VNET_LIST_RLOCK_NOSLEEP();
 1187         IPQ_LOCK();
 1188         VNET_FOREACH(vnet_iter) {
 1189                 CURVNET_SET(vnet_iter);
 1190                 for (i = 0; i < IPREASS_NHASH; i++) {
 1191                         for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
 1192                                 struct ipq *fpp;
 1193 
 1194                                 fpp = fp;
 1195                                 fp = TAILQ_NEXT(fp, ipq_list);
 1196                                 if(--fpp->ipq_ttl == 0) {
 1197                                         IPSTAT_ADD(ips_fragtimeout,
 1198                                             fpp->ipq_nfrags);
 1199                                         ip_freef(&V_ipq[i], fpp);
 1200                                 }
 1201                         }
 1202                 }
 1203                 /*
 1204                  * If we are over the maximum number of fragments
 1205                  * (due to the limit being lowered), drain off
 1206                  * enough to get down to the new limit.
 1207                  */
 1208                 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
 1209                         for (i = 0; i < IPREASS_NHASH; i++) {
 1210                                 while (V_nipq > V_maxnipq &&
 1211                                     !TAILQ_EMPTY(&V_ipq[i])) {
 1212                                         IPSTAT_ADD(ips_fragdropped,
 1213                                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1214                                         ip_freef(&V_ipq[i],
 1215                                             TAILQ_FIRST(&V_ipq[i]));
 1216                                 }
 1217                         }
 1218                 }
 1219                 CURVNET_RESTORE();
 1220         }
 1221         IPQ_UNLOCK();
 1222         VNET_LIST_RUNLOCK_NOSLEEP();
 1223 }
 1224 
 1225 /*
 1226  * Drain off all datagram fragments.
 1227  */
 1228 static void
 1229 ip_drain_locked(void)
 1230 {
 1231         int     i;
 1232 
 1233         IPQ_LOCK_ASSERT();
 1234 
 1235         for (i = 0; i < IPREASS_NHASH; i++) {
 1236                 while(!TAILQ_EMPTY(&V_ipq[i])) {
 1237                         IPSTAT_ADD(ips_fragdropped,
 1238                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1239                         ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
 1240                 }
 1241         }
 1242 }
 1243 
 1244 void
 1245 ip_drain(void)
 1246 {
 1247         VNET_ITERATOR_DECL(vnet_iter);
 1248 
 1249         VNET_LIST_RLOCK_NOSLEEP();
 1250         IPQ_LOCK();
 1251         VNET_FOREACH(vnet_iter) {
 1252                 CURVNET_SET(vnet_iter);
 1253                 ip_drain_locked();
 1254                 CURVNET_RESTORE();
 1255         }
 1256         IPQ_UNLOCK();
 1257         VNET_LIST_RUNLOCK_NOSLEEP();
 1258         in_rtqdrain();
 1259 }
 1260 
 1261 /*
 1262  * The protocol to be inserted into ip_protox[] must be already registered
 1263  * in inetsw[], either statically or through pf_proto_register().
 1264  */
 1265 int
 1266 ipproto_register(short ipproto)
 1267 {
 1268         struct protosw *pr;
 1269 
 1270         /* Sanity checks. */
 1271         if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
 1272                 return (EPROTONOSUPPORT);
 1273 
 1274         /*
 1275          * The protocol slot must not be occupied by another protocol
 1276          * already.  An index pointing to IPPROTO_RAW is unused.
 1277          */
 1278         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1279         if (pr == NULL)
 1280                 return (EPFNOSUPPORT);
 1281         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1282                 return (EEXIST);
 1283 
 1284         /* Find the protocol position in inetsw[] and set the index. */
 1285         for (pr = inetdomain.dom_protosw;
 1286              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1287                 if (pr->pr_domain->dom_family == PF_INET &&
 1288                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1289                         ip_protox[pr->pr_protocol] = pr - inetsw;
 1290                         return (0);
 1291                 }
 1292         }
 1293         return (EPROTONOSUPPORT);
 1294 }
 1295 
 1296 int
 1297 ipproto_unregister(short ipproto)
 1298 {
 1299         struct protosw *pr;
 1300 
 1301         /* Sanity checks. */
 1302         if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
 1303                 return (EPROTONOSUPPORT);
 1304 
 1305         /* Check if the protocol was indeed registered. */
 1306         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1307         if (pr == NULL)
 1308                 return (EPFNOSUPPORT);
 1309         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1310                 return (ENOENT);
 1311 
 1312         /* Reset the protocol slot to IPPROTO_RAW. */
 1313         ip_protox[ipproto] = pr - inetsw;
 1314         return (0);
 1315 }
 1316 
 1317 /*
 1318  * Given address of next destination (final or next hop), return (referenced)
 1319  * internet address info of interface to be used to get there.
 1320  */
 1321 struct in_ifaddr *
 1322 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1323 {
 1324         struct route sro;
 1325         struct sockaddr_in *sin;
 1326         struct in_ifaddr *ia;
 1327 
 1328         bzero(&sro, sizeof(sro));
 1329         sin = (struct sockaddr_in *)&sro.ro_dst;
 1330         sin->sin_family = AF_INET;
 1331         sin->sin_len = sizeof(*sin);
 1332         sin->sin_addr = dst;
 1333         in_rtalloc_ign(&sro, 0, fibnum);
 1334 
 1335         if (sro.ro_rt == NULL)
 1336                 return (NULL);
 1337 
 1338         ia = ifatoia(sro.ro_rt->rt_ifa);
 1339         ifa_ref(&ia->ia_ifa);
 1340         RTFREE(sro.ro_rt);
 1341         return (ia);
 1342 }
 1343 
 1344 u_char inetctlerrmap[PRC_NCMDS] = {
 1345         0,              0,              0,              0,
 1346         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1347         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1348         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1349         0,              0,              EHOSTUNREACH,   0,
 1350         ENOPROTOOPT,    ECONNREFUSED
 1351 };
 1352 
 1353 /*
 1354  * Forward a packet.  If some error occurs return the sender
 1355  * an icmp packet.  Note we can't always generate a meaningful
 1356  * icmp message because icmp doesn't have a large enough repertoire
 1357  * of codes and types.
 1358  *
 1359  * If not forwarding, just drop the packet.  This could be confusing
 1360  * if ipforwarding was zero but some routing protocol was advancing
 1361  * us as a gateway to somewhere.  However, we must let the routing
 1362  * protocol deal with that.
 1363  *
 1364  * The srcrt parameter indicates whether the packet is being forwarded
 1365  * via a source route.
 1366  */
 1367 void
 1368 ip_forward(struct mbuf *m, int srcrt)
 1369 {
 1370         struct ip *ip = mtod(m, struct ip *);
 1371         struct in_ifaddr *ia;
 1372         struct mbuf *mcopy;
 1373         struct in_addr dest;
 1374         struct route ro;
 1375         int error, type = 0, code = 0, mtu = 0;
 1376 
 1377         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1378                 IPSTAT_INC(ips_cantforward);
 1379                 m_freem(m);
 1380                 return;
 1381         }
 1382 #ifdef IPSTEALTH
 1383         if (!V_ipstealth) {
 1384 #endif
 1385                 if (ip->ip_ttl <= IPTTLDEC) {
 1386                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1387                             0, 0);
 1388                         return;
 1389                 }
 1390 #ifdef IPSTEALTH
 1391         }
 1392 #endif
 1393 
 1394         ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
 1395 #ifndef IPSEC
 1396         /*
 1397          * 'ia' may be NULL if there is no route for this destination.
 1398          * In case of IPsec, Don't discard it just yet, but pass it to
 1399          * ip_output in case of outgoing IPsec policy.
 1400          */
 1401         if (!srcrt && ia == NULL) {
 1402                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1403                 return;
 1404         }
 1405 #endif
 1406 
 1407         /*
 1408          * Save the IP header and at most 8 bytes of the payload,
 1409          * in case we need to generate an ICMP message to the src.
 1410          *
 1411          * XXX this can be optimized a lot by saving the data in a local
 1412          * buffer on the stack (72 bytes at most), and only allocating the
 1413          * mbuf if really necessary. The vast majority of the packets
 1414          * are forwarded without having to send an ICMP back (either
 1415          * because unnecessary, or because rate limited), so we are
 1416          * really we are wasting a lot of work here.
 1417          *
 1418          * We don't use m_copy() because it might return a reference
 1419          * to a shared cluster. Both this function and ip_output()
 1420          * assume exclusive access to the IP header in `m', so any
 1421          * data in a cluster may change before we reach icmp_error().
 1422          */
 1423         mcopy = m_gethdr(M_NOWAIT, m->m_type);
 1424         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
 1425                 /*
 1426                  * It's probably ok if the pkthdr dup fails (because
 1427                  * the deep copy of the tag chain failed), but for now
 1428                  * be conservative and just discard the copy since
 1429                  * code below may some day want the tags.
 1430                  */
 1431                 m_free(mcopy);
 1432                 mcopy = NULL;
 1433         }
 1434         if (mcopy != NULL) {
 1435                 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
 1436                 mcopy->m_pkthdr.len = mcopy->m_len;
 1437                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1438         }
 1439 
 1440 #ifdef IPSTEALTH
 1441         if (!V_ipstealth) {
 1442 #endif
 1443                 ip->ip_ttl -= IPTTLDEC;
 1444 #ifdef IPSTEALTH
 1445         }
 1446 #endif
 1447 
 1448         /*
 1449          * If forwarding packet using same interface that it came in on,
 1450          * perhaps should send a redirect to sender to shortcut a hop.
 1451          * Only send redirect if source is sending directly to us,
 1452          * and if packet was not source routed (or has any options).
 1453          * Also, don't send redirect if forwarding using a default route
 1454          * or a route modified by a redirect.
 1455          */
 1456         dest.s_addr = 0;
 1457         if (!srcrt && V_ipsendredirects &&
 1458             ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1459                 struct sockaddr_in *sin;
 1460                 struct rtentry *rt;
 1461 
 1462                 bzero(&ro, sizeof(ro));
 1463                 sin = (struct sockaddr_in *)&ro.ro_dst;
 1464                 sin->sin_family = AF_INET;
 1465                 sin->sin_len = sizeof(*sin);
 1466                 sin->sin_addr = ip->ip_dst;
 1467                 in_rtalloc_ign(&ro, 0, M_GETFIB(m));
 1468 
 1469                 rt = ro.ro_rt;
 1470 
 1471                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1472                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1473 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1474                         u_long src = ntohl(ip->ip_src.s_addr);
 1475 
 1476                         if (RTA(rt) &&
 1477                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1478                                 if (rt->rt_flags & RTF_GATEWAY)
 1479                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1480                                 else
 1481                                         dest.s_addr = ip->ip_dst.s_addr;
 1482                                 /* Router requirements says to only send host redirects */
 1483                                 type = ICMP_REDIRECT;
 1484                                 code = ICMP_REDIRECT_HOST;
 1485                         }
 1486                 }
 1487                 if (rt)
 1488                         RTFREE(rt);
 1489         }
 1490 
 1491         /*
 1492          * Try to cache the route MTU from ip_output so we can consider it for
 1493          * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
 1494          */
 1495         bzero(&ro, sizeof(ro));
 1496 
 1497         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1498 
 1499         if (error == EMSGSIZE && ro.ro_rt)
 1500                 mtu = ro.ro_rt->rt_rmx.rmx_mtu;
 1501         RO_RTFREE(&ro);
 1502 
 1503         if (error)
 1504                 IPSTAT_INC(ips_cantforward);
 1505         else {
 1506                 IPSTAT_INC(ips_forward);
 1507                 if (type)
 1508                         IPSTAT_INC(ips_redirectsent);
 1509                 else {
 1510                         if (mcopy)
 1511                                 m_freem(mcopy);
 1512                         if (ia != NULL)
 1513                                 ifa_free(&ia->ia_ifa);
 1514                         return;
 1515                 }
 1516         }
 1517         if (mcopy == NULL) {
 1518                 if (ia != NULL)
 1519                         ifa_free(&ia->ia_ifa);
 1520                 return;
 1521         }
 1522 
 1523         switch (error) {
 1524 
 1525         case 0:                         /* forwarded, but need redirect */
 1526                 /* type, code set above */
 1527                 break;
 1528 
 1529         case ENETUNREACH:
 1530         case EHOSTUNREACH:
 1531         case ENETDOWN:
 1532         case EHOSTDOWN:
 1533         default:
 1534                 type = ICMP_UNREACH;
 1535                 code = ICMP_UNREACH_HOST;
 1536                 break;
 1537 
 1538         case EMSGSIZE:
 1539                 type = ICMP_UNREACH;
 1540                 code = ICMP_UNREACH_NEEDFRAG;
 1541 
 1542 #ifdef IPSEC
 1543                 /* 
 1544                  * If IPsec is configured for this path,
 1545                  * override any possibly mtu value set by ip_output.
 1546                  */ 
 1547                 mtu = ip_ipsec_mtu(mcopy, mtu);
 1548 #endif /* IPSEC */
 1549                 /*
 1550                  * If the MTU was set before make sure we are below the
 1551                  * interface MTU.
 1552                  * If the MTU wasn't set before use the interface mtu or
 1553                  * fall back to the next smaller mtu step compared to the
 1554                  * current packet size.
 1555                  */
 1556                 if (mtu != 0) {
 1557                         if (ia != NULL)
 1558                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1559                 } else {
 1560                         if (ia != NULL)
 1561                                 mtu = ia->ia_ifp->if_mtu;
 1562                         else
 1563                                 mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
 1564                 }
 1565                 IPSTAT_INC(ips_cantfrag);
 1566                 break;
 1567 
 1568         case ENOBUFS:
 1569                 /*
 1570                  * A router should not generate ICMP_SOURCEQUENCH as
 1571                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1572                  * Source quench could be a big problem under DoS attacks,
 1573                  * or if the underlying interface is rate-limited.
 1574                  * Those who need source quench packets may re-enable them
 1575                  * via the net.inet.ip.sendsourcequench sysctl.
 1576                  */
 1577                 if (V_ip_sendsourcequench == 0) {
 1578                         m_freem(mcopy);
 1579                         if (ia != NULL)
 1580                                 ifa_free(&ia->ia_ifa);
 1581                         return;
 1582                 } else {
 1583                         type = ICMP_SOURCEQUENCH;
 1584                         code = 0;
 1585                 }
 1586                 break;
 1587 
 1588         case EACCES:                    /* ipfw denied packet */
 1589                 m_freem(mcopy);
 1590                 if (ia != NULL)
 1591                         ifa_free(&ia->ia_ifa);
 1592                 return;
 1593         }
 1594         if (ia != NULL)
 1595                 ifa_free(&ia->ia_ifa);
 1596         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1597 }
 1598 
 1599 void
 1600 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1601     struct mbuf *m)
 1602 {
 1603 
 1604         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1605                 struct bintime bt;
 1606 
 1607                 bintime(&bt);
 1608                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1609                         *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
 1610                             SCM_BINTIME, SOL_SOCKET);
 1611                         if (*mp)
 1612                                 mp = &(*mp)->m_next;
 1613                 }
 1614                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1615                         struct timeval tv;
 1616 
 1617                         bintime2timeval(&bt, &tv);
 1618                         *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
 1619                             SCM_TIMESTAMP, SOL_SOCKET);
 1620                         if (*mp)
 1621                                 mp = &(*mp)->m_next;
 1622                 }
 1623         }
 1624         if (inp->inp_flags & INP_RECVDSTADDR) {
 1625                 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
 1626                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1627                 if (*mp)
 1628                         mp = &(*mp)->m_next;
 1629         }
 1630         if (inp->inp_flags & INP_RECVTTL) {
 1631                 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
 1632                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1633                 if (*mp)
 1634                         mp = &(*mp)->m_next;
 1635         }
 1636 #ifdef notyet
 1637         /* XXX
 1638          * Moving these out of udp_input() made them even more broken
 1639          * than they already were.
 1640          */
 1641         /* options were tossed already */
 1642         if (inp->inp_flags & INP_RECVOPTS) {
 1643                 *mp = sbcreatecontrol((caddr_t)opts_deleted_above,
 1644                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1645                 if (*mp)
 1646                         mp = &(*mp)->m_next;
 1647         }
 1648         /* ip_srcroute doesn't do what we want here, need to fix */
 1649         if (inp->inp_flags & INP_RECVRETOPTS) {
 1650                 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
 1651                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1652                 if (*mp)
 1653                         mp = &(*mp)->m_next;
 1654         }
 1655 #endif
 1656         if (inp->inp_flags & INP_RECVIF) {
 1657                 struct ifnet *ifp;
 1658                 struct sdlbuf {
 1659                         struct sockaddr_dl sdl;
 1660                         u_char  pad[32];
 1661                 } sdlbuf;
 1662                 struct sockaddr_dl *sdp;
 1663                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1664 
 1665                 if ((ifp = m->m_pkthdr.rcvif) &&
 1666                     ifp->if_index && ifp->if_index <= V_if_index) {
 1667                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1668                         /*
 1669                          * Change our mind and don't try copy.
 1670                          */
 1671                         if (sdp->sdl_family != AF_LINK ||
 1672                             sdp->sdl_len > sizeof(sdlbuf)) {
 1673                                 goto makedummy;
 1674                         }
 1675                         bcopy(sdp, sdl2, sdp->sdl_len);
 1676                 } else {
 1677 makedummy:      
 1678                         sdl2->sdl_len =
 1679                             offsetof(struct sockaddr_dl, sdl_data[0]);
 1680                         sdl2->sdl_family = AF_LINK;
 1681                         sdl2->sdl_index = 0;
 1682                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1683                 }
 1684                 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
 1685                     IP_RECVIF, IPPROTO_IP);
 1686                 if (*mp)
 1687                         mp = &(*mp)->m_next;
 1688         }
 1689         if (inp->inp_flags & INP_RECVTOS) {
 1690                 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
 1691                     sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
 1692                 if (*mp)
 1693                         mp = &(*mp)->m_next;
 1694         }
 1695 }
 1696 
 1697 /*
 1698  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1699  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1700  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1701  * compiled.
 1702  */
 1703 static VNET_DEFINE(int, ip_rsvp_on);
 1704 VNET_DEFINE(struct socket *, ip_rsvpd);
 1705 
 1706 #define V_ip_rsvp_on            VNET(ip_rsvp_on)
 1707 
 1708 int
 1709 ip_rsvp_init(struct socket *so)
 1710 {
 1711 
 1712         if (so->so_type != SOCK_RAW ||
 1713             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1714                 return EOPNOTSUPP;
 1715 
 1716         if (V_ip_rsvpd != NULL)
 1717                 return EADDRINUSE;
 1718 
 1719         V_ip_rsvpd = so;
 1720         /*
 1721          * This may seem silly, but we need to be sure we don't over-increment
 1722          * the RSVP counter, in case something slips up.
 1723          */
 1724         if (!V_ip_rsvp_on) {
 1725                 V_ip_rsvp_on = 1;
 1726                 V_rsvp_on++;
 1727         }
 1728 
 1729         return 0;
 1730 }
 1731 
 1732 int
 1733 ip_rsvp_done(void)
 1734 {
 1735 
 1736         V_ip_rsvpd = NULL;
 1737         /*
 1738          * This may seem silly, but we need to be sure we don't over-decrement
 1739          * the RSVP counter, in case something slips up.
 1740          */
 1741         if (V_ip_rsvp_on) {
 1742                 V_ip_rsvp_on = 0;
 1743                 V_rsvp_on--;
 1744         }
 1745         return 0;
 1746 }
 1747 
 1748 void
 1749 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1750 {
 1751 
 1752         if (rsvp_input_p) { /* call the real one if loaded */
 1753                 rsvp_input_p(m, off);
 1754                 return;
 1755         }
 1756 
 1757         /* Can still get packets with rsvp_on = 0 if there is a local member
 1758          * of the group to which the RSVP packet is addressed.  But in this
 1759          * case we want to throw the packet away.
 1760          */
 1761         
 1762         if (!V_rsvp_on) {
 1763                 m_freem(m);
 1764                 return;
 1765         }
 1766 
 1767         if (V_ip_rsvpd != NULL) { 
 1768                 rip_input(m, off);
 1769                 return;
 1770         }
 1771         /* Drop the packet */
 1772         m_freem(m);
 1773 }

Cache object: 5c0766acf316f16fc0bc7f0ad5ced4ea


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.