The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 3. All advertising materials mentioning features or use of this software
   14  *    must display the following acknowledgement:
   15  *      This product includes software developed by the University of
   16  *      California, Berkeley and its contributors.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   34  * $FreeBSD: releng/5.1/sys/netinet/ip_input.c 114788 2003-05-06 20:34:04Z rwatson $
   35  */
   36 
   37 #include "opt_bootp.h"
   38 #include "opt_ipfw.h"
   39 #include "opt_ipdn.h"
   40 #include "opt_ipdivert.h"
   41 #include "opt_ipfilter.h"
   42 #include "opt_ipstealth.h"
   43 #include "opt_ipsec.h"
   44 #include "opt_mac.h"
   45 #include "opt_pfil_hooks.h"
   46 #include "opt_random_ip_id.h"
   47 
   48 #include <sys/param.h>
   49 #include <sys/systm.h>
   50 #include <sys/mac.h>
   51 #include <sys/mbuf.h>
   52 #include <sys/malloc.h>
   53 #include <sys/domain.h>
   54 #include <sys/protosw.h>
   55 #include <sys/socket.h>
   56 #include <sys/time.h>
   57 #include <sys/kernel.h>
   58 #include <sys/syslog.h>
   59 #include <sys/sysctl.h>
   60 
   61 #include <net/pfil.h>
   62 #include <net/if.h>
   63 #include <net/if_types.h>
   64 #include <net/if_var.h>
   65 #include <net/if_dl.h>
   66 #include <net/route.h>
   67 #include <net/netisr.h>
   68 
   69 #include <netinet/in.h>
   70 #include <netinet/in_systm.h>
   71 #include <netinet/in_var.h>
   72 #include <netinet/ip.h>
   73 #include <netinet/in_pcb.h>
   74 #include <netinet/ip_var.h>
   75 #include <netinet/ip_icmp.h>
   76 #include <machine/in_cksum.h>
   77 
   78 #include <sys/socketvar.h>
   79 
   80 #include <netinet/ip_fw.h>
   81 #include <netinet/ip_dummynet.h>
   82 
   83 #ifdef IPSEC
   84 #include <netinet6/ipsec.h>
   85 #include <netkey/key.h>
   86 #endif
   87 
   88 #ifdef FAST_IPSEC
   89 #include <netipsec/ipsec.h>
   90 #include <netipsec/key.h>
   91 #endif
   92 
   93 int rsvp_on = 0;
   94 
   95 int     ipforwarding = 0;
   96 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   97     &ipforwarding, 0, "Enable IP forwarding between interfaces");
   98 
   99 static int      ipsendredirects = 1; /* XXX */
  100 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
  101     &ipsendredirects, 0, "Enable sending IP redirects");
  102 
  103 int     ip_defttl = IPDEFTTL;
  104 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
  105     &ip_defttl, 0, "Maximum TTL on IP packets");
  106 
  107 static int      ip_dosourceroute = 0;
  108 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
  109     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
  110 
  111 static int      ip_acceptsourceroute = 0;
  112 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute, 
  113     CTLFLAG_RW, &ip_acceptsourceroute, 0, 
  114     "Enable accepting source routed IP packets");
  115 
  116 static int      ip_keepfaith = 0;
  117 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  118         &ip_keepfaith,  0,
  119         "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  120 
  121 static int    nipq = 0;         /* total # of reass queues */
  122 static int    maxnipq;
  123 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
  124         &maxnipq, 0,
  125         "Maximum number of IPv4 fragment reassembly queue entries");
  126 
  127 static int    maxfragsperpacket;
  128 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  129         &maxfragsperpacket, 0,
  130         "Maximum number of IPv4 fragments allowed per packet");
  131 
  132 static int      ip_sendsourcequench = 0;
  133 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  134         &ip_sendsourcequench, 0,
  135         "Enable the transmission of source quench packets");
  136 
  137 /*
  138  * XXX - Setting ip_checkinterface mostly implements the receive side of
  139  * the Strong ES model described in RFC 1122, but since the routing table
  140  * and transmit implementation do not implement the Strong ES model,
  141  * setting this to 1 results in an odd hybrid.
  142  *
  143  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  144  * to translate the destination address to another local interface.
  145  *
  146  * XXX - ip_checkinterface must be disabled if you add IP aliases
  147  * to the loopback interface instead of the interface where the
  148  * packets for those addresses are received.
  149  */
  150 static int      ip_checkinterface = 1;
  151 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  152     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
  153 
  154 #ifdef DIAGNOSTIC
  155 static int      ipprintfs = 0;
  156 #endif
  157 
  158 static struct   ifqueue ipintrq;
  159 static int      ipqmaxlen = IFQ_MAXLEN;
  160 
  161 extern  struct domain inetdomain;
  162 extern  struct protosw inetsw[];
  163 u_char  ip_protox[IPPROTO_MAX];
  164 struct  in_ifaddrhead in_ifaddrhead;            /* first inet address */
  165 struct  in_ifaddrhashhead *in_ifaddrhashtbl;    /* inet addr hash table  */
  166 u_long  in_ifaddrhmask;                         /* mask for hash table */
  167 
  168 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
  169     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
  170 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
  171     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
  172 
  173 struct ipstat ipstat;
  174 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
  175     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
  176 
  177 /* Packet reassembly stuff */
  178 #define IPREASS_NHASH_LOG2      6
  179 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
  180 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
  181 #define IPREASS_HASH(x,y) \
  182         (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
  183 
  184 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
  185 
  186 #ifdef IPCTL_DEFMTU
  187 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  188     &ip_mtu, 0, "Default MTU");
  189 #endif
  190 
  191 #ifdef IPSTEALTH
  192 static int      ipstealth = 0;
  193 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  194     &ipstealth, 0, "");
  195 #endif
  196 
  197 
  198 /* Firewall hooks */
  199 ip_fw_chk_t *ip_fw_chk_ptr;
  200 int fw_enable = 1 ;
  201 int fw_one_pass = 1;
  202 
  203 /* Dummynet hooks */
  204 ip_dn_io_t *ip_dn_io_ptr;
  205 
  206 
  207 /*
  208  * XXX this is ugly -- the following two global variables are
  209  * used to store packet state while it travels through the stack.
  210  * Note that the code even makes assumptions on the size and
  211  * alignment of fields inside struct ip_srcrt so e.g. adding some
  212  * fields will break the code. This needs to be fixed.
  213  *
  214  * We need to save the IP options in case a protocol wants to respond
  215  * to an incoming packet over the same route if the packet got here
  216  * using IP source routing.  This allows connection establishment and
  217  * maintenance when the remote end is on a network that is not known
  218  * to us.
  219  */
  220 static int      ip_nhops = 0;
  221 static  struct ip_srcrt {
  222         struct  in_addr dst;                    /* final destination */
  223         char    nop;                            /* one NOP to align */
  224         char    srcopt[IPOPT_OFFSET + 1];       /* OPTVAL, OLEN and OFFSET */
  225         struct  in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
  226 } ip_srcrt;
  227 
  228 static void     save_rte(u_char *, struct in_addr);
  229 static int      ip_dooptions(struct mbuf *m, int,
  230                         struct sockaddr_in *next_hop);
  231 static void     ip_forward(struct mbuf *m, int srcrt,
  232                         struct sockaddr_in *next_hop);
  233 static void     ip_freef(struct ipqhead *, struct ipq *);
  234 static struct   mbuf *ip_reass(struct mbuf *, struct ipqhead *,
  235                 struct ipq *, u_int32_t *, u_int16_t *);
  236 
  237 /*
  238  * IP initialization: fill in IP protocol switch table.
  239  * All protocols not implemented in kernel go to raw IP protocol handler.
  240  */
  241 void
  242 ip_init()
  243 {
  244         register struct protosw *pr;
  245         register int i;
  246 
  247         TAILQ_INIT(&in_ifaddrhead);
  248         in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
  249         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  250         if (pr == 0)
  251                 panic("ip_init");
  252         for (i = 0; i < IPPROTO_MAX; i++)
  253                 ip_protox[i] = pr - inetsw;
  254         for (pr = inetdomain.dom_protosw;
  255             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  256                 if (pr->pr_domain->dom_family == PF_INET &&
  257                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
  258                         ip_protox[pr->pr_protocol] = pr - inetsw;
  259 
  260         for (i = 0; i < IPREASS_NHASH; i++)
  261             TAILQ_INIT(&ipq[i]);
  262 
  263         maxnipq = nmbclusters / 32;
  264         maxfragsperpacket = 16;
  265 
  266 #ifndef RANDOM_IP_ID
  267         ip_id = time_second & 0xffff;
  268 #endif
  269         ipintrq.ifq_maxlen = ipqmaxlen;
  270         mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
  271         netisr_register(NETISR_IP, ip_input, &ipintrq);
  272 }
  273 
  274 /*
  275  * XXX watch out this one. It is perhaps used as a cache for
  276  * the most recently used route ? it is cleared in in_addroute()
  277  * when a new route is successfully created.
  278  */
  279 struct  route ipforward_rt;
  280 
  281 /*
  282  * Ip input routine.  Checksum and byte swap header.  If fragmented
  283  * try to reassemble.  Process options.  Pass to next level.
  284  */
  285 void
  286 ip_input(struct mbuf *m)
  287 {
  288         struct ip *ip;
  289         struct ipq *fp;
  290         struct in_ifaddr *ia = NULL;
  291         struct ifaddr *ifa;
  292         int    i, hlen, checkif;
  293         u_short sum;
  294         struct in_addr pkt_dst;
  295         u_int32_t divert_info = 0;              /* packet divert/tee info */
  296         struct ip_fw_args args;
  297 #ifdef PFIL_HOOKS
  298         struct packet_filter_hook *pfh;
  299         struct mbuf *m0;
  300         int rv;
  301 #endif /* PFIL_HOOKS */
  302 #ifdef FAST_IPSEC
  303         struct m_tag *mtag;
  304         struct tdb_ident *tdbi;
  305         struct secpolicy *sp;
  306         int s, error;
  307 #endif /* FAST_IPSEC */
  308 
  309         args.eh = NULL;
  310         args.oif = NULL;
  311         args.rule = NULL;
  312         args.divert_rule = 0;                   /* divert cookie */
  313         args.next_hop = NULL;
  314 
  315         /* Grab info from MT_TAG mbufs prepended to the chain.  */
  316         for (; m && m->m_type == MT_TAG; m = m->m_next) {
  317                 switch(m->_m_tag_id) {
  318                 default:
  319                         printf("ip_input: unrecognised MT_TAG tag %d\n",
  320                             m->_m_tag_id);
  321                         break;
  322 
  323                 case PACKET_TAG_DUMMYNET:
  324                         args.rule = ((struct dn_pkt *)m)->rule;
  325                         break;
  326 
  327                 case PACKET_TAG_DIVERT:
  328                         args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
  329                         break;
  330 
  331                 case PACKET_TAG_IPFORWARD:
  332                         args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
  333                         break;
  334                 }
  335         }
  336 
  337         M_ASSERTPKTHDR(m);
  338 
  339         if (args.rule) {        /* dummynet already filtered us */
  340                 ip = mtod(m, struct ip *);
  341                 hlen = ip->ip_hl << 2;
  342                 goto iphack ;
  343         }
  344 
  345         ipstat.ips_total++;
  346 
  347         if (m->m_pkthdr.len < sizeof(struct ip))
  348                 goto tooshort;
  349 
  350         if (m->m_len < sizeof (struct ip) &&
  351             (m = m_pullup(m, sizeof (struct ip))) == 0) {
  352                 ipstat.ips_toosmall++;
  353                 return;
  354         }
  355         ip = mtod(m, struct ip *);
  356 
  357         if (ip->ip_v != IPVERSION) {
  358                 ipstat.ips_badvers++;
  359                 goto bad;
  360         }
  361 
  362         hlen = ip->ip_hl << 2;
  363         if (hlen < sizeof(struct ip)) { /* minimum header length */
  364                 ipstat.ips_badhlen++;
  365                 goto bad;
  366         }
  367         if (hlen > m->m_len) {
  368                 if ((m = m_pullup(m, hlen)) == 0) {
  369                         ipstat.ips_badhlen++;
  370                         return;
  371                 }
  372                 ip = mtod(m, struct ip *);
  373         }
  374 
  375         /* 127/8 must not appear on wire - RFC1122 */
  376         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  377             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  378                 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
  379                         ipstat.ips_badaddr++;
  380                         goto bad;
  381                 }
  382         }
  383 
  384         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  385                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  386         } else {
  387                 if (hlen == sizeof(struct ip)) {
  388                         sum = in_cksum_hdr(ip);
  389                 } else {
  390                         sum = in_cksum(m, hlen);
  391                 }
  392         }
  393         if (sum) {
  394                 ipstat.ips_badsum++;
  395                 goto bad;
  396         }
  397 
  398         /*
  399          * Convert fields to host representation.
  400          */
  401         ip->ip_len = ntohs(ip->ip_len);
  402         if (ip->ip_len < hlen) {
  403                 ipstat.ips_badlen++;
  404                 goto bad;
  405         }
  406         ip->ip_off = ntohs(ip->ip_off);
  407 
  408         /*
  409          * Check that the amount of data in the buffers
  410          * is as at least much as the IP header would have us expect.
  411          * Trim mbufs if longer than we expect.
  412          * Drop packet if shorter than we expect.
  413          */
  414         if (m->m_pkthdr.len < ip->ip_len) {
  415 tooshort:
  416                 ipstat.ips_tooshort++;
  417                 goto bad;
  418         }
  419         if (m->m_pkthdr.len > ip->ip_len) {
  420                 if (m->m_len == m->m_pkthdr.len) {
  421                         m->m_len = ip->ip_len;
  422                         m->m_pkthdr.len = ip->ip_len;
  423                 } else
  424                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
  425         }
  426 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
  427         /*
  428          * Bypass packet filtering for packets from a tunnel (gif).
  429          */
  430         if (ipsec_gethist(m, NULL))
  431                 goto pass;
  432 #endif
  433 
  434         /*
  435          * IpHack's section.
  436          * Right now when no processing on packet has done
  437          * and it is still fresh out of network we do our black
  438          * deals with it.
  439          * - Firewall: deny/allow/divert
  440          * - Xlate: translate packet's addr/port (NAT).
  441          * - Pipe: pass pkt through dummynet.
  442          * - Wrap: fake packet's addr/port <unimpl.>
  443          * - Encapsulate: put it in another IP and send out. <unimp.>
  444          */
  445 
  446 iphack:
  447 
  448 #ifdef PFIL_HOOKS
  449         /*
  450          * Run through list of hooks for input packets.  If there are any
  451          * filters which require that additional packets in the flow are
  452          * not fast-forwarded, they must clear the M_CANFASTFWD flag.
  453          * Note that filters must _never_ set this flag, as another filter
  454          * in the list may have previously cleared it.
  455          */
  456         m0 = m;
  457         pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
  458         for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
  459                 if (pfh->pfil_func) {
  460                         rv = pfh->pfil_func(ip, hlen,
  461                                             m->m_pkthdr.rcvif, 0, &m0);
  462                         if (rv)
  463                                 return;
  464                         m = m0;
  465                         if (m == NULL)
  466                                 return;
  467                         ip = mtod(m, struct ip *);
  468                 }
  469 #endif /* PFIL_HOOKS */
  470 
  471         if (fw_enable && IPFW_LOADED) {
  472                 /*
  473                  * If we've been forwarded from the output side, then
  474                  * skip the firewall a second time
  475                  */
  476                 if (args.next_hop)
  477                         goto ours;
  478 
  479                 args.m = m;
  480                 i = ip_fw_chk_ptr(&args);
  481                 m = args.m;
  482 
  483                 if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
  484                         if (m)
  485                                 m_freem(m);
  486                         return;
  487                 }
  488                 ip = mtod(m, struct ip *); /* just in case m changed */
  489                 if (i == 0 && args.next_hop == NULL)    /* common case */
  490                         goto pass;
  491                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
  492                         /* Send packet to the appropriate pipe */
  493                         ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
  494                         return;
  495                 }
  496 #ifdef IPDIVERT
  497                 if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
  498                         /* Divert or tee packet */
  499                         divert_info = i;
  500                         goto ours;
  501                 }
  502 #endif
  503                 if (i == 0 && args.next_hop != NULL)
  504                         goto pass;
  505                 /*
  506                  * if we get here, the packet must be dropped
  507                  */
  508                 m_freem(m);
  509                 return;
  510         }
  511 pass:
  512 
  513         /*
  514          * Process options and, if not destined for us,
  515          * ship it on.  ip_dooptions returns 1 when an
  516          * error was detected (causing an icmp message
  517          * to be sent and the original packet to be freed).
  518          */
  519         ip_nhops = 0;           /* for source routed packets */
  520         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
  521                 return;
  522 
  523         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  524          * matter if it is destined to another node, or whether it is 
  525          * a multicast one, RSVP wants it! and prevents it from being forwarded
  526          * anywhere else. Also checks if the rsvp daemon is running before
  527          * grabbing the packet.
  528          */
  529         if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  530                 goto ours;
  531 
  532         /*
  533          * Check our list of addresses, to see if the packet is for us.
  534          * If we don't have any addresses, assume any unicast packet
  535          * we receive might be for us (and let the upper layers deal
  536          * with it).
  537          */
  538         if (TAILQ_EMPTY(&in_ifaddrhead) &&
  539             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  540                 goto ours;
  541 
  542         /*
  543          * Cache the destination address of the packet; this may be
  544          * changed by use of 'ipfw fwd'.
  545          */
  546         pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
  547 
  548         /*
  549          * Enable a consistency check between the destination address
  550          * and the arrival interface for a unicast packet (the RFC 1122
  551          * strong ES model) if IP forwarding is disabled and the packet
  552          * is not locally generated and the packet is not subject to
  553          * 'ipfw fwd'.
  554          *
  555          * XXX - Checking also should be disabled if the destination
  556          * address is ipnat'ed to a different interface.
  557          *
  558          * XXX - Checking is incompatible with IP aliases added
  559          * to the loopback interface instead of the interface where
  560          * the packets are received.
  561          */
  562         checkif = ip_checkinterface && (ipforwarding == 0) && 
  563             m->m_pkthdr.rcvif != NULL &&
  564             ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
  565             (args.next_hop == NULL);
  566 
  567         /*
  568          * Check for exact addresses in the hash bucket.
  569          */
  570         LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
  571                 /*
  572                  * If the address matches, verify that the packet
  573                  * arrived via the correct interface if checking is
  574                  * enabled.
  575                  */
  576                 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr && 
  577                     (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
  578                         goto ours;
  579         }
  580         /*
  581          * Check for broadcast addresses.
  582          *
  583          * Only accept broadcast packets that arrive via the matching
  584          * interface.  Reception of forwarded directed broadcasts would
  585          * be handled via ip_forward() and ether_output() with the loopback
  586          * into the stack for SIMPLEX interfaces handled by ether_output().
  587          */
  588         if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
  589                 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
  590                         if (ifa->ifa_addr->sa_family != AF_INET)
  591                                 continue;
  592                         ia = ifatoia(ifa);
  593                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  594                             pkt_dst.s_addr)
  595                                 goto ours;
  596                         if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
  597                                 goto ours;
  598 #ifdef BOOTP_COMPAT
  599                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
  600                                 goto ours;
  601 #endif
  602                 }
  603         }
  604         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  605                 struct in_multi *inm;
  606                 if (ip_mrouter) {
  607                         /*
  608                          * If we are acting as a multicast router, all
  609                          * incoming multicast packets are passed to the
  610                          * kernel-level multicast forwarding function.
  611                          * The packet is returned (relatively) intact; if
  612                          * ip_mforward() returns a non-zero value, the packet
  613                          * must be discarded, else it may be accepted below.
  614                          */
  615                         if (ip_mforward &&
  616                             ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
  617                                 ipstat.ips_cantforward++;
  618                                 m_freem(m);
  619                                 return;
  620                         }
  621 
  622                         /*
  623                          * The process-level routing daemon needs to receive
  624                          * all multicast IGMP packets, whether or not this
  625                          * host belongs to their destination groups.
  626                          */
  627                         if (ip->ip_p == IPPROTO_IGMP)
  628                                 goto ours;
  629                         ipstat.ips_forward++;
  630                 }
  631                 /*
  632                  * See if we belong to the destination multicast group on the
  633                  * arrival interface.
  634                  */
  635                 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
  636                 if (inm == NULL) {
  637                         ipstat.ips_notmember++;
  638                         m_freem(m);
  639                         return;
  640                 }
  641                 goto ours;
  642         }
  643         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  644                 goto ours;
  645         if (ip->ip_dst.s_addr == INADDR_ANY)
  646                 goto ours;
  647 
  648         /*
  649          * FAITH(Firewall Aided Internet Translator)
  650          */
  651         if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
  652                 if (ip_keepfaith) {
  653                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  654                                 goto ours;
  655                 }
  656                 m_freem(m);
  657                 return;
  658         }
  659 
  660         /*
  661          * Not for us; forward if possible and desirable.
  662          */
  663         if (ipforwarding == 0) {
  664                 ipstat.ips_cantforward++;
  665                 m_freem(m);
  666         } else {
  667 #ifdef IPSEC
  668                 /*
  669                  * Enforce inbound IPsec SPD.
  670                  */
  671                 if (ipsec4_in_reject(m, NULL)) {
  672                         ipsecstat.in_polvio++;
  673                         goto bad;
  674                 }
  675 #endif /* IPSEC */
  676 #ifdef FAST_IPSEC
  677                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
  678                 s = splnet();
  679                 if (mtag != NULL) {
  680                         tdbi = (struct tdb_ident *)(mtag + 1);
  681                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
  682                 } else {
  683                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
  684                                                    IP_FORWARDING, &error);   
  685                 }
  686                 if (sp == NULL) {       /* NB: can happen if error */
  687                         splx(s);
  688                         /*XXX error stat???*/
  689                         DPRINTF(("ip_input: no SP for forwarding\n"));  /*XXX*/
  690                         goto bad;
  691                 }
  692 
  693                 /*
  694                  * Check security policy against packet attributes.
  695                  */
  696                 error = ipsec_in_reject(sp, m);
  697                 KEY_FREESP(&sp);
  698                 splx(s);
  699                 if (error) {
  700                         ipstat.ips_cantforward++;
  701                         goto bad;
  702                 }
  703 #endif /* FAST_IPSEC */
  704                 ip_forward(m, 0, args.next_hop);
  705         }
  706         return;
  707 
  708 ours:
  709 #ifdef IPSTEALTH
  710         /*
  711          * IPSTEALTH: Process non-routing options only
  712          * if the packet is destined for us.
  713          */
  714         if (ipstealth && hlen > sizeof (struct ip) &&
  715             ip_dooptions(m, 1, args.next_hop))
  716                 return;
  717 #endif /* IPSTEALTH */
  718 
  719         /* Count the packet in the ip address stats */
  720         if (ia != NULL) {
  721                 ia->ia_ifa.if_ipackets++;
  722                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  723         }
  724 
  725         /*
  726          * If offset or IP_MF are set, must reassemble.
  727          * Otherwise, nothing need be done.
  728          * (We could look in the reassembly queue to see
  729          * if the packet was previously fragmented,
  730          * but it's not worth the time; just let them time out.)
  731          */
  732         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
  733 
  734                 /* If maxnipq is 0, never accept fragments. */
  735                 if (maxnipq == 0) {
  736                         ipstat.ips_fragments++;
  737                         ipstat.ips_fragdropped++;
  738                         goto bad;
  739                 }
  740 
  741                 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  742                 /*
  743                  * Look for queue of fragments
  744                  * of this datagram.
  745                  */
  746                 TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
  747                         if (ip->ip_id == fp->ipq_id &&
  748                             ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  749                             ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  750 #ifdef MAC
  751                             mac_fragment_match(m, fp) &&
  752 #endif
  753                             ip->ip_p == fp->ipq_p)
  754                                 goto found;
  755 
  756                 fp = 0;
  757 
  758                 /*
  759                  * Enforce upper bound on number of fragmented packets
  760                  * for which we attempt reassembly;
  761                  * If maxnipq is -1, accept all fragments without limitation.
  762                  */
  763                 if ((nipq > maxnipq) && (maxnipq > 0)) {
  764                     /*
  765                      * drop something from the tail of the current queue
  766                      * before proceeding further
  767                      */
  768                     struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
  769                     if (q == NULL) {   /* gak */
  770                         for (i = 0; i < IPREASS_NHASH; i++) {
  771                             struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
  772                             if (r) {
  773                                 ipstat.ips_fragtimeout += r->ipq_nfrags;
  774                                 ip_freef(&ipq[i], r);
  775                                 break;
  776                             }
  777                         }
  778                     } else {
  779                         ipstat.ips_fragtimeout += q->ipq_nfrags;
  780                         ip_freef(&ipq[sum], q);
  781                     }
  782                 }
  783 found:
  784                 /*
  785                  * Adjust ip_len to not reflect header,
  786                  * convert offset of this to bytes.
  787                  */
  788                 ip->ip_len -= hlen;
  789                 if (ip->ip_off & IP_MF) {
  790                         /*
  791                          * Make sure that fragments have a data length
  792                          * that's a non-zero multiple of 8 bytes.
  793                          */
  794                         if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
  795                                 ipstat.ips_toosmall++; /* XXX */
  796                                 goto bad;
  797                         }
  798                         m->m_flags |= M_FRAG;
  799                 } else
  800                         m->m_flags &= ~M_FRAG;
  801                 ip->ip_off <<= 3;
  802 
  803                 /*
  804                  * Attempt reassembly; if it succeeds, proceed.
  805                  * ip_reass() will return a different mbuf, and update
  806                  * the divert info in divert_info and args.divert_rule.
  807                  */
  808                 ipstat.ips_fragments++;
  809                 m->m_pkthdr.header = ip;
  810                 m = ip_reass(m,
  811                     &ipq[sum], fp, &divert_info, &args.divert_rule);
  812                 if (m == 0)
  813                         return;
  814                 ipstat.ips_reassembled++;
  815                 ip = mtod(m, struct ip *);
  816                 /* Get the header length of the reassembled packet */
  817                 hlen = ip->ip_hl << 2;
  818 #ifdef IPDIVERT
  819                 /* Restore original checksum before diverting packet */
  820                 if (divert_info != 0) {
  821                         ip->ip_len += hlen;
  822                         ip->ip_len = htons(ip->ip_len);
  823                         ip->ip_off = htons(ip->ip_off);
  824                         ip->ip_sum = 0;
  825                         if (hlen == sizeof(struct ip))
  826                                 ip->ip_sum = in_cksum_hdr(ip);
  827                         else
  828                                 ip->ip_sum = in_cksum(m, hlen);
  829                         ip->ip_off = ntohs(ip->ip_off);
  830                         ip->ip_len = ntohs(ip->ip_len);
  831                         ip->ip_len -= hlen;
  832                 }
  833 #endif
  834         } else
  835                 ip->ip_len -= hlen;
  836 
  837 #ifdef IPDIVERT
  838         /*
  839          * Divert or tee packet to the divert protocol if required.
  840          */
  841         if (divert_info != 0) {
  842                 struct mbuf *clone = NULL;
  843 
  844                 /* Clone packet if we're doing a 'tee' */
  845                 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
  846                         clone = m_dup(m, M_DONTWAIT);
  847 
  848                 /* Restore packet header fields to original values */
  849                 ip->ip_len += hlen;
  850                 ip->ip_len = htons(ip->ip_len);
  851                 ip->ip_off = htons(ip->ip_off);
  852 
  853                 /* Deliver packet to divert input routine */
  854                 divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
  855                 ipstat.ips_delivered++;
  856 
  857                 /* If 'tee', continue with original packet */
  858                 if (clone == NULL)
  859                         return;
  860                 m = clone;
  861                 ip = mtod(m, struct ip *);
  862                 ip->ip_len += hlen;
  863                 /*
  864                  * Jump backwards to complete processing of the
  865                  * packet. But first clear divert_info to avoid
  866                  * entering this block again.
  867                  * We do not need to clear args.divert_rule
  868                  * or args.next_hop as they will not be used.
  869                  */
  870                 divert_info = 0;
  871                 goto pass;
  872         }
  873 #endif
  874 
  875 #ifdef IPSEC
  876         /*
  877          * enforce IPsec policy checking if we are seeing last header.
  878          * note that we do not visit this with protocols with pcb layer
  879          * code - like udp/tcp/raw ip.
  880          */
  881         if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
  882             ipsec4_in_reject(m, NULL)) {
  883                 ipsecstat.in_polvio++;
  884                 goto bad;
  885         }
  886 #endif
  887 #if FAST_IPSEC
  888         /*
  889          * enforce IPsec policy checking if we are seeing last header.
  890          * note that we do not visit this with protocols with pcb layer
  891          * code - like udp/tcp/raw ip.
  892          */
  893         if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
  894                 /*
  895                  * Check if the packet has already had IPsec processing
  896                  * done.  If so, then just pass it along.  This tag gets
  897                  * set during AH, ESP, etc. input handling, before the
  898                  * packet is returned to the ip input queue for delivery.
  899                  */ 
  900                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
  901                 s = splnet();
  902                 if (mtag != NULL) {
  903                         tdbi = (struct tdb_ident *)(mtag + 1);
  904                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
  905                 } else {
  906                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
  907                                                    IP_FORWARDING, &error);   
  908                 }
  909                 if (sp != NULL) {
  910                         /*
  911                          * Check security policy against packet attributes.
  912                          */
  913                         error = ipsec_in_reject(sp, m);
  914                         KEY_FREESP(&sp);
  915                 } else {
  916                         /* XXX error stat??? */
  917                         error = EINVAL;
  918 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
  919                         goto bad;
  920                 }
  921                 splx(s);
  922                 if (error)
  923                         goto bad;
  924         }
  925 #endif /* FAST_IPSEC */
  926 
  927         /*
  928          * Switch out to protocol's input routine.
  929          */
  930         ipstat.ips_delivered++;
  931         if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
  932                 /* TCP needs IPFORWARD info if available */
  933                 struct m_hdr tag;
  934 
  935                 tag.mh_type = MT_TAG;
  936                 tag.mh_flags = PACKET_TAG_IPFORWARD;
  937                 tag.mh_data = (caddr_t)args.next_hop;
  938                 tag.mh_next = m;
  939 
  940                 (*inetsw[ip_protox[ip->ip_p]].pr_input)(
  941                         (struct mbuf *)&tag, hlen);
  942         } else
  943                 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  944         return;
  945 bad:
  946         m_freem(m);
  947 }
  948 
  949 /*
  950  * Take incoming datagram fragment and try to reassemble it into
  951  * whole datagram.  If a chain for reassembly of this datagram already
  952  * exists, then it is given as fp; otherwise have to make a chain.
  953  *
  954  * When IPDIVERT enabled, keep additional state with each packet that
  955  * tells us if we need to divert or tee the packet we're building.
  956  * In particular, *divinfo includes the port and TEE flag,
  957  * *divert_rule is the number of the matching rule.
  958  */
  959 
  960 static struct mbuf *
  961 ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
  962         u_int32_t *divinfo, u_int16_t *divert_rule)
  963 {
  964         struct ip *ip = mtod(m, struct ip *);
  965         register struct mbuf *p, *q, *nq;
  966         struct mbuf *t;
  967         int hlen = ip->ip_hl << 2;
  968         int i, next;
  969 
  970         /*
  971          * Presence of header sizes in mbufs
  972          * would confuse code below.
  973          */
  974         m->m_data += hlen;
  975         m->m_len -= hlen;
  976 
  977         /*
  978          * If first fragment to arrive, create a reassembly queue.
  979          */
  980         if (fp == 0) {
  981                 if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
  982                         goto dropfrag;
  983                 fp = mtod(t, struct ipq *);
  984 #ifdef MAC
  985                 if (mac_init_ipq(fp, M_NOWAIT) != 0) {
  986                         m_free(t);
  987                         goto dropfrag;
  988                 }
  989                 mac_create_ipq(m, fp);
  990 #endif
  991                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  992                 nipq++;
  993                 fp->ipq_nfrags = 1;
  994                 fp->ipq_ttl = IPFRAGTTL;
  995                 fp->ipq_p = ip->ip_p;
  996                 fp->ipq_id = ip->ip_id;
  997                 fp->ipq_src = ip->ip_src;
  998                 fp->ipq_dst = ip->ip_dst;
  999                 fp->ipq_frags = m;
 1000                 m->m_nextpkt = NULL;
 1001 #ifdef IPDIVERT
 1002                 fp->ipq_div_info = 0;
 1003                 fp->ipq_div_cookie = 0;
 1004 #endif
 1005                 goto inserted;
 1006         } else {
 1007                 fp->ipq_nfrags++;
 1008 #ifdef MAC
 1009                 mac_update_ipq(m, fp);
 1010 #endif
 1011         }
 1012 
 1013 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
 1014 
 1015         /*
 1016          * Find a segment which begins after this one does.
 1017          */
 1018         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
 1019                 if (GETIP(q)->ip_off > ip->ip_off)
 1020                         break;
 1021 
 1022         /*
 1023          * If there is a preceding segment, it may provide some of
 1024          * our data already.  If so, drop the data from the incoming
 1025          * segment.  If it provides all of our data, drop us, otherwise
 1026          * stick new segment in the proper place.
 1027          *
 1028          * If some of the data is dropped from the the preceding
 1029          * segment, then it's checksum is invalidated.
 1030          */
 1031         if (p) {
 1032                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
 1033                 if (i > 0) {
 1034                         if (i >= ip->ip_len)
 1035                                 goto dropfrag;
 1036                         m_adj(m, i);
 1037                         m->m_pkthdr.csum_flags = 0;
 1038                         ip->ip_off += i;
 1039                         ip->ip_len -= i;
 1040                 }
 1041                 m->m_nextpkt = p->m_nextpkt;
 1042                 p->m_nextpkt = m;
 1043         } else {
 1044                 m->m_nextpkt = fp->ipq_frags;
 1045                 fp->ipq_frags = m;
 1046         }
 1047 
 1048         /*
 1049          * While we overlap succeeding segments trim them or,
 1050          * if they are completely covered, dequeue them.
 1051          */
 1052         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
 1053              q = nq) {
 1054                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
 1055                 if (i < GETIP(q)->ip_len) {
 1056                         GETIP(q)->ip_len -= i;
 1057                         GETIP(q)->ip_off += i;
 1058                         m_adj(q, i);
 1059                         q->m_pkthdr.csum_flags = 0;
 1060                         break;
 1061                 }
 1062                 nq = q->m_nextpkt;
 1063                 m->m_nextpkt = nq;
 1064                 ipstat.ips_fragdropped++;
 1065                 fp->ipq_nfrags--;
 1066                 m_freem(q);
 1067         }
 1068 
 1069 inserted:
 1070 
 1071 #ifdef IPDIVERT
 1072         /*
 1073          * Transfer firewall instructions to the fragment structure.
 1074          * Only trust info in the fragment at offset 0.
 1075          */
 1076         if (ip->ip_off == 0) {
 1077                 fp->ipq_div_info = *divinfo;
 1078                 fp->ipq_div_cookie = *divert_rule;
 1079         }
 1080         *divinfo = 0;
 1081         *divert_rule = 0;
 1082 #endif
 1083 
 1084         /*
 1085          * Check for complete reassembly and perform frag per packet
 1086          * limiting.
 1087          *
 1088          * Frag limiting is performed here so that the nth frag has
 1089          * a chance to complete the packet before we drop the packet.
 1090          * As a result, n+1 frags are actually allowed per packet, but
 1091          * only n will ever be stored. (n = maxfragsperpacket.)
 1092          *
 1093          */
 1094         next = 0;
 1095         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
 1096                 if (GETIP(q)->ip_off != next) {
 1097                         if (fp->ipq_nfrags > maxfragsperpacket) {
 1098                                 ipstat.ips_fragdropped += fp->ipq_nfrags;
 1099                                 ip_freef(head, fp);
 1100                         }
 1101                         return (0);
 1102                 }
 1103                 next += GETIP(q)->ip_len;
 1104         }
 1105         /* Make sure the last packet didn't have the IP_MF flag */
 1106         if (p->m_flags & M_FRAG) {
 1107                 if (fp->ipq_nfrags > maxfragsperpacket) {
 1108                         ipstat.ips_fragdropped += fp->ipq_nfrags;
 1109                         ip_freef(head, fp);
 1110                 }
 1111                 return (0);
 1112         }
 1113 
 1114         /*
 1115          * Reassembly is complete.  Make sure the packet is a sane size.
 1116          */
 1117         q = fp->ipq_frags;
 1118         ip = GETIP(q);
 1119         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
 1120                 ipstat.ips_toolong++;
 1121                 ipstat.ips_fragdropped += fp->ipq_nfrags;
 1122                 ip_freef(head, fp);
 1123                 return (0);
 1124         }
 1125 
 1126         /*
 1127          * Concatenate fragments.
 1128          */
 1129         m = q;
 1130         t = m->m_next;
 1131         m->m_next = 0;
 1132         m_cat(m, t);
 1133         nq = q->m_nextpkt;
 1134         q->m_nextpkt = 0;
 1135         for (q = nq; q != NULL; q = nq) {
 1136                 nq = q->m_nextpkt;
 1137                 q->m_nextpkt = NULL;
 1138                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1139                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1140                 m_cat(m, q);
 1141         }
 1142 #ifdef MAC
 1143         mac_create_datagram_from_ipq(fp, m);
 1144         mac_destroy_ipq(fp);
 1145 #endif
 1146 
 1147 #ifdef IPDIVERT
 1148         /*
 1149          * Extract firewall instructions from the fragment structure.
 1150          */
 1151         *divinfo = fp->ipq_div_info;
 1152         *divert_rule = fp->ipq_div_cookie;
 1153 #endif
 1154 
 1155         /*
 1156          * Create header for new ip packet by
 1157          * modifying header of first packet;
 1158          * dequeue and discard fragment reassembly header.
 1159          * Make header visible.
 1160          */
 1161         ip->ip_len = next;
 1162         ip->ip_src = fp->ipq_src;
 1163         ip->ip_dst = fp->ipq_dst;
 1164         TAILQ_REMOVE(head, fp, ipq_list);
 1165         nipq--;
 1166         (void) m_free(dtom(fp));
 1167         m->m_len += (ip->ip_hl << 2);
 1168         m->m_data -= (ip->ip_hl << 2);
 1169         /* some debugging cruft by sklower, below, will go away soon */
 1170         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1171                 m_fixhdr(m);
 1172         return (m);
 1173 
 1174 dropfrag:
 1175 #ifdef IPDIVERT
 1176         *divinfo = 0;
 1177         *divert_rule = 0;
 1178 #endif
 1179         ipstat.ips_fragdropped++;
 1180         if (fp != 0)
 1181                 fp->ipq_nfrags--;
 1182         m_freem(m);
 1183         return (0);
 1184 
 1185 #undef GETIP
 1186 }
 1187 
 1188 /*
 1189  * Free a fragment reassembly header and all
 1190  * associated datagrams.
 1191  */
 1192 static void
 1193 ip_freef(fhp, fp)
 1194         struct ipqhead *fhp;
 1195         struct ipq *fp;
 1196 {
 1197         register struct mbuf *q;
 1198 
 1199         while (fp->ipq_frags) {
 1200                 q = fp->ipq_frags;
 1201                 fp->ipq_frags = q->m_nextpkt;
 1202                 m_freem(q);
 1203         }
 1204         TAILQ_REMOVE(fhp, fp, ipq_list);
 1205         (void) m_free(dtom(fp));
 1206         nipq--;
 1207 }
 1208 
 1209 /*
 1210  * IP timer processing;
 1211  * if a timer expires on a reassembly
 1212  * queue, discard it.
 1213  */
 1214 void
 1215 ip_slowtimo()
 1216 {
 1217         register struct ipq *fp;
 1218         int s = splnet();
 1219         int i;
 1220 
 1221         for (i = 0; i < IPREASS_NHASH; i++) {
 1222                 for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
 1223                         struct ipq *fpp;
 1224 
 1225                         fpp = fp;
 1226                         fp = TAILQ_NEXT(fp, ipq_list);
 1227                         if(--fpp->ipq_ttl == 0) {
 1228                                 ipstat.ips_fragtimeout += fpp->ipq_nfrags;
 1229                                 ip_freef(&ipq[i], fpp);
 1230                         }
 1231                 }
 1232         }
 1233         /*
 1234          * If we are over the maximum number of fragments
 1235          * (due to the limit being lowered), drain off
 1236          * enough to get down to the new limit.
 1237          */
 1238         if (maxnipq >= 0 && nipq > maxnipq) {
 1239                 for (i = 0; i < IPREASS_NHASH; i++) {
 1240                         while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
 1241                                 ipstat.ips_fragdropped +=
 1242                                     TAILQ_FIRST(&ipq[i])->ipq_nfrags;
 1243                                 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
 1244                         }
 1245                 }
 1246         }
 1247         ipflow_slowtimo();
 1248         splx(s);
 1249 }
 1250 
 1251 /*
 1252  * Drain off all datagram fragments.
 1253  */
 1254 void
 1255 ip_drain()
 1256 {
 1257         int     i;
 1258 
 1259         for (i = 0; i < IPREASS_NHASH; i++) {
 1260                 while(!TAILQ_EMPTY(&ipq[i])) {
 1261                         ipstat.ips_fragdropped +=
 1262                             TAILQ_FIRST(&ipq[i])->ipq_nfrags;
 1263                         ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
 1264                 }
 1265         }
 1266         in_rtqdrain();
 1267 }
 1268 
 1269 /*
 1270  * Do option processing on a datagram,
 1271  * possibly discarding it if bad options are encountered,
 1272  * or forwarding it if source-routed.
 1273  * The pass argument is used when operating in the IPSTEALTH
 1274  * mode to tell what options to process:
 1275  * [LS]SRR (pass 0) or the others (pass 1).
 1276  * The reason for as many as two passes is that when doing IPSTEALTH,
 1277  * non-routing options should be processed only if the packet is for us.
 1278  * Returns 1 if packet has been forwarded/freed,
 1279  * 0 if the packet should be processed further.
 1280  */
 1281 static int
 1282 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
 1283 {
 1284         struct ip *ip = mtod(m, struct ip *);
 1285         u_char *cp;
 1286         struct in_ifaddr *ia;
 1287         int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
 1288         struct in_addr *sin, dst;
 1289         n_time ntime;
 1290         struct  sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
 1291 
 1292         dst = ip->ip_dst;
 1293         cp = (u_char *)(ip + 1);
 1294         cnt = (ip->ip_hl << 2) - sizeof (struct ip);
 1295         for (; cnt > 0; cnt -= optlen, cp += optlen) {
 1296                 opt = cp[IPOPT_OPTVAL];
 1297                 if (opt == IPOPT_EOL)
 1298                         break;
 1299                 if (opt == IPOPT_NOP)
 1300                         optlen = 1;
 1301                 else {
 1302                         if (cnt < IPOPT_OLEN + sizeof(*cp)) {
 1303                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
 1304                                 goto bad;
 1305                         }
 1306                         optlen = cp[IPOPT_OLEN];
 1307                         if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
 1308                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
 1309                                 goto bad;
 1310                         }
 1311                 }
 1312                 switch (opt) {
 1313 
 1314                 default:
 1315                         break;
 1316 
 1317                 /*
 1318                  * Source routing with record.
 1319                  * Find interface with current destination address.
 1320                  * If none on this machine then drop if strictly routed,
 1321                  * or do nothing if loosely routed.
 1322                  * Record interface address and bring up next address
 1323                  * component.  If strictly routed make sure next
 1324                  * address is on directly accessible net.
 1325                  */
 1326                 case IPOPT_LSRR:
 1327                 case IPOPT_SSRR:
 1328 #ifdef IPSTEALTH
 1329                         if (ipstealth && pass > 0)
 1330                                 break;
 1331 #endif
 1332                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
 1333                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
 1334                                 goto bad;
 1335                         }
 1336                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
 1337                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 1338                                 goto bad;
 1339                         }
 1340                         ipaddr.sin_addr = ip->ip_dst;
 1341                         ia = (struct in_ifaddr *)
 1342                                 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
 1343                         if (ia == 0) {
 1344                                 if (opt == IPOPT_SSRR) {
 1345                                         type = ICMP_UNREACH;
 1346                                         code = ICMP_UNREACH_SRCFAIL;
 1347                                         goto bad;
 1348                                 }
 1349                                 if (!ip_dosourceroute)
 1350                                         goto nosourcerouting;
 1351                                 /*
 1352                                  * Loose routing, and not at next destination
 1353                                  * yet; nothing to do except forward.
 1354                                  */
 1355                                 break;
 1356                         }
 1357                         off--;                  /* 0 origin */
 1358                         if (off > optlen - (int)sizeof(struct in_addr)) {
 1359                                 /*
 1360                                  * End of source route.  Should be for us.
 1361                                  */
 1362                                 if (!ip_acceptsourceroute)
 1363                                         goto nosourcerouting;
 1364                                 save_rte(cp, ip->ip_src);
 1365                                 break;
 1366                         }
 1367 #ifdef IPSTEALTH
 1368                         if (ipstealth)
 1369                                 goto dropit;
 1370 #endif
 1371                         if (!ip_dosourceroute) {
 1372                                 if (ipforwarding) {
 1373                                         char buf[16]; /* aaa.bbb.ccc.ddd\0 */
 1374                                         /*
 1375                                          * Acting as a router, so generate ICMP
 1376                                          */
 1377 nosourcerouting:
 1378                                         strcpy(buf, inet_ntoa(ip->ip_dst));
 1379                                         log(LOG_WARNING, 
 1380                                             "attempted source route from %s to %s\n",
 1381                                             inet_ntoa(ip->ip_src), buf);
 1382                                         type = ICMP_UNREACH;
 1383                                         code = ICMP_UNREACH_SRCFAIL;
 1384                                         goto bad;
 1385                                 } else {
 1386                                         /*
 1387                                          * Not acting as a router, so silently drop.
 1388                                          */
 1389 #ifdef IPSTEALTH
 1390 dropit:
 1391 #endif
 1392                                         ipstat.ips_cantforward++;
 1393                                         m_freem(m);
 1394                                         return (1);
 1395                                 }
 1396                         }
 1397 
 1398                         /*
 1399                          * locate outgoing interface
 1400                          */
 1401                         (void)memcpy(&ipaddr.sin_addr, cp + off,
 1402                             sizeof(ipaddr.sin_addr));
 1403 
 1404                         if (opt == IPOPT_SSRR) {
 1405 #define INA     struct in_ifaddr *
 1406 #define SA      struct sockaddr *
 1407                             if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
 1408                                 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
 1409                         } else
 1410                                 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
 1411                         if (ia == 0) {
 1412                                 type = ICMP_UNREACH;
 1413                                 code = ICMP_UNREACH_SRCFAIL;
 1414                                 goto bad;
 1415                         }
 1416                         ip->ip_dst = ipaddr.sin_addr;
 1417                         (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
 1418                             sizeof(struct in_addr));
 1419                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
 1420                         /*
 1421                          * Let ip_intr's mcast routing check handle mcast pkts
 1422                          */
 1423                         forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
 1424                         break;
 1425 
 1426                 case IPOPT_RR:
 1427 #ifdef IPSTEALTH
 1428                         if (ipstealth && pass == 0)
 1429                                 break;
 1430 #endif
 1431                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
 1432                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 1433                                 goto bad;
 1434                         }
 1435                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
 1436                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 1437                                 goto bad;
 1438                         }
 1439                         /*
 1440                          * If no space remains, ignore.
 1441                          */
 1442                         off--;                  /* 0 origin */
 1443                         if (off > optlen - (int)sizeof(struct in_addr))
 1444                                 break;
 1445                         (void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
 1446                             sizeof(ipaddr.sin_addr));
 1447                         /*
 1448                          * locate outgoing interface; if we're the destination,
 1449                          * use the incoming interface (should be same).
 1450                          */
 1451                         if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
 1452                             (ia = ip_rtaddr(ipaddr.sin_addr,
 1453                             &ipforward_rt)) == 0) {
 1454                                 type = ICMP_UNREACH;
 1455                                 code = ICMP_UNREACH_HOST;
 1456                                 goto bad;
 1457                         }
 1458                         (void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
 1459                             sizeof(struct in_addr));
 1460                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
 1461                         break;
 1462 
 1463                 case IPOPT_TS:
 1464 #ifdef IPSTEALTH
 1465                         if (ipstealth && pass == 0)
 1466                                 break;
 1467 #endif
 1468                         code = cp - (u_char *)ip;
 1469                         if (optlen < 4 || optlen > 40) {
 1470                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
 1471                                 goto bad;
 1472                         }
 1473                         if ((off = cp[IPOPT_OFFSET]) < 5) {
 1474                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
 1475                                 goto bad;
 1476                         }
 1477                         if (off > optlen - (int)sizeof(int32_t)) {
 1478                                 cp[IPOPT_OFFSET + 1] += (1 << 4);
 1479                                 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
 1480                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 1481                                         goto bad;
 1482                                 }
 1483                                 break;
 1484                         }
 1485                         off--;                          /* 0 origin */
 1486                         sin = (struct in_addr *)(cp + off);
 1487                         switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
 1488 
 1489                         case IPOPT_TS_TSONLY:
 1490                                 break;
 1491 
 1492                         case IPOPT_TS_TSANDADDR:
 1493                                 if (off + sizeof(n_time) +
 1494                                     sizeof(struct in_addr) > optlen) {
 1495                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 1496                                         goto bad;
 1497                                 }
 1498                                 ipaddr.sin_addr = dst;
 1499                                 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
 1500                                                             m->m_pkthdr.rcvif);
 1501                                 if (ia == 0)
 1502                                         continue;
 1503                                 (void)memcpy(sin, &IA_SIN(ia)->sin_addr,
 1504                                     sizeof(struct in_addr));
 1505                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
 1506                                 off += sizeof(struct in_addr);
 1507                                 break;
 1508 
 1509                         case IPOPT_TS_PRESPEC:
 1510                                 if (off + sizeof(n_time) +
 1511                                     sizeof(struct in_addr) > optlen) {
 1512                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
 1513                                         goto bad;
 1514                                 }
 1515                                 (void)memcpy(&ipaddr.sin_addr, sin,
 1516                                     sizeof(struct in_addr));
 1517                                 if (ifa_ifwithaddr((SA)&ipaddr) == 0)
 1518                                         continue;
 1519                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
 1520                                 off += sizeof(struct in_addr);
 1521                                 break;
 1522 
 1523                         default:
 1524                                 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
 1525                                 goto bad;
 1526                         }
 1527                         ntime = iptime();
 1528                         (void)memcpy(cp + off, &ntime, sizeof(n_time));
 1529                         cp[IPOPT_OFFSET] += sizeof(n_time);
 1530                 }
 1531         }
 1532         if (forward && ipforwarding) {
 1533                 ip_forward(m, 1, next_hop);
 1534                 return (1);
 1535         }
 1536         return (0);
 1537 bad:
 1538         icmp_error(m, type, code, 0, 0);
 1539         ipstat.ips_badoptions++;
 1540         return (1);
 1541 }
 1542 
 1543 /*
 1544  * Given address of next destination (final or next hop),
 1545  * return internet address info of interface to be used to get there.
 1546  */
 1547 struct in_ifaddr *
 1548 ip_rtaddr(dst, rt)
 1549         struct in_addr dst;
 1550         struct route *rt;
 1551 {
 1552         register struct sockaddr_in *sin;
 1553 
 1554         sin = (struct sockaddr_in *)&rt->ro_dst;
 1555 
 1556         if (rt->ro_rt == 0 ||
 1557             !(rt->ro_rt->rt_flags & RTF_UP) ||
 1558             dst.s_addr != sin->sin_addr.s_addr) {
 1559                 if (rt->ro_rt) {
 1560                         RTFREE(rt->ro_rt);
 1561                         rt->ro_rt = 0;
 1562                 }
 1563                 sin->sin_family = AF_INET;
 1564                 sin->sin_len = sizeof(*sin);
 1565                 sin->sin_addr = dst;
 1566 
 1567                 rtalloc_ign(rt, RTF_PRCLONING);
 1568         }
 1569         if (rt->ro_rt == 0)
 1570                 return ((struct in_ifaddr *)0);
 1571         return (ifatoia(rt->ro_rt->rt_ifa));
 1572 }
 1573 
 1574 /*
 1575  * Save incoming source route for use in replies,
 1576  * to be picked up later by ip_srcroute if the receiver is interested.
 1577  */
 1578 static void
 1579 save_rte(option, dst)
 1580         u_char *option;
 1581         struct in_addr dst;
 1582 {
 1583         unsigned olen;
 1584 
 1585         olen = option[IPOPT_OLEN];
 1586 #ifdef DIAGNOSTIC
 1587         if (ipprintfs)
 1588                 printf("save_rte: olen %d\n", olen);
 1589 #endif
 1590         if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
 1591                 return;
 1592         bcopy(option, ip_srcrt.srcopt, olen);
 1593         ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
 1594         ip_srcrt.dst = dst;
 1595 }
 1596 
 1597 /*
 1598  * Retrieve incoming source route for use in replies,
 1599  * in the same form used by setsockopt.
 1600  * The first hop is placed before the options, will be removed later.
 1601  */
 1602 struct mbuf *
 1603 ip_srcroute()
 1604 {
 1605         register struct in_addr *p, *q;
 1606         register struct mbuf *m;
 1607 
 1608         if (ip_nhops == 0)
 1609                 return ((struct mbuf *)0);
 1610         m = m_get(M_DONTWAIT, MT_HEADER);
 1611         if (m == 0)
 1612                 return ((struct mbuf *)0);
 1613 
 1614 #define OPTSIZ  (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
 1615 
 1616         /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
 1617         m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
 1618             OPTSIZ;
 1619 #ifdef DIAGNOSTIC
 1620         if (ipprintfs)
 1621                 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
 1622 #endif
 1623 
 1624         /*
 1625          * First save first hop for return route
 1626          */
 1627         p = &ip_srcrt.route[ip_nhops - 1];
 1628         *(mtod(m, struct in_addr *)) = *p--;
 1629 #ifdef DIAGNOSTIC
 1630         if (ipprintfs)
 1631                 printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
 1632 #endif
 1633 
 1634         /*
 1635          * Copy option fields and padding (nop) to mbuf.
 1636          */
 1637         ip_srcrt.nop = IPOPT_NOP;
 1638         ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
 1639         (void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
 1640             &ip_srcrt.nop, OPTSIZ);
 1641         q = (struct in_addr *)(mtod(m, caddr_t) +
 1642             sizeof(struct in_addr) + OPTSIZ);
 1643 #undef OPTSIZ
 1644         /*
 1645          * Record return path as an IP source route,
 1646          * reversing the path (pointers are now aligned).
 1647          */
 1648         while (p >= ip_srcrt.route) {
 1649 #ifdef DIAGNOSTIC
 1650                 if (ipprintfs)
 1651                         printf(" %lx", (u_long)ntohl(q->s_addr));
 1652 #endif
 1653                 *q++ = *p--;
 1654         }
 1655         /*
 1656          * Last hop goes to final destination.
 1657          */
 1658         *q = ip_srcrt.dst;
 1659 #ifdef DIAGNOSTIC
 1660         if (ipprintfs)
 1661                 printf(" %lx\n", (u_long)ntohl(q->s_addr));
 1662 #endif
 1663         return (m);
 1664 }
 1665 
 1666 /*
 1667  * Strip out IP options, at higher
 1668  * level protocol in the kernel.
 1669  * Second argument is buffer to which options
 1670  * will be moved, and return value is their length.
 1671  * XXX should be deleted; last arg currently ignored.
 1672  */
 1673 void
 1674 ip_stripoptions(m, mopt)
 1675         register struct mbuf *m;
 1676         struct mbuf *mopt;
 1677 {
 1678         register int i;
 1679         struct ip *ip = mtod(m, struct ip *);
 1680         register caddr_t opts;
 1681         int olen;
 1682 
 1683         olen = (ip->ip_hl << 2) - sizeof (struct ip);
 1684         opts = (caddr_t)(ip + 1);
 1685         i = m->m_len - (sizeof (struct ip) + olen);
 1686         bcopy(opts + olen, opts, (unsigned)i);
 1687         m->m_len -= olen;
 1688         if (m->m_flags & M_PKTHDR)
 1689                 m->m_pkthdr.len -= olen;
 1690         ip->ip_v = IPVERSION;
 1691         ip->ip_hl = sizeof(struct ip) >> 2;
 1692 }
 1693 
 1694 u_char inetctlerrmap[PRC_NCMDS] = {
 1695         0,              0,              0,              0,
 1696         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1697         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1698         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1699         0,              0,              0,              0,
 1700         ENOPROTOOPT,    ECONNREFUSED
 1701 };
 1702 
 1703 /*
 1704  * Forward a packet.  If some error occurs return the sender
 1705  * an icmp packet.  Note we can't always generate a meaningful
 1706  * icmp message because icmp doesn't have a large enough repertoire
 1707  * of codes and types.
 1708  *
 1709  * If not forwarding, just drop the packet.  This could be confusing
 1710  * if ipforwarding was zero but some routing protocol was advancing
 1711  * us as a gateway to somewhere.  However, we must let the routing
 1712  * protocol deal with that.
 1713  *
 1714  * The srcrt parameter indicates whether the packet is being forwarded
 1715  * via a source route.
 1716  */
 1717 static void
 1718 ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
 1719 {
 1720         struct ip *ip = mtod(m, struct ip *);
 1721         struct rtentry *rt;
 1722         int error, type = 0, code = 0;
 1723         struct mbuf *mcopy;
 1724         n_long dest;
 1725         struct in_addr pkt_dst;
 1726         struct ifnet *destifp;
 1727 #if defined(IPSEC) || defined(FAST_IPSEC)
 1728         struct ifnet dummyifp;
 1729 #endif
 1730 
 1731         dest = 0;
 1732         /*
 1733          * Cache the destination address of the packet; this may be
 1734          * changed by use of 'ipfw fwd'.
 1735          */
 1736         pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
 1737 
 1738 #ifdef DIAGNOSTIC
 1739         if (ipprintfs)
 1740                 printf("forward: src %lx dst %lx ttl %x\n",
 1741                     (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
 1742                     ip->ip_ttl);
 1743 #endif
 1744 
 1745 
 1746         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
 1747                 ipstat.ips_cantforward++;
 1748                 m_freem(m);
 1749                 return;
 1750         }
 1751 #ifdef IPSTEALTH
 1752         if (!ipstealth) {
 1753 #endif
 1754                 if (ip->ip_ttl <= IPTTLDEC) {
 1755                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1756                             dest, 0);
 1757                         return;
 1758                 }
 1759 #ifdef IPSTEALTH
 1760         }
 1761 #endif
 1762 
 1763         if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
 1764                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
 1765                 return;
 1766         } else
 1767                 rt = ipforward_rt.ro_rt;
 1768 
 1769         /*
 1770          * Save the IP header and at most 8 bytes of the payload,
 1771          * in case we need to generate an ICMP message to the src.
 1772          *
 1773          * XXX this can be optimized a lot by saving the data in a local
 1774          * buffer on the stack (72 bytes at most), and only allocating the
 1775          * mbuf if really necessary. The vast majority of the packets
 1776          * are forwarded without having to send an ICMP back (either
 1777          * because unnecessary, or because rate limited), so we are
 1778          * really we are wasting a lot of work here.
 1779          *
 1780          * We don't use m_copy() because it might return a reference
 1781          * to a shared cluster. Both this function and ip_output()
 1782          * assume exclusive access to the IP header in `m', so any
 1783          * data in a cluster may change before we reach icmp_error().
 1784          */
 1785         MGET(mcopy, M_DONTWAIT, m->m_type);
 1786         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
 1787                 /*
 1788                  * It's probably ok if the pkthdr dup fails (because
 1789                  * the deep copy of the tag chain failed), but for now
 1790                  * be conservative and just discard the copy since
 1791                  * code below may some day want the tags.
 1792                  */
 1793                 m_free(mcopy);
 1794                 mcopy = NULL;
 1795         }
 1796         if (mcopy != NULL) {
 1797                 mcopy->m_len = imin((ip->ip_hl << 2) + 8,
 1798                     (int)ip->ip_len);
 1799                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1800                 /*
 1801                  * XXXMAC: Eventually, we may have an explict labeling
 1802                  * point here.
 1803                  */
 1804         }
 1805 
 1806 #ifdef IPSTEALTH
 1807         if (!ipstealth) {
 1808 #endif
 1809                 ip->ip_ttl -= IPTTLDEC;
 1810 #ifdef IPSTEALTH
 1811         }
 1812 #endif
 1813 
 1814         /*
 1815          * If forwarding packet using same interface that it came in on,
 1816          * perhaps should send a redirect to sender to shortcut a hop.
 1817          * Only send redirect if source is sending directly to us,
 1818          * and if packet was not source routed (or has any options).
 1819          * Also, don't send redirect if forwarding using a default route
 1820          * or a route modified by a redirect.
 1821          */
 1822         if (rt->rt_ifp == m->m_pkthdr.rcvif &&
 1823             (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1824             satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
 1825             ipsendredirects && !srcrt && !next_hop) {
 1826 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1827                 u_long src = ntohl(ip->ip_src.s_addr);
 1828 
 1829                 if (RTA(rt) &&
 1830                     (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1831                     if (rt->rt_flags & RTF_GATEWAY)
 1832                         dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1833                     else
 1834                         dest = pkt_dst.s_addr;
 1835                     /* Router requirements says to only send host redirects */
 1836                     type = ICMP_REDIRECT;
 1837                     code = ICMP_REDIRECT_HOST;
 1838 #ifdef DIAGNOSTIC
 1839                     if (ipprintfs)
 1840                         printf("redirect (%d) to %lx\n", code, (u_long)dest);
 1841 #endif
 1842                 }
 1843         }
 1844 
 1845     {
 1846         struct m_hdr tag;
 1847 
 1848         if (next_hop) {
 1849                 /* Pass IPFORWARD info if available */
 1850  
 1851                 tag.mh_type = MT_TAG;
 1852                 tag.mh_flags = PACKET_TAG_IPFORWARD;
 1853                 tag.mh_data = (caddr_t)next_hop;
 1854                 tag.mh_next = m;
 1855                 m = (struct mbuf *)&tag;
 1856         }
 1857         error = ip_output(m, (struct mbuf *)0, &ipforward_rt, 
 1858                           IP_FORWARDING, 0, NULL);
 1859     }
 1860         if (error)
 1861                 ipstat.ips_cantforward++;
 1862         else {
 1863                 ipstat.ips_forward++;
 1864                 if (type)
 1865                         ipstat.ips_redirectsent++;
 1866                 else {
 1867                         if (mcopy) {
 1868                                 ipflow_create(&ipforward_rt, mcopy);
 1869                                 m_freem(mcopy);
 1870                         }
 1871                         return;
 1872                 }
 1873         }
 1874         if (mcopy == NULL)
 1875                 return;
 1876         destifp = NULL;
 1877 
 1878         switch (error) {
 1879 
 1880         case 0:                         /* forwarded, but need redirect */
 1881                 /* type, code set above */
 1882                 break;
 1883 
 1884         case ENETUNREACH:               /* shouldn't happen, checked above */
 1885         case EHOSTUNREACH:
 1886         case ENETDOWN:
 1887         case EHOSTDOWN:
 1888         default:
 1889                 type = ICMP_UNREACH;
 1890                 code = ICMP_UNREACH_HOST;
 1891                 break;
 1892 
 1893         case EMSGSIZE:
 1894                 type = ICMP_UNREACH;
 1895                 code = ICMP_UNREACH_NEEDFRAG;
 1896 #ifdef IPSEC
 1897                 /*
 1898                  * If the packet is routed over IPsec tunnel, tell the
 1899                  * originator the tunnel MTU.
 1900                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
 1901                  * XXX quickhack!!!
 1902                  */
 1903                 if (ipforward_rt.ro_rt) {
 1904                         struct secpolicy *sp = NULL;
 1905                         int ipsecerror;
 1906                         int ipsechdr;
 1907                         struct route *ro;
 1908 
 1909                         sp = ipsec4_getpolicybyaddr(mcopy,
 1910                                                     IPSEC_DIR_OUTBOUND,
 1911                                                     IP_FORWARDING,
 1912                                                     &ipsecerror);
 1913 
 1914                         if (sp == NULL)
 1915                                 destifp = ipforward_rt.ro_rt->rt_ifp;
 1916                         else {
 1917                                 /* count IPsec header size */
 1918                                 ipsechdr = ipsec4_hdrsiz(mcopy,
 1919                                                          IPSEC_DIR_OUTBOUND,
 1920                                                          NULL);
 1921 
 1922                                 /*
 1923                                  * find the correct route for outer IPv4
 1924                                  * header, compute tunnel MTU.
 1925                                  *
 1926                                  * XXX BUG ALERT
 1927                                  * The "dummyifp" code relies upon the fact
 1928                                  * that icmp_error() touches only ifp->if_mtu.
 1929                                  */
 1930                                 /*XXX*/
 1931                                 destifp = NULL;
 1932                                 if (sp->req != NULL
 1933                                  && sp->req->sav != NULL
 1934                                  && sp->req->sav->sah != NULL) {
 1935                                         ro = &sp->req->sav->sah->sa_route;
 1936                                         if (ro->ro_rt && ro->ro_rt->rt_ifp) {
 1937                                                 dummyifp.if_mtu =
 1938                                                     ro->ro_rt->rt_ifp->if_mtu;
 1939                                                 dummyifp.if_mtu -= ipsechdr;
 1940                                                 destifp = &dummyifp;
 1941                                         }
 1942                                 }
 1943 
 1944                                 key_freesp(sp);
 1945                         }
 1946                 }
 1947 #elif FAST_IPSEC
 1948                 /*
 1949                  * If the packet is routed over IPsec tunnel, tell the
 1950                  * originator the tunnel MTU.
 1951                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
 1952                  * XXX quickhack!!!
 1953                  */
 1954                 if (ipforward_rt.ro_rt) {
 1955                         struct secpolicy *sp = NULL;
 1956                         int ipsecerror;
 1957                         int ipsechdr;
 1958                         struct route *ro;
 1959 
 1960                         sp = ipsec_getpolicybyaddr(mcopy,
 1961                                                    IPSEC_DIR_OUTBOUND,
 1962                                                    IP_FORWARDING,
 1963                                                    &ipsecerror);
 1964 
 1965                         if (sp == NULL)
 1966                                 destifp = ipforward_rt.ro_rt->rt_ifp;
 1967                         else {
 1968                                 /* count IPsec header size */
 1969                                 ipsechdr = ipsec4_hdrsiz(mcopy,
 1970                                                          IPSEC_DIR_OUTBOUND,
 1971                                                          NULL);
 1972 
 1973                                 /*
 1974                                  * find the correct route for outer IPv4
 1975                                  * header, compute tunnel MTU.
 1976                                  *
 1977                                  * XXX BUG ALERT
 1978                                  * The "dummyifp" code relies upon the fact
 1979                                  * that icmp_error() touches only ifp->if_mtu.
 1980                                  */
 1981                                 /*XXX*/
 1982                                 destifp = NULL;
 1983                                 if (sp->req != NULL
 1984                                  && sp->req->sav != NULL
 1985                                  && sp->req->sav->sah != NULL) {
 1986                                         ro = &sp->req->sav->sah->sa_route;
 1987                                         if (ro->ro_rt && ro->ro_rt->rt_ifp) {
 1988                                                 dummyifp.if_mtu =
 1989                                                     ro->ro_rt->rt_ifp->if_mtu;
 1990                                                 dummyifp.if_mtu -= ipsechdr;
 1991                                                 destifp = &dummyifp;
 1992                                         }
 1993                                 }
 1994 
 1995                                 KEY_FREESP(&sp);
 1996                         }
 1997                 }
 1998 #else /* !IPSEC && !FAST_IPSEC */
 1999                 if (ipforward_rt.ro_rt)
 2000                         destifp = ipforward_rt.ro_rt->rt_ifp;
 2001 #endif /*IPSEC*/
 2002                 ipstat.ips_cantfrag++;
 2003                 break;
 2004 
 2005         case ENOBUFS:
 2006                 /*
 2007                  * A router should not generate ICMP_SOURCEQUENCH as
 2008                  * required in RFC1812 Requirements for IP Version 4 Routers.
 2009                  * Source quench could be a big problem under DoS attacks,
 2010                  * or if the underlying interface is rate-limited.
 2011                  * Those who need source quench packets may re-enable them
 2012                  * via the net.inet.ip.sendsourcequench sysctl.
 2013                  */
 2014                 if (ip_sendsourcequench == 0) {
 2015                         m_freem(mcopy);
 2016                         return;
 2017                 } else {
 2018                         type = ICMP_SOURCEQUENCH;
 2019                         code = 0;
 2020                 }
 2021                 break;
 2022 
 2023         case EACCES:                    /* ipfw denied packet */
 2024                 m_freem(mcopy);
 2025                 return;
 2026         }
 2027         icmp_error(mcopy, type, code, dest, destifp);
 2028 }
 2029 
 2030 void
 2031 ip_savecontrol(inp, mp, ip, m)
 2032         register struct inpcb *inp;
 2033         register struct mbuf **mp;
 2034         register struct ip *ip;
 2035         register struct mbuf *m;
 2036 {
 2037         if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 2038                 struct timeval tv;
 2039 
 2040                 microtime(&tv);
 2041                 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
 2042                         SCM_TIMESTAMP, SOL_SOCKET);
 2043                 if (*mp)
 2044                         mp = &(*mp)->m_next;
 2045         }
 2046         if (inp->inp_flags & INP_RECVDSTADDR) {
 2047                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
 2048                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 2049                 if (*mp)
 2050                         mp = &(*mp)->m_next;
 2051         }
 2052         if (inp->inp_flags & INP_RECVTTL) {
 2053                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
 2054                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 2055                 if (*mp)
 2056                         mp = &(*mp)->m_next;
 2057         }
 2058 #ifdef notyet
 2059         /* XXX
 2060          * Moving these out of udp_input() made them even more broken
 2061          * than they already were.
 2062          */
 2063         /* options were tossed already */
 2064         if (inp->inp_flags & INP_RECVOPTS) {
 2065                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
 2066                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 2067                 if (*mp)
 2068                         mp = &(*mp)->m_next;
 2069         }
 2070         /* ip_srcroute doesn't do what we want here, need to fix */
 2071         if (inp->inp_flags & INP_RECVRETOPTS) {
 2072                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
 2073                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 2074                 if (*mp)
 2075                         mp = &(*mp)->m_next;
 2076         }
 2077 #endif
 2078         if (inp->inp_flags & INP_RECVIF) {
 2079                 struct ifnet *ifp;
 2080                 struct sdlbuf {
 2081                         struct sockaddr_dl sdl;
 2082                         u_char  pad[32];
 2083                 } sdlbuf;
 2084                 struct sockaddr_dl *sdp;
 2085                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 2086 
 2087                 if (((ifp = m->m_pkthdr.rcvif)) 
 2088                 && ( ifp->if_index && (ifp->if_index <= if_index))) {
 2089                         sdp = (struct sockaddr_dl *)
 2090                             (ifaddr_byindex(ifp->if_index)->ifa_addr);
 2091                         /*
 2092                          * Change our mind and don't try copy.
 2093                          */
 2094                         if ((sdp->sdl_family != AF_LINK)
 2095                         || (sdp->sdl_len > sizeof(sdlbuf))) {
 2096                                 goto makedummy;
 2097                         }
 2098                         bcopy(sdp, sdl2, sdp->sdl_len);
 2099                 } else {
 2100 makedummy:      
 2101                         sdl2->sdl_len
 2102                                 = offsetof(struct sockaddr_dl, sdl_data[0]);
 2103                         sdl2->sdl_family = AF_LINK;
 2104                         sdl2->sdl_index = 0;
 2105                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 2106                 }
 2107                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
 2108                         IP_RECVIF, IPPROTO_IP);
 2109                 if (*mp)
 2110                         mp = &(*mp)->m_next;
 2111         }
 2112 }
 2113 
 2114 /*
 2115  * XXX these routines are called from the upper part of the kernel.
 2116  * They need to be locked when we remove Giant.
 2117  *
 2118  * They could also be moved to ip_mroute.c, since all the RSVP
 2119  *  handling is done there already.
 2120  */
 2121 static int ip_rsvp_on;
 2122 struct socket *ip_rsvpd;
 2123 int
 2124 ip_rsvp_init(struct socket *so)
 2125 {
 2126         if (so->so_type != SOCK_RAW ||
 2127             so->so_proto->pr_protocol != IPPROTO_RSVP)
 2128                 return EOPNOTSUPP;
 2129 
 2130         if (ip_rsvpd != NULL)
 2131                 return EADDRINUSE;
 2132 
 2133         ip_rsvpd = so;
 2134         /*
 2135          * This may seem silly, but we need to be sure we don't over-increment
 2136          * the RSVP counter, in case something slips up.
 2137          */
 2138         if (!ip_rsvp_on) {
 2139                 ip_rsvp_on = 1;
 2140                 rsvp_on++;
 2141         }
 2142 
 2143         return 0;
 2144 }
 2145 
 2146 int
 2147 ip_rsvp_done(void)
 2148 {
 2149         ip_rsvpd = NULL;
 2150         /*
 2151          * This may seem silly, but we need to be sure we don't over-decrement
 2152          * the RSVP counter, in case something slips up.
 2153          */
 2154         if (ip_rsvp_on) {
 2155                 ip_rsvp_on = 0;
 2156                 rsvp_on--;
 2157         }
 2158         return 0;
 2159 }
 2160 
 2161 void
 2162 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 2163 {
 2164         if (rsvp_input_p) { /* call the real one if loaded */
 2165                 rsvp_input_p(m, off);
 2166                 return;
 2167         }
 2168 
 2169         /* Can still get packets with rsvp_on = 0 if there is a local member
 2170          * of the group to which the RSVP packet is addressed.  But in this
 2171          * case we want to throw the packet away.
 2172          */
 2173         
 2174         if (!rsvp_on) {
 2175                 m_freem(m);
 2176                 return;
 2177         }
 2178 
 2179         if (ip_rsvpd != NULL) { 
 2180                 rip_input(m, off);
 2181                 return;
 2182         }
 2183         /* Drop the packet */
 2184         m_freem(m);
 2185 }

Cache object: dba71e0b6de95e1d50b8278bda70a4fb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.