The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/10.4/sys/netinet/ip_input.c 300518 2016-05-23 16:20:50Z loos $");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_kdtrace.h"
   40 #include "opt_route.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/malloc.h>
   46 #include <sys/domain.h>
   47 #include <sys/protosw.h>
   48 #include <sys/socket.h>
   49 #include <sys/time.h>
   50 #include <sys/kernel.h>
   51 #include <sys/lock.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/sdt.h>
   54 #include <sys/syslog.h>
   55 #include <sys/sysctl.h>
   56 
   57 #include <net/pfil.h>
   58 #include <net/if.h>
   59 #include <net/if_types.h>
   60 #include <net/if_var.h>
   61 #include <net/if_dl.h>
   62 #include <net/route.h>
   63 #include <net/netisr.h>
   64 #include <net/vnet.h>
   65 
   66 #include <netinet/in.h>
   67 #include <netinet/in_kdtrace.h>
   68 #include <netinet/in_systm.h>
   69 #include <netinet/in_var.h>
   70 #include <netinet/ip.h>
   71 #include <netinet/in_pcb.h>
   72 #include <netinet/ip_var.h>
   73 #include <netinet/ip_fw.h>
   74 #include <netinet/ip_icmp.h>
   75 #include <netinet/ip_options.h>
   76 #include <machine/in_cksum.h>
   77 #include <netinet/ip_carp.h>
   78 #ifdef IPSEC
   79 #include <netinet/ip_ipsec.h>
   80 #endif /* IPSEC */
   81 
   82 #include <sys/socketvar.h>
   83 
   84 #include <security/mac/mac_framework.h>
   85 
   86 #ifdef CTASSERT
   87 CTASSERT(sizeof(struct ip) == 20);
   88 #endif
   89 
   90 struct  rwlock in_ifaddr_lock;
   91 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
   92 
   93 VNET_DEFINE(int, rsvp_on);
   94 
   95 VNET_DEFINE(int, ipforwarding);
   96 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   97     &VNET_NAME(ipforwarding), 0,
   98     "Enable IP forwarding between interfaces");
   99 
  100 static VNET_DEFINE(int, ipsendredirects) = 1;   /* XXX */
  101 #define V_ipsendredirects       VNET(ipsendredirects)
  102 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
  103     &VNET_NAME(ipsendredirects), 0,
  104     "Enable sending IP redirects");
  105 
  106 static VNET_DEFINE(int, ip_keepfaith);
  107 #define V_ip_keepfaith          VNET(ip_keepfaith)
  108 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  109     &VNET_NAME(ip_keepfaith), 0,
  110     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  111 
  112 static VNET_DEFINE(int, ip_sendsourcequench);
  113 #define V_ip_sendsourcequench   VNET(ip_sendsourcequench)
  114 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  115     &VNET_NAME(ip_sendsourcequench), 0,
  116     "Enable the transmission of source quench packets");
  117 
  118 VNET_DEFINE(int, ip_do_randomid);
  119 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  120     &VNET_NAME(ip_do_randomid), 0,
  121     "Assign random ip_id values");
  122 
  123 /*
  124  * XXX - Setting ip_checkinterface mostly implements the receive side of
  125  * the Strong ES model described in RFC 1122, but since the routing table
  126  * and transmit implementation do not implement the Strong ES model,
  127  * setting this to 1 results in an odd hybrid.
  128  *
  129  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  130  * to translate the destination address to another local interface.
  131  *
  132  * XXX - ip_checkinterface must be disabled if you add IP aliases
  133  * to the loopback interface instead of the interface where the
  134  * packets for those addresses are received.
  135  */
  136 static VNET_DEFINE(int, ip_checkinterface);
  137 #define V_ip_checkinterface     VNET(ip_checkinterface)
  138 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  139     &VNET_NAME(ip_checkinterface), 0,
  140     "Verify packet arrives on correct interface");
  141 
  142 VNET_DEFINE(struct pfil_head, inet_pfil_hook);  /* Packet filter hooks */
  143 
  144 static struct netisr_handler ip_nh = {
  145         .nh_name = "ip",
  146         .nh_handler = ip_input,
  147         .nh_proto = NETISR_IP,
  148         .nh_policy = NETISR_POLICY_FLOW,
  149 };
  150 
  151 extern  struct domain inetdomain;
  152 extern  struct protosw inetsw[];
  153 u_char  ip_protox[IPPROTO_MAX];
  154 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
  155 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
  156 VNET_DEFINE(u_long, in_ifaddrhmask);            /* mask for hash table */
  157 
  158 static VNET_DEFINE(uma_zone_t, ipq_zone);
  159 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
  160 static struct mtx ipqlock;
  161 
  162 #define V_ipq_zone              VNET(ipq_zone)
  163 #define V_ipq                   VNET(ipq)
  164 
  165 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  166 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  167 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  168 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  169 
  170 static void     maxnipq_update(void);
  171 static void     ipq_zone_change(void *);
  172 static void     ip_drain_locked(void);
  173 
  174 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
  175 static VNET_DEFINE(int, nipq);                  /* Total # of reass queues */
  176 #define V_maxnipq               VNET(maxnipq)
  177 #define V_nipq                  VNET(nipq)
  178 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  179     &VNET_NAME(nipq), 0,
  180     "Current number of IPv4 fragment reassembly queue entries");
  181 
  182 static VNET_DEFINE(int, maxfragsperpacket);
  183 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  184 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  185     &VNET_NAME(maxfragsperpacket), 0,
  186     "Maximum number of IPv4 fragments allowed per packet");
  187 
  188 #ifdef IPCTL_DEFMTU
  189 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  190     &ip_mtu, 0, "Default MTU");
  191 #endif
  192 
  193 #ifdef IPSTEALTH
  194 VNET_DEFINE(int, ipstealth);
  195 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  196     &VNET_NAME(ipstealth), 0,
  197     "IP stealth mode, no TTL decrementation on forwarding");
  198 #endif
  199 
  200 static void     ip_freef(struct ipqhead *, struct ipq *);
  201 
  202 /*
  203  * IP statistics are stored in the "array" of counter(9)s.
  204  */
  205 VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat);
  206 VNET_PCPUSTAT_SYSINIT(ipstat);
  207 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat,
  208     "IP statistics (struct ipstat, netinet/ip_var.h)");
  209 
  210 #ifdef VIMAGE
  211 VNET_PCPUSTAT_SYSUNINIT(ipstat);
  212 #endif /* VIMAGE */
  213 
  214 /*
  215  * Kernel module interface for updating ipstat.  The argument is an index
  216  * into ipstat treated as an array.
  217  */
  218 void
  219 kmod_ipstat_inc(int statnum)
  220 {
  221 
  222         counter_u64_add(VNET(ipstat)[statnum], 1);
  223 }
  224 
  225 void
  226 kmod_ipstat_dec(int statnum)
  227 {
  228 
  229         counter_u64_add(VNET(ipstat)[statnum], -1);
  230 }
  231 
  232 static int
  233 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
  234 {
  235         int error, qlimit;
  236 
  237         netisr_getqlimit(&ip_nh, &qlimit);
  238         error = sysctl_handle_int(oidp, &qlimit, 0, req);
  239         if (error || !req->newptr)
  240                 return (error);
  241         if (qlimit < 1)
  242                 return (EINVAL);
  243         return (netisr_setqlimit(&ip_nh, qlimit));
  244 }
  245 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
  246     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
  247     "Maximum size of the IP input queue");
  248 
  249 static int
  250 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
  251 {
  252         u_int64_t qdrops_long;
  253         int error, qdrops;
  254 
  255         netisr_getqdrops(&ip_nh, &qdrops_long);
  256         qdrops = qdrops_long;
  257         error = sysctl_handle_int(oidp, &qdrops, 0, req);
  258         if (error || !req->newptr)
  259                 return (error);
  260         if (qdrops != 0)
  261                 return (EINVAL);
  262         netisr_clearqdrops(&ip_nh);
  263         return (0);
  264 }
  265 
  266 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
  267     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
  268     "Number of packets dropped from the IP input queue");
  269 
  270 /*
  271  * IP initialization: fill in IP protocol switch table.
  272  * All protocols not implemented in kernel go to raw IP protocol handler.
  273  */
  274 void
  275 ip_init(void)
  276 {
  277         struct protosw *pr;
  278         int i;
  279 
  280         V_ip_id = time_second & 0xffff;
  281 
  282         TAILQ_INIT(&V_in_ifaddrhead);
  283         V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
  284 
  285         /* Initialize IP reassembly queue. */
  286         for (i = 0; i < IPREASS_NHASH; i++)
  287                 TAILQ_INIT(&V_ipq[i]);
  288         V_maxnipq = nmbclusters / 32;
  289         V_maxfragsperpacket = 16;
  290         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  291             NULL, UMA_ALIGN_PTR, 0);
  292         maxnipq_update();
  293 
  294         /* Initialize packet filter hooks. */
  295         V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  296         V_inet_pfil_hook.ph_af = AF_INET;
  297         if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
  298                 printf("%s: WARNING: unable to register pfil hook, "
  299                         "error %d\n", __func__, i);
  300 
  301         /* Skip initialization of globals for non-default instances. */
  302         if (!IS_DEFAULT_VNET(curvnet))
  303                 return;
  304 
  305         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  306         if (pr == NULL)
  307                 panic("ip_init: PF_INET not found");
  308 
  309         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  310         for (i = 0; i < IPPROTO_MAX; i++)
  311                 ip_protox[i] = pr - inetsw;
  312         /*
  313          * Cycle through IP protocols and put them into the appropriate place
  314          * in ip_protox[].
  315          */
  316         for (pr = inetdomain.dom_protosw;
  317             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  318                 if (pr->pr_domain->dom_family == PF_INET &&
  319                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  320                         /* Be careful to only index valid IP protocols. */
  321                         if (pr->pr_protocol < IPPROTO_MAX)
  322                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  323                 }
  324 
  325         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  326                 NULL, EVENTHANDLER_PRI_ANY);
  327 
  328         /* Initialize various other remaining things. */
  329         IPQ_LOCK_INIT();
  330         netisr_register(&ip_nh);
  331 }
  332 
  333 #ifdef VIMAGE
  334 void
  335 ip_destroy(void)
  336 {
  337         int i;
  338 
  339         if ((i = pfil_head_unregister(&V_inet_pfil_hook)) != 0)
  340                 printf("%s: WARNING: unable to unregister pfil hook, "
  341                     "error %d\n", __func__, i);
  342 
  343         /* Cleanup in_ifaddr hash table; should be empty. */
  344         hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
  345 
  346         IPQ_LOCK();
  347         ip_drain_locked();
  348         IPQ_UNLOCK();
  349 
  350         uma_zdestroy(V_ipq_zone);
  351 }
  352 #endif
  353 
  354 /*
  355  * Ip input routine.  Checksum and byte swap header.  If fragmented
  356  * try to reassemble.  Process options.  Pass to next level.
  357  */
  358 void
  359 ip_input(struct mbuf *m)
  360 {
  361         struct ip *ip = NULL;
  362         struct in_ifaddr *ia = NULL;
  363         struct ifaddr *ifa;
  364         struct ifnet *ifp;
  365         int    checkif, hlen = 0;
  366         uint16_t sum, ip_len;
  367         int dchg = 0;                           /* dest changed after fw */
  368         struct in_addr odst;                    /* original dst address */
  369 
  370         M_ASSERTPKTHDR(m);
  371 
  372         if (m->m_flags & M_FASTFWD_OURS) {
  373                 m->m_flags &= ~M_FASTFWD_OURS;
  374                 /* Set up some basics that will be used later. */
  375                 ip = mtod(m, struct ip *);
  376                 hlen = ip->ip_hl << 2;
  377                 ip_len = ntohs(ip->ip_len);
  378                 goto ours;
  379         }
  380 
  381         IPSTAT_INC(ips_total);
  382 
  383         if (m->m_pkthdr.len < sizeof(struct ip))
  384                 goto tooshort;
  385 
  386         if (m->m_len < sizeof (struct ip) &&
  387             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  388                 IPSTAT_INC(ips_toosmall);
  389                 return;
  390         }
  391         ip = mtod(m, struct ip *);
  392 
  393         if (ip->ip_v != IPVERSION) {
  394                 IPSTAT_INC(ips_badvers);
  395                 goto bad;
  396         }
  397 
  398         hlen = ip->ip_hl << 2;
  399         if (hlen < sizeof(struct ip)) { /* minimum header length */
  400                 IPSTAT_INC(ips_badhlen);
  401                 goto bad;
  402         }
  403         if (hlen > m->m_len) {
  404                 if ((m = m_pullup(m, hlen)) == NULL) {
  405                         IPSTAT_INC(ips_badhlen);
  406                         return;
  407                 }
  408                 ip = mtod(m, struct ip *);
  409         }
  410 
  411         IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL);
  412 
  413         /* 127/8 must not appear on wire - RFC1122 */
  414         ifp = m->m_pkthdr.rcvif;
  415         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  416             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  417                 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
  418                         IPSTAT_INC(ips_badaddr);
  419                         goto bad;
  420                 }
  421         }
  422 
  423         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  424                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  425         } else {
  426                 if (hlen == sizeof(struct ip)) {
  427                         sum = in_cksum_hdr(ip);
  428                 } else {
  429                         sum = in_cksum(m, hlen);
  430                 }
  431         }
  432         if (sum) {
  433                 IPSTAT_INC(ips_badsum);
  434                 goto bad;
  435         }
  436 
  437 #ifdef ALTQ
  438         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  439                 /* packet is dropped by traffic conditioner */
  440                 return;
  441 #endif
  442 
  443         ip_len = ntohs(ip->ip_len);
  444         if (ip_len < hlen) {
  445                 IPSTAT_INC(ips_badlen);
  446                 goto bad;
  447         }
  448 
  449         /*
  450          * Check that the amount of data in the buffers
  451          * is as at least much as the IP header would have us expect.
  452          * Trim mbufs if longer than we expect.
  453          * Drop packet if shorter than we expect.
  454          */
  455         if (m->m_pkthdr.len < ip_len) {
  456 tooshort:
  457                 IPSTAT_INC(ips_tooshort);
  458                 goto bad;
  459         }
  460         if (m->m_pkthdr.len > ip_len) {
  461                 if (m->m_len == m->m_pkthdr.len) {
  462                         m->m_len = ip_len;
  463                         m->m_pkthdr.len = ip_len;
  464                 } else
  465                         m_adj(m, ip_len - m->m_pkthdr.len);
  466         }
  467 #ifdef IPSEC
  468         /*
  469          * Bypass packet filtering for packets previously handled by IPsec.
  470          */
  471         if (ip_ipsec_filtertunnel(m))
  472                 goto passin;
  473 #endif /* IPSEC */
  474 
  475         /*
  476          * Run through list of hooks for input packets.
  477          *
  478          * NB: Beware of the destination address changing (e.g.
  479          *     by NAT rewriting).  When this happens, tell
  480          *     ip_forward to do the right thing.
  481          */
  482 
  483         /* Jump over all PFIL processing if hooks are not active. */
  484         if (!PFIL_HOOKED(&V_inet_pfil_hook))
  485                 goto passin;
  486 
  487         odst = ip->ip_dst;
  488         if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
  489                 return;
  490         if (m == NULL)                  /* consumed by filter */
  491                 return;
  492 
  493         ip = mtod(m, struct ip *);
  494         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  495         ifp = m->m_pkthdr.rcvif;
  496 
  497         if (m->m_flags & M_FASTFWD_OURS) {
  498                 m->m_flags &= ~M_FASTFWD_OURS;
  499                 goto ours;
  500         }
  501         if (m->m_flags & M_IP_NEXTHOP) {
  502                 if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) {
  503                         /*
  504                          * Directly ship the packet on.  This allows
  505                          * forwarding packets originally destined to us
  506                          * to some other directly connected host.
  507                          */
  508                         ip_forward(m, 1);
  509                         return;
  510                 }
  511         }
  512 passin:
  513 
  514         /*
  515          * Process options and, if not destined for us,
  516          * ship it on.  ip_dooptions returns 1 when an
  517          * error was detected (causing an icmp message
  518          * to be sent and the original packet to be freed).
  519          */
  520         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  521                 return;
  522 
  523         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  524          * matter if it is destined to another node, or whether it is 
  525          * a multicast one, RSVP wants it! and prevents it from being forwarded
  526          * anywhere else. Also checks if the rsvp daemon is running before
  527          * grabbing the packet.
  528          */
  529         if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  530                 goto ours;
  531 
  532         /*
  533          * Check our list of addresses, to see if the packet is for us.
  534          * If we don't have any addresses, assume any unicast packet
  535          * we receive might be for us (and let the upper layers deal
  536          * with it).
  537          */
  538         if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
  539             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  540                 goto ours;
  541 
  542         /*
  543          * Enable a consistency check between the destination address
  544          * and the arrival interface for a unicast packet (the RFC 1122
  545          * strong ES model) if IP forwarding is disabled and the packet
  546          * is not locally generated and the packet is not subject to
  547          * 'ipfw fwd'.
  548          *
  549          * XXX - Checking also should be disabled if the destination
  550          * address is ipnat'ed to a different interface.
  551          *
  552          * XXX - Checking is incompatible with IP aliases added
  553          * to the loopback interface instead of the interface where
  554          * the packets are received.
  555          *
  556          * XXX - This is the case for carp vhost IPs as well so we
  557          * insert a workaround. If the packet got here, we already
  558          * checked with carp_iamatch() and carp_forus().
  559          */
  560         checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 
  561             ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
  562             ifp->if_carp == NULL && (dchg == 0);
  563 
  564         /*
  565          * Check for exact addresses in the hash bucket.
  566          */
  567         /* IN_IFADDR_RLOCK(); */
  568         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  569                 /*
  570                  * If the address matches, verify that the packet
  571                  * arrived via the correct interface if checking is
  572                  * enabled.
  573                  */
  574                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  575                     (!checkif || ia->ia_ifp == ifp)) {
  576                         ifa_ref(&ia->ia_ifa);
  577                         /* IN_IFADDR_RUNLOCK(); */
  578                         goto ours;
  579                 }
  580         }
  581         /* IN_IFADDR_RUNLOCK(); */
  582 
  583         /*
  584          * Check for broadcast addresses.
  585          *
  586          * Only accept broadcast packets that arrive via the matching
  587          * interface.  Reception of forwarded directed broadcasts would
  588          * be handled via ip_forward() and ether_output() with the loopback
  589          * into the stack for SIMPLEX interfaces handled by ether_output().
  590          */
  591         if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
  592                 IF_ADDR_RLOCK(ifp);
  593                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  594                         if (ifa->ifa_addr->sa_family != AF_INET)
  595                                 continue;
  596                         ia = ifatoia(ifa);
  597                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  598                             ip->ip_dst.s_addr) {
  599                                 ifa_ref(ifa);
  600                                 IF_ADDR_RUNLOCK(ifp);
  601                                 goto ours;
  602                         }
  603 #ifdef BOOTP_COMPAT
  604                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
  605                                 ifa_ref(ifa);
  606                                 IF_ADDR_RUNLOCK(ifp);
  607                                 goto ours;
  608                         }
  609 #endif
  610                 }
  611                 IF_ADDR_RUNLOCK(ifp);
  612                 ia = NULL;
  613         }
  614         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  615         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  616                 IPSTAT_INC(ips_cantforward);
  617                 m_freem(m);
  618                 return;
  619         }
  620         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  621                 if (V_ip_mrouter) {
  622                         /*
  623                          * If we are acting as a multicast router, all
  624                          * incoming multicast packets are passed to the
  625                          * kernel-level multicast forwarding function.
  626                          * The packet is returned (relatively) intact; if
  627                          * ip_mforward() returns a non-zero value, the packet
  628                          * must be discarded, else it may be accepted below.
  629                          */
  630                         if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
  631                                 IPSTAT_INC(ips_cantforward);
  632                                 m_freem(m);
  633                                 return;
  634                         }
  635 
  636                         /*
  637                          * The process-level routing daemon needs to receive
  638                          * all multicast IGMP packets, whether or not this
  639                          * host belongs to their destination groups.
  640                          */
  641                         if (ip->ip_p == IPPROTO_IGMP)
  642                                 goto ours;
  643                         IPSTAT_INC(ips_forward);
  644                 }
  645                 /*
  646                  * Assume the packet is for us, to avoid prematurely taking
  647                  * a lock on the in_multi hash. Protocols must perform
  648                  * their own filtering and update statistics accordingly.
  649                  */
  650                 goto ours;
  651         }
  652         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  653                 goto ours;
  654         if (ip->ip_dst.s_addr == INADDR_ANY)
  655                 goto ours;
  656 
  657         /*
  658          * FAITH(Firewall Aided Internet Translator)
  659          */
  660         if (ifp && ifp->if_type == IFT_FAITH) {
  661                 if (V_ip_keepfaith) {
  662                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  663                                 goto ours;
  664                 }
  665                 m_freem(m);
  666                 return;
  667         }
  668 
  669         /*
  670          * Not for us; forward if possible and desirable.
  671          */
  672         if (V_ipforwarding == 0) {
  673                 IPSTAT_INC(ips_cantforward);
  674                 m_freem(m);
  675         } else {
  676 #ifdef IPSEC
  677                 if (ip_ipsec_fwd(m))
  678                         goto bad;
  679 #endif /* IPSEC */
  680                 ip_forward(m, dchg);
  681         }
  682         return;
  683 
  684 ours:
  685 #ifdef IPSTEALTH
  686         /*
  687          * IPSTEALTH: Process non-routing options only
  688          * if the packet is destined for us.
  689          */
  690         if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
  691                 if (ia != NULL)
  692                         ifa_free(&ia->ia_ifa);
  693                 return;
  694         }
  695 #endif /* IPSTEALTH */
  696 
  697         /* Count the packet in the ip address stats */
  698         if (ia != NULL) {
  699                 ia->ia_ifa.if_ipackets++;
  700                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  701                 ifa_free(&ia->ia_ifa);
  702         }
  703 
  704         /*
  705          * Attempt reassembly; if it succeeds, proceed.
  706          * ip_reass() will return a different mbuf.
  707          */
  708         if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) {
  709                 /* XXXGL: shouldn't we save & set m_flags? */
  710                 m = ip_reass(m);
  711                 if (m == NULL)
  712                         return;
  713                 ip = mtod(m, struct ip *);
  714                 /* Get the header length of the reassembled packet */
  715                 hlen = ip->ip_hl << 2;
  716         }
  717 
  718 #ifdef IPSEC
  719         /*
  720          * enforce IPsec policy checking if we are seeing last header.
  721          * note that we do not visit this with protocols with pcb layer
  722          * code - like udp/tcp/raw ip.
  723          */
  724         if (ip_ipsec_input(m))
  725                 goto bad;
  726 #endif /* IPSEC */
  727 
  728         /*
  729          * Switch out to protocol's input routine.
  730          */
  731         IPSTAT_INC(ips_delivered);
  732 
  733         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  734         return;
  735 bad:
  736         m_freem(m);
  737 }
  738 
  739 /*
  740  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  741  * max has slightly different semantics than the sysctl, for historical
  742  * reasons.
  743  */
  744 static void
  745 maxnipq_update(void)
  746 {
  747 
  748         /*
  749          * -1 for unlimited allocation.
  750          */
  751         if (V_maxnipq < 0)
  752                 uma_zone_set_max(V_ipq_zone, 0);
  753         /*
  754          * Positive number for specific bound.
  755          */
  756         if (V_maxnipq > 0)
  757                 uma_zone_set_max(V_ipq_zone, V_maxnipq);
  758         /*
  759          * Zero specifies no further fragment queue allocation -- set the
  760          * bound very low, but rely on implementation elsewhere to actually
  761          * prevent allocation and reclaim current queues.
  762          */
  763         if (V_maxnipq == 0)
  764                 uma_zone_set_max(V_ipq_zone, 1);
  765 }
  766 
  767 static void
  768 ipq_zone_change(void *tag)
  769 {
  770 
  771         if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
  772                 V_maxnipq = nmbclusters / 32;
  773                 maxnipq_update();
  774         }
  775 }
  776 
  777 static int
  778 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  779 {
  780         int error, i;
  781 
  782         i = V_maxnipq;
  783         error = sysctl_handle_int(oidp, &i, 0, req);
  784         if (error || !req->newptr)
  785                 return (error);
  786 
  787         /*
  788          * XXXRW: Might be a good idea to sanity check the argument and place
  789          * an extreme upper bound.
  790          */
  791         if (i < -1)
  792                 return (EINVAL);
  793         V_maxnipq = i;
  794         maxnipq_update();
  795         return (0);
  796 }
  797 
  798 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  799     NULL, 0, sysctl_maxnipq, "I",
  800     "Maximum number of IPv4 fragment reassembly queue entries");
  801 
  802 #define M_IP_FRAG       M_PROTO9
  803 
  804 /*
  805  * Take incoming datagram fragment and try to reassemble it into
  806  * whole datagram.  If the argument is the first fragment or one
  807  * in between the function will return NULL and store the mbuf
  808  * in the fragment chain.  If the argument is the last fragment
  809  * the packet will be reassembled and the pointer to the new
  810  * mbuf returned for further processing.  Only m_tags attached
  811  * to the first packet/fragment are preserved.
  812  * The IP header is *NOT* adjusted out of iplen.
  813  */
  814 struct mbuf *
  815 ip_reass(struct mbuf *m)
  816 {
  817         struct ip *ip;
  818         struct mbuf *p, *q, *nq, *t;
  819         struct ipq *fp = NULL;
  820         struct ipqhead *head;
  821         int i, hlen, next;
  822         u_int8_t ecn, ecn0;
  823         u_short hash;
  824 
  825         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  826         if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
  827                 IPSTAT_INC(ips_fragments);
  828                 IPSTAT_INC(ips_fragdropped);
  829                 m_freem(m);
  830                 return (NULL);
  831         }
  832 
  833         ip = mtod(m, struct ip *);
  834         hlen = ip->ip_hl << 2;
  835 
  836         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  837         head = &V_ipq[hash];
  838         IPQ_LOCK();
  839 
  840         /*
  841          * Look for queue of fragments
  842          * of this datagram.
  843          */
  844         TAILQ_FOREACH(fp, head, ipq_list)
  845                 if (ip->ip_id == fp->ipq_id &&
  846                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  847                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  848 #ifdef MAC
  849                     mac_ipq_match(m, fp) &&
  850 #endif
  851                     ip->ip_p == fp->ipq_p)
  852                         goto found;
  853 
  854         fp = NULL;
  855 
  856         /*
  857          * Attempt to trim the number of allocated fragment queues if it
  858          * exceeds the administrative limit.
  859          */
  860         if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
  861                 /*
  862                  * drop something from the tail of the current queue
  863                  * before proceeding further
  864                  */
  865                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  866                 if (q == NULL) {   /* gak */
  867                         for (i = 0; i < IPREASS_NHASH; i++) {
  868                                 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
  869                                 if (r) {
  870                                         IPSTAT_ADD(ips_fragtimeout,
  871                                             r->ipq_nfrags);
  872                                         ip_freef(&V_ipq[i], r);
  873                                         break;
  874                                 }
  875                         }
  876                 } else {
  877                         IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
  878                         ip_freef(head, q);
  879                 }
  880         }
  881 
  882 found:
  883         /*
  884          * Adjust ip_len to not reflect header,
  885          * convert offset of this to bytes.
  886          */
  887         ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
  888         if (ip->ip_off & htons(IP_MF)) {
  889                 /*
  890                  * Make sure that fragments have a data length
  891                  * that's a non-zero multiple of 8 bytes.
  892                  */
  893                 if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
  894                         IPSTAT_INC(ips_toosmall); /* XXX */
  895                         goto dropfrag;
  896                 }
  897                 m->m_flags |= M_IP_FRAG;
  898         } else
  899                 m->m_flags &= ~M_IP_FRAG;
  900         ip->ip_off = htons(ntohs(ip->ip_off) << 3);
  901 
  902         /*
  903          * Attempt reassembly; if it succeeds, proceed.
  904          * ip_reass() will return a different mbuf.
  905          */
  906         IPSTAT_INC(ips_fragments);
  907         m->m_pkthdr.PH_loc.ptr = ip;
  908 
  909         /* Previous ip_reass() started here. */
  910         /*
  911          * Presence of header sizes in mbufs
  912          * would confuse code below.
  913          */
  914         m->m_data += hlen;
  915         m->m_len -= hlen;
  916 
  917         /*
  918          * If first fragment to arrive, create a reassembly queue.
  919          */
  920         if (fp == NULL) {
  921                 fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  922                 if (fp == NULL)
  923                         goto dropfrag;
  924 #ifdef MAC
  925                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  926                         uma_zfree(V_ipq_zone, fp);
  927                         fp = NULL;
  928                         goto dropfrag;
  929                 }
  930                 mac_ipq_create(m, fp);
  931 #endif
  932                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  933                 V_nipq++;
  934                 fp->ipq_nfrags = 1;
  935                 fp->ipq_ttl = IPFRAGTTL;
  936                 fp->ipq_p = ip->ip_p;
  937                 fp->ipq_id = ip->ip_id;
  938                 fp->ipq_src = ip->ip_src;
  939                 fp->ipq_dst = ip->ip_dst;
  940                 fp->ipq_frags = m;
  941                 m->m_nextpkt = NULL;
  942                 goto done;
  943         } else {
  944                 fp->ipq_nfrags++;
  945 #ifdef MAC
  946                 mac_ipq_update(m, fp);
  947 #endif
  948         }
  949 
  950 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
  951 
  952         /*
  953          * Handle ECN by comparing this segment with the first one;
  954          * if CE is set, do not lose CE.
  955          * drop if CE and not-ECT are mixed for the same packet.
  956          */
  957         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  958         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  959         if (ecn == IPTOS_ECN_CE) {
  960                 if (ecn0 == IPTOS_ECN_NOTECT)
  961                         goto dropfrag;
  962                 if (ecn0 != IPTOS_ECN_CE)
  963                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  964         }
  965         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  966                 goto dropfrag;
  967 
  968         /*
  969          * Find a segment which begins after this one does.
  970          */
  971         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  972                 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
  973                         break;
  974 
  975         /*
  976          * If there is a preceding segment, it may provide some of
  977          * our data already.  If so, drop the data from the incoming
  978          * segment.  If it provides all of our data, drop us, otherwise
  979          * stick new segment in the proper place.
  980          *
  981          * If some of the data is dropped from the preceding
  982          * segment, then it's checksum is invalidated.
  983          */
  984         if (p) {
  985                 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
  986                     ntohs(ip->ip_off);
  987                 if (i > 0) {
  988                         if (i >= ntohs(ip->ip_len))
  989                                 goto dropfrag;
  990                         m_adj(m, i);
  991                         m->m_pkthdr.csum_flags = 0;
  992                         ip->ip_off = htons(ntohs(ip->ip_off) + i);
  993                         ip->ip_len = htons(ntohs(ip->ip_len) - i);
  994                 }
  995                 m->m_nextpkt = p->m_nextpkt;
  996                 p->m_nextpkt = m;
  997         } else {
  998                 m->m_nextpkt = fp->ipq_frags;
  999                 fp->ipq_frags = m;
 1000         }
 1001 
 1002         /*
 1003          * While we overlap succeeding segments trim them or,
 1004          * if they are completely covered, dequeue them.
 1005          */
 1006         for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
 1007             ntohs(GETIP(q)->ip_off); q = nq) {
 1008                 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
 1009                     ntohs(GETIP(q)->ip_off);
 1010                 if (i < ntohs(GETIP(q)->ip_len)) {
 1011                         GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
 1012                         GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
 1013                         m_adj(q, i);
 1014                         q->m_pkthdr.csum_flags = 0;
 1015                         break;
 1016                 }
 1017                 nq = q->m_nextpkt;
 1018                 m->m_nextpkt = nq;
 1019                 IPSTAT_INC(ips_fragdropped);
 1020                 fp->ipq_nfrags--;
 1021                 m_freem(q);
 1022         }
 1023 
 1024         /*
 1025          * Check for complete reassembly and perform frag per packet
 1026          * limiting.
 1027          *
 1028          * Frag limiting is performed here so that the nth frag has
 1029          * a chance to complete the packet before we drop the packet.
 1030          * As a result, n+1 frags are actually allowed per packet, but
 1031          * only n will ever be stored. (n = maxfragsperpacket.)
 1032          *
 1033          */
 1034         next = 0;
 1035         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
 1036                 if (ntohs(GETIP(q)->ip_off) != next) {
 1037                         if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1038                                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1039                                 ip_freef(head, fp);
 1040                         }
 1041                         goto done;
 1042                 }
 1043                 next += ntohs(GETIP(q)->ip_len);
 1044         }
 1045         /* Make sure the last packet didn't have the IP_MF flag */
 1046         if (p->m_flags & M_IP_FRAG) {
 1047                 if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1048                         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1049                         ip_freef(head, fp);
 1050                 }
 1051                 goto done;
 1052         }
 1053 
 1054         /*
 1055          * Reassembly is complete.  Make sure the packet is a sane size.
 1056          */
 1057         q = fp->ipq_frags;
 1058         ip = GETIP(q);
 1059         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
 1060                 IPSTAT_INC(ips_toolong);
 1061                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1062                 ip_freef(head, fp);
 1063                 goto done;
 1064         }
 1065 
 1066         /*
 1067          * Concatenate fragments.
 1068          */
 1069         m = q;
 1070         t = m->m_next;
 1071         m->m_next = NULL;
 1072         m_cat(m, t);
 1073         nq = q->m_nextpkt;
 1074         q->m_nextpkt = NULL;
 1075         for (q = nq; q != NULL; q = nq) {
 1076                 nq = q->m_nextpkt;
 1077                 q->m_nextpkt = NULL;
 1078                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1079                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1080                 m_cat(m, q);
 1081         }
 1082         /*
 1083          * In order to do checksumming faster we do 'end-around carry' here
 1084          * (and not in for{} loop), though it implies we are not going to
 1085          * reassemble more than 64k fragments.
 1086          */
 1087         while (m->m_pkthdr.csum_data & 0xffff0000)
 1088                 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
 1089                     (m->m_pkthdr.csum_data >> 16);
 1090 #ifdef MAC
 1091         mac_ipq_reassemble(fp, m);
 1092         mac_ipq_destroy(fp);
 1093 #endif
 1094 
 1095         /*
 1096          * Create header for new ip packet by modifying header of first
 1097          * packet;  dequeue and discard fragment reassembly header.
 1098          * Make header visible.
 1099          */
 1100         ip->ip_len = htons((ip->ip_hl << 2) + next);
 1101         ip->ip_src = fp->ipq_src;
 1102         ip->ip_dst = fp->ipq_dst;
 1103         TAILQ_REMOVE(head, fp, ipq_list);
 1104         V_nipq--;
 1105         uma_zfree(V_ipq_zone, fp);
 1106         m->m_len += (ip->ip_hl << 2);
 1107         m->m_data -= (ip->ip_hl << 2);
 1108         /* some debugging cruft by sklower, below, will go away soon */
 1109         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1110                 m_fixhdr(m);
 1111         IPSTAT_INC(ips_reassembled);
 1112         IPQ_UNLOCK();
 1113         return (m);
 1114 
 1115 dropfrag:
 1116         IPSTAT_INC(ips_fragdropped);
 1117         if (fp != NULL)
 1118                 fp->ipq_nfrags--;
 1119         m_freem(m);
 1120 done:
 1121         IPQ_UNLOCK();
 1122         return (NULL);
 1123 
 1124 #undef GETIP
 1125 }
 1126 
 1127 /*
 1128  * Free a fragment reassembly header and all
 1129  * associated datagrams.
 1130  */
 1131 static void
 1132 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1133 {
 1134         struct mbuf *q;
 1135 
 1136         IPQ_LOCK_ASSERT();
 1137 
 1138         while (fp->ipq_frags) {
 1139                 q = fp->ipq_frags;
 1140                 fp->ipq_frags = q->m_nextpkt;
 1141                 m_freem(q);
 1142         }
 1143         TAILQ_REMOVE(fhp, fp, ipq_list);
 1144         uma_zfree(V_ipq_zone, fp);
 1145         V_nipq--;
 1146 }
 1147 
 1148 /*
 1149  * IP timer processing;
 1150  * if a timer expires on a reassembly
 1151  * queue, discard it.
 1152  */
 1153 void
 1154 ip_slowtimo(void)
 1155 {
 1156         VNET_ITERATOR_DECL(vnet_iter);
 1157         struct ipq *fp;
 1158         int i;
 1159 
 1160         VNET_LIST_RLOCK_NOSLEEP();
 1161         IPQ_LOCK();
 1162         VNET_FOREACH(vnet_iter) {
 1163                 CURVNET_SET(vnet_iter);
 1164                 for (i = 0; i < IPREASS_NHASH; i++) {
 1165                         for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
 1166                                 struct ipq *fpp;
 1167 
 1168                                 fpp = fp;
 1169                                 fp = TAILQ_NEXT(fp, ipq_list);
 1170                                 if(--fpp->ipq_ttl == 0) {
 1171                                         IPSTAT_ADD(ips_fragtimeout,
 1172                                             fpp->ipq_nfrags);
 1173                                         ip_freef(&V_ipq[i], fpp);
 1174                                 }
 1175                         }
 1176                 }
 1177                 /*
 1178                  * If we are over the maximum number of fragments
 1179                  * (due to the limit being lowered), drain off
 1180                  * enough to get down to the new limit.
 1181                  */
 1182                 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
 1183                         for (i = 0; i < IPREASS_NHASH; i++) {
 1184                                 while (V_nipq > V_maxnipq &&
 1185                                     !TAILQ_EMPTY(&V_ipq[i])) {
 1186                                         IPSTAT_ADD(ips_fragdropped,
 1187                                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1188                                         ip_freef(&V_ipq[i],
 1189                                             TAILQ_FIRST(&V_ipq[i]));
 1190                                 }
 1191                         }
 1192                 }
 1193                 CURVNET_RESTORE();
 1194         }
 1195         IPQ_UNLOCK();
 1196         VNET_LIST_RUNLOCK_NOSLEEP();
 1197 }
 1198 
 1199 /*
 1200  * Drain off all datagram fragments.
 1201  */
 1202 static void
 1203 ip_drain_locked(void)
 1204 {
 1205         int     i;
 1206 
 1207         IPQ_LOCK_ASSERT();
 1208 
 1209         for (i = 0; i < IPREASS_NHASH; i++) {
 1210                 while(!TAILQ_EMPTY(&V_ipq[i])) {
 1211                         IPSTAT_ADD(ips_fragdropped,
 1212                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1213                         ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
 1214                 }
 1215         }
 1216 }
 1217 
 1218 void
 1219 ip_drain(void)
 1220 {
 1221         VNET_ITERATOR_DECL(vnet_iter);
 1222 
 1223         VNET_LIST_RLOCK_NOSLEEP();
 1224         IPQ_LOCK();
 1225         VNET_FOREACH(vnet_iter) {
 1226                 CURVNET_SET(vnet_iter);
 1227                 ip_drain_locked();
 1228                 CURVNET_RESTORE();
 1229         }
 1230         IPQ_UNLOCK();
 1231         VNET_LIST_RUNLOCK_NOSLEEP();
 1232         in_rtqdrain();
 1233 }
 1234 
 1235 /*
 1236  * The protocol to be inserted into ip_protox[] must be already registered
 1237  * in inetsw[], either statically or through pf_proto_register().
 1238  */
 1239 int
 1240 ipproto_register(short ipproto)
 1241 {
 1242         struct protosw *pr;
 1243 
 1244         /* Sanity checks. */
 1245         if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
 1246                 return (EPROTONOSUPPORT);
 1247 
 1248         /*
 1249          * The protocol slot must not be occupied by another protocol
 1250          * already.  An index pointing to IPPROTO_RAW is unused.
 1251          */
 1252         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1253         if (pr == NULL)
 1254                 return (EPFNOSUPPORT);
 1255         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1256                 return (EEXIST);
 1257 
 1258         /* Find the protocol position in inetsw[] and set the index. */
 1259         for (pr = inetdomain.dom_protosw;
 1260              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1261                 if (pr->pr_domain->dom_family == PF_INET &&
 1262                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1263                         ip_protox[pr->pr_protocol] = pr - inetsw;
 1264                         return (0);
 1265                 }
 1266         }
 1267         return (EPROTONOSUPPORT);
 1268 }
 1269 
 1270 int
 1271 ipproto_unregister(short ipproto)
 1272 {
 1273         struct protosw *pr;
 1274 
 1275         /* Sanity checks. */
 1276         if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
 1277                 return (EPROTONOSUPPORT);
 1278 
 1279         /* Check if the protocol was indeed registered. */
 1280         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1281         if (pr == NULL)
 1282                 return (EPFNOSUPPORT);
 1283         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1284                 return (ENOENT);
 1285 
 1286         /* Reset the protocol slot to IPPROTO_RAW. */
 1287         ip_protox[ipproto] = pr - inetsw;
 1288         return (0);
 1289 }
 1290 
 1291 /*
 1292  * Given address of next destination (final or next hop), return (referenced)
 1293  * internet address info of interface to be used to get there.
 1294  */
 1295 struct in_ifaddr *
 1296 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1297 {
 1298         struct route sro;
 1299         struct sockaddr_in *sin;
 1300         struct in_ifaddr *ia;
 1301 
 1302         bzero(&sro, sizeof(sro));
 1303         sin = (struct sockaddr_in *)&sro.ro_dst;
 1304         sin->sin_family = AF_INET;
 1305         sin->sin_len = sizeof(*sin);
 1306         sin->sin_addr = dst;
 1307         in_rtalloc_ign(&sro, 0, fibnum);
 1308 
 1309         if (sro.ro_rt == NULL)
 1310                 return (NULL);
 1311 
 1312         ia = ifatoia(sro.ro_rt->rt_ifa);
 1313         ifa_ref(&ia->ia_ifa);
 1314         RTFREE(sro.ro_rt);
 1315         return (ia);
 1316 }
 1317 
 1318 u_char inetctlerrmap[PRC_NCMDS] = {
 1319         0,              0,              0,              0,
 1320         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1321         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1322         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1323         0,              0,              EHOSTUNREACH,   0,
 1324         ENOPROTOOPT,    ECONNREFUSED
 1325 };
 1326 
 1327 /*
 1328  * Forward a packet.  If some error occurs return the sender
 1329  * an icmp packet.  Note we can't always generate a meaningful
 1330  * icmp message because icmp doesn't have a large enough repertoire
 1331  * of codes and types.
 1332  *
 1333  * If not forwarding, just drop the packet.  This could be confusing
 1334  * if ipforwarding was zero but some routing protocol was advancing
 1335  * us as a gateway to somewhere.  However, we must let the routing
 1336  * protocol deal with that.
 1337  *
 1338  * The srcrt parameter indicates whether the packet is being forwarded
 1339  * via a source route.
 1340  */
 1341 void
 1342 ip_forward(struct mbuf *m, int srcrt)
 1343 {
 1344         struct ip *ip = mtod(m, struct ip *);
 1345         struct in_ifaddr *ia;
 1346         struct mbuf *mcopy;
 1347         struct sockaddr_in *sin;
 1348         struct in_addr dest;
 1349         struct route ro;
 1350         int error, type = 0, code = 0, mtu = 0;
 1351 
 1352         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1353                 IPSTAT_INC(ips_cantforward);
 1354                 m_freem(m);
 1355                 return;
 1356         }
 1357 #ifdef IPSTEALTH
 1358         if (!V_ipstealth) {
 1359 #endif
 1360                 if (ip->ip_ttl <= IPTTLDEC) {
 1361                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1362                             0, 0);
 1363                         return;
 1364                 }
 1365 #ifdef IPSTEALTH
 1366         }
 1367 #endif
 1368 
 1369         bzero(&ro, sizeof(ro));
 1370         sin = (struct sockaddr_in *)&ro.ro_dst;
 1371         sin->sin_family = AF_INET;
 1372         sin->sin_len = sizeof(*sin);
 1373         sin->sin_addr = ip->ip_dst;
 1374 #ifdef RADIX_MPATH
 1375         rtalloc_mpath_fib(&ro,
 1376             ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
 1377             M_GETFIB(m));
 1378 #else
 1379         in_rtalloc_ign(&ro, 0, M_GETFIB(m));
 1380 #endif
 1381         if (ro.ro_rt != NULL) {
 1382                 ia = ifatoia(ro.ro_rt->rt_ifa);
 1383                 ifa_ref(&ia->ia_ifa);
 1384         } else
 1385                 ia = NULL;
 1386 #ifndef IPSEC
 1387         /*
 1388          * 'ia' may be NULL if there is no route for this destination.
 1389          * In case of IPsec, Don't discard it just yet, but pass it to
 1390          * ip_output in case of outgoing IPsec policy.
 1391          */
 1392         if (!srcrt && ia == NULL) {
 1393                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1394                 RO_RTFREE(&ro);
 1395                 return;
 1396         }
 1397 #endif
 1398 
 1399         /*
 1400          * Save the IP header and at most 8 bytes of the payload,
 1401          * in case we need to generate an ICMP message to the src.
 1402          *
 1403          * XXX this can be optimized a lot by saving the data in a local
 1404          * buffer on the stack (72 bytes at most), and only allocating the
 1405          * mbuf if really necessary. The vast majority of the packets
 1406          * are forwarded without having to send an ICMP back (either
 1407          * because unnecessary, or because rate limited), so we are
 1408          * really we are wasting a lot of work here.
 1409          *
 1410          * We don't use m_copy() because it might return a reference
 1411          * to a shared cluster. Both this function and ip_output()
 1412          * assume exclusive access to the IP header in `m', so any
 1413          * data in a cluster may change before we reach icmp_error().
 1414          */
 1415         mcopy = m_gethdr(M_NOWAIT, m->m_type);
 1416         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) {
 1417                 /*
 1418                  * It's probably ok if the pkthdr dup fails (because
 1419                  * the deep copy of the tag chain failed), but for now
 1420                  * be conservative and just discard the copy since
 1421                  * code below may some day want the tags.
 1422                  */
 1423                 m_free(mcopy);
 1424                 mcopy = NULL;
 1425         }
 1426         if (mcopy != NULL) {
 1427                 mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy));
 1428                 mcopy->m_pkthdr.len = mcopy->m_len;
 1429                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1430         }
 1431 
 1432 #ifdef IPSTEALTH
 1433         if (!V_ipstealth) {
 1434 #endif
 1435                 ip->ip_ttl -= IPTTLDEC;
 1436 #ifdef IPSTEALTH
 1437         }
 1438 #endif
 1439 
 1440         /*
 1441          * If forwarding packet using same interface that it came in on,
 1442          * perhaps should send a redirect to sender to shortcut a hop.
 1443          * Only send redirect if source is sending directly to us,
 1444          * and if packet was not source routed (or has any options).
 1445          * Also, don't send redirect if forwarding using a default route
 1446          * or a route modified by a redirect.
 1447          */
 1448         dest.s_addr = 0;
 1449         if (!srcrt && V_ipsendredirects &&
 1450             ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1451                 struct rtentry *rt;
 1452 
 1453                 rt = ro.ro_rt;
 1454 
 1455                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1456                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1457 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1458                         u_long src = ntohl(ip->ip_src.s_addr);
 1459 
 1460                         if (RTA(rt) &&
 1461                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1462                                 if (rt->rt_flags & RTF_GATEWAY)
 1463                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1464                                 else
 1465                                         dest.s_addr = ip->ip_dst.s_addr;
 1466                                 /* Router requirements says to only send host redirects */
 1467                                 type = ICMP_REDIRECT;
 1468                                 code = ICMP_REDIRECT_HOST;
 1469                         }
 1470                 }
 1471         }
 1472 
 1473         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1474 
 1475         if (error == EMSGSIZE && ro.ro_rt)
 1476                 mtu = ro.ro_rt->rt_mtu;
 1477         RO_RTFREE(&ro);
 1478 
 1479         if (error)
 1480                 IPSTAT_INC(ips_cantforward);
 1481         else {
 1482                 IPSTAT_INC(ips_forward);
 1483                 if (type)
 1484                         IPSTAT_INC(ips_redirectsent);
 1485                 else {
 1486                         if (mcopy)
 1487                                 m_freem(mcopy);
 1488                         if (ia != NULL)
 1489                                 ifa_free(&ia->ia_ifa);
 1490                         return;
 1491                 }
 1492         }
 1493         if (mcopy == NULL) {
 1494                 if (ia != NULL)
 1495                         ifa_free(&ia->ia_ifa);
 1496                 return;
 1497         }
 1498 
 1499         switch (error) {
 1500 
 1501         case 0:                         /* forwarded, but need redirect */
 1502                 /* type, code set above */
 1503                 break;
 1504 
 1505         case ENETUNREACH:
 1506         case EHOSTUNREACH:
 1507         case ENETDOWN:
 1508         case EHOSTDOWN:
 1509         default:
 1510                 type = ICMP_UNREACH;
 1511                 code = ICMP_UNREACH_HOST;
 1512                 break;
 1513 
 1514         case EMSGSIZE:
 1515                 type = ICMP_UNREACH;
 1516                 code = ICMP_UNREACH_NEEDFRAG;
 1517 
 1518 #ifdef IPSEC
 1519                 /* 
 1520                  * If IPsec is configured for this path,
 1521                  * override any possibly mtu value set by ip_output.
 1522                  */ 
 1523                 mtu = ip_ipsec_mtu(mcopy, mtu);
 1524 #endif /* IPSEC */
 1525                 /*
 1526                  * If the MTU was set before make sure we are below the
 1527                  * interface MTU.
 1528                  * If the MTU wasn't set before use the interface mtu or
 1529                  * fall back to the next smaller mtu step compared to the
 1530                  * current packet size.
 1531                  */
 1532                 if (mtu != 0) {
 1533                         if (ia != NULL)
 1534                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1535                 } else {
 1536                         if (ia != NULL)
 1537                                 mtu = ia->ia_ifp->if_mtu;
 1538                         else
 1539                                 mtu = ip_next_mtu(ntohs(ip->ip_len), 0);
 1540                 }
 1541                 IPSTAT_INC(ips_cantfrag);
 1542                 break;
 1543 
 1544         case ENOBUFS:
 1545                 /*
 1546                  * A router should not generate ICMP_SOURCEQUENCH as
 1547                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1548                  * Source quench could be a big problem under DoS attacks,
 1549                  * or if the underlying interface is rate-limited.
 1550                  * Those who need source quench packets may re-enable them
 1551                  * via the net.inet.ip.sendsourcequench sysctl.
 1552                  */
 1553                 if (V_ip_sendsourcequench == 0) {
 1554                         m_freem(mcopy);
 1555                         if (ia != NULL)
 1556                                 ifa_free(&ia->ia_ifa);
 1557                         return;
 1558                 } else {
 1559                         type = ICMP_SOURCEQUENCH;
 1560                         code = 0;
 1561                 }
 1562                 break;
 1563 
 1564         case EACCES:                    /* ipfw denied packet */
 1565                 m_freem(mcopy);
 1566                 if (ia != NULL)
 1567                         ifa_free(&ia->ia_ifa);
 1568                 return;
 1569         }
 1570         if (ia != NULL)
 1571                 ifa_free(&ia->ia_ifa);
 1572         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1573 }
 1574 
 1575 void
 1576 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1577     struct mbuf *m)
 1578 {
 1579 
 1580         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1581                 struct bintime bt;
 1582 
 1583                 bintime(&bt);
 1584                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1585                         *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt),
 1586                             SCM_BINTIME, SOL_SOCKET);
 1587                         if (*mp)
 1588                                 mp = &(*mp)->m_next;
 1589                 }
 1590                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1591                         struct timeval tv;
 1592 
 1593                         bintime2timeval(&bt, &tv);
 1594                         *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv),
 1595                             SCM_TIMESTAMP, SOL_SOCKET);
 1596                         if (*mp)
 1597                                 mp = &(*mp)->m_next;
 1598                 }
 1599         }
 1600         if (inp->inp_flags & INP_RECVDSTADDR) {
 1601                 *mp = sbcreatecontrol((caddr_t)&ip->ip_dst,
 1602                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1603                 if (*mp)
 1604                         mp = &(*mp)->m_next;
 1605         }
 1606         if (inp->inp_flags & INP_RECVTTL) {
 1607                 *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl,
 1608                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1609                 if (*mp)
 1610                         mp = &(*mp)->m_next;
 1611         }
 1612 #ifdef notyet
 1613         /* XXX
 1614          * Moving these out of udp_input() made them even more broken
 1615          * than they already were.
 1616          */
 1617         /* options were tossed already */
 1618         if (inp->inp_flags & INP_RECVOPTS) {
 1619                 *mp = sbcreatecontrol((caddr_t)opts_deleted_above,
 1620                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1621                 if (*mp)
 1622                         mp = &(*mp)->m_next;
 1623         }
 1624         /* ip_srcroute doesn't do what we want here, need to fix */
 1625         if (inp->inp_flags & INP_RECVRETOPTS) {
 1626                 *mp = sbcreatecontrol((caddr_t)ip_srcroute(m),
 1627                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1628                 if (*mp)
 1629                         mp = &(*mp)->m_next;
 1630         }
 1631 #endif
 1632         if (inp->inp_flags & INP_RECVIF) {
 1633                 struct ifnet *ifp;
 1634                 struct sdlbuf {
 1635                         struct sockaddr_dl sdl;
 1636                         u_char  pad[32];
 1637                 } sdlbuf;
 1638                 struct sockaddr_dl *sdp;
 1639                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1640 
 1641                 if ((ifp = m->m_pkthdr.rcvif) &&
 1642                     ifp->if_index && ifp->if_index <= V_if_index) {
 1643                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1644                         /*
 1645                          * Change our mind and don't try copy.
 1646                          */
 1647                         if (sdp->sdl_family != AF_LINK ||
 1648                             sdp->sdl_len > sizeof(sdlbuf)) {
 1649                                 goto makedummy;
 1650                         }
 1651                         bcopy(sdp, sdl2, sdp->sdl_len);
 1652                 } else {
 1653 makedummy:      
 1654                         sdl2->sdl_len =
 1655                             offsetof(struct sockaddr_dl, sdl_data[0]);
 1656                         sdl2->sdl_family = AF_LINK;
 1657                         sdl2->sdl_index = 0;
 1658                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1659                 }
 1660                 *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len,
 1661                     IP_RECVIF, IPPROTO_IP);
 1662                 if (*mp)
 1663                         mp = &(*mp)->m_next;
 1664         }
 1665         if (inp->inp_flags & INP_RECVTOS) {
 1666                 *mp = sbcreatecontrol((caddr_t)&ip->ip_tos,
 1667                     sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
 1668                 if (*mp)
 1669                         mp = &(*mp)->m_next;
 1670         }
 1671 }
 1672 
 1673 /*
 1674  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1675  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1676  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1677  * compiled.
 1678  */
 1679 static VNET_DEFINE(int, ip_rsvp_on);
 1680 VNET_DEFINE(struct socket *, ip_rsvpd);
 1681 
 1682 #define V_ip_rsvp_on            VNET(ip_rsvp_on)
 1683 
 1684 int
 1685 ip_rsvp_init(struct socket *so)
 1686 {
 1687 
 1688         if (so->so_type != SOCK_RAW ||
 1689             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1690                 return EOPNOTSUPP;
 1691 
 1692         if (V_ip_rsvpd != NULL)
 1693                 return EADDRINUSE;
 1694 
 1695         V_ip_rsvpd = so;
 1696         /*
 1697          * This may seem silly, but we need to be sure we don't over-increment
 1698          * the RSVP counter, in case something slips up.
 1699          */
 1700         if (!V_ip_rsvp_on) {
 1701                 V_ip_rsvp_on = 1;
 1702                 V_rsvp_on++;
 1703         }
 1704 
 1705         return 0;
 1706 }
 1707 
 1708 int
 1709 ip_rsvp_done(void)
 1710 {
 1711 
 1712         V_ip_rsvpd = NULL;
 1713         /*
 1714          * This may seem silly, but we need to be sure we don't over-decrement
 1715          * the RSVP counter, in case something slips up.
 1716          */
 1717         if (V_ip_rsvp_on) {
 1718                 V_ip_rsvp_on = 0;
 1719                 V_rsvp_on--;
 1720         }
 1721         return 0;
 1722 }
 1723 
 1724 void
 1725 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1726 {
 1727 
 1728         if (rsvp_input_p) { /* call the real one if loaded */
 1729                 rsvp_input_p(m, off);
 1730                 return;
 1731         }
 1732 
 1733         /* Can still get packets with rsvp_on = 0 if there is a local member
 1734          * of the group to which the RSVP packet is addressed.  But in this
 1735          * case we want to throw the packet away.
 1736          */
 1737         
 1738         if (!V_rsvp_on) {
 1739                 m_freem(m);
 1740                 return;
 1741         }
 1742 
 1743         if (V_ip_rsvpd != NULL) { 
 1744                 rip_input(m, off);
 1745                 return;
 1746         }
 1747         /* Drop the packet */
 1748         m_freem(m);
 1749 }

Cache object: 9aaa97dd81d55e983609d06c9b9c565a


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.