The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/7.3/sys/netinet/ip_input.c 188589 2009-02-13 18:31:35Z luigi $");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_mac.h"
   40 #include "opt_carp.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/malloc.h>
   47 #include <sys/domain.h>
   48 #include <sys/protosw.h>
   49 #include <sys/socket.h>
   50 #include <sys/time.h>
   51 #include <sys/kernel.h>
   52 #include <sys/syslog.h>
   53 #include <sys/sysctl.h>
   54 
   55 #include <net/pfil.h>
   56 #include <net/if.h>
   57 #include <net/if_types.h>
   58 #include <net/if_var.h>
   59 #include <net/if_dl.h>
   60 #include <net/route.h>
   61 #include <net/netisr.h>
   62 
   63 #include <netinet/in.h>
   64 #include <netinet/in_var.h>
   65 #include <netinet/ip.h>
   66 #include <netinet/in_pcb.h>
   67 #include <netinet/ip_var.h>
   68 #include <netinet/ip_icmp.h>
   69 #include <netinet/ip_options.h>
   70 #include <machine/in_cksum.h>
   71 #ifdef DEV_CARP
   72 #include <netinet/ip_carp.h>
   73 #endif
   74 #ifdef IPSEC
   75 #include <netinet/ip_ipsec.h>
   76 #endif /* IPSEC */
   77 
   78 #include <sys/socketvar.h>
   79 
   80 /* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
   81 #include <netinet/ip_fw.h>
   82 #include <netinet/ip_dummynet.h>
   83 
   84 #include <security/mac/mac_framework.h>
   85 
   86 int rsvp_on = 0;
   87 
   88 int     ipforwarding = 0;
   89 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   90     &ipforwarding, 0, "Enable IP forwarding between interfaces");
   91 
   92 static int      ipsendredirects = 1; /* XXX */
   93 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
   94     &ipsendredirects, 0, "Enable sending IP redirects");
   95 
   96 int     ip_defttl = IPDEFTTL;
   97 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
   98     &ip_defttl, 0, "Maximum TTL on IP packets");
   99 
  100 static int      ip_keepfaith = 0;
  101 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  102     &ip_keepfaith,      0,
  103     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  104 
  105 static int      ip_sendsourcequench = 0;
  106 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  107     &ip_sendsourcequench, 0,
  108     "Enable the transmission of source quench packets");
  109 
  110 int     ip_do_randomid = 0;
  111 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  112     &ip_do_randomid, 0,
  113     "Assign random ip_id values");
  114 
  115 /*
  116  * XXX - Setting ip_checkinterface mostly implements the receive side of
  117  * the Strong ES model described in RFC 1122, but since the routing table
  118  * and transmit implementation do not implement the Strong ES model,
  119  * setting this to 1 results in an odd hybrid.
  120  *
  121  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  122  * to translate the destination address to another local interface.
  123  *
  124  * XXX - ip_checkinterface must be disabled if you add IP aliases
  125  * to the loopback interface instead of the interface where the
  126  * packets for those addresses are received.
  127  */
  128 static int      ip_checkinterface = 0;
  129 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  130     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
  131 
  132 struct pfil_head inet_pfil_hook;        /* Packet filter hooks */
  133 
  134 static struct   ifqueue ipintrq;
  135 static int      ipqmaxlen = IFQ_MAXLEN;
  136 
  137 extern  struct domain inetdomain;
  138 extern  struct protosw inetsw[];
  139 u_char  ip_protox[IPPROTO_MAX];
  140 struct  in_ifaddrhead in_ifaddrhead;            /* first inet address */
  141 struct  in_ifaddrhashhead *in_ifaddrhashtbl;    /* inet addr hash table  */
  142 u_long  in_ifaddrhmask;                         /* mask for hash table */
  143 
  144 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
  145     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
  146 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
  147     &ipintrq.ifq_drops, 0,
  148     "Number of packets dropped from the IP input queue");
  149 
  150 struct ipstat ipstat;
  151 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
  152     &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
  153 
  154 /*
  155  * IP datagram reassembly.
  156  */
  157 #define IPREASS_NHASH_LOG2      6
  158 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
  159 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
  160 #define IPREASS_HASH(x,y) \
  161         (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
  162 
  163 static uma_zone_t ipq_zone;
  164 static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
  165 static struct mtx ipqlock;
  166 
  167 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  168 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  169 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  170 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  171 
  172 static void     maxnipq_update(void);
  173 static void     ipq_zone_change(void *);
  174 
  175 static int      maxnipq;        /* Administrative limit on # reass queues. */
  176 static int      nipq = 0;       /* Total # of reass queues */
  177 SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  178     &nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
  179 
  180 static int      maxfragsperpacket;
  181 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  182     &maxfragsperpacket, 0,
  183     "Maximum number of IPv4 fragments allowed per packet");
  184 
  185 struct callout  ipport_tick_callout;
  186 
  187 #ifdef IPCTL_DEFMTU
  188 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  189     &ip_mtu, 0, "Default MTU");
  190 #endif
  191 
  192 #ifdef IPSTEALTH
  193 int     ipstealth = 0;
  194 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  195     &ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
  196 #endif
  197 
  198 /*
  199  * ipfw_ether and ipfw_bridge hooks.
  200  * XXX: Temporary until those are converted to pfil_hooks as well.
  201  */
  202 ip_fw_chk_t *ip_fw_chk_ptr = NULL;
  203 ip_dn_io_t *ip_dn_io_ptr = NULL;
  204 int fw_one_pass = 1;
  205 
  206 static void     ip_freef(struct ipqhead *, struct ipq *);
  207 
  208 /*
  209  * IP initialization: fill in IP protocol switch table.
  210  * All protocols not implemented in kernel go to raw IP protocol handler.
  211  */
  212 void
  213 ip_init(void)
  214 {
  215         struct protosw *pr;
  216         int i;
  217 
  218         TAILQ_INIT(&in_ifaddrhead);
  219         in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
  220         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  221         if (pr == NULL)
  222                 panic("ip_init: PF_INET not found");
  223 
  224         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  225         for (i = 0; i < IPPROTO_MAX; i++)
  226                 ip_protox[i] = pr - inetsw;
  227         /*
  228          * Cycle through IP protocols and put them into the appropriate place
  229          * in ip_protox[].
  230          */
  231         for (pr = inetdomain.dom_protosw;
  232             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  233                 if (pr->pr_domain->dom_family == PF_INET &&
  234                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  235                         /* Be careful to only index valid IP protocols. */
  236                         if (pr->pr_protocol < IPPROTO_MAX)
  237                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  238                 }
  239 
  240         /* Initialize packet filter hooks. */
  241         inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  242         inet_pfil_hook.ph_af = AF_INET;
  243         if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
  244                 printf("%s: WARNING: unable to register pfil hook, "
  245                         "error %d\n", __func__, i);
  246 
  247         /* Initialize IP reassembly queue. */
  248         IPQ_LOCK_INIT();
  249         for (i = 0; i < IPREASS_NHASH; i++)
  250             TAILQ_INIT(&ipq[i]);
  251         maxnipq = nmbclusters / 32;
  252         maxfragsperpacket = 16;
  253         ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  254             NULL, UMA_ALIGN_PTR, 0);
  255         maxnipq_update();
  256 
  257         /* Start ipport_tick. */
  258         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
  259         ipport_tick(NULL);
  260         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
  261                 SHUTDOWN_PRI_DEFAULT);
  262         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  263                 NULL, EVENTHANDLER_PRI_ANY);
  264 
  265         /* Initialize various other remaining things. */
  266         ip_id = time_second & 0xffff;
  267         ipintrq.ifq_maxlen = ipqmaxlen;
  268         mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
  269         netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
  270 }
  271 
  272 void
  273 ip_fini(void *xtp)
  274 {
  275 
  276         callout_stop(&ipport_tick_callout);
  277 }
  278 
  279 /*
  280  * Ip input routine.  Checksum and byte swap header.  If fragmented
  281  * try to reassemble.  Process options.  Pass to next level.
  282  */
  283 void
  284 ip_input(struct mbuf *m)
  285 {
  286         struct ip *ip = NULL;
  287         struct in_ifaddr *ia = NULL;
  288         struct ifaddr *ifa;
  289         int    checkif, hlen = 0;
  290         u_short sum;
  291         int dchg = 0;                           /* dest changed after fw */
  292         struct in_addr odst;                    /* original dst address */
  293 
  294         M_ASSERTPKTHDR(m);
  295 
  296         if (m->m_flags & M_FASTFWD_OURS) {
  297                 /*
  298                  * Firewall or NAT changed destination to local.
  299                  * We expect ip_len and ip_off to be in host byte order.
  300                  */
  301                 m->m_flags &= ~M_FASTFWD_OURS;
  302                 /* Set up some basics that will be used later. */
  303                 ip = mtod(m, struct ip *);
  304                 hlen = ip->ip_hl << 2;
  305                 goto ours;
  306         }
  307 
  308         ipstat.ips_total++;
  309 
  310         if (m->m_pkthdr.len < sizeof(struct ip))
  311                 goto tooshort;
  312 
  313         if (m->m_len < sizeof (struct ip) &&
  314             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  315                 ipstat.ips_toosmall++;
  316                 return;
  317         }
  318         ip = mtod(m, struct ip *);
  319 
  320         if (ip->ip_v != IPVERSION) {
  321                 ipstat.ips_badvers++;
  322                 goto bad;
  323         }
  324 
  325         hlen = ip->ip_hl << 2;
  326         if (hlen < sizeof(struct ip)) { /* minimum header length */
  327                 ipstat.ips_badhlen++;
  328                 goto bad;
  329         }
  330         if (hlen > m->m_len) {
  331                 if ((m = m_pullup(m, hlen)) == NULL) {
  332                         ipstat.ips_badhlen++;
  333                         return;
  334                 }
  335                 ip = mtod(m, struct ip *);
  336         }
  337 
  338         /* 127/8 must not appear on wire - RFC1122 */
  339         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  340             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  341                 if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
  342                         ipstat.ips_badaddr++;
  343                         goto bad;
  344                 }
  345         }
  346 
  347         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  348                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  349         } else {
  350                 if (hlen == sizeof(struct ip)) {
  351                         sum = in_cksum_hdr(ip);
  352                 } else {
  353                         sum = in_cksum(m, hlen);
  354                 }
  355         }
  356         if (sum) {
  357                 ipstat.ips_badsum++;
  358                 goto bad;
  359         }
  360 
  361 #ifdef ALTQ
  362         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  363                 /* packet is dropped by traffic conditioner */
  364                 return;
  365 #endif
  366 
  367         /*
  368          * Convert fields to host representation.
  369          */
  370         ip->ip_len = ntohs(ip->ip_len);
  371         if (ip->ip_len < hlen) {
  372                 ipstat.ips_badlen++;
  373                 goto bad;
  374         }
  375         ip->ip_off = ntohs(ip->ip_off);
  376 
  377         /*
  378          * Check that the amount of data in the buffers
  379          * is as at least much as the IP header would have us expect.
  380          * Trim mbufs if longer than we expect.
  381          * Drop packet if shorter than we expect.
  382          */
  383         if (m->m_pkthdr.len < ip->ip_len) {
  384 tooshort:
  385                 ipstat.ips_tooshort++;
  386                 goto bad;
  387         }
  388         if (m->m_pkthdr.len > ip->ip_len) {
  389                 if (m->m_len == m->m_pkthdr.len) {
  390                         m->m_len = ip->ip_len;
  391                         m->m_pkthdr.len = ip->ip_len;
  392                 } else
  393                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
  394         }
  395 #ifdef IPSEC
  396         /*
  397          * Bypass packet filtering for packets from a tunnel (gif).
  398          */
  399         if (ip_ipsec_filtertunnel(m))
  400                 goto passin;
  401 #endif /* IPSEC */
  402 
  403         /*
  404          * Run through list of hooks for input packets.
  405          *
  406          * NB: Beware of the destination address changing (e.g.
  407          *     by NAT rewriting).  When this happens, tell
  408          *     ip_forward to do the right thing.
  409          */
  410 
  411         /* Jump over all PFIL processing if hooks are not active. */
  412         if (!PFIL_HOOKED(&inet_pfil_hook))
  413                 goto passin;
  414 
  415         odst = ip->ip_dst;
  416         if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
  417             PFIL_IN, NULL) != 0)
  418                 return;
  419         if (m == NULL)                  /* consumed by filter */
  420                 return;
  421 
  422         ip = mtod(m, struct ip *);
  423         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  424 
  425 #ifdef IPFIREWALL_FORWARD
  426         if (m->m_flags & M_FASTFWD_OURS) {
  427                 m->m_flags &= ~M_FASTFWD_OURS;
  428                 goto ours;
  429         }
  430         if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
  431                 /*
  432                  * Directly ship on the packet.  This allows to forward packets
  433                  * that were destined for us to some other directly connected
  434                  * host.
  435                  */
  436                 ip_forward(m, dchg);
  437                 return;
  438         }
  439 #endif /* IPFIREWALL_FORWARD */
  440 
  441 passin:
  442         /*
  443          * Process options and, if not destined for us,
  444          * ship it on.  ip_dooptions returns 1 when an
  445          * error was detected (causing an icmp message
  446          * to be sent and the original packet to be freed).
  447          */
  448         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  449                 return;
  450 
  451         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  452          * matter if it is destined to another node, or whether it is 
  453          * a multicast one, RSVP wants it! and prevents it from being forwarded
  454          * anywhere else. Also checks if the rsvp daemon is running before
  455          * grabbing the packet.
  456          */
  457         if (rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  458                 goto ours;
  459 
  460         /*
  461          * Check our list of addresses, to see if the packet is for us.
  462          * If we don't have any addresses, assume any unicast packet
  463          * we receive might be for us (and let the upper layers deal
  464          * with it).
  465          */
  466         if (TAILQ_EMPTY(&in_ifaddrhead) &&
  467             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  468                 goto ours;
  469 
  470         /*
  471          * Enable a consistency check between the destination address
  472          * and the arrival interface for a unicast packet (the RFC 1122
  473          * strong ES model) if IP forwarding is disabled and the packet
  474          * is not locally generated and the packet is not subject to
  475          * 'ipfw fwd'.
  476          *
  477          * XXX - Checking also should be disabled if the destination
  478          * address is ipnat'ed to a different interface.
  479          *
  480          * XXX - Checking is incompatible with IP aliases added
  481          * to the loopback interface instead of the interface where
  482          * the packets are received.
  483          *
  484          * XXX - This is the case for carp vhost IPs as well so we
  485          * insert a workaround. If the packet got here, we already
  486          * checked with carp_iamatch() and carp_forus().
  487          */
  488         checkif = ip_checkinterface && (ipforwarding == 0) && 
  489             m->m_pkthdr.rcvif != NULL &&
  490             ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
  491 #ifdef DEV_CARP
  492             !m->m_pkthdr.rcvif->if_carp &&
  493 #endif
  494             (dchg == 0);
  495 
  496         /*
  497          * Check for exact addresses in the hash bucket.
  498          */
  499         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  500                 /*
  501                  * If the address matches, verify that the packet
  502                  * arrived via the correct interface if checking is
  503                  * enabled.
  504                  */
  505                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  506                     (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
  507                         goto ours;
  508         }
  509         /*
  510          * Check for broadcast addresses.
  511          *
  512          * Only accept broadcast packets that arrive via the matching
  513          * interface.  Reception of forwarded directed broadcasts would
  514          * be handled via ip_forward() and ether_output() with the loopback
  515          * into the stack for SIMPLEX interfaces handled by ether_output().
  516          */
  517         if (m->m_pkthdr.rcvif != NULL &&
  518             m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
  519                 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
  520                         if (ifa->ifa_addr->sa_family != AF_INET)
  521                                 continue;
  522                         ia = ifatoia(ifa);
  523                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  524                             ip->ip_dst.s_addr)
  525                                 goto ours;
  526                         if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
  527                                 goto ours;
  528 #ifdef BOOTP_COMPAT
  529                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
  530                                 goto ours;
  531 #endif
  532                 }
  533         }
  534         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  535         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  536                 ipstat.ips_cantforward++;
  537                 m_freem(m);
  538                 return;
  539         }
  540         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  541                 struct in_multi *inm;
  542                 if (ip_mrouter) {
  543                         /*
  544                          * If we are acting as a multicast router, all
  545                          * incoming multicast packets are passed to the
  546                          * kernel-level multicast forwarding function.
  547                          * The packet is returned (relatively) intact; if
  548                          * ip_mforward() returns a non-zero value, the packet
  549                          * must be discarded, else it may be accepted below.
  550                          */
  551                         if (ip_mforward &&
  552                             ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
  553                                 ipstat.ips_cantforward++;
  554                                 m_freem(m);
  555                                 return;
  556                         }
  557 
  558                         /*
  559                          * The process-level routing daemon needs to receive
  560                          * all multicast IGMP packets, whether or not this
  561                          * host belongs to their destination groups.
  562                          */
  563                         if (ip->ip_p == IPPROTO_IGMP)
  564                                 goto ours;
  565                         ipstat.ips_forward++;
  566                 }
  567                 /*
  568                  * See if we belong to the destination multicast group on the
  569                  * arrival interface.
  570                  */
  571                 IN_MULTI_LOCK();
  572                 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
  573                 IN_MULTI_UNLOCK();
  574                 if (inm == NULL) {
  575                         ipstat.ips_notmember++;
  576                         m_freem(m);
  577                         return;
  578                 }
  579                 goto ours;
  580         }
  581         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  582                 goto ours;
  583         if (ip->ip_dst.s_addr == INADDR_ANY)
  584                 goto ours;
  585 
  586         /*
  587          * FAITH(Firewall Aided Internet Translator)
  588          */
  589         if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
  590                 if (ip_keepfaith) {
  591                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  592                                 goto ours;
  593                 }
  594                 m_freem(m);
  595                 return;
  596         }
  597 
  598         /*
  599          * Not for us; forward if possible and desirable.
  600          */
  601         if (ipforwarding == 0) {
  602                 ipstat.ips_cantforward++;
  603                 m_freem(m);
  604         } else {
  605 #ifdef IPSEC
  606                 if (ip_ipsec_fwd(m))
  607                         goto bad;
  608 #endif /* IPSEC */
  609                 ip_forward(m, dchg);
  610         }
  611         return;
  612 
  613 ours:
  614 #ifdef IPSTEALTH
  615         /*
  616          * IPSTEALTH: Process non-routing options only
  617          * if the packet is destined for us.
  618          */
  619         if (ipstealth && hlen > sizeof (struct ip) &&
  620             ip_dooptions(m, 1))
  621                 return;
  622 #endif /* IPSTEALTH */
  623 
  624         /* Count the packet in the ip address stats */
  625         if (ia != NULL) {
  626                 ia->ia_ifa.if_ipackets++;
  627                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  628         }
  629 
  630         /*
  631          * Attempt reassembly; if it succeeds, proceed.
  632          * ip_reass() will return a different mbuf.
  633          */
  634         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
  635                 m = ip_reass(m);
  636                 if (m == NULL)
  637                         return;
  638                 ip = mtod(m, struct ip *);
  639                 /* Get the header length of the reassembled packet */
  640                 hlen = ip->ip_hl << 2;
  641         }
  642 
  643         /*
  644          * Further protocols expect the packet length to be w/o the
  645          * IP header.
  646          */
  647         ip->ip_len -= hlen;
  648 
  649 #ifdef IPSEC
  650         /*
  651          * enforce IPsec policy checking if we are seeing last header.
  652          * note that we do not visit this with protocols with pcb layer
  653          * code - like udp/tcp/raw ip.
  654          */
  655         if (ip_ipsec_input(m))
  656                 goto bad;
  657 #endif /* IPSEC */
  658 
  659         /*
  660          * Switch out to protocol's input routine.
  661          */
  662         ipstat.ips_delivered++;
  663 
  664         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  665         return;
  666 bad:
  667         m_freem(m);
  668 }
  669 
  670 /*
  671  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  672  * max has slightly different semantics than the sysctl, for historical
  673  * reasons.
  674  */
  675 static void
  676 maxnipq_update(void)
  677 {
  678 
  679         /*
  680          * -1 for unlimited allocation.
  681          */
  682         if (maxnipq < 0)
  683                 uma_zone_set_max(ipq_zone, 0);
  684         /*
  685          * Positive number for specific bound.
  686          */
  687         if (maxnipq > 0)
  688                 uma_zone_set_max(ipq_zone, maxnipq);
  689         /*
  690          * Zero specifies no further fragment queue allocation -- set the
  691          * bound very low, but rely on implementation elsewhere to actually
  692          * prevent allocation and reclaim current queues.
  693          */
  694         if (maxnipq == 0)
  695                 uma_zone_set_max(ipq_zone, 1);
  696 }
  697 
  698 static void
  699 ipq_zone_change(void *tag)
  700 {
  701 
  702         if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
  703                 maxnipq = nmbclusters / 32;
  704                 maxnipq_update();
  705         }
  706 }
  707 
  708 static int
  709 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  710 {
  711         int error, i;
  712 
  713         i = maxnipq;
  714         error = sysctl_handle_int(oidp, &i, 0, req);
  715         if (error || !req->newptr)
  716                 return (error);
  717 
  718         /*
  719          * XXXRW: Might be a good idea to sanity check the argument and place
  720          * an extreme upper bound.
  721          */
  722         if (i < -1)
  723                 return (EINVAL);
  724         maxnipq = i;
  725         maxnipq_update();
  726         return (0);
  727 }
  728 
  729 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  730     NULL, 0, sysctl_maxnipq, "I",
  731     "Maximum number of IPv4 fragment reassembly queue entries");
  732 
  733 /*
  734  * Take incoming datagram fragment and try to reassemble it into
  735  * whole datagram.  If the argument is the first fragment or one
  736  * in between the function will return NULL and store the mbuf
  737  * in the fragment chain.  If the argument is the last fragment
  738  * the packet will be reassembled and the pointer to the new
  739  * mbuf returned for further processing.  Only m_tags attached
  740  * to the first packet/fragment are preserved.
  741  * The IP header is *NOT* adjusted out of iplen.
  742  */
  743 struct mbuf *
  744 ip_reass(struct mbuf *m)
  745 {
  746         struct ip *ip;
  747         struct mbuf *p, *q, *nq, *t;
  748         struct ipq *fp = NULL;
  749         struct ipqhead *head;
  750         int i, hlen, next;
  751         u_int8_t ecn, ecn0;
  752         u_short hash;
  753 
  754         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  755         if (maxnipq == 0 || maxfragsperpacket == 0) {
  756                 ipstat.ips_fragments++;
  757                 ipstat.ips_fragdropped++;
  758                 m_freem(m);
  759                 return (NULL);
  760         }
  761 
  762         ip = mtod(m, struct ip *);
  763         hlen = ip->ip_hl << 2;
  764 
  765         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  766         head = &ipq[hash];
  767         IPQ_LOCK();
  768 
  769         /*
  770          * Look for queue of fragments
  771          * of this datagram.
  772          */
  773         TAILQ_FOREACH(fp, head, ipq_list)
  774                 if (ip->ip_id == fp->ipq_id &&
  775                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  776                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  777 #ifdef MAC
  778                     mac_fragment_match(m, fp) &&
  779 #endif
  780                     ip->ip_p == fp->ipq_p)
  781                         goto found;
  782 
  783         fp = NULL;
  784 
  785         /*
  786          * Attempt to trim the number of allocated fragment queues if it
  787          * exceeds the administrative limit.
  788          */
  789         if ((nipq > maxnipq) && (maxnipq > 0)) {
  790                 /*
  791                  * drop something from the tail of the current queue
  792                  * before proceeding further
  793                  */
  794                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  795                 if (q == NULL) {   /* gak */
  796                         for (i = 0; i < IPREASS_NHASH; i++) {
  797                                 struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
  798                                 if (r) {
  799                                         ipstat.ips_fragtimeout += r->ipq_nfrags;
  800                                         ip_freef(&ipq[i], r);
  801                                         break;
  802                                 }
  803                         }
  804                 } else {
  805                         ipstat.ips_fragtimeout += q->ipq_nfrags;
  806                         ip_freef(head, q);
  807                 }
  808         }
  809 
  810 found:
  811         /*
  812          * Adjust ip_len to not reflect header,
  813          * convert offset of this to bytes.
  814          */
  815         ip->ip_len -= hlen;
  816         if (ip->ip_off & IP_MF) {
  817                 /*
  818                  * Make sure that fragments have a data length
  819                  * that's a non-zero multiple of 8 bytes.
  820                  */
  821                 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
  822                         ipstat.ips_toosmall++; /* XXX */
  823                         goto dropfrag;
  824                 }
  825                 m->m_flags |= M_FRAG;
  826         } else
  827                 m->m_flags &= ~M_FRAG;
  828         ip->ip_off <<= 3;
  829 
  830 
  831         /*
  832          * Attempt reassembly; if it succeeds, proceed.
  833          * ip_reass() will return a different mbuf.
  834          */
  835         ipstat.ips_fragments++;
  836         m->m_pkthdr.header = ip;
  837 
  838         /* Previous ip_reass() started here. */
  839         /*
  840          * Presence of header sizes in mbufs
  841          * would confuse code below.
  842          */
  843         m->m_data += hlen;
  844         m->m_len -= hlen;
  845 
  846         /*
  847          * If first fragment to arrive, create a reassembly queue.
  848          */
  849         if (fp == NULL) {
  850                 fp = uma_zalloc(ipq_zone, M_NOWAIT);
  851                 if (fp == NULL)
  852                         goto dropfrag;
  853 #ifdef MAC
  854                 if (mac_init_ipq(fp, M_NOWAIT) != 0) {
  855                         uma_zfree(ipq_zone, fp);
  856                         fp = NULL;
  857                         goto dropfrag;
  858                 }
  859                 mac_create_ipq(m, fp);
  860 #endif
  861                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  862                 nipq++;
  863                 fp->ipq_nfrags = 1;
  864                 fp->ipq_ttl = IPFRAGTTL;
  865                 fp->ipq_p = ip->ip_p;
  866                 fp->ipq_id = ip->ip_id;
  867                 fp->ipq_src = ip->ip_src;
  868                 fp->ipq_dst = ip->ip_dst;
  869                 fp->ipq_frags = m;
  870                 m->m_nextpkt = NULL;
  871                 goto done;
  872         } else {
  873                 fp->ipq_nfrags++;
  874 #ifdef MAC
  875                 mac_update_ipq(m, fp);
  876 #endif
  877         }
  878 
  879 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
  880 
  881         /*
  882          * Handle ECN by comparing this segment with the first one;
  883          * if CE is set, do not lose CE.
  884          * drop if CE and not-ECT are mixed for the same packet.
  885          */
  886         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  887         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  888         if (ecn == IPTOS_ECN_CE) {
  889                 if (ecn0 == IPTOS_ECN_NOTECT)
  890                         goto dropfrag;
  891                 if (ecn0 != IPTOS_ECN_CE)
  892                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  893         }
  894         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  895                 goto dropfrag;
  896 
  897         /*
  898          * Find a segment which begins after this one does.
  899          */
  900         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  901                 if (GETIP(q)->ip_off > ip->ip_off)
  902                         break;
  903 
  904         /*
  905          * If there is a preceding segment, it may provide some of
  906          * our data already.  If so, drop the data from the incoming
  907          * segment.  If it provides all of our data, drop us, otherwise
  908          * stick new segment in the proper place.
  909          *
  910          * If some of the data is dropped from the the preceding
  911          * segment, then it's checksum is invalidated.
  912          */
  913         if (p) {
  914                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
  915                 if (i > 0) {
  916                         if (i >= ip->ip_len)
  917                                 goto dropfrag;
  918                         m_adj(m, i);
  919                         m->m_pkthdr.csum_flags = 0;
  920                         ip->ip_off += i;
  921                         ip->ip_len -= i;
  922                 }
  923                 m->m_nextpkt = p->m_nextpkt;
  924                 p->m_nextpkt = m;
  925         } else {
  926                 m->m_nextpkt = fp->ipq_frags;
  927                 fp->ipq_frags = m;
  928         }
  929 
  930         /*
  931          * While we overlap succeeding segments trim them or,
  932          * if they are completely covered, dequeue them.
  933          */
  934         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
  935              q = nq) {
  936                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
  937                 if (i < GETIP(q)->ip_len) {
  938                         GETIP(q)->ip_len -= i;
  939                         GETIP(q)->ip_off += i;
  940                         m_adj(q, i);
  941                         q->m_pkthdr.csum_flags = 0;
  942                         break;
  943                 }
  944                 nq = q->m_nextpkt;
  945                 m->m_nextpkt = nq;
  946                 ipstat.ips_fragdropped++;
  947                 fp->ipq_nfrags--;
  948                 m_freem(q);
  949         }
  950 
  951         /*
  952          * Check for complete reassembly and perform frag per packet
  953          * limiting.
  954          *
  955          * Frag limiting is performed here so that the nth frag has
  956          * a chance to complete the packet before we drop the packet.
  957          * As a result, n+1 frags are actually allowed per packet, but
  958          * only n will ever be stored. (n = maxfragsperpacket.)
  959          *
  960          */
  961         next = 0;
  962         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
  963                 if (GETIP(q)->ip_off != next) {
  964                         if (fp->ipq_nfrags > maxfragsperpacket) {
  965                                 ipstat.ips_fragdropped += fp->ipq_nfrags;
  966                                 ip_freef(head, fp);
  967                         }
  968                         goto done;
  969                 }
  970                 next += GETIP(q)->ip_len;
  971         }
  972         /* Make sure the last packet didn't have the IP_MF flag */
  973         if (p->m_flags & M_FRAG) {
  974                 if (fp->ipq_nfrags > maxfragsperpacket) {
  975                         ipstat.ips_fragdropped += fp->ipq_nfrags;
  976                         ip_freef(head, fp);
  977                 }
  978                 goto done;
  979         }
  980 
  981         /*
  982          * Reassembly is complete.  Make sure the packet is a sane size.
  983          */
  984         q = fp->ipq_frags;
  985         ip = GETIP(q);
  986         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
  987                 ipstat.ips_toolong++;
  988                 ipstat.ips_fragdropped += fp->ipq_nfrags;
  989                 ip_freef(head, fp);
  990                 goto done;
  991         }
  992 
  993         /*
  994          * Concatenate fragments.
  995          */
  996         m = q;
  997         t = m->m_next;
  998         m->m_next = NULL;
  999         m_cat(m, t);
 1000         nq = q->m_nextpkt;
 1001         q->m_nextpkt = NULL;
 1002         for (q = nq; q != NULL; q = nq) {
 1003                 nq = q->m_nextpkt;
 1004                 q->m_nextpkt = NULL;
 1005                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1006                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1007                 m_cat(m, q);
 1008         }
 1009         /*
 1010          * In order to do checksumming faster we do 'end-around carry' here
 1011          * (and not in for{} loop), though it implies we are not going to
 1012          * reassemble more than 64k fragments.
 1013          */
 1014         m->m_pkthdr.csum_data =
 1015             (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
 1016 #ifdef MAC
 1017         mac_create_datagram_from_ipq(fp, m);
 1018         mac_destroy_ipq(fp);
 1019 #endif
 1020 
 1021         /*
 1022          * Create header for new ip packet by modifying header of first
 1023          * packet;  dequeue and discard fragment reassembly header.
 1024          * Make header visible.
 1025          */
 1026         ip->ip_len = (ip->ip_hl << 2) + next;
 1027         ip->ip_src = fp->ipq_src;
 1028         ip->ip_dst = fp->ipq_dst;
 1029         TAILQ_REMOVE(head, fp, ipq_list);
 1030         nipq--;
 1031         uma_zfree(ipq_zone, fp);
 1032         m->m_len += (ip->ip_hl << 2);
 1033         m->m_data -= (ip->ip_hl << 2);
 1034         /* some debugging cruft by sklower, below, will go away soon */
 1035         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1036                 m_fixhdr(m);
 1037         ipstat.ips_reassembled++;
 1038         IPQ_UNLOCK();
 1039         return (m);
 1040 
 1041 dropfrag:
 1042         ipstat.ips_fragdropped++;
 1043         if (fp != NULL)
 1044                 fp->ipq_nfrags--;
 1045         m_freem(m);
 1046 done:
 1047         IPQ_UNLOCK();
 1048         return (NULL);
 1049 
 1050 #undef GETIP
 1051 }
 1052 
 1053 /*
 1054  * Free a fragment reassembly header and all
 1055  * associated datagrams.
 1056  */
 1057 static void
 1058 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1059 {
 1060         struct mbuf *q;
 1061 
 1062         IPQ_LOCK_ASSERT();
 1063 
 1064         while (fp->ipq_frags) {
 1065                 q = fp->ipq_frags;
 1066                 fp->ipq_frags = q->m_nextpkt;
 1067                 m_freem(q);
 1068         }
 1069         TAILQ_REMOVE(fhp, fp, ipq_list);
 1070         uma_zfree(ipq_zone, fp);
 1071         nipq--;
 1072 }
 1073 
 1074 /*
 1075  * IP timer processing;
 1076  * if a timer expires on a reassembly
 1077  * queue, discard it.
 1078  */
 1079 void
 1080 ip_slowtimo(void)
 1081 {
 1082         struct ipq *fp;
 1083         int i;
 1084 
 1085         IPQ_LOCK();
 1086         for (i = 0; i < IPREASS_NHASH; i++) {
 1087                 for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
 1088                         struct ipq *fpp;
 1089 
 1090                         fpp = fp;
 1091                         fp = TAILQ_NEXT(fp, ipq_list);
 1092                         if(--fpp->ipq_ttl == 0) {
 1093                                 ipstat.ips_fragtimeout += fpp->ipq_nfrags;
 1094                                 ip_freef(&ipq[i], fpp);
 1095                         }
 1096                 }
 1097         }
 1098         /*
 1099          * If we are over the maximum number of fragments
 1100          * (due to the limit being lowered), drain off
 1101          * enough to get down to the new limit.
 1102          */
 1103         if (maxnipq >= 0 && nipq > maxnipq) {
 1104                 for (i = 0; i < IPREASS_NHASH; i++) {
 1105                         while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
 1106                                 ipstat.ips_fragdropped +=
 1107                                     TAILQ_FIRST(&ipq[i])->ipq_nfrags;
 1108                                 ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
 1109                         }
 1110                 }
 1111         }
 1112         IPQ_UNLOCK();
 1113 }
 1114 
 1115 /*
 1116  * Drain off all datagram fragments.
 1117  */
 1118 void
 1119 ip_drain(void)
 1120 {
 1121         int     i;
 1122 
 1123         IPQ_LOCK();
 1124         for (i = 0; i < IPREASS_NHASH; i++) {
 1125                 while(!TAILQ_EMPTY(&ipq[i])) {
 1126                         ipstat.ips_fragdropped +=
 1127                             TAILQ_FIRST(&ipq[i])->ipq_nfrags;
 1128                         ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
 1129                 }
 1130         }
 1131         IPQ_UNLOCK();
 1132         in_rtqdrain();
 1133 }
 1134 
 1135 /*
 1136  * The protocol to be inserted into ip_protox[] must be already registered
 1137  * in inetsw[], either statically or through pf_proto_register().
 1138  */
 1139 int
 1140 ipproto_register(u_char ipproto)
 1141 {
 1142         struct protosw *pr;
 1143 
 1144         /* Sanity checks. */
 1145         if (ipproto == 0)
 1146                 return (EPROTONOSUPPORT);
 1147 
 1148         /*
 1149          * The protocol slot must not be occupied by another protocol
 1150          * already.  An index pointing to IPPROTO_RAW is unused.
 1151          */
 1152         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1153         if (pr == NULL)
 1154                 return (EPFNOSUPPORT);
 1155         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1156                 return (EEXIST);
 1157 
 1158         /* Find the protocol position in inetsw[] and set the index. */
 1159         for (pr = inetdomain.dom_protosw;
 1160              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1161                 if (pr->pr_domain->dom_family == PF_INET &&
 1162                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1163                         /* Be careful to only index valid IP protocols. */
 1164                         if (pr->pr_protocol < IPPROTO_MAX) {
 1165                                 ip_protox[pr->pr_protocol] = pr - inetsw;
 1166                                 return (0);
 1167                         } else
 1168                                 return (EINVAL);
 1169                 }
 1170         }
 1171         return (EPROTONOSUPPORT);
 1172 }
 1173 
 1174 int
 1175 ipproto_unregister(u_char ipproto)
 1176 {
 1177         struct protosw *pr;
 1178 
 1179         /* Sanity checks. */
 1180         if (ipproto == 0)
 1181                 return (EPROTONOSUPPORT);
 1182 
 1183         /* Check if the protocol was indeed registered. */
 1184         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1185         if (pr == NULL)
 1186                 return (EPFNOSUPPORT);
 1187         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1188                 return (ENOENT);
 1189 
 1190         /* Reset the protocol slot to IPPROTO_RAW. */
 1191         ip_protox[ipproto] = pr - inetsw;
 1192         return (0);
 1193 }
 1194 
 1195 /*
 1196  * Given address of next destination (final or next hop),
 1197  * return internet address info of interface to be used to get there.
 1198  */
 1199 struct in_ifaddr *
 1200 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1201 {
 1202         struct route sro;
 1203         struct sockaddr_in *sin;
 1204         struct in_ifaddr *ifa;
 1205 
 1206         bzero(&sro, sizeof(sro));
 1207         sin = (struct sockaddr_in *)&sro.ro_dst;
 1208         sin->sin_family = AF_INET;
 1209         sin->sin_len = sizeof(*sin);
 1210         sin->sin_addr = dst;
 1211         in_rtalloc_ign(&sro, RTF_CLONING, fibnum);
 1212 
 1213         if (sro.ro_rt == NULL)
 1214                 return (NULL);
 1215 
 1216         ifa = ifatoia(sro.ro_rt->rt_ifa);
 1217         RTFREE(sro.ro_rt);
 1218         return (ifa);
 1219 }
 1220 
 1221 u_char inetctlerrmap[PRC_NCMDS] = {
 1222         0,              0,              0,              0,
 1223         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1224         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1225         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1226         0,              0,              EHOSTUNREACH,   0,
 1227         ENOPROTOOPT,    ECONNREFUSED
 1228 };
 1229 
 1230 /*
 1231  * Forward a packet.  If some error occurs return the sender
 1232  * an icmp packet.  Note we can't always generate a meaningful
 1233  * icmp message because icmp doesn't have a large enough repertoire
 1234  * of codes and types.
 1235  *
 1236  * If not forwarding, just drop the packet.  This could be confusing
 1237  * if ipforwarding was zero but some routing protocol was advancing
 1238  * us as a gateway to somewhere.  However, we must let the routing
 1239  * protocol deal with that.
 1240  *
 1241  * The srcrt parameter indicates whether the packet is being forwarded
 1242  * via a source route.
 1243  */
 1244 void
 1245 ip_forward(struct mbuf *m, int srcrt)
 1246 {
 1247         struct ip *ip = mtod(m, struct ip *);
 1248         struct in_ifaddr *ia = NULL;
 1249         struct mbuf *mcopy;
 1250         struct in_addr dest;
 1251         struct route ro;
 1252         int error, type = 0, code = 0, mtu = 0;
 1253 
 1254         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1255                 ipstat.ips_cantforward++;
 1256                 m_freem(m);
 1257                 return;
 1258         }
 1259 #ifdef IPSTEALTH
 1260         if (!ipstealth) {
 1261 #endif
 1262                 if (ip->ip_ttl <= IPTTLDEC) {
 1263                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1264                             0, 0);
 1265                         return;
 1266                 }
 1267 #ifdef IPSTEALTH
 1268         }
 1269 #endif
 1270 
 1271         ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
 1272         if (!srcrt && ia == NULL) {
 1273                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1274                 return;
 1275         }
 1276 
 1277         /*
 1278          * Save the IP header and at most 8 bytes of the payload,
 1279          * in case we need to generate an ICMP message to the src.
 1280          *
 1281          * XXX this can be optimized a lot by saving the data in a local
 1282          * buffer on the stack (72 bytes at most), and only allocating the
 1283          * mbuf if really necessary. The vast majority of the packets
 1284          * are forwarded without having to send an ICMP back (either
 1285          * because unnecessary, or because rate limited), so we are
 1286          * really we are wasting a lot of work here.
 1287          *
 1288          * We don't use m_copy() because it might return a reference
 1289          * to a shared cluster. Both this function and ip_output()
 1290          * assume exclusive access to the IP header in `m', so any
 1291          * data in a cluster may change before we reach icmp_error().
 1292          */
 1293         MGETHDR(mcopy, M_DONTWAIT, m->m_type);
 1294         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
 1295                 /*
 1296                  * It's probably ok if the pkthdr dup fails (because
 1297                  * the deep copy of the tag chain failed), but for now
 1298                  * be conservative and just discard the copy since
 1299                  * code below may some day want the tags.
 1300                  */
 1301                 m_free(mcopy);
 1302                 mcopy = NULL;
 1303         }
 1304         if (mcopy != NULL) {
 1305                 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
 1306                 mcopy->m_pkthdr.len = mcopy->m_len;
 1307                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1308         }
 1309 
 1310 #ifdef IPSTEALTH
 1311         if (!ipstealth) {
 1312 #endif
 1313                 ip->ip_ttl -= IPTTLDEC;
 1314 #ifdef IPSTEALTH
 1315         }
 1316 #endif
 1317 
 1318         /*
 1319          * If forwarding packet using same interface that it came in on,
 1320          * perhaps should send a redirect to sender to shortcut a hop.
 1321          * Only send redirect if source is sending directly to us,
 1322          * and if packet was not source routed (or has any options).
 1323          * Also, don't send redirect if forwarding using a default route
 1324          * or a route modified by a redirect.
 1325          */
 1326         dest.s_addr = 0;
 1327         if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1328                 struct sockaddr_in *sin;
 1329                 struct rtentry *rt;
 1330 
 1331                 bzero(&ro, sizeof(ro));
 1332                 sin = (struct sockaddr_in *)&ro.ro_dst;
 1333                 sin->sin_family = AF_INET;
 1334                 sin->sin_len = sizeof(*sin);
 1335                 sin->sin_addr = ip->ip_dst;
 1336                 in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m));
 1337 
 1338                 rt = ro.ro_rt;
 1339 
 1340                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1341                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1342 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1343                         u_long src = ntohl(ip->ip_src.s_addr);
 1344 
 1345                         if (RTA(rt) &&
 1346                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1347                                 if (rt->rt_flags & RTF_GATEWAY)
 1348                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1349                                 else
 1350                                         dest.s_addr = ip->ip_dst.s_addr;
 1351                                 /* Router requirements says to only send host redirects */
 1352                                 type = ICMP_REDIRECT;
 1353                                 code = ICMP_REDIRECT_HOST;
 1354                         }
 1355                 }
 1356                 if (rt)
 1357                         RTFREE(rt);
 1358         }
 1359 
 1360         /*
 1361          * Try to cache the route MTU from ip_output so we can consider it for
 1362          * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
 1363          */
 1364         bzero(&ro, sizeof(ro));
 1365 
 1366         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1367 
 1368         if (error == EMSGSIZE && ro.ro_rt)
 1369                 mtu = ro.ro_rt->rt_rmx.rmx_mtu;
 1370         if (ro.ro_rt)
 1371                 RTFREE(ro.ro_rt);
 1372 
 1373         if (error)
 1374                 ipstat.ips_cantforward++;
 1375         else {
 1376                 ipstat.ips_forward++;
 1377                 if (type)
 1378                         ipstat.ips_redirectsent++;
 1379                 else {
 1380                         if (mcopy)
 1381                                 m_freem(mcopy);
 1382                         return;
 1383                 }
 1384         }
 1385         if (mcopy == NULL)
 1386                 return;
 1387 
 1388         switch (error) {
 1389 
 1390         case 0:                         /* forwarded, but need redirect */
 1391                 /* type, code set above */
 1392                 break;
 1393 
 1394         case ENETUNREACH:               /* shouldn't happen, checked above */
 1395         case EHOSTUNREACH:
 1396         case ENETDOWN:
 1397         case EHOSTDOWN:
 1398         default:
 1399                 type = ICMP_UNREACH;
 1400                 code = ICMP_UNREACH_HOST;
 1401                 break;
 1402 
 1403         case EMSGSIZE:
 1404                 type = ICMP_UNREACH;
 1405                 code = ICMP_UNREACH_NEEDFRAG;
 1406 
 1407 #ifdef IPSEC
 1408                 /* 
 1409                  * If IPsec is configured for this path,
 1410                  * override any possibly mtu value set by ip_output.
 1411                  */ 
 1412                 mtu = ip_ipsec_mtu(m, mtu);
 1413 #endif /* IPSEC */
 1414                 /*
 1415                  * If the MTU was set before make sure we are below the
 1416                  * interface MTU.
 1417                  * If the MTU wasn't set before use the interface mtu or
 1418                  * fall back to the next smaller mtu step compared to the
 1419                  * current packet size.
 1420                  */
 1421                 if (mtu != 0) {
 1422                         if (ia != NULL)
 1423                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1424                 } else {
 1425                         if (ia != NULL)
 1426                                 mtu = ia->ia_ifp->if_mtu;
 1427                         else
 1428                                 mtu = ip_next_mtu(ip->ip_len, 0);
 1429                 }
 1430                 ipstat.ips_cantfrag++;
 1431                 break;
 1432 
 1433         case ENOBUFS:
 1434                 /*
 1435                  * A router should not generate ICMP_SOURCEQUENCH as
 1436                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1437                  * Source quench could be a big problem under DoS attacks,
 1438                  * or if the underlying interface is rate-limited.
 1439                  * Those who need source quench packets may re-enable them
 1440                  * via the net.inet.ip.sendsourcequench sysctl.
 1441                  */
 1442                 if (ip_sendsourcequench == 0) {
 1443                         m_freem(mcopy);
 1444                         return;
 1445                 } else {
 1446                         type = ICMP_SOURCEQUENCH;
 1447                         code = 0;
 1448                 }
 1449                 break;
 1450 
 1451         case EACCES:                    /* ipfw denied packet */
 1452                 m_freem(mcopy);
 1453                 return;
 1454         }
 1455         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1456 }
 1457 
 1458 void
 1459 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1460     struct mbuf *m)
 1461 {
 1462         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1463                 struct bintime bt;
 1464 
 1465                 bintime(&bt);
 1466                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1467                         *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
 1468                         SCM_BINTIME, SOL_SOCKET);
 1469                         if (*mp)
 1470                                 mp = &(*mp)->m_next;
 1471                 }
 1472                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1473                         struct timeval tv;
 1474 
 1475                         bintime2timeval(&bt, &tv);
 1476                         *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
 1477                                 SCM_TIMESTAMP, SOL_SOCKET);
 1478                         if (*mp)
 1479                                 mp = &(*mp)->m_next;
 1480                 }
 1481         }
 1482         if (inp->inp_flags & INP_RECVDSTADDR) {
 1483                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
 1484                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1485                 if (*mp)
 1486                         mp = &(*mp)->m_next;
 1487         }
 1488         if (inp->inp_flags & INP_RECVTTL) {
 1489                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
 1490                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1491                 if (*mp)
 1492                         mp = &(*mp)->m_next;
 1493         }
 1494 #ifdef notyet
 1495         /* XXX
 1496          * Moving these out of udp_input() made them even more broken
 1497          * than they already were.
 1498          */
 1499         /* options were tossed already */
 1500         if (inp->inp_flags & INP_RECVOPTS) {
 1501                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
 1502                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1503                 if (*mp)
 1504                         mp = &(*mp)->m_next;
 1505         }
 1506         /* ip_srcroute doesn't do what we want here, need to fix */
 1507         if (inp->inp_flags & INP_RECVRETOPTS) {
 1508                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
 1509                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1510                 if (*mp)
 1511                         mp = &(*mp)->m_next;
 1512         }
 1513 #endif
 1514         if (inp->inp_flags & INP_RECVIF) {
 1515                 struct ifnet *ifp;
 1516                 struct sdlbuf {
 1517                         struct sockaddr_dl sdl;
 1518                         u_char  pad[32];
 1519                 } sdlbuf;
 1520                 struct sockaddr_dl *sdp;
 1521                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1522 
 1523                 if (((ifp = m->m_pkthdr.rcvif)) 
 1524                 && ( ifp->if_index && (ifp->if_index <= if_index))) {
 1525                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1526                         /*
 1527                          * Change our mind and don't try copy.
 1528                          */
 1529                         if ((sdp->sdl_family != AF_LINK)
 1530                         || (sdp->sdl_len > sizeof(sdlbuf))) {
 1531                                 goto makedummy;
 1532                         }
 1533                         bcopy(sdp, sdl2, sdp->sdl_len);
 1534                 } else {
 1535 makedummy:      
 1536                         sdl2->sdl_len
 1537                                 = offsetof(struct sockaddr_dl, sdl_data[0]);
 1538                         sdl2->sdl_family = AF_LINK;
 1539                         sdl2->sdl_index = 0;
 1540                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1541                 }
 1542                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
 1543                         IP_RECVIF, IPPROTO_IP);
 1544                 if (*mp)
 1545                         mp = &(*mp)->m_next;
 1546         }
 1547 }
 1548 
 1549 /*
 1550  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1551  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1552  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1553  * compiled.
 1554  */
 1555 static int ip_rsvp_on;
 1556 struct socket *ip_rsvpd;
 1557 int
 1558 ip_rsvp_init(struct socket *so)
 1559 {
 1560         if (so->so_type != SOCK_RAW ||
 1561             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1562                 return EOPNOTSUPP;
 1563 
 1564         if (ip_rsvpd != NULL)
 1565                 return EADDRINUSE;
 1566 
 1567         ip_rsvpd = so;
 1568         /*
 1569          * This may seem silly, but we need to be sure we don't over-increment
 1570          * the RSVP counter, in case something slips up.
 1571          */
 1572         if (!ip_rsvp_on) {
 1573                 ip_rsvp_on = 1;
 1574                 rsvp_on++;
 1575         }
 1576 
 1577         return 0;
 1578 }
 1579 
 1580 int
 1581 ip_rsvp_done(void)
 1582 {
 1583         ip_rsvpd = NULL;
 1584         /*
 1585          * This may seem silly, but we need to be sure we don't over-decrement
 1586          * the RSVP counter, in case something slips up.
 1587          */
 1588         if (ip_rsvp_on) {
 1589                 ip_rsvp_on = 0;
 1590                 rsvp_on--;
 1591         }
 1592         return 0;
 1593 }
 1594 
 1595 void
 1596 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1597 {
 1598         if (rsvp_input_p) { /* call the real one if loaded */
 1599                 rsvp_input_p(m, off);
 1600                 return;
 1601         }
 1602 
 1603         /* Can still get packets with rsvp_on = 0 if there is a local member
 1604          * of the group to which the RSVP packet is addressed.  But in this
 1605          * case we want to throw the packet away.
 1606          */
 1607         
 1608         if (!rsvp_on) {
 1609                 m_freem(m);
 1610                 return;
 1611         }
 1612 
 1613         if (ip_rsvpd != NULL) { 
 1614                 rip_input(m, off);
 1615                 return;
 1616         }
 1617         /* Drop the packet */
 1618         m_freem(m);
 1619 }

Cache object: 7291aa12a0d02d4e72d021423848be0c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.