The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD$");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_mac.h"
   40 #include "opt_carp.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/malloc.h>
   47 #include <sys/domain.h>
   48 #include <sys/protosw.h>
   49 #include <sys/socket.h>
   50 #include <sys/time.h>
   51 #include <sys/kernel.h>
   52 #include <sys/syslog.h>
   53 #include <sys/sysctl.h>
   54 
   55 #include <net/pfil.h>
   56 #include <net/if.h>
   57 #include <net/if_types.h>
   58 #include <net/if_var.h>
   59 #include <net/if_dl.h>
   60 #include <net/route.h>
   61 #include <net/netisr.h>
   62 
   63 #include <netinet/in.h>
   64 #include <netinet/in_systm.h>
   65 #include <netinet/in_var.h>
   66 #include <netinet/ip.h>
   67 #include <netinet/in_pcb.h>
   68 #include <netinet/ip_var.h>
   69 #include <netinet/ip_icmp.h>
   70 #include <netinet/ip_options.h>
   71 #include <machine/in_cksum.h>
   72 #ifdef DEV_CARP
   73 #include <netinet/ip_carp.h>
   74 #endif
   75 #ifdef IPSEC
   76 #include <netinet/ip_ipsec.h>
   77 #endif /* IPSEC */
   78 
   79 #include <sys/socketvar.h>
   80 
   81 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
   82 #include <netinet/ip_fw.h>
   83 #include <netinet/ip_dummynet.h>
   84 
   85 #include <security/mac/mac_framework.h>
   86 
   87 int rsvp_on = 0;
   88 
   89 int     ipforwarding = 0;
   90 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   91     &ipforwarding, 0, "Enable IP forwarding between interfaces");
   92 
   93 static int      ipsendredirects = 1; /* XXX */
   94 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
   95     &ipsendredirects, 0, "Enable sending IP redirects");
   96 
   97 int     ip_defttl = IPDEFTTL;
   98 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
   99     &ip_defttl, 0, "Maximum TTL on IP packets");
  100 
  101 static int      ip_keepfaith = 0;
  102 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  103     &ip_keepfaith,      0,
  104     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  105 
  106 static int      ip_sendsourcequench = 0;
  107 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  108     &ip_sendsourcequench, 0,
  109     "Enable the transmission of source quench packets");
  110 
  111 int     ip_do_randomid = 0;
  112 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  113     &ip_do_randomid, 0,
  114     "Assign random ip_id values");
  115 
  116 /*
  117  * XXX - Setting ip_checkinterface mostly implements the receive side of
  118  * the Strong ES model described in RFC 1122, but since the routing table
  119  * and transmit implementation do not implement the Strong ES model,
  120  * setting this to 1 results in an odd hybrid.
  121  *
  122  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  123  * to translate the destination address to another local interface.
  124  *
  125  * XXX - ip_checkinterface must be disabled if you add IP aliases
  126  * to the loopback interface instead of the interface where the
  127  * packets for those addresses are received.
  128  */
  129 static int      ip_checkinterface = 0;
  130 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  131     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
  132 
  133 struct pfil_head inet_pfil_hook;        /* Packet filter hooks */
  134 
  135 static struct   ifqueue ipintrq;
  136 static int      ipqmaxlen = IFQ_MAXLEN;
  137 
  138 extern  struct domain inetdomain;
  139 extern  struct protosw inetsw[];
  140 u_char  ip_protox[IPPROTO_MAX];
  141 struct  in_ifaddrhead in_ifaddrhead;            /* first inet address */
  142 struct  in_ifaddrhashhead *in_ifaddrhashtbl;    /* inet addr hash table  */
  143 u_long  in_ifaddrhmask;                         /* mask for hash table */
  144 
  145 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
  146     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
  147 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
  148     &ipintrq.ifq_drops, 0,
  149     "Number of packets dropped from the IP input queue");
  150 
  151 struct ipstat ipstat;
  152 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
  153     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
  154 
  155 /*
  156  * IP datagram reassembly.
  157  */
  158 #define IPREASS_NHASH_LOG2      6
  159 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
  160 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
  161 #define IPREASS_HASH(x,y) \
  162         (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
  163 
  164 static uma_zone_t ipq_zone;
  165 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
  166 static struct mtx ipqlock;
  167 
  168 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  169 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  170 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  171 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  172 
  173 static void     maxnipq_update(void);
  174 static void     ipq_zone_change(void *);
  175 
  176 static int      maxnipq;        /* Administrative limit on # reass queues. */
  177 static int      nipq = 0;       /* Total # of reass queues */
  178 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  179     &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
  180 
  181 static int      maxfragsperpacket;
  182 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  183     &maxfragsperpacket, 0,
  184     "Maximum number of IPv4 fragments allowed per packet");
  185 
  186 struct callout  ipport_tick_callout;
  187 
  188 #ifdef IPCTL_DEFMTU
  189 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  190     &ip_mtu, 0, "Default MTU");
  191 #endif
  192 
  193 #ifdef IPSTEALTH
  194 int     ipstealth = 0;
  195 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  196     &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
  197 #endif
  198 
  199 /*
  200  * ipfw_ether and ipfw_bridge hooks.
  201  * XXX: Temporary until those are converted to pfil_hooks as well.
  202  */
  203 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
  204 ip_dn_io_t *ip_dn_io_ptr = NULL;
  205 int fw_one_pass = 1;
  206 
  207 static void     ip_freef(struct ipqhead *, struct ipq *);
  208 
  209 /*
  210  * IP initialization: fill in IP protocol switch table.
  211  * All protocols not implemented in kernel go to raw IP protocol handler.
  212  */
  213 void
  214 ip_init(void)
  215 {
  216         struct protosw *pr;
  217         int i;
  218 
  219         TAILQ_INIT(&in_ifaddrhead);
  220         in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
  221         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  222         if (pr == NULL)
  223                 panic("ip_init: PF_INET not found");
  224 
  225         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  226         for (i = 0; i < IPPROTO_MAX; i++)
  227                 ip_protox[i] = pr - inetsw;
  228         /*
  229          * Cycle through IP protocols and put them into the appropriate place
  230          * in ip_protox[].
  231          */
  232         for (pr = inetdomain.dom_protosw;
  233             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  234                 if (pr->pr_domain->dom_family == PF_INET &&
  235                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  236                         /* Be careful to only index valid IP protocols. */
  237                         if (pr->pr_protocol < IPPROTO_MAX)
  238                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  239                 }
  240 
  241         /* Initialize packet filter hooks. */
  242         inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  243         inet_pfil_hook.ph_af = AF_INET;
  244         if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
  245                 printf("%s: WARNING: unable to register pfil hook, "
  246                         "error %d\n", __func__, i);
  247 
  248         /* Initialize IP reassembly queue. */
  249         IPQ_LOCK_INIT();
  250         for (i = 0; i < IPREASS_NHASH; i++)
  251             TAILQ_INIT(&ipq[i]);
  252         maxnipq = nmbclusters / 32;
  253         maxfragsperpacket = 16;
  254         ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  255             NULL, UMA_ALIGN_PTR, 0);
  256         maxnipq_update();
  257 
  258         /* Start ipport_tick. */
  259         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
  260         ipport_tick(NULL);
  261         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
  262                 SHUTDOWN_PRI_DEFAULT);
  263         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  264                 NULL, EVENTHANDLER_PRI_ANY);
  265 
  266         /* Initialize various other remaining things. */
  267         ip_id = time_second & 0xffff;
  268         ipintrq.ifq_maxlen = ipqmaxlen;
  269         mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
  270         netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
  271 }
  272 
  273 void
  274 ip_fini(void *xtp)
  275 {
  276 
  277         callout_stop(&ipport_tick_callout);
  278 }
  279 
  280 /*
  281  * Ip input routine.  Checksum and byte swap header.  If fragmented
  282  * try to reassemble.  Process options.  Pass to next level.
  283  */
  284 void
  285 ip_input(struct mbuf *m)
  286 {
  287         struct ip *ip = NULL;
  288         struct in_ifaddr *ia = NULL;
  289         struct ifaddr *ifa;
  290         int    checkif, hlen = 0;
  291         u_short sum;
  292         int dchg = 0;                           /* dest changed after fw */
  293         struct in_addr odst;                    /* original dst address */
  294 
  295         M_ASSERTPKTHDR(m);
  296 
  297         if (m->m_flags & M_FASTFWD_OURS) {
  298                 /*
  299                  * Firewall or NAT changed destination to local.
  300                  * We expect ip_len and ip_off to be in host byte order.
  301                  */
  302                 m->m_flags &= ~M_FASTFWD_OURS;
  303                 /* Set up some basics that will be used later. */
  304                 ip = mtod(m, struct ip *);
  305                 hlen = ip->ip_hl << 2;
  306                 goto ours;
  307         }
  308 
  309         ipstat.ips_total++;
  310 
  311         if (m->m_pkthdr.len < sizeof(struct ip))
  312                 goto tooshort;
  313 
  314         if (m->m_len < sizeof (struct ip) &&
  315             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  316                 ipstat.ips_toosmall++;
  317                 return;
  318         }
  319         ip = mtod(m, struct ip *);
  320 
  321         if (ip->ip_v != IPVERSION) {
  322                 ipstat.ips_badvers++;
  323                 goto bad;
  324         }
  325 
  326         hlen = ip->ip_hl << 2;
  327         if (hlen < sizeof(struct ip)) { /* minimum header length */
  328                 ipstat.ips_badhlen++;
  329                 goto bad;
  330         }
  331         if (hlen > m->m_len) {
  332                 if ((m = m_pullup(m, hlen)) == NULL) {
  333                         ipstat.ips_badhlen++;
  334                         return;
  335                 }
  336                 ip = mtod(m, struct ip *);
  337         }
  338 
  339         /* 127/8 must not appear on wire - RFC1122 */
  340         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  341             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  342                 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
  343                         ipstat.ips_badaddr++;
  344                         goto bad;
  345                 }
  346         }
  347 
  348         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  349                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  350         } else {
  351                 if (hlen == sizeof(struct ip)) {
  352                         sum = in_cksum_hdr(ip);
  353                 } else {
  354                         sum = in_cksum(m, hlen);
  355                 }
  356         }
  357         if (sum) {
  358                 ipstat.ips_badsum++;
  359                 goto bad;
  360         }
  361 
  362 #ifdef ALTQ
  363         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  364                 /* packet is dropped by traffic conditioner */
  365                 return;
  366 #endif
  367 
  368         /*
  369          * Convert fields to host representation.
  370          */
  371         ip->ip_len = ntohs(ip->ip_len);
  372         if (ip->ip_len < hlen) {
  373                 ipstat.ips_badlen++;
  374                 goto bad;
  375         }
  376         ip->ip_off = ntohs(ip->ip_off);
  377 
  378         /*
  379          * Check that the amount of data in the buffers
  380          * is as at least much as the IP header would have us expect.
  381          * Trim mbufs if longer than we expect.
  382          * Drop packet if shorter than we expect.
  383          */
  384         if (m->m_pkthdr.len < ip->ip_len) {
  385 tooshort:
  386                 ipstat.ips_tooshort++;
  387                 goto bad;
  388         }
  389         if (m->m_pkthdr.len > ip->ip_len) {
  390                 if (m->m_len == m->m_pkthdr.len) {
  391                         m->m_len = ip->ip_len;
  392                         m->m_pkthdr.len = ip->ip_len;
  393                 } else
  394                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
  395         }
  396 #ifdef IPSEC
  397         /*
  398          * Bypass packet filtering for packets from a tunnel (gif).
  399          */
  400         if (ip_ipsec_filtertunnel(m))
  401                 goto passin;
  402 #endif /* IPSEC */
  403 
  404         /*
  405          * Run through list of hooks for input packets.
  406          *
  407          * NB: Beware of the destination address changing (e.g.
  408          *     by NAT rewriting).  When this happens, tell
  409          *     ip_forward to do the right thing.
  410          */
  411 
  412         /* Jump over all PFIL processing if hooks are not active. */
  413         if (!PFIL_HOOKED(&inet_pfil_hook))
  414                 goto passin;
  415 
  416         odst = ip->ip_dst;
  417         if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
  418             PFIL_IN, NULL) != 0)
  419                 return;
  420         if (m == NULL)                  /* consumed by filter */
  421                 return;
  422 
  423         ip = mtod(m, struct ip *);
  424         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  425 
  426 #ifdef IPFIREWALL_FORWARD
  427         if (m->m_flags & M_FASTFWD_OURS) {
  428                 m->m_flags &= ~M_FASTFWD_OURS;
  429                 goto ours;
  430         }
  431         if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
  432                 /*
  433                  * Directly ship on the packet.  This allows to forward packets
  434                  * that were destined for us to some other directly connected
  435                  * host.
  436                  */
  437                 ip_forward(m, dchg);
  438                 return;
  439         }
  440 #endif /* IPFIREWALL_FORWARD */
  441 
  442 passin:
  443         /*
  444          * Process options and, if not destined for us,
  445          * ship it on.  ip_dooptions returns 1 when an
  446          * error was detected (causing an icmp message
  447          * to be sent and the original packet to be freed).
  448          */
  449         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  450                 return;
  451 
  452         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  453          * matter if it is destined to another node, or whether it is 
  454          * a multicast one, RSVP wants it! and prevents it from being forwarded
  455          * anywhere else. Also checks if the rsvp daemon is running before
  456          * grabbing the packet.
  457          */
  458         if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  459                 goto ours;
  460 
  461         /*
  462          * Check our list of addresses, to see if the packet is for us.
  463          * If we don't have any addresses, assume any unicast packet
  464          * we receive might be for us (and let the upper layers deal
  465          * with it).
  466          */
  467         if (TAILQ_EMPTY(&in_ifaddrhead) &&
  468             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  469                 goto ours;
  470 
  471         /*
  472          * Enable a consistency check between the destination address
  473          * and the arrival interface for a unicast packet (the RFC 1122
  474          * strong ES model) if IP forwarding is disabled and the packet
  475          * is not locally generated and the packet is not subject to
  476          * 'ipfw fwd'.
  477          *
  478          * XXX - Checking also should be disabled if the destination
  479          * address is ipnat'ed to a different interface.
  480          *
  481          * XXX - Checking is incompatible with IP aliases added
  482          * to the loopback interface instead of the interface where
  483          * the packets are received.
  484          *
  485          * XXX - This is the case for carp vhost IPs as well so we
  486          * insert a workaround. If the packet got here, we already
  487          * checked with carp_iamatch() and carp_forus().
  488          */
  489         checkif = ip_checkinterface && (ipforwarding == 0) && 
  490             m->m_pkthdr.rcvif != NULL &&
  491             ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
  492 #ifdef DEV_CARP
  493             !m->m_pkthdr.rcvif->if_carp &&
  494 #endif
  495             (dchg == 0);
  496 
  497         /*
  498          * Check for exact addresses in the hash bucket.
  499          */
  500         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  501                 /*
  502                  * If the address matches, verify that the packet
  503                  * arrived via the correct interface if checking is
  504                  * enabled.
  505                  */
  506                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  507                     (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
  508                         goto ours;
  509         }
  510         /*
  511          * Check for broadcast addresses.
  512          *
  513          * Only accept broadcast packets that arrive via the matching
  514          * interface.  Reception of forwarded directed broadcasts would
  515          * be handled via ip_forward() and ether_output() with the loopback
  516          * into the stack for SIMPLEX interfaces handled by ether_output().
  517          */
  518         if (m->m_pkthdr.rcvif != NULL &&
  519             m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
  520                 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
  521                         if (ifa->ifa_addr->sa_family != AF_INET)
  522                                 continue;
  523                         ia = ifatoia(ifa);
  524                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  525                             ip->ip_dst.s_addr)
  526                                 goto ours;
  527                         if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
  528                                 goto ours;
  529 #ifdef BOOTP_COMPAT
  530                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
  531                                 goto ours;
  532 #endif
  533                 }
  534         }
  535         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  536         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  537                 ipstat.ips_cantforward++;
  538                 m_freem(m);
  539                 return;
  540         }
  541         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  542                 struct in_multi *inm;
  543                 if (ip_mrouter) {
  544                         /*
  545                          * If we are acting as a multicast router, all
  546                          * incoming multicast packets are passed to the
  547                          * kernel-level multicast forwarding function.
  548                          * The packet is returned (relatively) intact; if
  549                          * ip_mforward() returns a non-zero value, the packet
  550                          * must be discarded, else it may be accepted below.
  551                          */
  552                         if (ip_mforward &&
  553                             ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
  554                                 ipstat.ips_cantforward++;
  555                                 m_freem(m);
  556                                 return;
  557                         }
  558 
  559                         /*
  560                          * The process-level routing daemon needs to receive
  561                          * all multicast IGMP packets, whether or not this
  562                          * host belongs to their destination groups.
  563                          */
  564                         if (ip->ip_p == IPPROTO_IGMP)
  565                                 goto ours;
  566                         ipstat.ips_forward++;
  567                 }
  568                 /*
  569                  * See if we belong to the destination multicast group on the
  570                  * arrival interface.
  571                  */
  572                 IN_MULTI_LOCK();
  573                 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
  574                 IN_MULTI_UNLOCK();
  575                 if (inm == NULL) {
  576                         ipstat.ips_notmember++;
  577                         m_freem(m);
  578                         return;
  579                 }
  580                 goto ours;
  581         }
  582         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  583                 goto ours;
  584         if (ip->ip_dst.s_addr == INADDR_ANY)
  585                 goto ours;
  586 
  587         /*
  588          * FAITH(Firewall Aided Internet Translator)
  589          */
  590         if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
  591                 if (ip_keepfaith) {
  592                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  593                                 goto ours;
  594                 }
  595                 m_freem(m);
  596                 return;
  597         }
  598 
  599         /*
  600          * Not for us; forward if possible and desirable.
  601          */
  602         if (ipforwarding == 0) {
  603                 ipstat.ips_cantforward++;
  604                 m_freem(m);
  605         } else {
  606 #ifdef IPSEC
  607                 if (ip_ipsec_fwd(m))
  608                         goto bad;
  609 #endif /* IPSEC */
  610                 ip_forward(m, dchg);
  611         }
  612         return;
  613 
  614 ours:
  615 #ifdef IPSTEALTH
  616         /*
  617          * IPSTEALTH: Process non-routing options only
  618          * if the packet is destined for us.
  619          */
  620         if (ipstealth && hlen > sizeof (struct ip) &&
  621             ip_dooptions(m, 1))
  622                 return;
  623 #endif /* IPSTEALTH */
  624 
  625         /* Count the packet in the ip address stats */
  626         if (ia != NULL) {
  627                 ia->ia_ifa.if_ipackets++;
  628                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  629         }
  630 
  631         /*
  632          * Attempt reassembly; if it succeeds, proceed.
  633          * ip_reass() will return a different mbuf.
  634          */
  635         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
  636                 m = ip_reass(m);
  637                 if (m == NULL)
  638                         return;
  639                 ip = mtod(m, struct ip *);
  640                 /* Get the header length of the reassembled packet */
  641                 hlen = ip->ip_hl << 2;
  642         }
  643 
  644         /*
  645          * Further protocols expect the packet length to be w/o the
  646          * IP header.
  647          */
  648         ip->ip_len -= hlen;
  649 
  650 #ifdef IPSEC
  651         /*
  652          * enforce IPsec policy checking if we are seeing last header.
  653          * note that we do not visit this with protocols with pcb layer
  654          * code - like udp/tcp/raw ip.
  655          */
  656         if (ip_ipsec_input(m))
  657                 goto bad;
  658 #endif /* IPSEC */
  659 
  660         /*
  661          * Switch out to protocol's input routine.
  662          */
  663         ipstat.ips_delivered++;
  664 
  665         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  666         return;
  667 bad:
  668         m_freem(m);
  669 }
  670 
  671 /*
  672  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  673  * max has slightly different semantics than the sysctl, for historical
  674  * reasons.
  675  */
  676 static void
  677 maxnipq_update(void)
  678 {
  679 
  680         /*
  681          * -1 for unlimited allocation.
  682          */
  683         if (maxnipq < 0)
  684                 uma_zone_set_max(ipq_zone, 0);
  685         /*
  686          * Positive number for specific bound.
  687          */
  688         if (maxnipq > 0)
  689                 uma_zone_set_max(ipq_zone, maxnipq);
  690         /*
  691          * Zero specifies no further fragment queue allocation -- set the
  692          * bound very low, but rely on implementation elsewhere to actually
  693          * prevent allocation and reclaim current queues.
  694          */
  695         if (maxnipq == 0)
  696                 uma_zone_set_max(ipq_zone, 1);
  697 }
  698 
  699 static void
  700 ipq_zone_change(void *tag)
  701 {
  702 
  703         if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
  704                 maxnipq = nmbclusters / 32;
  705                 maxnipq_update();
  706         }
  707 }
  708 
  709 static int
  710 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  711 {
  712         int error, i;
  713 
  714         i = maxnipq;
  715         error = sysctl_handle_int(oidp, &i, 0, req);
  716         if (error || !req->newptr)
  717                 return (error);
  718 
  719         /*
  720          * XXXRW: Might be a good idea to sanity check the argument and place
  721          * an extreme upper bound.
  722          */
  723         if (i < -1)
  724                 return (EINVAL);
  725         maxnipq = i;
  726         maxnipq_update();
  727         return (0);
  728 }
  729 
  730 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  731     NULL, 0, sysctl_maxnipq, "I",
  732     "Maximum number of IPv4 fragment reassembly queue entries");
  733 
  734 /*
  735  * Take incoming datagram fragment and try to reassemble it into
  736  * whole datagram.  If the argument is the first fragment or one
  737  * in between the function will return NULL and store the mbuf
  738  * in the fragment chain.  If the argument is the last fragment
  739  * the packet will be reassembled and the pointer to the new
  740  * mbuf returned for further processing.  Only m_tags attached
  741  * to the first packet/fragment are preserved.
  742  * The IP header is *NOT* adjusted out of iplen.
  743  */
  744 struct mbuf *
  745 ip_reass(struct mbuf *m)
  746 {
  747         struct ip *ip;
  748         struct mbuf *p, *q, *nq, *t;
  749         struct ipq *fp = NULL;
  750         struct ipqhead *head;
  751         int i, hlen, next;
  752         u_int8_t ecn, ecn0;
  753         u_short hash;
  754 
  755         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  756         if (maxnipq == 0 || maxfragsperpacket == 0) {
  757                 ipstat.ips_fragments++;
  758                 ipstat.ips_fragdropped++;
  759                 m_freem(m);
  760                 return (NULL);
  761         }
  762 
  763         ip = mtod(m, struct ip *);
  764         hlen = ip->ip_hl << 2;
  765 
  766         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  767         head = &ipq[hash];
  768         IPQ_LOCK();
  769 
  770         /*
  771          * Look for queue of fragments
  772          * of this datagram.
  773          */
  774         TAILQ_FOREACH(fp, head, ipq_list)
  775                 if (ip->ip_id == fp->ipq_id &&
  776                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  777                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  778 #ifdef MAC
  779                     mac_fragment_match(m, fp) &&
  780 #endif
  781                     ip->ip_p == fp->ipq_p)
  782                         goto found;
  783 
  784         fp = NULL;
  785 
  786         /*
  787          * Attempt to trim the number of allocated fragment queues if it
  788          * exceeds the administrative limit.
  789          */
  790         if ((nipq > maxnipq) && (maxnipq > 0)) {
  791                 /*
  792                  * drop something from the tail of the current queue
  793                  * before proceeding further
  794                  */
  795                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  796                 if (q == NULL) {   /* gak */
  797                         for (i = 0; i < IPREASS_NHASH; i++) {
  798                                 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
  799                                 if (r) {
  800                                         ipstat.ips_fragtimeout += r->ipq_nfrags;
  801                                         ip_freef(&ipq[i], r);
  802                                         break;
  803                                 }
  804                         }
  805                 } else {
  806                         ipstat.ips_fragtimeout += q->ipq_nfrags;
  807                         ip_freef(head, q);
  808                 }
  809         }
  810 
  811 found:
  812         /*
  813          * Adjust ip_len to not reflect header,
  814          * convert offset of this to bytes.
  815          */
  816         ip->ip_len -= hlen;
  817         if (ip->ip_off & IP_MF) {
  818                 /*
  819                  * Make sure that fragments have a data length
  820                  * that's a non-zero multiple of 8 bytes.
  821                  */
  822                 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
  823                         ipstat.ips_toosmall++; /* XXX */
  824                         goto dropfrag;
  825                 }
  826                 m->m_flags |= M_FRAG;
  827         } else
  828                 m->m_flags &= ~M_FRAG;
  829         ip->ip_off <<= 3;
  830 
  831 
  832         /*
  833          * Attempt reassembly; if it succeeds, proceed.
  834          * ip_reass() will return a different mbuf.
  835          */
  836         ipstat.ips_fragments++;
  837         m->m_pkthdr.header = ip;
  838 
  839         /* Previous ip_reass() started here. */
  840         /*
  841          * Presence of header sizes in mbufs
  842          * would confuse code below.
  843          */
  844         m->m_data += hlen;
  845         m->m_len -= hlen;
  846 
  847         /*
  848          * If first fragment to arrive, create a reassembly queue.
  849          */
  850         if (fp == NULL) {
  851                 fp = uma_zalloc(ipq_zone, M_NOWAIT);
  852                 if (fp == NULL)
  853                         goto dropfrag;
  854 #ifdef MAC
  855                 if (mac_init_ipq(fp, M_NOWAIT) != 0) {
  856                         uma_zfree(ipq_zone, fp);
  857                         fp = NULL;
  858                         goto dropfrag;
  859                 }
  860                 mac_create_ipq(m, fp);
  861 #endif
  862                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  863                 nipq++;
  864                 fp->ipq_nfrags = 1;
  865                 fp->ipq_ttl = IPFRAGTTL;
  866                 fp->ipq_p = ip->ip_p;
  867                 fp->ipq_id = ip->ip_id;
  868                 fp->ipq_src = ip->ip_src;
  869                 fp->ipq_dst = ip->ip_dst;
  870                 fp->ipq_frags = m;
  871                 m->m_nextpkt = NULL;
  872                 goto done;
  873         } else {
  874                 fp->ipq_nfrags++;
  875 #ifdef MAC
  876                 mac_update_ipq(m, fp);
  877 #endif
  878         }
  879 
  880 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
  881 
  882         /*
  883          * Handle ECN by comparing this segment with the first one;
  884          * if CE is set, do not lose CE.
  885          * drop if CE and not-ECT are mixed for the same packet.
  886          */
  887         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  888         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  889         if (ecn == IPTOS_ECN_CE) {
  890                 if (ecn0 == IPTOS_ECN_NOTECT)
  891                         goto dropfrag;
  892                 if (ecn0 != IPTOS_ECN_CE)
  893                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  894         }
  895         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  896                 goto dropfrag;
  897 
  898         /*
  899          * Find a segment which begins after this one does.
  900          */
  901         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  902                 if (GETIP(q)->ip_off > ip->ip_off)
  903                         break;
  904 
  905         /*
  906          * If there is a preceding segment, it may provide some of
  907          * our data already.  If so, drop the data from the incoming
  908          * segment.  If it provides all of our data, drop us, otherwise
  909          * stick new segment in the proper place.
  910          *
  911          * If some of the data is dropped from the the preceding
  912          * segment, then it's checksum is invalidated.
  913          */
  914         if (p) {
  915                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
  916                 if (i > 0) {
  917                         if (i >= ip->ip_len)
  918                                 goto dropfrag;
  919                         m_adj(m, i);
  920                         m->m_pkthdr.csum_flags = 0;
  921                         ip->ip_off += i;
  922                         ip->ip_len -= i;
  923                 }
  924                 m->m_nextpkt = p->m_nextpkt;
  925                 p->m_nextpkt = m;
  926         } else {
  927                 m->m_nextpkt = fp->ipq_frags;
  928                 fp->ipq_frags = m;
  929         }
  930 
  931         /*
  932          * While we overlap succeeding segments trim them or,
  933          * if they are completely covered, dequeue them.
  934          */
  935         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
  936              q = nq) {
  937                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
  938                 if (i < GETIP(q)->ip_len) {
  939                         GETIP(q)->ip_len -= i;
  940                         GETIP(q)->ip_off += i;
  941                         m_adj(q, i);
  942                         q->m_pkthdr.csum_flags = 0;
  943                         break;
  944                 }
  945                 nq = q->m_nextpkt;
  946                 m->m_nextpkt = nq;
  947                 ipstat.ips_fragdropped++;
  948                 fp->ipq_nfrags--;
  949                 m_freem(q);
  950         }
  951 
  952         /*
  953          * Check for complete reassembly and perform frag per packet
  954          * limiting.
  955          *
  956          * Frag limiting is performed here so that the nth frag has
  957          * a chance to complete the packet before we drop the packet.
  958          * As a result, n+1 frags are actually allowed per packet, but
  959          * only n will ever be stored. (n = maxfragsperpacket.)
  960          *
  961          */
  962         next = 0;
  963         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
  964                 if (GETIP(q)->ip_off != next) {
  965                         if (fp->ipq_nfrags > maxfragsperpacket) {
  966                                 ipstat.ips_fragdropped += fp->ipq_nfrags;
  967                                 ip_freef(head, fp);
  968                         }
  969                         goto done;
  970                 }
  971                 next += GETIP(q)->ip_len;
  972         }
  973         /* Make sure the last packet didn't have the IP_MF flag */
  974         if (p->m_flags & M_FRAG) {
  975                 if (fp->ipq_nfrags > maxfragsperpacket) {
  976                         ipstat.ips_fragdropped += fp->ipq_nfrags;
  977                         ip_freef(head, fp);
  978                 }
  979                 goto done;
  980         }
  981 
  982         /*
  983          * Reassembly is complete.  Make sure the packet is a sane size.
  984          */
  985         q = fp->ipq_frags;
  986         ip = GETIP(q);
  987         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
  988                 ipstat.ips_toolong++;
  989                 ipstat.ips_fragdropped += fp->ipq_nfrags;
  990                 ip_freef(head, fp);
  991                 goto done;
  992         }
  993 
  994         /*
  995          * Concatenate fragments.
  996          */
  997         m = q;
  998         t = m->m_next;
  999         m->m_next = NULL;
 1000         m_cat(m, t);
 1001         nq = q->m_nextpkt;
 1002         q->m_nextpkt = NULL;
 1003         for (q = nq; q != NULL; q = nq) {
 1004                 nq = q->m_nextpkt;
 1005                 q->m_nextpkt = NULL;
 1006                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1007                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1008                 m_cat(m, q);
 1009         }
 1010         /*
 1011          * In order to do checksumming faster we do 'end-around carry' here
 1012          * (and not in for{} loop), though it implies we are not going to
 1013          * reassemble more than 64k fragments.
 1014          */
 1015         m->m_pkthdr.csum_data =
 1016             (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
 1017 #ifdef MAC
 1018         mac_create_datagram_from_ipq(fp, m);
 1019         mac_destroy_ipq(fp);
 1020 #endif
 1021 
 1022         /*
 1023          * Create header for new ip packet by modifying header of first
 1024          * packet;  dequeue and discard fragment reassembly header.
 1025          * Make header visible.
 1026          */
 1027         ip->ip_len = (ip->ip_hl << 2) + next;
 1028         ip->ip_src = fp->ipq_src;
 1029         ip->ip_dst = fp->ipq_dst;
 1030         TAILQ_REMOVE(head, fp, ipq_list);
 1031         nipq--;
 1032         uma_zfree(ipq_zone, fp);
 1033         m->m_len += (ip->ip_hl << 2);
 1034         m->m_data -= (ip->ip_hl << 2);
 1035         /* some debugging cruft by sklower, below, will go away soon */
 1036         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1037                 m_fixhdr(m);
 1038         ipstat.ips_reassembled++;
 1039         IPQ_UNLOCK();
 1040         return (m);
 1041 
 1042 dropfrag:
 1043         ipstat.ips_fragdropped++;
 1044         if (fp != NULL)
 1045                 fp->ipq_nfrags--;
 1046         m_freem(m);
 1047 done:
 1048         IPQ_UNLOCK();
 1049         return (NULL);
 1050 
 1051 #undef GETIP
 1052 }
 1053 
 1054 /*
 1055  * Free a fragment reassembly header and all
 1056  * associated datagrams.
 1057  */
 1058 static void
 1059 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1060 {
 1061         struct mbuf *q;
 1062 
 1063         IPQ_LOCK_ASSERT();
 1064 
 1065         while (fp->ipq_frags) {
 1066                 q = fp->ipq_frags;
 1067                 fp->ipq_frags = q->m_nextpkt;
 1068                 m_freem(q);
 1069         }
 1070         TAILQ_REMOVE(fhp, fp, ipq_list);
 1071         uma_zfree(ipq_zone, fp);
 1072         nipq--;
 1073 }
 1074 
 1075 /*
 1076  * IP timer processing;
 1077  * if a timer expires on a reassembly
 1078  * queue, discard it.
 1079  */
 1080 void
 1081 ip_slowtimo(void)
 1082 {
 1083         struct ipq *fp;
 1084         int i;
 1085 
 1086         IPQ_LOCK();
 1087         for (i = 0; i < IPREASS_NHASH; i++) {
 1088                 for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
 1089                         struct ipq *fpp;
 1090 
 1091                         fpp = fp;
 1092                         fp = TAILQ_NEXT(fp, ipq_list);
 1093                         if(--fpp->ipq_ttl == 0) {
 1094                                 ipstat.ips_fragtimeout += fpp->ipq_nfrags;
 1095                                 ip_freef(&ipq[i], fpp);
 1096                         }
 1097                 }
 1098         }
 1099         /*
 1100          * If we are over the maximum number of fragments
 1101          * (due to the limit being lowered), drain off
 1102          * enough to get down to the new limit.
 1103          */
 1104         if (maxnipq >= 0 && nipq > maxnipq) {
 1105                 for (i = 0; i < IPREASS_NHASH; i++) {
 1106                         while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
 1107                                 ipstat.ips_fragdropped +=
 1108                                     TAILQ_FIRST(&ipq[i])->ipq_nfrags;
 1109                                 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
 1110                         }
 1111                 }
 1112         }
 1113         IPQ_UNLOCK();
 1114 }
 1115 
 1116 /*
 1117  * Drain off all datagram fragments.
 1118  */
 1119 void
 1120 ip_drain(void)
 1121 {
 1122         int     i;
 1123 
 1124         IPQ_LOCK();
 1125         for (i = 0; i < IPREASS_NHASH; i++) {
 1126                 while(!TAILQ_EMPTY(&ipq[i])) {
 1127                         ipstat.ips_fragdropped +=
 1128                             TAILQ_FIRST(&ipq[i])->ipq_nfrags;
 1129                         ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
 1130                 }
 1131         }
 1132         IPQ_UNLOCK();
 1133         in_rtqdrain();
 1134 }
 1135 
 1136 /*
 1137  * The protocol to be inserted into ip_protox[] must be already registered
 1138  * in inetsw[], either statically or through pf_proto_register().
 1139  */
 1140 int
 1141 ipproto_register(u_char ipproto)
 1142 {
 1143         struct protosw *pr;
 1144 
 1145         /* Sanity checks. */
 1146         if (ipproto == 0)
 1147                 return (EPROTONOSUPPORT);
 1148 
 1149         /*
 1150          * The protocol slot must not be occupied by another protocol
 1151          * already.  An index pointing to IPPROTO_RAW is unused.
 1152          */
 1153         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1154         if (pr == NULL)
 1155                 return (EPFNOSUPPORT);
 1156         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1157                 return (EEXIST);
 1158 
 1159         /* Find the protocol position in inetsw[] and set the index. */
 1160         for (pr = inetdomain.dom_protosw;
 1161              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1162                 if (pr->pr_domain->dom_family == PF_INET &&
 1163                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1164                         /* Be careful to only index valid IP protocols. */
 1165                         if (pr->pr_protocol < IPPROTO_MAX) {
 1166                                 ip_protox[pr->pr_protocol] = pr - inetsw;
 1167                                 return (0);
 1168                         } else
 1169                                 return (EINVAL);
 1170                 }
 1171         }
 1172         return (EPROTONOSUPPORT);
 1173 }
 1174 
 1175 int
 1176 ipproto_unregister(u_char ipproto)
 1177 {
 1178         struct protosw *pr;
 1179 
 1180         /* Sanity checks. */
 1181         if (ipproto == 0)
 1182                 return (EPROTONOSUPPORT);
 1183 
 1184         /* Check if the protocol was indeed registered. */
 1185         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1186         if (pr == NULL)
 1187                 return (EPFNOSUPPORT);
 1188         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1189                 return (ENOENT);
 1190 
 1191         /* Reset the protocol slot to IPPROTO_RAW. */
 1192         ip_protox[ipproto] = pr - inetsw;
 1193         return (0);
 1194 }
 1195 
 1196 /*
 1197  * Given address of next destination (final or next hop),
 1198  * return internet address info of interface to be used to get there.
 1199  */
 1200 struct in_ifaddr *
 1201 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1202 {
 1203         struct route sro;
 1204         struct sockaddr_in *sin;
 1205         struct in_ifaddr *ifa;
 1206 
 1207         bzero(&sro, sizeof(sro));
 1208         sin = (struct sockaddr_in *)&sro.ro_dst;
 1209         sin->sin_family = AF_INET;
 1210         sin->sin_len = sizeof(*sin);
 1211         sin->sin_addr = dst;
 1212         in_rtalloc_ign(&sro, RTF_CLONING, fibnum);
 1213 
 1214         if (sro.ro_rt == NULL)
 1215                 return (NULL);
 1216 
 1217         ifa = ifatoia(sro.ro_rt->rt_ifa);
 1218         RTFREE(sro.ro_rt);
 1219         return (ifa);
 1220 }
 1221 
 1222 u_char inetctlerrmap[PRC_NCMDS] = {
 1223         0,              0,              0,              0,
 1224         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1225         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1226         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1227         0,              0,              EHOSTUNREACH,   0,
 1228         ENOPROTOOPT,    ECONNREFUSED
 1229 };
 1230 
 1231 /*
 1232  * Forward a packet.  If some error occurs return the sender
 1233  * an icmp packet.  Note we can't always generate a meaningful
 1234  * icmp message because icmp doesn't have a large enough repertoire
 1235  * of codes and types.
 1236  *
 1237  * If not forwarding, just drop the packet.  This could be confusing
 1238  * if ipforwarding was zero but some routing protocol was advancing
 1239  * us as a gateway to somewhere.  However, we must let the routing
 1240  * protocol deal with that.
 1241  *
 1242  * The srcrt parameter indicates whether the packet is being forwarded
 1243  * via a source route.
 1244  */
 1245 void
 1246 ip_forward(struct mbuf *m, int srcrt)
 1247 {
 1248         struct ip *ip = mtod(m, struct ip *);
 1249         struct in_ifaddr *ia = NULL;
 1250         struct mbuf *mcopy;
 1251         struct in_addr dest;
 1252         struct route ro;
 1253         int error, type = 0, code = 0, mtu = 0;
 1254 
 1255         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1256                 ipstat.ips_cantforward++;
 1257                 m_freem(m);
 1258                 return;
 1259         }
 1260 #ifdef IPSTEALTH
 1261         if (!ipstealth) {
 1262 #endif
 1263                 if (ip->ip_ttl <= IPTTLDEC) {
 1264                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1265                             0, 0);
 1266                         return;
 1267                 }
 1268 #ifdef IPSTEALTH
 1269         }
 1270 #endif
 1271 
 1272         ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
 1273         if (!srcrt && ia == NULL) {
 1274                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1275                 return;
 1276         }
 1277 
 1278         /*
 1279          * Save the IP header and at most 8 bytes of the payload,
 1280          * in case we need to generate an ICMP message to the src.
 1281          *
 1282          * XXX this can be optimized a lot by saving the data in a local
 1283          * buffer on the stack (72 bytes at most), and only allocating the
 1284          * mbuf if really necessary. The vast majority of the packets
 1285          * are forwarded without having to send an ICMP back (either
 1286          * because unnecessary, or because rate limited), so we are
 1287          * really we are wasting a lot of work here.
 1288          *
 1289          * We don't use m_copy() because it might return a reference
 1290          * to a shared cluster. Both this function and ip_output()
 1291          * assume exclusive access to the IP header in `m', so any
 1292          * data in a cluster may change before we reach icmp_error().
 1293          */
 1294         MGETHDR(mcopy, M_DONTWAIT, m->m_type);
 1295         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
 1296                 /*
 1297                  * It's probably ok if the pkthdr dup fails (because
 1298                  * the deep copy of the tag chain failed), but for now
 1299                  * be conservative and just discard the copy since
 1300                  * code below may some day want the tags.
 1301                  */
 1302                 m_free(mcopy);
 1303                 mcopy = NULL;
 1304         }
 1305         if (mcopy != NULL) {
 1306                 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
 1307                 mcopy->m_pkthdr.len = mcopy->m_len;
 1308                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1309         }
 1310 
 1311 #ifdef IPSTEALTH
 1312         if (!ipstealth) {
 1313 #endif
 1314                 ip->ip_ttl -= IPTTLDEC;
 1315 #ifdef IPSTEALTH
 1316         }
 1317 #endif
 1318 
 1319         /*
 1320          * If forwarding packet using same interface that it came in on,
 1321          * perhaps should send a redirect to sender to shortcut a hop.
 1322          * Only send redirect if source is sending directly to us,
 1323          * and if packet was not source routed (or has any options).
 1324          * Also, don't send redirect if forwarding using a default route
 1325          * or a route modified by a redirect.
 1326          */
 1327         dest.s_addr = 0;
 1328         if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1329                 struct sockaddr_in *sin;
 1330                 struct rtentry *rt;
 1331 
 1332                 bzero(&ro, sizeof(ro));
 1333                 sin = (struct sockaddr_in *)&ro.ro_dst;
 1334                 sin->sin_family = AF_INET;
 1335                 sin->sin_len = sizeof(*sin);
 1336                 sin->sin_addr = ip->ip_dst;
 1337                 in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m));
 1338 
 1339                 rt = ro.ro_rt;
 1340 
 1341                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1342                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1343 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1344                         u_long src = ntohl(ip->ip_src.s_addr);
 1345 
 1346                         if (RTA(rt) &&
 1347                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1348                                 if (rt->rt_flags & RTF_GATEWAY)
 1349                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1350                                 else
 1351                                         dest.s_addr = ip->ip_dst.s_addr;
 1352                                 /* Router requirements says to only send host redirects */
 1353                                 type = ICMP_REDIRECT;
 1354                                 code = ICMP_REDIRECT_HOST;
 1355                         }
 1356                 }
 1357                 if (rt)
 1358                         RTFREE(rt);
 1359         }
 1360 
 1361         /*
 1362          * Try to cache the route MTU from ip_output so we can consider it for
 1363          * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
 1364          */
 1365         bzero(&ro, sizeof(ro));
 1366 
 1367         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1368 
 1369         if (error == EMSGSIZE && ro.ro_rt)
 1370                 mtu = ro.ro_rt->rt_rmx.rmx_mtu;
 1371         if (ro.ro_rt)
 1372                 RTFREE(ro.ro_rt);
 1373 
 1374         if (error)
 1375                 ipstat.ips_cantforward++;
 1376         else {
 1377                 ipstat.ips_forward++;
 1378                 if (type)
 1379                         ipstat.ips_redirectsent++;
 1380                 else {
 1381                         if (mcopy)
 1382                                 m_freem(mcopy);
 1383                         return;
 1384                 }
 1385         }
 1386         if (mcopy == NULL)
 1387                 return;
 1388 
 1389         switch (error) {
 1390 
 1391         case 0:                         /* forwarded, but need redirect */
 1392                 /* type, code set above */
 1393                 break;
 1394 
 1395         case ENETUNREACH:               /* shouldn't happen, checked above */
 1396         case EHOSTUNREACH:
 1397         case ENETDOWN:
 1398         case EHOSTDOWN:
 1399         default:
 1400                 type = ICMP_UNREACH;
 1401                 code = ICMP_UNREACH_HOST;
 1402                 break;
 1403 
 1404         case EMSGSIZE:
 1405                 type = ICMP_UNREACH;
 1406                 code = ICMP_UNREACH_NEEDFRAG;
 1407 
 1408 #ifdef IPSEC
 1409                 /* 
 1410                  * If IPsec is configured for this path,
 1411                  * override any possibly mtu value set by ip_output.
 1412                  */ 
 1413                 mtu = ip_ipsec_mtu(m, mtu);
 1414 #endif /* IPSEC */
 1415                 /*
 1416                  * If the MTU was set before make sure we are below the
 1417                  * interface MTU.
 1418                  * If the MTU wasn't set before use the interface mtu or
 1419                  * fall back to the next smaller mtu step compared to the
 1420                  * current packet size.
 1421                  */
 1422                 if (mtu != 0) {
 1423                         if (ia != NULL)
 1424                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1425                 } else {
 1426                         if (ia != NULL)
 1427                                 mtu = ia->ia_ifp->if_mtu;
 1428                         else
 1429                                 mtu = ip_next_mtu(ip->ip_len, 0);
 1430                 }
 1431                 ipstat.ips_cantfrag++;
 1432                 break;
 1433 
 1434         case ENOBUFS:
 1435                 /*
 1436                  * A router should not generate ICMP_SOURCEQUENCH as
 1437                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1438                  * Source quench could be a big problem under DoS attacks,
 1439                  * or if the underlying interface is rate-limited.
 1440                  * Those who need source quench packets may re-enable them
 1441                  * via the net.inet.ip.sendsourcequench sysctl.
 1442                  */
 1443                 if (ip_sendsourcequench == 0) {
 1444                         m_freem(mcopy);
 1445                         return;
 1446                 } else {
 1447                         type = ICMP_SOURCEQUENCH;
 1448                         code = 0;
 1449                 }
 1450                 break;
 1451 
 1452         case EACCES:                    /* ipfw denied packet */
 1453                 m_freem(mcopy);
 1454                 return;
 1455         }
 1456         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1457 }
 1458 
 1459 void
 1460 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1461     struct mbuf *m)
 1462 {
 1463         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1464                 struct bintime bt;
 1465 
 1466                 bintime(&bt);
 1467                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1468                         *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
 1469                         SCM_BINTIME, SOL_SOCKET);
 1470                         if (*mp)
 1471                                 mp = &(*mp)->m_next;
 1472                 }
 1473                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1474                         struct timeval tv;
 1475 
 1476                         bintime2timeval(&bt, &tv);
 1477                         *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
 1478                                 SCM_TIMESTAMP, SOL_SOCKET);
 1479                         if (*mp)
 1480                                 mp = &(*mp)->m_next;
 1481                 }
 1482         }
 1483         if (inp->inp_flags & INP_RECVDSTADDR) {
 1484                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
 1485                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1486                 if (*mp)
 1487                         mp = &(*mp)->m_next;
 1488         }
 1489         if (inp->inp_flags & INP_RECVTTL) {
 1490                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
 1491                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1492                 if (*mp)
 1493                         mp = &(*mp)->m_next;
 1494         }
 1495 #ifdef notyet
 1496         /* XXX
 1497          * Moving these out of udp_input() made them even more broken
 1498          * than they already were.
 1499          */
 1500         /* options were tossed already */
 1501         if (inp->inp_flags & INP_RECVOPTS) {
 1502                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
 1503                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1504                 if (*mp)
 1505                         mp = &(*mp)->m_next;
 1506         }
 1507         /* ip_srcroute doesn't do what we want here, need to fix */
 1508         if (inp->inp_flags & INP_RECVRETOPTS) {
 1509                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
 1510                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1511                 if (*mp)
 1512                         mp = &(*mp)->m_next;
 1513         }
 1514 #endif
 1515         if (inp->inp_flags & INP_RECVIF) {
 1516                 struct ifnet *ifp;
 1517                 struct sdlbuf {
 1518                         struct sockaddr_dl sdl;
 1519                         u_char  pad[32];
 1520                 } sdlbuf;
 1521                 struct sockaddr_dl *sdp;
 1522                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1523 
 1524                 if (((ifp = m->m_pkthdr.rcvif)) 
 1525                 && ( ifp->if_index && (ifp->if_index <= if_index))) {
 1526                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1527                         /*
 1528                          * Change our mind and don't try copy.
 1529                          */
 1530                         if ((sdp->sdl_family != AF_LINK)
 1531                         || (sdp->sdl_len > sizeof(sdlbuf))) {
 1532                                 goto makedummy;
 1533                         }
 1534                         bcopy(sdp, sdl2, sdp->sdl_len);
 1535                 } else {
 1536 makedummy:      
 1537                         sdl2->sdl_len
 1538                                 = offsetof(struct sockaddr_dl, sdl_data[0]);
 1539                         sdl2->sdl_family = AF_LINK;
 1540                         sdl2->sdl_index = 0;
 1541                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1542                 }
 1543                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
 1544                         IP_RECVIF, IPPROTO_IP);
 1545                 if (*mp)
 1546                         mp = &(*mp)->m_next;
 1547         }
 1548 }
 1549 
 1550 /*
 1551  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1552  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1553  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1554  * compiled.
 1555  */
 1556 static int ip_rsvp_on;
 1557 struct socket *ip_rsvpd;
 1558 int
 1559 ip_rsvp_init(struct socket *so)
 1560 {
 1561         if (so->so_type != SOCK_RAW ||
 1562             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1563                 return EOPNOTSUPP;
 1564 
 1565         if (ip_rsvpd != NULL)
 1566                 return EADDRINUSE;
 1567 
 1568         ip_rsvpd = so;
 1569         /*
 1570          * This may seem silly, but we need to be sure we don't over-increment
 1571          * the RSVP counter, in case something slips up.
 1572          */
 1573         if (!ip_rsvp_on) {
 1574                 ip_rsvp_on = 1;
 1575                 rsvp_on++;
 1576         }
 1577 
 1578         return 0;
 1579 }
 1580 
 1581 int
 1582 ip_rsvp_done(void)
 1583 {
 1584         ip_rsvpd = NULL;
 1585         /*
 1586          * This may seem silly, but we need to be sure we don't over-decrement
 1587          * the RSVP counter, in case something slips up.
 1588          */
 1589         if (ip_rsvp_on) {
 1590                 ip_rsvp_on = 0;
 1591                 rsvp_on--;
 1592         }
 1593         return 0;
 1594 }
 1595 
 1596 void
 1597 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1598 {
 1599         if (rsvp_input_p) { /* call the real one if loaded */
 1600                 rsvp_input_p(m, off);
 1601                 return;
 1602         }
 1603 
 1604         /* Can still get packets with rsvp_on = 0 if there is a local member
 1605          * of the group to which the RSVP packet is addressed.  But in this
 1606          * case we want to throw the packet away.
 1607          */
 1608         
 1609         if (!rsvp_on) {
 1610                 m_freem(m);
 1611                 return;
 1612         }
 1613 
 1614         if (ip_rsvpd != NULL) { 
 1615                 rip_input(m, off);
 1616                 return;
 1617         }
 1618         /* Drop the packet */
 1619         m_freem(m);
 1620 }

Cache object: c3df8d18cf81338df1ba8357b67c6d0f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.