The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/8.0/sys/netinet/ip_input.c 198293 2009-10-20 16:22:31Z rwatson $");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_route.h"
   40 #include "opt_carp.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/malloc.h>
   47 #include <sys/domain.h>
   48 #include <sys/protosw.h>
   49 #include <sys/socket.h>
   50 #include <sys/time.h>
   51 #include <sys/kernel.h>
   52 #include <sys/lock.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/syslog.h>
   55 #include <sys/sysctl.h>
   56 
   57 #include <net/pfil.h>
   58 #include <net/if.h>
   59 #include <net/if_types.h>
   60 #include <net/if_var.h>
   61 #include <net/if_dl.h>
   62 #include <net/route.h>
   63 #include <net/netisr.h>
   64 #include <net/vnet.h>
   65 #include <net/flowtable.h>
   66 
   67 #include <netinet/in.h>
   68 #include <netinet/in_systm.h>
   69 #include <netinet/in_var.h>
   70 #include <netinet/ip.h>
   71 #include <netinet/in_pcb.h>
   72 #include <netinet/ip_var.h>
   73 #include <netinet/ip_fw.h>
   74 #include <netinet/ip_icmp.h>
   75 #include <netinet/ip_options.h>
   76 #include <machine/in_cksum.h>
   77 #ifdef DEV_CARP
   78 #include <netinet/ip_carp.h>
   79 #endif
   80 #ifdef IPSEC
   81 #include <netinet/ip_ipsec.h>
   82 #endif /* IPSEC */
   83 
   84 #include <sys/socketvar.h>
   85 
   86 #include <security/mac/mac_framework.h>
   87 
   88 #ifdef CTASSERT
   89 CTASSERT(sizeof(struct ip) == 20);
   90 #endif
   91 
   92 static VNET_DEFINE(int, ipsendredirects) = 1;   /* XXX */
   93 static VNET_DEFINE(int, ip_checkinterface);
   94 static VNET_DEFINE(int, ip_keepfaith);
   95 static VNET_DEFINE(int, ip_sendsourcequench);
   96 
   97 #define V_ipsendredirects       VNET(ipsendredirects)
   98 #define V_ip_checkinterface     VNET(ip_checkinterface)
   99 #define V_ip_keepfaith          VNET(ip_keepfaith)
  100 #define V_ip_sendsourcequench   VNET(ip_sendsourcequench)
  101 
  102 VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
  103 VNET_DEFINE(int, ip_do_randomid);
  104 VNET_DEFINE(int, ipforwarding);
  105 
  106 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
  107 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
  108 VNET_DEFINE(u_long, in_ifaddrhmask);            /* mask for hash table */
  109 VNET_DEFINE(struct ipstat, ipstat);
  110 
  111 static VNET_DEFINE(int, ip_rsvp_on);
  112 VNET_DEFINE(struct socket *, ip_rsvpd);
  113 VNET_DEFINE(int, rsvp_on);
  114 
  115 #define V_ip_rsvp_on            VNET(ip_rsvp_on)
  116 
  117 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
  118 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
  119 static VNET_DEFINE(int, maxfragsperpacket);
  120 static VNET_DEFINE(int, nipq);                  /* Total # of reass queues */
  121 
  122 #define V_ipq                   VNET(ipq)
  123 #define V_maxnipq               VNET(maxnipq)
  124 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  125 #define V_nipq                  VNET(nipq)
  126 
  127 VNET_DEFINE(int, ipstealth);
  128 
  129 struct  rwlock in_ifaddr_lock;
  130 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
  131 
  132 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
  133     &VNET_NAME(ipforwarding), 0,
  134     "Enable IP forwarding between interfaces");
  135 
  136 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
  137     &VNET_NAME(ipsendredirects), 0,
  138     "Enable sending IP redirects");
  139 
  140 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
  141     &VNET_NAME(ip_defttl), 0,
  142     "Maximum TTL on IP packets");
  143 
  144 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  145     &VNET_NAME(ip_keepfaith), 0,
  146     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  147 
  148 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  149     &VNET_NAME(ip_sendsourcequench), 0,
  150     "Enable the transmission of source quench packets");
  151 
  152 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  153     &VNET_NAME(ip_do_randomid), 0,
  154     "Assign random ip_id values");
  155 
  156 /*
  157  * XXX - Setting ip_checkinterface mostly implements the receive side of
  158  * the Strong ES model described in RFC 1122, but since the routing table
  159  * and transmit implementation do not implement the Strong ES model,
  160  * setting this to 1 results in an odd hybrid.
  161  *
  162  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  163  * to translate the destination address to another local interface.
  164  *
  165  * XXX - ip_checkinterface must be disabled if you add IP aliases
  166  * to the loopback interface instead of the interface where the
  167  * packets for those addresses are received.
  168  */
  169 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  170     &VNET_NAME(ip_checkinterface), 0,
  171     "Verify packet arrives on correct interface");
  172 
  173 struct pfil_head inet_pfil_hook;        /* Packet filter hooks */
  174 
  175 static struct netisr_handler ip_nh = {
  176         .nh_name = "ip",
  177         .nh_handler = ip_input,
  178         .nh_proto = NETISR_IP,
  179         .nh_policy = NETISR_POLICY_FLOW,
  180 };
  181 
  182 extern  struct domain inetdomain;
  183 extern  struct protosw inetsw[];
  184 u_char  ip_protox[IPPROTO_MAX];
  185 
  186 SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
  187     &VNET_NAME(ipstat), ipstat,
  188     "IP statistics (struct ipstat, netinet/ip_var.h)");
  189 
  190 static VNET_DEFINE(uma_zone_t, ipq_zone);
  191 #define V_ipq_zone              VNET(ipq_zone)
  192 
  193 static struct mtx ipqlock;
  194 
  195 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  196 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  197 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  198 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  199 
  200 static void     maxnipq_update(void);
  201 static void     ipq_zone_change(void *);
  202 
  203 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  204     &VNET_NAME(nipq), 0,
  205     "Current number of IPv4 fragment reassembly queue entries");
  206 
  207 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  208     &VNET_NAME(maxfragsperpacket), 0,
  209     "Maximum number of IPv4 fragments allowed per packet");
  210 
  211 struct callout  ipport_tick_callout;
  212 
  213 #ifdef IPCTL_DEFMTU
  214 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  215     &ip_mtu, 0, "Default MTU");
  216 #endif
  217 
  218 #ifdef IPSTEALTH
  219 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  220     &VNET_NAME(ipstealth), 0,
  221     "IP stealth mode, no TTL decrementation on forwarding");
  222 #endif
  223 
  224 #ifdef FLOWTABLE
  225 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
  226 VNET_DEFINE(struct flowtable *, ip_ft);
  227 #define V_ip_output_flowtable_size      VNET(ip_output_flowtable_size)
  228 
  229 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
  230     &VNET_NAME(ip_output_flowtable_size), 2048,
  231     "number of entries in the per-cpu output flow caches");
  232 #endif
  233 
  234 VNET_DEFINE(int, fw_one_pass) = 1;
  235 
  236 static void     ip_freef(struct ipqhead *, struct ipq *);
  237 
  238 /*
  239  * Kernel module interface for updating ipstat.  The argument is an index
  240  * into ipstat treated as an array of u_long.  While this encodes the general
  241  * layout of ipstat into the caller, it doesn't encode its location, so that
  242  * future changes to add, for example, per-CPU stats support won't cause
  243  * binary compatibility problems for kernel modules.
  244  */
  245 void
  246 kmod_ipstat_inc(int statnum)
  247 {
  248 
  249         (*((u_long *)&V_ipstat + statnum))++;
  250 }
  251 
  252 void
  253 kmod_ipstat_dec(int statnum)
  254 {
  255 
  256         (*((u_long *)&V_ipstat + statnum))--;
  257 }
  258 
  259 static int
  260 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
  261 {
  262         int error, qlimit;
  263 
  264         netisr_getqlimit(&ip_nh, &qlimit);
  265         error = sysctl_handle_int(oidp, &qlimit, 0, req);
  266         if (error || !req->newptr)
  267                 return (error);
  268         if (qlimit < 1)
  269                 return (EINVAL);
  270         return (netisr_setqlimit(&ip_nh, qlimit));
  271 }
  272 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
  273     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
  274     "Maximum size of the IP input queue");
  275 
  276 static int
  277 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
  278 {
  279         u_int64_t qdrops_long;
  280         int error, qdrops;
  281 
  282         netisr_getqdrops(&ip_nh, &qdrops_long);
  283         qdrops = qdrops_long;
  284         error = sysctl_handle_int(oidp, &qdrops, 0, req);
  285         if (error || !req->newptr)
  286                 return (error);
  287         if (qdrops != 0)
  288                 return (EINVAL);
  289         netisr_clearqdrops(&ip_nh);
  290         return (0);
  291 }
  292 
  293 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
  294     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
  295     "Number of packets dropped from the IP input queue");
  296 
  297 /*
  298  * IP initialization: fill in IP protocol switch table.
  299  * All protocols not implemented in kernel go to raw IP protocol handler.
  300  */
  301 void
  302 ip_init(void)
  303 {
  304         struct protosw *pr;
  305         int i;
  306 
  307         V_ip_id = time_second & 0xffff;
  308 
  309         TAILQ_INIT(&V_in_ifaddrhead);
  310         V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
  311 
  312         /* Initialize IP reassembly queue. */
  313         for (i = 0; i < IPREASS_NHASH; i++)
  314                 TAILQ_INIT(&V_ipq[i]);
  315         V_maxnipq = nmbclusters / 32;
  316         V_maxfragsperpacket = 16;
  317         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  318             NULL, UMA_ALIGN_PTR, 0);
  319         maxnipq_update();
  320 
  321 #ifdef FLOWTABLE
  322         TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
  323             &V_ip_output_flowtable_size);
  324         V_ip_ft = flowtable_alloc(V_ip_output_flowtable_size, FL_PCPU);
  325 #endif
  326 
  327         /* Skip initialization of globals for non-default instances. */
  328         if (!IS_DEFAULT_VNET(curvnet))
  329                 return;
  330 
  331         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  332         if (pr == NULL)
  333                 panic("ip_init: PF_INET not found");
  334 
  335         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  336         for (i = 0; i < IPPROTO_MAX; i++)
  337                 ip_protox[i] = pr - inetsw;
  338         /*
  339          * Cycle through IP protocols and put them into the appropriate place
  340          * in ip_protox[].
  341          */
  342         for (pr = inetdomain.dom_protosw;
  343             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  344                 if (pr->pr_domain->dom_family == PF_INET &&
  345                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  346                         /* Be careful to only index valid IP protocols. */
  347                         if (pr->pr_protocol < IPPROTO_MAX)
  348                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  349                 }
  350 
  351         /* Initialize packet filter hooks. */
  352         inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  353         inet_pfil_hook.ph_af = AF_INET;
  354         if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
  355                 printf("%s: WARNING: unable to register pfil hook, "
  356                         "error %d\n", __func__, i);
  357 
  358         /* Start ipport_tick. */
  359         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
  360         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
  361         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
  362                 SHUTDOWN_PRI_DEFAULT);
  363         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  364                 NULL, EVENTHANDLER_PRI_ANY);
  365 
  366         /* Initialize various other remaining things. */
  367         IPQ_LOCK_INIT();
  368         netisr_register(&ip_nh);
  369 }
  370 
  371 void
  372 ip_fini(void *xtp)
  373 {
  374 
  375         callout_stop(&ipport_tick_callout);
  376 }
  377 
  378 /*
  379  * Ip input routine.  Checksum and byte swap header.  If fragmented
  380  * try to reassemble.  Process options.  Pass to next level.
  381  */
  382 void
  383 ip_input(struct mbuf *m)
  384 {
  385         struct ip *ip = NULL;
  386         struct in_ifaddr *ia = NULL;
  387         struct ifaddr *ifa;
  388         struct ifnet *ifp;
  389         int    checkif, hlen = 0;
  390         u_short sum;
  391         int dchg = 0;                           /* dest changed after fw */
  392         struct in_addr odst;                    /* original dst address */
  393 
  394         M_ASSERTPKTHDR(m);
  395 
  396         if (m->m_flags & M_FASTFWD_OURS) {
  397                 /*
  398                  * Firewall or NAT changed destination to local.
  399                  * We expect ip_len and ip_off to be in host byte order.
  400                  */
  401                 m->m_flags &= ~M_FASTFWD_OURS;
  402                 /* Set up some basics that will be used later. */
  403                 ip = mtod(m, struct ip *);
  404                 hlen = ip->ip_hl << 2;
  405                 goto ours;
  406         }
  407 
  408         IPSTAT_INC(ips_total);
  409 
  410         if (m->m_pkthdr.len < sizeof(struct ip))
  411                 goto tooshort;
  412 
  413         if (m->m_len < sizeof (struct ip) &&
  414             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  415                 IPSTAT_INC(ips_toosmall);
  416                 return;
  417         }
  418         ip = mtod(m, struct ip *);
  419 
  420         if (ip->ip_v != IPVERSION) {
  421                 IPSTAT_INC(ips_badvers);
  422                 goto bad;
  423         }
  424 
  425         hlen = ip->ip_hl << 2;
  426         if (hlen < sizeof(struct ip)) { /* minimum header length */
  427                 IPSTAT_INC(ips_badhlen);
  428                 goto bad;
  429         }
  430         if (hlen > m->m_len) {
  431                 if ((m = m_pullup(m, hlen)) == NULL) {
  432                         IPSTAT_INC(ips_badhlen);
  433                         return;
  434                 }
  435                 ip = mtod(m, struct ip *);
  436         }
  437 
  438         /* 127/8 must not appear on wire - RFC1122 */
  439         ifp = m->m_pkthdr.rcvif;
  440         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  441             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  442                 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
  443                         IPSTAT_INC(ips_badaddr);
  444                         goto bad;
  445                 }
  446         }
  447 
  448         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  449                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  450         } else {
  451                 if (hlen == sizeof(struct ip)) {
  452                         sum = in_cksum_hdr(ip);
  453                 } else {
  454                         sum = in_cksum(m, hlen);
  455                 }
  456         }
  457         if (sum) {
  458                 IPSTAT_INC(ips_badsum);
  459                 goto bad;
  460         }
  461 
  462 #ifdef ALTQ
  463         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  464                 /* packet is dropped by traffic conditioner */
  465                 return;
  466 #endif
  467 
  468         /*
  469          * Convert fields to host representation.
  470          */
  471         ip->ip_len = ntohs(ip->ip_len);
  472         if (ip->ip_len < hlen) {
  473                 IPSTAT_INC(ips_badlen);
  474                 goto bad;
  475         }
  476         ip->ip_off = ntohs(ip->ip_off);
  477 
  478         /*
  479          * Check that the amount of data in the buffers
  480          * is as at least much as the IP header would have us expect.
  481          * Trim mbufs if longer than we expect.
  482          * Drop packet if shorter than we expect.
  483          */
  484         if (m->m_pkthdr.len < ip->ip_len) {
  485 tooshort:
  486                 IPSTAT_INC(ips_tooshort);
  487                 goto bad;
  488         }
  489         if (m->m_pkthdr.len > ip->ip_len) {
  490                 if (m->m_len == m->m_pkthdr.len) {
  491                         m->m_len = ip->ip_len;
  492                         m->m_pkthdr.len = ip->ip_len;
  493                 } else
  494                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
  495         }
  496 #ifdef IPSEC
  497         /*
  498          * Bypass packet filtering for packets from a tunnel (gif).
  499          */
  500         if (ip_ipsec_filtertunnel(m))
  501                 goto passin;
  502 #endif /* IPSEC */
  503 
  504         /*
  505          * Run through list of hooks for input packets.
  506          *
  507          * NB: Beware of the destination address changing (e.g.
  508          *     by NAT rewriting).  When this happens, tell
  509          *     ip_forward to do the right thing.
  510          */
  511 
  512         /* Jump over all PFIL processing if hooks are not active. */
  513         if (!PFIL_HOOKED(&inet_pfil_hook))
  514                 goto passin;
  515 
  516         odst = ip->ip_dst;
  517         if (pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
  518                 return;
  519         if (m == NULL)                  /* consumed by filter */
  520                 return;
  521 
  522         ip = mtod(m, struct ip *);
  523         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  524         ifp = m->m_pkthdr.rcvif;
  525 
  526 #ifdef IPFIREWALL_FORWARD
  527         if (m->m_flags & M_FASTFWD_OURS) {
  528                 m->m_flags &= ~M_FASTFWD_OURS;
  529                 goto ours;
  530         }
  531         if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
  532                 /*
  533                  * Directly ship on the packet.  This allows to forward
  534                  * packets that were destined for us to some other directly
  535                  * connected host.
  536                  */
  537                 ip_forward(m, dchg);
  538                 return;
  539         }
  540 #endif /* IPFIREWALL_FORWARD */
  541 
  542 passin:
  543         /*
  544          * Process options and, if not destined for us,
  545          * ship it on.  ip_dooptions returns 1 when an
  546          * error was detected (causing an icmp message
  547          * to be sent and the original packet to be freed).
  548          */
  549         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  550                 return;
  551 
  552         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  553          * matter if it is destined to another node, or whether it is 
  554          * a multicast one, RSVP wants it! and prevents it from being forwarded
  555          * anywhere else. Also checks if the rsvp daemon is running before
  556          * grabbing the packet.
  557          */
  558         if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  559                 goto ours;
  560 
  561         /*
  562          * Check our list of addresses, to see if the packet is for us.
  563          * If we don't have any addresses, assume any unicast packet
  564          * we receive might be for us (and let the upper layers deal
  565          * with it).
  566          */
  567         if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
  568             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  569                 goto ours;
  570 
  571         /*
  572          * Enable a consistency check between the destination address
  573          * and the arrival interface for a unicast packet (the RFC 1122
  574          * strong ES model) if IP forwarding is disabled and the packet
  575          * is not locally generated and the packet is not subject to
  576          * 'ipfw fwd'.
  577          *
  578          * XXX - Checking also should be disabled if the destination
  579          * address is ipnat'ed to a different interface.
  580          *
  581          * XXX - Checking is incompatible with IP aliases added
  582          * to the loopback interface instead of the interface where
  583          * the packets are received.
  584          *
  585          * XXX - This is the case for carp vhost IPs as well so we
  586          * insert a workaround. If the packet got here, we already
  587          * checked with carp_iamatch() and carp_forus().
  588          */
  589         checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 
  590             ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
  591 #ifdef DEV_CARP
  592             !ifp->if_carp &&
  593 #endif
  594             (dchg == 0);
  595 
  596         /*
  597          * Check for exact addresses in the hash bucket.
  598          */
  599         /* IN_IFADDR_RLOCK(); */
  600         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  601                 /*
  602                  * If the address matches, verify that the packet
  603                  * arrived via the correct interface if checking is
  604                  * enabled.
  605                  */
  606                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  607                     (!checkif || ia->ia_ifp == ifp)) {
  608                         ifa_ref(&ia->ia_ifa);
  609                         /* IN_IFADDR_RUNLOCK(); */
  610                         goto ours;
  611                 }
  612         }
  613         /* IN_IFADDR_RUNLOCK(); */
  614 
  615         /*
  616          * Check for broadcast addresses.
  617          *
  618          * Only accept broadcast packets that arrive via the matching
  619          * interface.  Reception of forwarded directed broadcasts would
  620          * be handled via ip_forward() and ether_output() with the loopback
  621          * into the stack for SIMPLEX interfaces handled by ether_output().
  622          */
  623         if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
  624                 IF_ADDR_LOCK(ifp);
  625                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  626                         if (ifa->ifa_addr->sa_family != AF_INET)
  627                                 continue;
  628                         ia = ifatoia(ifa);
  629                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  630                             ip->ip_dst.s_addr) {
  631                                 ifa_ref(ifa);
  632                                 IF_ADDR_UNLOCK(ifp);
  633                                 goto ours;
  634                         }
  635                         if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
  636                                 ifa_ref(ifa);
  637                                 IF_ADDR_UNLOCK(ifp);
  638                                 goto ours;
  639                         }
  640 #ifdef BOOTP_COMPAT
  641                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
  642                                 ifa_ref(ifa);
  643                                 IF_ADDR_UNLOCK(ifp);
  644                                 goto ours;
  645                         }
  646 #endif
  647                 }
  648                 IF_ADDR_UNLOCK(ifp);
  649                 ia = NULL;
  650         }
  651         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  652         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  653                 IPSTAT_INC(ips_cantforward);
  654                 m_freem(m);
  655                 return;
  656         }
  657         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  658                 if (V_ip_mrouter) {
  659                         /*
  660                          * If we are acting as a multicast router, all
  661                          * incoming multicast packets are passed to the
  662                          * kernel-level multicast forwarding function.
  663                          * The packet is returned (relatively) intact; if
  664                          * ip_mforward() returns a non-zero value, the packet
  665                          * must be discarded, else it may be accepted below.
  666                          */
  667                         if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
  668                                 IPSTAT_INC(ips_cantforward);
  669                                 m_freem(m);
  670                                 return;
  671                         }
  672 
  673                         /*
  674                          * The process-level routing daemon needs to receive
  675                          * all multicast IGMP packets, whether or not this
  676                          * host belongs to their destination groups.
  677                          */
  678                         if (ip->ip_p == IPPROTO_IGMP)
  679                                 goto ours;
  680                         IPSTAT_INC(ips_forward);
  681                 }
  682                 /*
  683                  * Assume the packet is for us, to avoid prematurely taking
  684                  * a lock on the in_multi hash. Protocols must perform
  685                  * their own filtering and update statistics accordingly.
  686                  */
  687                 goto ours;
  688         }
  689         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  690                 goto ours;
  691         if (ip->ip_dst.s_addr == INADDR_ANY)
  692                 goto ours;
  693 
  694         /*
  695          * FAITH(Firewall Aided Internet Translator)
  696          */
  697         if (ifp && ifp->if_type == IFT_FAITH) {
  698                 if (V_ip_keepfaith) {
  699                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  700                                 goto ours;
  701                 }
  702                 m_freem(m);
  703                 return;
  704         }
  705 
  706         /*
  707          * Not for us; forward if possible and desirable.
  708          */
  709         if (V_ipforwarding == 0) {
  710                 IPSTAT_INC(ips_cantforward);
  711                 m_freem(m);
  712         } else {
  713 #ifdef IPSEC
  714                 if (ip_ipsec_fwd(m))
  715                         goto bad;
  716 #endif /* IPSEC */
  717                 ip_forward(m, dchg);
  718         }
  719         return;
  720 
  721 ours:
  722 #ifdef IPSTEALTH
  723         /*
  724          * IPSTEALTH: Process non-routing options only
  725          * if the packet is destined for us.
  726          */
  727         if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
  728                 if (ia != NULL)
  729                         ifa_free(&ia->ia_ifa);
  730                 return;
  731         }
  732 #endif /* IPSTEALTH */
  733 
  734         /* Count the packet in the ip address stats */
  735         if (ia != NULL) {
  736                 ia->ia_ifa.if_ipackets++;
  737                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  738                 ifa_free(&ia->ia_ifa);
  739         }
  740 
  741         /*
  742          * Attempt reassembly; if it succeeds, proceed.
  743          * ip_reass() will return a different mbuf.
  744          */
  745         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
  746                 m = ip_reass(m);
  747                 if (m == NULL)
  748                         return;
  749                 ip = mtod(m, struct ip *);
  750                 /* Get the header length of the reassembled packet */
  751                 hlen = ip->ip_hl << 2;
  752         }
  753 
  754         /*
  755          * Further protocols expect the packet length to be w/o the
  756          * IP header.
  757          */
  758         ip->ip_len -= hlen;
  759 
  760 #ifdef IPSEC
  761         /*
  762          * enforce IPsec policy checking if we are seeing last header.
  763          * note that we do not visit this with protocols with pcb layer
  764          * code - like udp/tcp/raw ip.
  765          */
  766         if (ip_ipsec_input(m))
  767                 goto bad;
  768 #endif /* IPSEC */
  769 
  770         /*
  771          * Switch out to protocol's input routine.
  772          */
  773         IPSTAT_INC(ips_delivered);
  774 
  775         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  776         return;
  777 bad:
  778         m_freem(m);
  779 }
  780 
  781 /*
  782  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  783  * max has slightly different semantics than the sysctl, for historical
  784  * reasons.
  785  */
  786 static void
  787 maxnipq_update(void)
  788 {
  789 
  790         /*
  791          * -1 for unlimited allocation.
  792          */
  793         if (V_maxnipq < 0)
  794                 uma_zone_set_max(V_ipq_zone, 0);
  795         /*
  796          * Positive number for specific bound.
  797          */
  798         if (V_maxnipq > 0)
  799                 uma_zone_set_max(V_ipq_zone, V_maxnipq);
  800         /*
  801          * Zero specifies no further fragment queue allocation -- set the
  802          * bound very low, but rely on implementation elsewhere to actually
  803          * prevent allocation and reclaim current queues.
  804          */
  805         if (V_maxnipq == 0)
  806                 uma_zone_set_max(V_ipq_zone, 1);
  807 }
  808 
  809 static void
  810 ipq_zone_change(void *tag)
  811 {
  812 
  813         if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
  814                 V_maxnipq = nmbclusters / 32;
  815                 maxnipq_update();
  816         }
  817 }
  818 
  819 static int
  820 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  821 {
  822         int error, i;
  823 
  824         i = V_maxnipq;
  825         error = sysctl_handle_int(oidp, &i, 0, req);
  826         if (error || !req->newptr)
  827                 return (error);
  828 
  829         /*
  830          * XXXRW: Might be a good idea to sanity check the argument and place
  831          * an extreme upper bound.
  832          */
  833         if (i < -1)
  834                 return (EINVAL);
  835         V_maxnipq = i;
  836         maxnipq_update();
  837         return (0);
  838 }
  839 
  840 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  841     NULL, 0, sysctl_maxnipq, "I",
  842     "Maximum number of IPv4 fragment reassembly queue entries");
  843 
  844 /*
  845  * Take incoming datagram fragment and try to reassemble it into
  846  * whole datagram.  If the argument is the first fragment or one
  847  * in between the function will return NULL and store the mbuf
  848  * in the fragment chain.  If the argument is the last fragment
  849  * the packet will be reassembled and the pointer to the new
  850  * mbuf returned for further processing.  Only m_tags attached
  851  * to the first packet/fragment are preserved.
  852  * The IP header is *NOT* adjusted out of iplen.
  853  */
  854 struct mbuf *
  855 ip_reass(struct mbuf *m)
  856 {
  857         struct ip *ip;
  858         struct mbuf *p, *q, *nq, *t;
  859         struct ipq *fp = NULL;
  860         struct ipqhead *head;
  861         int i, hlen, next;
  862         u_int8_t ecn, ecn0;
  863         u_short hash;
  864 
  865         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  866         if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
  867                 IPSTAT_INC(ips_fragments);
  868                 IPSTAT_INC(ips_fragdropped);
  869                 m_freem(m);
  870                 return (NULL);
  871         }
  872 
  873         ip = mtod(m, struct ip *);
  874         hlen = ip->ip_hl << 2;
  875 
  876         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  877         head = &V_ipq[hash];
  878         IPQ_LOCK();
  879 
  880         /*
  881          * Look for queue of fragments
  882          * of this datagram.
  883          */
  884         TAILQ_FOREACH(fp, head, ipq_list)
  885                 if (ip->ip_id == fp->ipq_id &&
  886                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  887                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  888 #ifdef MAC
  889                     mac_ipq_match(m, fp) &&
  890 #endif
  891                     ip->ip_p == fp->ipq_p)
  892                         goto found;
  893 
  894         fp = NULL;
  895 
  896         /*
  897          * Attempt to trim the number of allocated fragment queues if it
  898          * exceeds the administrative limit.
  899          */
  900         if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
  901                 /*
  902                  * drop something from the tail of the current queue
  903                  * before proceeding further
  904                  */
  905                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  906                 if (q == NULL) {   /* gak */
  907                         for (i = 0; i < IPREASS_NHASH; i++) {
  908                                 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
  909                                 if (r) {
  910                                         IPSTAT_ADD(ips_fragtimeout,
  911                                             r->ipq_nfrags);
  912                                         ip_freef(&V_ipq[i], r);
  913                                         break;
  914                                 }
  915                         }
  916                 } else {
  917                         IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
  918                         ip_freef(head, q);
  919                 }
  920         }
  921 
  922 found:
  923         /*
  924          * Adjust ip_len to not reflect header,
  925          * convert offset of this to bytes.
  926          */
  927         ip->ip_len -= hlen;
  928         if (ip->ip_off & IP_MF) {
  929                 /*
  930                  * Make sure that fragments have a data length
  931                  * that's a non-zero multiple of 8 bytes.
  932                  */
  933                 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
  934                         IPSTAT_INC(ips_toosmall); /* XXX */
  935                         goto dropfrag;
  936                 }
  937                 m->m_flags |= M_FRAG;
  938         } else
  939                 m->m_flags &= ~M_FRAG;
  940         ip->ip_off <<= 3;
  941 
  942 
  943         /*
  944          * Attempt reassembly; if it succeeds, proceed.
  945          * ip_reass() will return a different mbuf.
  946          */
  947         IPSTAT_INC(ips_fragments);
  948         m->m_pkthdr.header = ip;
  949 
  950         /* Previous ip_reass() started here. */
  951         /*
  952          * Presence of header sizes in mbufs
  953          * would confuse code below.
  954          */
  955         m->m_data += hlen;
  956         m->m_len -= hlen;
  957 
  958         /*
  959          * If first fragment to arrive, create a reassembly queue.
  960          */
  961         if (fp == NULL) {
  962                 fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  963                 if (fp == NULL)
  964                         goto dropfrag;
  965 #ifdef MAC
  966                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  967                         uma_zfree(V_ipq_zone, fp);
  968                         fp = NULL;
  969                         goto dropfrag;
  970                 }
  971                 mac_ipq_create(m, fp);
  972 #endif
  973                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  974                 V_nipq++;
  975                 fp->ipq_nfrags = 1;
  976                 fp->ipq_ttl = IPFRAGTTL;
  977                 fp->ipq_p = ip->ip_p;
  978                 fp->ipq_id = ip->ip_id;
  979                 fp->ipq_src = ip->ip_src;
  980                 fp->ipq_dst = ip->ip_dst;
  981                 fp->ipq_frags = m;
  982                 m->m_nextpkt = NULL;
  983                 goto done;
  984         } else {
  985                 fp->ipq_nfrags++;
  986 #ifdef MAC
  987                 mac_ipq_update(m, fp);
  988 #endif
  989         }
  990 
  991 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
  992 
  993         /*
  994          * Handle ECN by comparing this segment with the first one;
  995          * if CE is set, do not lose CE.
  996          * drop if CE and not-ECT are mixed for the same packet.
  997          */
  998         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  999         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
 1000         if (ecn == IPTOS_ECN_CE) {
 1001                 if (ecn0 == IPTOS_ECN_NOTECT)
 1002                         goto dropfrag;
 1003                 if (ecn0 != IPTOS_ECN_CE)
 1004                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
 1005         }
 1006         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
 1007                 goto dropfrag;
 1008 
 1009         /*
 1010          * Find a segment which begins after this one does.
 1011          */
 1012         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
 1013                 if (GETIP(q)->ip_off > ip->ip_off)
 1014                         break;
 1015 
 1016         /*
 1017          * If there is a preceding segment, it may provide some of
 1018          * our data already.  If so, drop the data from the incoming
 1019          * segment.  If it provides all of our data, drop us, otherwise
 1020          * stick new segment in the proper place.
 1021          *
 1022          * If some of the data is dropped from the the preceding
 1023          * segment, then it's checksum is invalidated.
 1024          */
 1025         if (p) {
 1026                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
 1027                 if (i > 0) {
 1028                         if (i >= ip->ip_len)
 1029                                 goto dropfrag;
 1030                         m_adj(m, i);
 1031                         m->m_pkthdr.csum_flags = 0;
 1032                         ip->ip_off += i;
 1033                         ip->ip_len -= i;
 1034                 }
 1035                 m->m_nextpkt = p->m_nextpkt;
 1036                 p->m_nextpkt = m;
 1037         } else {
 1038                 m->m_nextpkt = fp->ipq_frags;
 1039                 fp->ipq_frags = m;
 1040         }
 1041 
 1042         /*
 1043          * While we overlap succeeding segments trim them or,
 1044          * if they are completely covered, dequeue them.
 1045          */
 1046         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
 1047              q = nq) {
 1048                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
 1049                 if (i < GETIP(q)->ip_len) {
 1050                         GETIP(q)->ip_len -= i;
 1051                         GETIP(q)->ip_off += i;
 1052                         m_adj(q, i);
 1053                         q->m_pkthdr.csum_flags = 0;
 1054                         break;
 1055                 }
 1056                 nq = q->m_nextpkt;
 1057                 m->m_nextpkt = nq;
 1058                 IPSTAT_INC(ips_fragdropped);
 1059                 fp->ipq_nfrags--;
 1060                 m_freem(q);
 1061         }
 1062 
 1063         /*
 1064          * Check for complete reassembly and perform frag per packet
 1065          * limiting.
 1066          *
 1067          * Frag limiting is performed here so that the nth frag has
 1068          * a chance to complete the packet before we drop the packet.
 1069          * As a result, n+1 frags are actually allowed per packet, but
 1070          * only n will ever be stored. (n = maxfragsperpacket.)
 1071          *
 1072          */
 1073         next = 0;
 1074         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
 1075                 if (GETIP(q)->ip_off != next) {
 1076                         if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1077                                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1078                                 ip_freef(head, fp);
 1079                         }
 1080                         goto done;
 1081                 }
 1082                 next += GETIP(q)->ip_len;
 1083         }
 1084         /* Make sure the last packet didn't have the IP_MF flag */
 1085         if (p->m_flags & M_FRAG) {
 1086                 if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1087                         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1088                         ip_freef(head, fp);
 1089                 }
 1090                 goto done;
 1091         }
 1092 
 1093         /*
 1094          * Reassembly is complete.  Make sure the packet is a sane size.
 1095          */
 1096         q = fp->ipq_frags;
 1097         ip = GETIP(q);
 1098         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
 1099                 IPSTAT_INC(ips_toolong);
 1100                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1101                 ip_freef(head, fp);
 1102                 goto done;
 1103         }
 1104 
 1105         /*
 1106          * Concatenate fragments.
 1107          */
 1108         m = q;
 1109         t = m->m_next;
 1110         m->m_next = NULL;
 1111         m_cat(m, t);
 1112         nq = q->m_nextpkt;
 1113         q->m_nextpkt = NULL;
 1114         for (q = nq; q != NULL; q = nq) {
 1115                 nq = q->m_nextpkt;
 1116                 q->m_nextpkt = NULL;
 1117                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1118                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1119                 m_cat(m, q);
 1120         }
 1121         /*
 1122          * In order to do checksumming faster we do 'end-around carry' here
 1123          * (and not in for{} loop), though it implies we are not going to
 1124          * reassemble more than 64k fragments.
 1125          */
 1126         m->m_pkthdr.csum_data =
 1127             (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
 1128 #ifdef MAC
 1129         mac_ipq_reassemble(fp, m);
 1130         mac_ipq_destroy(fp);
 1131 #endif
 1132 
 1133         /*
 1134          * Create header for new ip packet by modifying header of first
 1135          * packet;  dequeue and discard fragment reassembly header.
 1136          * Make header visible.
 1137          */
 1138         ip->ip_len = (ip->ip_hl << 2) + next;
 1139         ip->ip_src = fp->ipq_src;
 1140         ip->ip_dst = fp->ipq_dst;
 1141         TAILQ_REMOVE(head, fp, ipq_list);
 1142         V_nipq--;
 1143         uma_zfree(V_ipq_zone, fp);
 1144         m->m_len += (ip->ip_hl << 2);
 1145         m->m_data -= (ip->ip_hl << 2);
 1146         /* some debugging cruft by sklower, below, will go away soon */
 1147         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1148                 m_fixhdr(m);
 1149         IPSTAT_INC(ips_reassembled);
 1150         IPQ_UNLOCK();
 1151         return (m);
 1152 
 1153 dropfrag:
 1154         IPSTAT_INC(ips_fragdropped);
 1155         if (fp != NULL)
 1156                 fp->ipq_nfrags--;
 1157         m_freem(m);
 1158 done:
 1159         IPQ_UNLOCK();
 1160         return (NULL);
 1161 
 1162 #undef GETIP
 1163 }
 1164 
 1165 /*
 1166  * Free a fragment reassembly header and all
 1167  * associated datagrams.
 1168  */
 1169 static void
 1170 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1171 {
 1172         struct mbuf *q;
 1173 
 1174         IPQ_LOCK_ASSERT();
 1175 
 1176         while (fp->ipq_frags) {
 1177                 q = fp->ipq_frags;
 1178                 fp->ipq_frags = q->m_nextpkt;
 1179                 m_freem(q);
 1180         }
 1181         TAILQ_REMOVE(fhp, fp, ipq_list);
 1182         uma_zfree(V_ipq_zone, fp);
 1183         V_nipq--;
 1184 }
 1185 
 1186 /*
 1187  * IP timer processing;
 1188  * if a timer expires on a reassembly
 1189  * queue, discard it.
 1190  */
 1191 void
 1192 ip_slowtimo(void)
 1193 {
 1194         VNET_ITERATOR_DECL(vnet_iter);
 1195         struct ipq *fp;
 1196         int i;
 1197 
 1198         VNET_LIST_RLOCK_NOSLEEP();
 1199         IPQ_LOCK();
 1200         VNET_FOREACH(vnet_iter) {
 1201                 CURVNET_SET(vnet_iter);
 1202                 for (i = 0; i < IPREASS_NHASH; i++) {
 1203                         for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
 1204                                 struct ipq *fpp;
 1205 
 1206                                 fpp = fp;
 1207                                 fp = TAILQ_NEXT(fp, ipq_list);
 1208                                 if(--fpp->ipq_ttl == 0) {
 1209                                         IPSTAT_ADD(ips_fragtimeout,
 1210                                             fpp->ipq_nfrags);
 1211                                         ip_freef(&V_ipq[i], fpp);
 1212                                 }
 1213                         }
 1214                 }
 1215                 /*
 1216                  * If we are over the maximum number of fragments
 1217                  * (due to the limit being lowered), drain off
 1218                  * enough to get down to the new limit.
 1219                  */
 1220                 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
 1221                         for (i = 0; i < IPREASS_NHASH; i++) {
 1222                                 while (V_nipq > V_maxnipq &&
 1223                                     !TAILQ_EMPTY(&V_ipq[i])) {
 1224                                         IPSTAT_ADD(ips_fragdropped,
 1225                                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1226                                         ip_freef(&V_ipq[i],
 1227                                             TAILQ_FIRST(&V_ipq[i]));
 1228                                 }
 1229                         }
 1230                 }
 1231                 CURVNET_RESTORE();
 1232         }
 1233         IPQ_UNLOCK();
 1234         VNET_LIST_RUNLOCK_NOSLEEP();
 1235 }
 1236 
 1237 /*
 1238  * Drain off all datagram fragments.
 1239  */
 1240 void
 1241 ip_drain(void)
 1242 {
 1243         VNET_ITERATOR_DECL(vnet_iter);
 1244         int     i;
 1245 
 1246         VNET_LIST_RLOCK_NOSLEEP();
 1247         IPQ_LOCK();
 1248         VNET_FOREACH(vnet_iter) {
 1249                 CURVNET_SET(vnet_iter);
 1250                 for (i = 0; i < IPREASS_NHASH; i++) {
 1251                         while(!TAILQ_EMPTY(&V_ipq[i])) {
 1252                                 IPSTAT_ADD(ips_fragdropped,
 1253                                     TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1254                                 ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
 1255                         }
 1256                 }
 1257                 CURVNET_RESTORE();
 1258         }
 1259         IPQ_UNLOCK();
 1260         VNET_LIST_RUNLOCK_NOSLEEP();
 1261         in_rtqdrain();
 1262 }
 1263 
 1264 /*
 1265  * The protocol to be inserted into ip_protox[] must be already registered
 1266  * in inetsw[], either statically or through pf_proto_register().
 1267  */
 1268 int
 1269 ipproto_register(u_char ipproto)
 1270 {
 1271         struct protosw *pr;
 1272 
 1273         /* Sanity checks. */
 1274         if (ipproto == 0)
 1275                 return (EPROTONOSUPPORT);
 1276 
 1277         /*
 1278          * The protocol slot must not be occupied by another protocol
 1279          * already.  An index pointing to IPPROTO_RAW is unused.
 1280          */
 1281         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1282         if (pr == NULL)
 1283                 return (EPFNOSUPPORT);
 1284         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1285                 return (EEXIST);
 1286 
 1287         /* Find the protocol position in inetsw[] and set the index. */
 1288         for (pr = inetdomain.dom_protosw;
 1289              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1290                 if (pr->pr_domain->dom_family == PF_INET &&
 1291                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1292                         /* Be careful to only index valid IP protocols. */
 1293                         if (pr->pr_protocol < IPPROTO_MAX) {
 1294                                 ip_protox[pr->pr_protocol] = pr - inetsw;
 1295                                 return (0);
 1296                         } else
 1297                                 return (EINVAL);
 1298                 }
 1299         }
 1300         return (EPROTONOSUPPORT);
 1301 }
 1302 
 1303 int
 1304 ipproto_unregister(u_char ipproto)
 1305 {
 1306         struct protosw *pr;
 1307 
 1308         /* Sanity checks. */
 1309         if (ipproto == 0)
 1310                 return (EPROTONOSUPPORT);
 1311 
 1312         /* Check if the protocol was indeed registered. */
 1313         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1314         if (pr == NULL)
 1315                 return (EPFNOSUPPORT);
 1316         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1317                 return (ENOENT);
 1318 
 1319         /* Reset the protocol slot to IPPROTO_RAW. */
 1320         ip_protox[ipproto] = pr - inetsw;
 1321         return (0);
 1322 }
 1323 
 1324 /*
 1325  * Given address of next destination (final or next hop), return (referenced)
 1326  * internet address info of interface to be used to get there.
 1327  */
 1328 struct in_ifaddr *
 1329 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1330 {
 1331         struct route sro;
 1332         struct sockaddr_in *sin;
 1333         struct in_ifaddr *ia;
 1334 
 1335         bzero(&sro, sizeof(sro));
 1336         sin = (struct sockaddr_in *)&sro.ro_dst;
 1337         sin->sin_family = AF_INET;
 1338         sin->sin_len = sizeof(*sin);
 1339         sin->sin_addr = dst;
 1340         in_rtalloc_ign(&sro, 0, fibnum);
 1341 
 1342         if (sro.ro_rt == NULL)
 1343                 return (NULL);
 1344 
 1345         ia = ifatoia(sro.ro_rt->rt_ifa);
 1346         ifa_ref(&ia->ia_ifa);
 1347         RTFREE(sro.ro_rt);
 1348         return (ia);
 1349 }
 1350 
 1351 u_char inetctlerrmap[PRC_NCMDS] = {
 1352         0,              0,              0,              0,
 1353         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1354         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1355         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1356         0,              0,              EHOSTUNREACH,   0,
 1357         ENOPROTOOPT,    ECONNREFUSED
 1358 };
 1359 
 1360 /*
 1361  * Forward a packet.  If some error occurs return the sender
 1362  * an icmp packet.  Note we can't always generate a meaningful
 1363  * icmp message because icmp doesn't have a large enough repertoire
 1364  * of codes and types.
 1365  *
 1366  * If not forwarding, just drop the packet.  This could be confusing
 1367  * if ipforwarding was zero but some routing protocol was advancing
 1368  * us as a gateway to somewhere.  However, we must let the routing
 1369  * protocol deal with that.
 1370  *
 1371  * The srcrt parameter indicates whether the packet is being forwarded
 1372  * via a source route.
 1373  */
 1374 void
 1375 ip_forward(struct mbuf *m, int srcrt)
 1376 {
 1377         struct ip *ip = mtod(m, struct ip *);
 1378         struct in_ifaddr *ia;
 1379         struct mbuf *mcopy;
 1380         struct in_addr dest;
 1381         struct route ro;
 1382         int error, type = 0, code = 0, mtu = 0;
 1383 
 1384         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1385                 IPSTAT_INC(ips_cantforward);
 1386                 m_freem(m);
 1387                 return;
 1388         }
 1389 #ifdef IPSTEALTH
 1390         if (!V_ipstealth) {
 1391 #endif
 1392                 if (ip->ip_ttl <= IPTTLDEC) {
 1393                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1394                             0, 0);
 1395                         return;
 1396                 }
 1397 #ifdef IPSTEALTH
 1398         }
 1399 #endif
 1400 
 1401         ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
 1402 #ifndef IPSEC
 1403         /*
 1404          * 'ia' may be NULL if there is no route for this destination.
 1405          * In case of IPsec, Don't discard it just yet, but pass it to
 1406          * ip_output in case of outgoing IPsec policy.
 1407          */
 1408         if (!srcrt && ia == NULL) {
 1409                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1410                 return;
 1411         }
 1412 #endif
 1413 
 1414         /*
 1415          * Save the IP header and at most 8 bytes of the payload,
 1416          * in case we need to generate an ICMP message to the src.
 1417          *
 1418          * XXX this can be optimized a lot by saving the data in a local
 1419          * buffer on the stack (72 bytes at most), and only allocating the
 1420          * mbuf if really necessary. The vast majority of the packets
 1421          * are forwarded without having to send an ICMP back (either
 1422          * because unnecessary, or because rate limited), so we are
 1423          * really we are wasting a lot of work here.
 1424          *
 1425          * We don't use m_copy() because it might return a reference
 1426          * to a shared cluster. Both this function and ip_output()
 1427          * assume exclusive access to the IP header in `m', so any
 1428          * data in a cluster may change before we reach icmp_error().
 1429          */
 1430         MGETHDR(mcopy, M_DONTWAIT, m->m_type);
 1431         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
 1432                 /*
 1433                  * It's probably ok if the pkthdr dup fails (because
 1434                  * the deep copy of the tag chain failed), but for now
 1435                  * be conservative and just discard the copy since
 1436                  * code below may some day want the tags.
 1437                  */
 1438                 m_free(mcopy);
 1439                 mcopy = NULL;
 1440         }
 1441         if (mcopy != NULL) {
 1442                 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
 1443                 mcopy->m_pkthdr.len = mcopy->m_len;
 1444                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1445         }
 1446 
 1447 #ifdef IPSTEALTH
 1448         if (!V_ipstealth) {
 1449 #endif
 1450                 ip->ip_ttl -= IPTTLDEC;
 1451 #ifdef IPSTEALTH
 1452         }
 1453 #endif
 1454 
 1455         /*
 1456          * If forwarding packet using same interface that it came in on,
 1457          * perhaps should send a redirect to sender to shortcut a hop.
 1458          * Only send redirect if source is sending directly to us,
 1459          * and if packet was not source routed (or has any options).
 1460          * Also, don't send redirect if forwarding using a default route
 1461          * or a route modified by a redirect.
 1462          */
 1463         dest.s_addr = 0;
 1464         if (!srcrt && V_ipsendredirects &&
 1465             ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1466                 struct sockaddr_in *sin;
 1467                 struct rtentry *rt;
 1468 
 1469                 bzero(&ro, sizeof(ro));
 1470                 sin = (struct sockaddr_in *)&ro.ro_dst;
 1471                 sin->sin_family = AF_INET;
 1472                 sin->sin_len = sizeof(*sin);
 1473                 sin->sin_addr = ip->ip_dst;
 1474                 in_rtalloc_ign(&ro, 0, M_GETFIB(m));
 1475 
 1476                 rt = ro.ro_rt;
 1477 
 1478                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1479                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1480 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1481                         u_long src = ntohl(ip->ip_src.s_addr);
 1482 
 1483                         if (RTA(rt) &&
 1484                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1485                                 if (rt->rt_flags & RTF_GATEWAY)
 1486                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1487                                 else
 1488                                         dest.s_addr = ip->ip_dst.s_addr;
 1489                                 /* Router requirements says to only send host redirects */
 1490                                 type = ICMP_REDIRECT;
 1491                                 code = ICMP_REDIRECT_HOST;
 1492                         }
 1493                 }
 1494                 if (rt)
 1495                         RTFREE(rt);
 1496         }
 1497 
 1498         /*
 1499          * Try to cache the route MTU from ip_output so we can consider it for
 1500          * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
 1501          */
 1502         bzero(&ro, sizeof(ro));
 1503 
 1504         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1505 
 1506         if (error == EMSGSIZE && ro.ro_rt)
 1507                 mtu = ro.ro_rt->rt_rmx.rmx_mtu;
 1508         if (ro.ro_rt)
 1509                 RTFREE(ro.ro_rt);
 1510 
 1511         if (error)
 1512                 IPSTAT_INC(ips_cantforward);
 1513         else {
 1514                 IPSTAT_INC(ips_forward);
 1515                 if (type)
 1516                         IPSTAT_INC(ips_redirectsent);
 1517                 else {
 1518                         if (mcopy)
 1519                                 m_freem(mcopy);
 1520                         if (ia != NULL)
 1521                                 ifa_free(&ia->ia_ifa);
 1522                         return;
 1523                 }
 1524         }
 1525         if (mcopy == NULL) {
 1526                 if (ia != NULL)
 1527                         ifa_free(&ia->ia_ifa);
 1528                 return;
 1529         }
 1530 
 1531         switch (error) {
 1532 
 1533         case 0:                         /* forwarded, but need redirect */
 1534                 /* type, code set above */
 1535                 break;
 1536 
 1537         case ENETUNREACH:
 1538         case EHOSTUNREACH:
 1539         case ENETDOWN:
 1540         case EHOSTDOWN:
 1541         default:
 1542                 type = ICMP_UNREACH;
 1543                 code = ICMP_UNREACH_HOST;
 1544                 break;
 1545 
 1546         case EMSGSIZE:
 1547                 type = ICMP_UNREACH;
 1548                 code = ICMP_UNREACH_NEEDFRAG;
 1549 
 1550 #ifdef IPSEC
 1551                 /* 
 1552                  * If IPsec is configured for this path,
 1553                  * override any possibly mtu value set by ip_output.
 1554                  */ 
 1555                 mtu = ip_ipsec_mtu(m, mtu);
 1556 #endif /* IPSEC */
 1557                 /*
 1558                  * If the MTU was set before make sure we are below the
 1559                  * interface MTU.
 1560                  * If the MTU wasn't set before use the interface mtu or
 1561                  * fall back to the next smaller mtu step compared to the
 1562                  * current packet size.
 1563                  */
 1564                 if (mtu != 0) {
 1565                         if (ia != NULL)
 1566                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1567                 } else {
 1568                         if (ia != NULL)
 1569                                 mtu = ia->ia_ifp->if_mtu;
 1570                         else
 1571                                 mtu = ip_next_mtu(ip->ip_len, 0);
 1572                 }
 1573                 IPSTAT_INC(ips_cantfrag);
 1574                 break;
 1575 
 1576         case ENOBUFS:
 1577                 /*
 1578                  * A router should not generate ICMP_SOURCEQUENCH as
 1579                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1580                  * Source quench could be a big problem under DoS attacks,
 1581                  * or if the underlying interface is rate-limited.
 1582                  * Those who need source quench packets may re-enable them
 1583                  * via the net.inet.ip.sendsourcequench sysctl.
 1584                  */
 1585                 if (V_ip_sendsourcequench == 0) {
 1586                         m_freem(mcopy);
 1587                         if (ia != NULL)
 1588                                 ifa_free(&ia->ia_ifa);
 1589                         return;
 1590                 } else {
 1591                         type = ICMP_SOURCEQUENCH;
 1592                         code = 0;
 1593                 }
 1594                 break;
 1595 
 1596         case EACCES:                    /* ipfw denied packet */
 1597                 m_freem(mcopy);
 1598                 if (ia != NULL)
 1599                         ifa_free(&ia->ia_ifa);
 1600                 return;
 1601         }
 1602         if (ia != NULL)
 1603                 ifa_free(&ia->ia_ifa);
 1604         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1605 }
 1606 
 1607 void
 1608 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1609     struct mbuf *m)
 1610 {
 1611 
 1612         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1613                 struct bintime bt;
 1614 
 1615                 bintime(&bt);
 1616                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1617                         *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
 1618                         SCM_BINTIME, SOL_SOCKET);
 1619                         if (*mp)
 1620                                 mp = &(*mp)->m_next;
 1621                 }
 1622                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1623                         struct timeval tv;
 1624 
 1625                         bintime2timeval(&bt, &tv);
 1626                         *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
 1627                                 SCM_TIMESTAMP, SOL_SOCKET);
 1628                         if (*mp)
 1629                                 mp = &(*mp)->m_next;
 1630                 }
 1631         }
 1632         if (inp->inp_flags & INP_RECVDSTADDR) {
 1633                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
 1634                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1635                 if (*mp)
 1636                         mp = &(*mp)->m_next;
 1637         }
 1638         if (inp->inp_flags & INP_RECVTTL) {
 1639                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
 1640                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1641                 if (*mp)
 1642                         mp = &(*mp)->m_next;
 1643         }
 1644 #ifdef notyet
 1645         /* XXX
 1646          * Moving these out of udp_input() made them even more broken
 1647          * than they already were.
 1648          */
 1649         /* options were tossed already */
 1650         if (inp->inp_flags & INP_RECVOPTS) {
 1651                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
 1652                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1653                 if (*mp)
 1654                         mp = &(*mp)->m_next;
 1655         }
 1656         /* ip_srcroute doesn't do what we want here, need to fix */
 1657         if (inp->inp_flags & INP_RECVRETOPTS) {
 1658                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
 1659                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1660                 if (*mp)
 1661                         mp = &(*mp)->m_next;
 1662         }
 1663 #endif
 1664         if (inp->inp_flags & INP_RECVIF) {
 1665                 struct ifnet *ifp;
 1666                 struct sdlbuf {
 1667                         struct sockaddr_dl sdl;
 1668                         u_char  pad[32];
 1669                 } sdlbuf;
 1670                 struct sockaddr_dl *sdp;
 1671                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1672 
 1673                 if (((ifp = m->m_pkthdr.rcvif)) 
 1674                 && ( ifp->if_index && (ifp->if_index <= V_if_index))) {
 1675                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1676                         /*
 1677                          * Change our mind and don't try copy.
 1678                          */
 1679                         if ((sdp->sdl_family != AF_LINK)
 1680                         || (sdp->sdl_len > sizeof(sdlbuf))) {
 1681                                 goto makedummy;
 1682                         }
 1683                         bcopy(sdp, sdl2, sdp->sdl_len);
 1684                 } else {
 1685 makedummy:      
 1686                         sdl2->sdl_len
 1687                                 = offsetof(struct sockaddr_dl, sdl_data[0]);
 1688                         sdl2->sdl_family = AF_LINK;
 1689                         sdl2->sdl_index = 0;
 1690                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1691                 }
 1692                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
 1693                         IP_RECVIF, IPPROTO_IP);
 1694                 if (*mp)
 1695                         mp = &(*mp)->m_next;
 1696         }
 1697 }
 1698 
 1699 /*
 1700  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1701  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1702  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1703  * compiled.
 1704  */
 1705 int
 1706 ip_rsvp_init(struct socket *so)
 1707 {
 1708 
 1709         if (so->so_type != SOCK_RAW ||
 1710             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1711                 return EOPNOTSUPP;
 1712 
 1713         if (V_ip_rsvpd != NULL)
 1714                 return EADDRINUSE;
 1715 
 1716         V_ip_rsvpd = so;
 1717         /*
 1718          * This may seem silly, but we need to be sure we don't over-increment
 1719          * the RSVP counter, in case something slips up.
 1720          */
 1721         if (!V_ip_rsvp_on) {
 1722                 V_ip_rsvp_on = 1;
 1723                 V_rsvp_on++;
 1724         }
 1725 
 1726         return 0;
 1727 }
 1728 
 1729 int
 1730 ip_rsvp_done(void)
 1731 {
 1732 
 1733         V_ip_rsvpd = NULL;
 1734         /*
 1735          * This may seem silly, but we need to be sure we don't over-decrement
 1736          * the RSVP counter, in case something slips up.
 1737          */
 1738         if (V_ip_rsvp_on) {
 1739                 V_ip_rsvp_on = 0;
 1740                 V_rsvp_on--;
 1741         }
 1742         return 0;
 1743 }
 1744 
 1745 void
 1746 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1747 {
 1748 
 1749         if (rsvp_input_p) { /* call the real one if loaded */
 1750                 rsvp_input_p(m, off);
 1751                 return;
 1752         }
 1753 
 1754         /* Can still get packets with rsvp_on = 0 if there is a local member
 1755          * of the group to which the RSVP packet is addressed.  But in this
 1756          * case we want to throw the packet away.
 1757          */
 1758         
 1759         if (!V_rsvp_on) {
 1760                 m_freem(m);
 1761                 return;
 1762         }
 1763 
 1764         if (V_ip_rsvpd != NULL) { 
 1765                 rip_input(m, off);
 1766                 return;
 1767         }
 1768         /* Drop the packet */
 1769         m_freem(m);
 1770 }

Cache object: 1bb138d341bfbe093b138351ca15b188


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.