The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/8.1/sys/netinet/ip_input.c 207695 2010-05-06 06:44:19Z bz $");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_route.h"
   40 #include "opt_carp.h"
   41 
   42 #include <sys/param.h>
   43 #include <sys/systm.h>
   44 #include <sys/callout.h>
   45 #include <sys/mbuf.h>
   46 #include <sys/malloc.h>
   47 #include <sys/domain.h>
   48 #include <sys/protosw.h>
   49 #include <sys/socket.h>
   50 #include <sys/time.h>
   51 #include <sys/kernel.h>
   52 #include <sys/lock.h>
   53 #include <sys/rwlock.h>
   54 #include <sys/syslog.h>
   55 #include <sys/sysctl.h>
   56 
   57 #include <net/pfil.h>
   58 #include <net/if.h>
   59 #include <net/if_types.h>
   60 #include <net/if_var.h>
   61 #include <net/if_dl.h>
   62 #include <net/route.h>
   63 #include <net/netisr.h>
   64 #include <net/vnet.h>
   65 #include <net/flowtable.h>
   66 
   67 #include <netinet/in.h>
   68 #include <netinet/in_systm.h>
   69 #include <netinet/in_var.h>
   70 #include <netinet/ip.h>
   71 #include <netinet/in_pcb.h>
   72 #include <netinet/ip_var.h>
   73 #include <netinet/ip_fw.h>
   74 #include <netinet/ip_icmp.h>
   75 #include <netinet/ip_options.h>
   76 #include <machine/in_cksum.h>
   77 #ifdef DEV_CARP
   78 #include <netinet/ip_carp.h>
   79 #endif
   80 #ifdef IPSEC
   81 #include <netinet/ip_ipsec.h>
   82 #endif /* IPSEC */
   83 
   84 #include <sys/socketvar.h>
   85 
   86 #include <security/mac/mac_framework.h>
   87 
   88 #ifdef CTASSERT
   89 CTASSERT(sizeof(struct ip) == 20);
   90 #endif
   91 
   92 struct  rwlock in_ifaddr_lock;
   93 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
   94 
   95 VNET_DEFINE(int, rsvp_on);
   96 
   97 VNET_DEFINE(int, ipforwarding);
   98 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   99     &VNET_NAME(ipforwarding), 0,
  100     "Enable IP forwarding between interfaces");
  101 
  102 static VNET_DEFINE(int, ipsendredirects) = 1;   /* XXX */
  103 #define V_ipsendredirects       VNET(ipsendredirects)
  104 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
  105     &VNET_NAME(ipsendredirects), 0,
  106     "Enable sending IP redirects");
  107 
  108 VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
  109 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
  110     &VNET_NAME(ip_defttl), 0,
  111     "Maximum TTL on IP packets");
  112 
  113 static VNET_DEFINE(int, ip_keepfaith);
  114 #define V_ip_keepfaith          VNET(ip_keepfaith)
  115 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  116     &VNET_NAME(ip_keepfaith), 0,
  117     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  118 
  119 static VNET_DEFINE(int, ip_sendsourcequench);
  120 #define V_ip_sendsourcequench   VNET(ip_sendsourcequench)
  121 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  122     &VNET_NAME(ip_sendsourcequench), 0,
  123     "Enable the transmission of source quench packets");
  124 
  125 VNET_DEFINE(int, ip_do_randomid);
  126 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  127     &VNET_NAME(ip_do_randomid), 0,
  128     "Assign random ip_id values");
  129 
  130 /*
  131  * XXX - Setting ip_checkinterface mostly implements the receive side of
  132  * the Strong ES model described in RFC 1122, but since the routing table
  133  * and transmit implementation do not implement the Strong ES model,
  134  * setting this to 1 results in an odd hybrid.
  135  *
  136  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  137  * to translate the destination address to another local interface.
  138  *
  139  * XXX - ip_checkinterface must be disabled if you add IP aliases
  140  * to the loopback interface instead of the interface where the
  141  * packets for those addresses are received.
  142  */
  143 static VNET_DEFINE(int, ip_checkinterface);
  144 #define V_ip_checkinterface     VNET(ip_checkinterface)
  145 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  146     &VNET_NAME(ip_checkinterface), 0,
  147     "Verify packet arrives on correct interface");
  148 
  149 VNET_DEFINE(struct pfil_head, inet_pfil_hook);  /* Packet filter hooks */
  150 
  151 static struct netisr_handler ip_nh = {
  152         .nh_name = "ip",
  153         .nh_handler = ip_input,
  154         .nh_proto = NETISR_IP,
  155         .nh_policy = NETISR_POLICY_FLOW,
  156 };
  157 
  158 extern  struct domain inetdomain;
  159 extern  struct protosw inetsw[];
  160 u_char  ip_protox[IPPROTO_MAX];
  161 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
  162 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
  163 VNET_DEFINE(u_long, in_ifaddrhmask);            /* mask for hash table */
  164 
  165 VNET_DEFINE(struct ipstat, ipstat);
  166 SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
  167     &VNET_NAME(ipstat), ipstat,
  168     "IP statistics (struct ipstat, netinet/ip_var.h)");
  169 
  170 static VNET_DEFINE(uma_zone_t, ipq_zone);
  171 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
  172 static struct mtx ipqlock;
  173 
  174 #define V_ipq_zone              VNET(ipq_zone)
  175 #define V_ipq                   VNET(ipq)
  176 
  177 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  178 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  179 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  180 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  181 
  182 static void     maxnipq_update(void);
  183 static void     ipq_zone_change(void *);
  184 static void     ip_drain_locked(void);
  185 
  186 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
  187 static VNET_DEFINE(int, nipq);                  /* Total # of reass queues */
  188 #define V_maxnipq               VNET(maxnipq)
  189 #define V_nipq                  VNET(nipq)
  190 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  191     &VNET_NAME(nipq), 0,
  192     "Current number of IPv4 fragment reassembly queue entries");
  193 
  194 static VNET_DEFINE(int, maxfragsperpacket);
  195 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  196 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  197     &VNET_NAME(maxfragsperpacket), 0,
  198     "Maximum number of IPv4 fragments allowed per packet");
  199 
  200 struct callout  ipport_tick_callout;
  201 
  202 #ifdef IPCTL_DEFMTU
  203 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  204     &ip_mtu, 0, "Default MTU");
  205 #endif
  206 
  207 #ifdef IPSTEALTH
  208 VNET_DEFINE(int, ipstealth);
  209 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  210     &VNET_NAME(ipstealth), 0,
  211     "IP stealth mode, no TTL decrementation on forwarding");
  212 #endif
  213 
  214 #ifdef FLOWTABLE
  215 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
  216 VNET_DEFINE(struct flowtable *, ip_ft);
  217 #define V_ip_output_flowtable_size      VNET(ip_output_flowtable_size)
  218 
  219 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
  220     &VNET_NAME(ip_output_flowtable_size), 2048,
  221     "number of entries in the per-cpu output flow caches");
  222 #endif
  223 
  224 VNET_DEFINE(int, fw_one_pass) = 1;
  225 
  226 static void     ip_freef(struct ipqhead *, struct ipq *);
  227 
  228 /*
  229  * Kernel module interface for updating ipstat.  The argument is an index
  230  * into ipstat treated as an array of u_long.  While this encodes the general
  231  * layout of ipstat into the caller, it doesn't encode its location, so that
  232  * future changes to add, for example, per-CPU stats support won't cause
  233  * binary compatibility problems for kernel modules.
  234  */
  235 void
  236 kmod_ipstat_inc(int statnum)
  237 {
  238 
  239         (*((u_long *)&V_ipstat + statnum))++;
  240 }
  241 
  242 void
  243 kmod_ipstat_dec(int statnum)
  244 {
  245 
  246         (*((u_long *)&V_ipstat + statnum))--;
  247 }
  248 
  249 static int
  250 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
  251 {
  252         int error, qlimit;
  253 
  254         netisr_getqlimit(&ip_nh, &qlimit);
  255         error = sysctl_handle_int(oidp, &qlimit, 0, req);
  256         if (error || !req->newptr)
  257                 return (error);
  258         if (qlimit < 1)
  259                 return (EINVAL);
  260         return (netisr_setqlimit(&ip_nh, qlimit));
  261 }
  262 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
  263     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
  264     "Maximum size of the IP input queue");
  265 
  266 static int
  267 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
  268 {
  269         u_int64_t qdrops_long;
  270         int error, qdrops;
  271 
  272         netisr_getqdrops(&ip_nh, &qdrops_long);
  273         qdrops = qdrops_long;
  274         error = sysctl_handle_int(oidp, &qdrops, 0, req);
  275         if (error || !req->newptr)
  276                 return (error);
  277         if (qdrops != 0)
  278                 return (EINVAL);
  279         netisr_clearqdrops(&ip_nh);
  280         return (0);
  281 }
  282 
  283 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
  284     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
  285     "Number of packets dropped from the IP input queue");
  286 
  287 /*
  288  * IP initialization: fill in IP protocol switch table.
  289  * All protocols not implemented in kernel go to raw IP protocol handler.
  290  */
  291 void
  292 ip_init(void)
  293 {
  294         struct protosw *pr;
  295         int i;
  296 
  297         V_ip_id = time_second & 0xffff;
  298 
  299         TAILQ_INIT(&V_in_ifaddrhead);
  300         V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
  301 
  302         /* Initialize IP reassembly queue. */
  303         for (i = 0; i < IPREASS_NHASH; i++)
  304                 TAILQ_INIT(&V_ipq[i]);
  305         V_maxnipq = nmbclusters / 32;
  306         V_maxfragsperpacket = 16;
  307         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  308             NULL, UMA_ALIGN_PTR, 0);
  309         maxnipq_update();
  310 
  311         /* Initialize packet filter hooks. */
  312         V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  313         V_inet_pfil_hook.ph_af = AF_INET;
  314         if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
  315                 printf("%s: WARNING: unable to register pfil hook, "
  316                         "error %d\n", __func__, i);
  317 
  318 #ifdef FLOWTABLE
  319         if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
  320                 &V_ip_output_flowtable_size)) {
  321                 if (V_ip_output_flowtable_size < 256)
  322                         V_ip_output_flowtable_size = 256;
  323                 if (!powerof2(V_ip_output_flowtable_size)) {
  324                         printf("flowtable must be power of 2 size\n");
  325                         V_ip_output_flowtable_size = 2048;
  326                 }
  327         } else {
  328                 /*
  329                  * round up to the next power of 2
  330                  */
  331                 V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
  332         }
  333         V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
  334 #endif
  335 
  336         /* Skip initialization of globals for non-default instances. */
  337         if (!IS_DEFAULT_VNET(curvnet))
  338                 return;
  339 
  340         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  341         if (pr == NULL)
  342                 panic("ip_init: PF_INET not found");
  343 
  344         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  345         for (i = 0; i < IPPROTO_MAX; i++)
  346                 ip_protox[i] = pr - inetsw;
  347         /*
  348          * Cycle through IP protocols and put them into the appropriate place
  349          * in ip_protox[].
  350          */
  351         for (pr = inetdomain.dom_protosw;
  352             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  353                 if (pr->pr_domain->dom_family == PF_INET &&
  354                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  355                         /* Be careful to only index valid IP protocols. */
  356                         if (pr->pr_protocol < IPPROTO_MAX)
  357                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  358                 }
  359 
  360         /* Start ipport_tick. */
  361         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
  362         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
  363         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
  364                 SHUTDOWN_PRI_DEFAULT);
  365         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  366                 NULL, EVENTHANDLER_PRI_ANY);
  367 
  368         /* Initialize various other remaining things. */
  369         IPQ_LOCK_INIT();
  370         netisr_register(&ip_nh);
  371 }
  372 
  373 #ifdef VIMAGE
  374 void
  375 ip_destroy(void)
  376 {
  377 
  378         /* Cleanup in_ifaddr hash table; should be empty. */
  379         hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
  380 
  381         IPQ_LOCK();
  382         ip_drain_locked();
  383         IPQ_UNLOCK();
  384 
  385         uma_zdestroy(V_ipq_zone);
  386 }
  387 #endif
  388 
  389 void
  390 ip_fini(void *xtp)
  391 {
  392 
  393         callout_stop(&ipport_tick_callout);
  394 }
  395 
  396 /*
  397  * Ip input routine.  Checksum and byte swap header.  If fragmented
  398  * try to reassemble.  Process options.  Pass to next level.
  399  */
  400 void
  401 ip_input(struct mbuf *m)
  402 {
  403         struct ip *ip = NULL;
  404         struct in_ifaddr *ia = NULL;
  405         struct ifaddr *ifa;
  406         struct ifnet *ifp;
  407         int    checkif, hlen = 0;
  408         u_short sum;
  409         int dchg = 0;                           /* dest changed after fw */
  410         struct in_addr odst;                    /* original dst address */
  411 
  412         M_ASSERTPKTHDR(m);
  413 
  414         if (m->m_flags & M_FASTFWD_OURS) {
  415                 /*
  416                  * Firewall or NAT changed destination to local.
  417                  * We expect ip_len and ip_off to be in host byte order.
  418                  */
  419                 m->m_flags &= ~M_FASTFWD_OURS;
  420                 /* Set up some basics that will be used later. */
  421                 ip = mtod(m, struct ip *);
  422                 hlen = ip->ip_hl << 2;
  423                 goto ours;
  424         }
  425 
  426         IPSTAT_INC(ips_total);
  427 
  428         if (m->m_pkthdr.len < sizeof(struct ip))
  429                 goto tooshort;
  430 
  431         if (m->m_len < sizeof (struct ip) &&
  432             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  433                 IPSTAT_INC(ips_toosmall);
  434                 return;
  435         }
  436         ip = mtod(m, struct ip *);
  437 
  438         if (ip->ip_v != IPVERSION) {
  439                 IPSTAT_INC(ips_badvers);
  440                 goto bad;
  441         }
  442 
  443         hlen = ip->ip_hl << 2;
  444         if (hlen < sizeof(struct ip)) { /* minimum header length */
  445                 IPSTAT_INC(ips_badhlen);
  446                 goto bad;
  447         }
  448         if (hlen > m->m_len) {
  449                 if ((m = m_pullup(m, hlen)) == NULL) {
  450                         IPSTAT_INC(ips_badhlen);
  451                         return;
  452                 }
  453                 ip = mtod(m, struct ip *);
  454         }
  455 
  456         /* 127/8 must not appear on wire - RFC1122 */
  457         ifp = m->m_pkthdr.rcvif;
  458         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  459             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  460                 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
  461                         IPSTAT_INC(ips_badaddr);
  462                         goto bad;
  463                 }
  464         }
  465 
  466         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  467                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  468         } else {
  469                 if (hlen == sizeof(struct ip)) {
  470                         sum = in_cksum_hdr(ip);
  471                 } else {
  472                         sum = in_cksum(m, hlen);
  473                 }
  474         }
  475         if (sum) {
  476                 IPSTAT_INC(ips_badsum);
  477                 goto bad;
  478         }
  479 
  480 #ifdef ALTQ
  481         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  482                 /* packet is dropped by traffic conditioner */
  483                 return;
  484 #endif
  485 
  486         /*
  487          * Convert fields to host representation.
  488          */
  489         ip->ip_len = ntohs(ip->ip_len);
  490         if (ip->ip_len < hlen) {
  491                 IPSTAT_INC(ips_badlen);
  492                 goto bad;
  493         }
  494         ip->ip_off = ntohs(ip->ip_off);
  495 
  496         /*
  497          * Check that the amount of data in the buffers
  498          * is as at least much as the IP header would have us expect.
  499          * Trim mbufs if longer than we expect.
  500          * Drop packet if shorter than we expect.
  501          */
  502         if (m->m_pkthdr.len < ip->ip_len) {
  503 tooshort:
  504                 IPSTAT_INC(ips_tooshort);
  505                 goto bad;
  506         }
  507         if (m->m_pkthdr.len > ip->ip_len) {
  508                 if (m->m_len == m->m_pkthdr.len) {
  509                         m->m_len = ip->ip_len;
  510                         m->m_pkthdr.len = ip->ip_len;
  511                 } else
  512                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
  513         }
  514 #ifdef IPSEC
  515         /*
  516          * Bypass packet filtering for packets from a tunnel (gif).
  517          */
  518         if (ip_ipsec_filtertunnel(m))
  519                 goto passin;
  520 #endif /* IPSEC */
  521 
  522         /*
  523          * Run through list of hooks for input packets.
  524          *
  525          * NB: Beware of the destination address changing (e.g.
  526          *     by NAT rewriting).  When this happens, tell
  527          *     ip_forward to do the right thing.
  528          */
  529 
  530         /* Jump over all PFIL processing if hooks are not active. */
  531         if (!PFIL_HOOKED(&V_inet_pfil_hook))
  532                 goto passin;
  533 
  534         odst = ip->ip_dst;
  535         if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
  536                 return;
  537         if (m == NULL)                  /* consumed by filter */
  538                 return;
  539 
  540         ip = mtod(m, struct ip *);
  541         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  542         ifp = m->m_pkthdr.rcvif;
  543 
  544 #ifdef IPFIREWALL_FORWARD
  545         if (m->m_flags & M_FASTFWD_OURS) {
  546                 m->m_flags &= ~M_FASTFWD_OURS;
  547                 goto ours;
  548         }
  549         if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
  550                 /*
  551                  * Directly ship the packet on.  This allows forwarding
  552                  * packets originally destined to us to some other directly
  553                  * connected host.
  554                  */
  555                 ip_forward(m, dchg);
  556                 return;
  557         }
  558 #endif /* IPFIREWALL_FORWARD */
  559 
  560 passin:
  561         /*
  562          * Process options and, if not destined for us,
  563          * ship it on.  ip_dooptions returns 1 when an
  564          * error was detected (causing an icmp message
  565          * to be sent and the original packet to be freed).
  566          */
  567         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  568                 return;
  569 
  570         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  571          * matter if it is destined to another node, or whether it is 
  572          * a multicast one, RSVP wants it! and prevents it from being forwarded
  573          * anywhere else. Also checks if the rsvp daemon is running before
  574          * grabbing the packet.
  575          */
  576         if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  577                 goto ours;
  578 
  579         /*
  580          * Check our list of addresses, to see if the packet is for us.
  581          * If we don't have any addresses, assume any unicast packet
  582          * we receive might be for us (and let the upper layers deal
  583          * with it).
  584          */
  585         if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
  586             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  587                 goto ours;
  588 
  589         /*
  590          * Enable a consistency check between the destination address
  591          * and the arrival interface for a unicast packet (the RFC 1122
  592          * strong ES model) if IP forwarding is disabled and the packet
  593          * is not locally generated and the packet is not subject to
  594          * 'ipfw fwd'.
  595          *
  596          * XXX - Checking also should be disabled if the destination
  597          * address is ipnat'ed to a different interface.
  598          *
  599          * XXX - Checking is incompatible with IP aliases added
  600          * to the loopback interface instead of the interface where
  601          * the packets are received.
  602          *
  603          * XXX - This is the case for carp vhost IPs as well so we
  604          * insert a workaround. If the packet got here, we already
  605          * checked with carp_iamatch() and carp_forus().
  606          */
  607         checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 
  608             ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
  609 #ifdef DEV_CARP
  610             !ifp->if_carp &&
  611 #endif
  612             (dchg == 0);
  613 
  614         /*
  615          * Check for exact addresses in the hash bucket.
  616          */
  617         /* IN_IFADDR_RLOCK(); */
  618         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  619                 /*
  620                  * If the address matches, verify that the packet
  621                  * arrived via the correct interface if checking is
  622                  * enabled.
  623                  */
  624                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  625                     (!checkif || ia->ia_ifp == ifp)) {
  626                         ifa_ref(&ia->ia_ifa);
  627                         /* IN_IFADDR_RUNLOCK(); */
  628                         goto ours;
  629                 }
  630         }
  631         /* IN_IFADDR_RUNLOCK(); */
  632 
  633         /*
  634          * Check for broadcast addresses.
  635          *
  636          * Only accept broadcast packets that arrive via the matching
  637          * interface.  Reception of forwarded directed broadcasts would
  638          * be handled via ip_forward() and ether_output() with the loopback
  639          * into the stack for SIMPLEX interfaces handled by ether_output().
  640          */
  641         if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
  642                 IF_ADDR_LOCK(ifp);
  643                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  644                         if (ifa->ifa_addr->sa_family != AF_INET)
  645                                 continue;
  646                         ia = ifatoia(ifa);
  647                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  648                             ip->ip_dst.s_addr) {
  649                                 ifa_ref(ifa);
  650                                 IF_ADDR_UNLOCK(ifp);
  651                                 goto ours;
  652                         }
  653                         if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
  654                                 ifa_ref(ifa);
  655                                 IF_ADDR_UNLOCK(ifp);
  656                                 goto ours;
  657                         }
  658 #ifdef BOOTP_COMPAT
  659                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
  660                                 ifa_ref(ifa);
  661                                 IF_ADDR_UNLOCK(ifp);
  662                                 goto ours;
  663                         }
  664 #endif
  665                 }
  666                 IF_ADDR_UNLOCK(ifp);
  667                 ia = NULL;
  668         }
  669         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  670         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  671                 IPSTAT_INC(ips_cantforward);
  672                 m_freem(m);
  673                 return;
  674         }
  675         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  676                 if (V_ip_mrouter) {
  677                         /*
  678                          * If we are acting as a multicast router, all
  679                          * incoming multicast packets are passed to the
  680                          * kernel-level multicast forwarding function.
  681                          * The packet is returned (relatively) intact; if
  682                          * ip_mforward() returns a non-zero value, the packet
  683                          * must be discarded, else it may be accepted below.
  684                          */
  685                         if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
  686                                 IPSTAT_INC(ips_cantforward);
  687                                 m_freem(m);
  688                                 return;
  689                         }
  690 
  691                         /*
  692                          * The process-level routing daemon needs to receive
  693                          * all multicast IGMP packets, whether or not this
  694                          * host belongs to their destination groups.
  695                          */
  696                         if (ip->ip_p == IPPROTO_IGMP)
  697                                 goto ours;
  698                         IPSTAT_INC(ips_forward);
  699                 }
  700                 /*
  701                  * Assume the packet is for us, to avoid prematurely taking
  702                  * a lock on the in_multi hash. Protocols must perform
  703                  * their own filtering and update statistics accordingly.
  704                  */
  705                 goto ours;
  706         }
  707         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  708                 goto ours;
  709         if (ip->ip_dst.s_addr == INADDR_ANY)
  710                 goto ours;
  711 
  712         /*
  713          * FAITH(Firewall Aided Internet Translator)
  714          */
  715         if (ifp && ifp->if_type == IFT_FAITH) {
  716                 if (V_ip_keepfaith) {
  717                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  718                                 goto ours;
  719                 }
  720                 m_freem(m);
  721                 return;
  722         }
  723 
  724         /*
  725          * Not for us; forward if possible and desirable.
  726          */
  727         if (V_ipforwarding == 0) {
  728                 IPSTAT_INC(ips_cantforward);
  729                 m_freem(m);
  730         } else {
  731 #ifdef IPSEC
  732                 if (ip_ipsec_fwd(m))
  733                         goto bad;
  734 #endif /* IPSEC */
  735                 ip_forward(m, dchg);
  736         }
  737         return;
  738 
  739 ours:
  740 #ifdef IPSTEALTH
  741         /*
  742          * IPSTEALTH: Process non-routing options only
  743          * if the packet is destined for us.
  744          */
  745         if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
  746                 if (ia != NULL)
  747                         ifa_free(&ia->ia_ifa);
  748                 return;
  749         }
  750 #endif /* IPSTEALTH */
  751 
  752         /* Count the packet in the ip address stats */
  753         if (ia != NULL) {
  754                 ia->ia_ifa.if_ipackets++;
  755                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  756                 ifa_free(&ia->ia_ifa);
  757         }
  758 
  759         /*
  760          * Attempt reassembly; if it succeeds, proceed.
  761          * ip_reass() will return a different mbuf.
  762          */
  763         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
  764                 m = ip_reass(m);
  765                 if (m == NULL)
  766                         return;
  767                 ip = mtod(m, struct ip *);
  768                 /* Get the header length of the reassembled packet */
  769                 hlen = ip->ip_hl << 2;
  770         }
  771 
  772         /*
  773          * Further protocols expect the packet length to be w/o the
  774          * IP header.
  775          */
  776         ip->ip_len -= hlen;
  777 
  778 #ifdef IPSEC
  779         /*
  780          * enforce IPsec policy checking if we are seeing last header.
  781          * note that we do not visit this with protocols with pcb layer
  782          * code - like udp/tcp/raw ip.
  783          */
  784         if (ip_ipsec_input(m))
  785                 goto bad;
  786 #endif /* IPSEC */
  787 
  788         /*
  789          * Switch out to protocol's input routine.
  790          */
  791         IPSTAT_INC(ips_delivered);
  792 
  793         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  794         return;
  795 bad:
  796         m_freem(m);
  797 }
  798 
  799 /*
  800  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  801  * max has slightly different semantics than the sysctl, for historical
  802  * reasons.
  803  */
  804 static void
  805 maxnipq_update(void)
  806 {
  807 
  808         /*
  809          * -1 for unlimited allocation.
  810          */
  811         if (V_maxnipq < 0)
  812                 uma_zone_set_max(V_ipq_zone, 0);
  813         /*
  814          * Positive number for specific bound.
  815          */
  816         if (V_maxnipq > 0)
  817                 uma_zone_set_max(V_ipq_zone, V_maxnipq);
  818         /*
  819          * Zero specifies no further fragment queue allocation -- set the
  820          * bound very low, but rely on implementation elsewhere to actually
  821          * prevent allocation and reclaim current queues.
  822          */
  823         if (V_maxnipq == 0)
  824                 uma_zone_set_max(V_ipq_zone, 1);
  825 }
  826 
  827 static void
  828 ipq_zone_change(void *tag)
  829 {
  830 
  831         if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
  832                 V_maxnipq = nmbclusters / 32;
  833                 maxnipq_update();
  834         }
  835 }
  836 
  837 static int
  838 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  839 {
  840         int error, i;
  841 
  842         i = V_maxnipq;
  843         error = sysctl_handle_int(oidp, &i, 0, req);
  844         if (error || !req->newptr)
  845                 return (error);
  846 
  847         /*
  848          * XXXRW: Might be a good idea to sanity check the argument and place
  849          * an extreme upper bound.
  850          */
  851         if (i < -1)
  852                 return (EINVAL);
  853         V_maxnipq = i;
  854         maxnipq_update();
  855         return (0);
  856 }
  857 
  858 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  859     NULL, 0, sysctl_maxnipq, "I",
  860     "Maximum number of IPv4 fragment reassembly queue entries");
  861 
  862 /*
  863  * Take incoming datagram fragment and try to reassemble it into
  864  * whole datagram.  If the argument is the first fragment or one
  865  * in between the function will return NULL and store the mbuf
  866  * in the fragment chain.  If the argument is the last fragment
  867  * the packet will be reassembled and the pointer to the new
  868  * mbuf returned for further processing.  Only m_tags attached
  869  * to the first packet/fragment are preserved.
  870  * The IP header is *NOT* adjusted out of iplen.
  871  */
  872 struct mbuf *
  873 ip_reass(struct mbuf *m)
  874 {
  875         struct ip *ip;
  876         struct mbuf *p, *q, *nq, *t;
  877         struct ipq *fp = NULL;
  878         struct ipqhead *head;
  879         int i, hlen, next;
  880         u_int8_t ecn, ecn0;
  881         u_short hash;
  882 
  883         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  884         if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
  885                 IPSTAT_INC(ips_fragments);
  886                 IPSTAT_INC(ips_fragdropped);
  887                 m_freem(m);
  888                 return (NULL);
  889         }
  890 
  891         ip = mtod(m, struct ip *);
  892         hlen = ip->ip_hl << 2;
  893 
  894         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  895         head = &V_ipq[hash];
  896         IPQ_LOCK();
  897 
  898         /*
  899          * Look for queue of fragments
  900          * of this datagram.
  901          */
  902         TAILQ_FOREACH(fp, head, ipq_list)
  903                 if (ip->ip_id == fp->ipq_id &&
  904                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  905                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  906 #ifdef MAC
  907                     mac_ipq_match(m, fp) &&
  908 #endif
  909                     ip->ip_p == fp->ipq_p)
  910                         goto found;
  911 
  912         fp = NULL;
  913 
  914         /*
  915          * Attempt to trim the number of allocated fragment queues if it
  916          * exceeds the administrative limit.
  917          */
  918         if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
  919                 /*
  920                  * drop something from the tail of the current queue
  921                  * before proceeding further
  922                  */
  923                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  924                 if (q == NULL) {   /* gak */
  925                         for (i = 0; i < IPREASS_NHASH; i++) {
  926                                 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
  927                                 if (r) {
  928                                         IPSTAT_ADD(ips_fragtimeout,
  929                                             r->ipq_nfrags);
  930                                         ip_freef(&V_ipq[i], r);
  931                                         break;
  932                                 }
  933                         }
  934                 } else {
  935                         IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
  936                         ip_freef(head, q);
  937                 }
  938         }
  939 
  940 found:
  941         /*
  942          * Adjust ip_len to not reflect header,
  943          * convert offset of this to bytes.
  944          */
  945         ip->ip_len -= hlen;
  946         if (ip->ip_off & IP_MF) {
  947                 /*
  948                  * Make sure that fragments have a data length
  949                  * that's a non-zero multiple of 8 bytes.
  950                  */
  951                 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
  952                         IPSTAT_INC(ips_toosmall); /* XXX */
  953                         goto dropfrag;
  954                 }
  955                 m->m_flags |= M_FRAG;
  956         } else
  957                 m->m_flags &= ~M_FRAG;
  958         ip->ip_off <<= 3;
  959 
  960 
  961         /*
  962          * Attempt reassembly; if it succeeds, proceed.
  963          * ip_reass() will return a different mbuf.
  964          */
  965         IPSTAT_INC(ips_fragments);
  966         m->m_pkthdr.header = ip;
  967 
  968         /* Previous ip_reass() started here. */
  969         /*
  970          * Presence of header sizes in mbufs
  971          * would confuse code below.
  972          */
  973         m->m_data += hlen;
  974         m->m_len -= hlen;
  975 
  976         /*
  977          * If first fragment to arrive, create a reassembly queue.
  978          */
  979         if (fp == NULL) {
  980                 fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  981                 if (fp == NULL)
  982                         goto dropfrag;
  983 #ifdef MAC
  984                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  985                         uma_zfree(V_ipq_zone, fp);
  986                         fp = NULL;
  987                         goto dropfrag;
  988                 }
  989                 mac_ipq_create(m, fp);
  990 #endif
  991                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  992                 V_nipq++;
  993                 fp->ipq_nfrags = 1;
  994                 fp->ipq_ttl = IPFRAGTTL;
  995                 fp->ipq_p = ip->ip_p;
  996                 fp->ipq_id = ip->ip_id;
  997                 fp->ipq_src = ip->ip_src;
  998                 fp->ipq_dst = ip->ip_dst;
  999                 fp->ipq_frags = m;
 1000                 m->m_nextpkt = NULL;
 1001                 goto done;
 1002         } else {
 1003                 fp->ipq_nfrags++;
 1004 #ifdef MAC
 1005                 mac_ipq_update(m, fp);
 1006 #endif
 1007         }
 1008 
 1009 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
 1010 
 1011         /*
 1012          * Handle ECN by comparing this segment with the first one;
 1013          * if CE is set, do not lose CE.
 1014          * drop if CE and not-ECT are mixed for the same packet.
 1015          */
 1016         ecn = ip->ip_tos & IPTOS_ECN_MASK;
 1017         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
 1018         if (ecn == IPTOS_ECN_CE) {
 1019                 if (ecn0 == IPTOS_ECN_NOTECT)
 1020                         goto dropfrag;
 1021                 if (ecn0 != IPTOS_ECN_CE)
 1022                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
 1023         }
 1024         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
 1025                 goto dropfrag;
 1026 
 1027         /*
 1028          * Find a segment which begins after this one does.
 1029          */
 1030         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
 1031                 if (GETIP(q)->ip_off > ip->ip_off)
 1032                         break;
 1033 
 1034         /*
 1035          * If there is a preceding segment, it may provide some of
 1036          * our data already.  If so, drop the data from the incoming
 1037          * segment.  If it provides all of our data, drop us, otherwise
 1038          * stick new segment in the proper place.
 1039          *
 1040          * If some of the data is dropped from the the preceding
 1041          * segment, then it's checksum is invalidated.
 1042          */
 1043         if (p) {
 1044                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
 1045                 if (i > 0) {
 1046                         if (i >= ip->ip_len)
 1047                                 goto dropfrag;
 1048                         m_adj(m, i);
 1049                         m->m_pkthdr.csum_flags = 0;
 1050                         ip->ip_off += i;
 1051                         ip->ip_len -= i;
 1052                 }
 1053                 m->m_nextpkt = p->m_nextpkt;
 1054                 p->m_nextpkt = m;
 1055         } else {
 1056                 m->m_nextpkt = fp->ipq_frags;
 1057                 fp->ipq_frags = m;
 1058         }
 1059 
 1060         /*
 1061          * While we overlap succeeding segments trim them or,
 1062          * if they are completely covered, dequeue them.
 1063          */
 1064         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
 1065              q = nq) {
 1066                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
 1067                 if (i < GETIP(q)->ip_len) {
 1068                         GETIP(q)->ip_len -= i;
 1069                         GETIP(q)->ip_off += i;
 1070                         m_adj(q, i);
 1071                         q->m_pkthdr.csum_flags = 0;
 1072                         break;
 1073                 }
 1074                 nq = q->m_nextpkt;
 1075                 m->m_nextpkt = nq;
 1076                 IPSTAT_INC(ips_fragdropped);
 1077                 fp->ipq_nfrags--;
 1078                 m_freem(q);
 1079         }
 1080 
 1081         /*
 1082          * Check for complete reassembly and perform frag per packet
 1083          * limiting.
 1084          *
 1085          * Frag limiting is performed here so that the nth frag has
 1086          * a chance to complete the packet before we drop the packet.
 1087          * As a result, n+1 frags are actually allowed per packet, but
 1088          * only n will ever be stored. (n = maxfragsperpacket.)
 1089          *
 1090          */
 1091         next = 0;
 1092         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
 1093                 if (GETIP(q)->ip_off != next) {
 1094                         if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1095                                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1096                                 ip_freef(head, fp);
 1097                         }
 1098                         goto done;
 1099                 }
 1100                 next += GETIP(q)->ip_len;
 1101         }
 1102         /* Make sure the last packet didn't have the IP_MF flag */
 1103         if (p->m_flags & M_FRAG) {
 1104                 if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1105                         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1106                         ip_freef(head, fp);
 1107                 }
 1108                 goto done;
 1109         }
 1110 
 1111         /*
 1112          * Reassembly is complete.  Make sure the packet is a sane size.
 1113          */
 1114         q = fp->ipq_frags;
 1115         ip = GETIP(q);
 1116         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
 1117                 IPSTAT_INC(ips_toolong);
 1118                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1119                 ip_freef(head, fp);
 1120                 goto done;
 1121         }
 1122 
 1123         /*
 1124          * Concatenate fragments.
 1125          */
 1126         m = q;
 1127         t = m->m_next;
 1128         m->m_next = NULL;
 1129         m_cat(m, t);
 1130         nq = q->m_nextpkt;
 1131         q->m_nextpkt = NULL;
 1132         for (q = nq; q != NULL; q = nq) {
 1133                 nq = q->m_nextpkt;
 1134                 q->m_nextpkt = NULL;
 1135                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1136                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1137                 m_cat(m, q);
 1138         }
 1139         /*
 1140          * In order to do checksumming faster we do 'end-around carry' here
 1141          * (and not in for{} loop), though it implies we are not going to
 1142          * reassemble more than 64k fragments.
 1143          */
 1144         m->m_pkthdr.csum_data =
 1145             (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
 1146 #ifdef MAC
 1147         mac_ipq_reassemble(fp, m);
 1148         mac_ipq_destroy(fp);
 1149 #endif
 1150 
 1151         /*
 1152          * Create header for new ip packet by modifying header of first
 1153          * packet;  dequeue and discard fragment reassembly header.
 1154          * Make header visible.
 1155          */
 1156         ip->ip_len = (ip->ip_hl << 2) + next;
 1157         ip->ip_src = fp->ipq_src;
 1158         ip->ip_dst = fp->ipq_dst;
 1159         TAILQ_REMOVE(head, fp, ipq_list);
 1160         V_nipq--;
 1161         uma_zfree(V_ipq_zone, fp);
 1162         m->m_len += (ip->ip_hl << 2);
 1163         m->m_data -= (ip->ip_hl << 2);
 1164         /* some debugging cruft by sklower, below, will go away soon */
 1165         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1166                 m_fixhdr(m);
 1167         IPSTAT_INC(ips_reassembled);
 1168         IPQ_UNLOCK();
 1169         return (m);
 1170 
 1171 dropfrag:
 1172         IPSTAT_INC(ips_fragdropped);
 1173         if (fp != NULL)
 1174                 fp->ipq_nfrags--;
 1175         m_freem(m);
 1176 done:
 1177         IPQ_UNLOCK();
 1178         return (NULL);
 1179 
 1180 #undef GETIP
 1181 }
 1182 
 1183 /*
 1184  * Free a fragment reassembly header and all
 1185  * associated datagrams.
 1186  */
 1187 static void
 1188 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1189 {
 1190         struct mbuf *q;
 1191 
 1192         IPQ_LOCK_ASSERT();
 1193 
 1194         while (fp->ipq_frags) {
 1195                 q = fp->ipq_frags;
 1196                 fp->ipq_frags = q->m_nextpkt;
 1197                 m_freem(q);
 1198         }
 1199         TAILQ_REMOVE(fhp, fp, ipq_list);
 1200         uma_zfree(V_ipq_zone, fp);
 1201         V_nipq--;
 1202 }
 1203 
 1204 /*
 1205  * IP timer processing;
 1206  * if a timer expires on a reassembly
 1207  * queue, discard it.
 1208  */
 1209 void
 1210 ip_slowtimo(void)
 1211 {
 1212         VNET_ITERATOR_DECL(vnet_iter);
 1213         struct ipq *fp;
 1214         int i;
 1215 
 1216         VNET_LIST_RLOCK_NOSLEEP();
 1217         IPQ_LOCK();
 1218         VNET_FOREACH(vnet_iter) {
 1219                 CURVNET_SET(vnet_iter);
 1220                 for (i = 0; i < IPREASS_NHASH; i++) {
 1221                         for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
 1222                                 struct ipq *fpp;
 1223 
 1224                                 fpp = fp;
 1225                                 fp = TAILQ_NEXT(fp, ipq_list);
 1226                                 if(--fpp->ipq_ttl == 0) {
 1227                                         IPSTAT_ADD(ips_fragtimeout,
 1228                                             fpp->ipq_nfrags);
 1229                                         ip_freef(&V_ipq[i], fpp);
 1230                                 }
 1231                         }
 1232                 }
 1233                 /*
 1234                  * If we are over the maximum number of fragments
 1235                  * (due to the limit being lowered), drain off
 1236                  * enough to get down to the new limit.
 1237                  */
 1238                 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
 1239                         for (i = 0; i < IPREASS_NHASH; i++) {
 1240                                 while (V_nipq > V_maxnipq &&
 1241                                     !TAILQ_EMPTY(&V_ipq[i])) {
 1242                                         IPSTAT_ADD(ips_fragdropped,
 1243                                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1244                                         ip_freef(&V_ipq[i],
 1245                                             TAILQ_FIRST(&V_ipq[i]));
 1246                                 }
 1247                         }
 1248                 }
 1249                 CURVNET_RESTORE();
 1250         }
 1251         IPQ_UNLOCK();
 1252         VNET_LIST_RUNLOCK_NOSLEEP();
 1253 }
 1254 
 1255 /*
 1256  * Drain off all datagram fragments.
 1257  */
 1258 static void
 1259 ip_drain_locked(void)
 1260 {
 1261         int     i;
 1262 
 1263         IPQ_LOCK_ASSERT();
 1264 
 1265         for (i = 0; i < IPREASS_NHASH; i++) {
 1266                 while(!TAILQ_EMPTY(&V_ipq[i])) {
 1267                         IPSTAT_ADD(ips_fragdropped,
 1268                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1269                         ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
 1270                 }
 1271         }
 1272 }
 1273 
 1274 void
 1275 ip_drain(void)
 1276 {
 1277         VNET_ITERATOR_DECL(vnet_iter);
 1278 
 1279         VNET_LIST_RLOCK_NOSLEEP();
 1280         IPQ_LOCK();
 1281         VNET_FOREACH(vnet_iter) {
 1282                 CURVNET_SET(vnet_iter);
 1283                 ip_drain_locked();
 1284                 CURVNET_RESTORE();
 1285         }
 1286         IPQ_UNLOCK();
 1287         VNET_LIST_RUNLOCK_NOSLEEP();
 1288         in_rtqdrain();
 1289 }
 1290 
 1291 /*
 1292  * The protocol to be inserted into ip_protox[] must be already registered
 1293  * in inetsw[], either statically or through pf_proto_register().
 1294  */
 1295 int
 1296 ipproto_register(u_char ipproto)
 1297 {
 1298         struct protosw *pr;
 1299 
 1300         /* Sanity checks. */
 1301         if (ipproto == 0)
 1302                 return (EPROTONOSUPPORT);
 1303 
 1304         /*
 1305          * The protocol slot must not be occupied by another protocol
 1306          * already.  An index pointing to IPPROTO_RAW is unused.
 1307          */
 1308         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1309         if (pr == NULL)
 1310                 return (EPFNOSUPPORT);
 1311         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1312                 return (EEXIST);
 1313 
 1314         /* Find the protocol position in inetsw[] and set the index. */
 1315         for (pr = inetdomain.dom_protosw;
 1316              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1317                 if (pr->pr_domain->dom_family == PF_INET &&
 1318                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1319                         /* Be careful to only index valid IP protocols. */
 1320                         if (pr->pr_protocol < IPPROTO_MAX) {
 1321                                 ip_protox[pr->pr_protocol] = pr - inetsw;
 1322                                 return (0);
 1323                         } else
 1324                                 return (EINVAL);
 1325                 }
 1326         }
 1327         return (EPROTONOSUPPORT);
 1328 }
 1329 
 1330 int
 1331 ipproto_unregister(u_char ipproto)
 1332 {
 1333         struct protosw *pr;
 1334 
 1335         /* Sanity checks. */
 1336         if (ipproto == 0)
 1337                 return (EPROTONOSUPPORT);
 1338 
 1339         /* Check if the protocol was indeed registered. */
 1340         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1341         if (pr == NULL)
 1342                 return (EPFNOSUPPORT);
 1343         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1344                 return (ENOENT);
 1345 
 1346         /* Reset the protocol slot to IPPROTO_RAW. */
 1347         ip_protox[ipproto] = pr - inetsw;
 1348         return (0);
 1349 }
 1350 
 1351 /*
 1352  * Given address of next destination (final or next hop), return (referenced)
 1353  * internet address info of interface to be used to get there.
 1354  */
 1355 struct in_ifaddr *
 1356 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1357 {
 1358         struct route sro;
 1359         struct sockaddr_in *sin;
 1360         struct in_ifaddr *ia;
 1361 
 1362         bzero(&sro, sizeof(sro));
 1363         sin = (struct sockaddr_in *)&sro.ro_dst;
 1364         sin->sin_family = AF_INET;
 1365         sin->sin_len = sizeof(*sin);
 1366         sin->sin_addr = dst;
 1367         in_rtalloc_ign(&sro, 0, fibnum);
 1368 
 1369         if (sro.ro_rt == NULL)
 1370                 return (NULL);
 1371 
 1372         ia = ifatoia(sro.ro_rt->rt_ifa);
 1373         ifa_ref(&ia->ia_ifa);
 1374         RTFREE(sro.ro_rt);
 1375         return (ia);
 1376 }
 1377 
 1378 u_char inetctlerrmap[PRC_NCMDS] = {
 1379         0,              0,              0,              0,
 1380         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1381         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1382         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1383         0,              0,              EHOSTUNREACH,   0,
 1384         ENOPROTOOPT,    ECONNREFUSED
 1385 };
 1386 
 1387 /*
 1388  * Forward a packet.  If some error occurs return the sender
 1389  * an icmp packet.  Note we can't always generate a meaningful
 1390  * icmp message because icmp doesn't have a large enough repertoire
 1391  * of codes and types.
 1392  *
 1393  * If not forwarding, just drop the packet.  This could be confusing
 1394  * if ipforwarding was zero but some routing protocol was advancing
 1395  * us as a gateway to somewhere.  However, we must let the routing
 1396  * protocol deal with that.
 1397  *
 1398  * The srcrt parameter indicates whether the packet is being forwarded
 1399  * via a source route.
 1400  */
 1401 void
 1402 ip_forward(struct mbuf *m, int srcrt)
 1403 {
 1404         struct ip *ip = mtod(m, struct ip *);
 1405         struct in_ifaddr *ia;
 1406         struct mbuf *mcopy;
 1407         struct in_addr dest;
 1408         struct route ro;
 1409         int error, type = 0, code = 0, mtu = 0;
 1410 
 1411         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1412                 IPSTAT_INC(ips_cantforward);
 1413                 m_freem(m);
 1414                 return;
 1415         }
 1416 #ifdef IPSTEALTH
 1417         if (!V_ipstealth) {
 1418 #endif
 1419                 if (ip->ip_ttl <= IPTTLDEC) {
 1420                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1421                             0, 0);
 1422                         return;
 1423                 }
 1424 #ifdef IPSTEALTH
 1425         }
 1426 #endif
 1427 
 1428         ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
 1429 #ifndef IPSEC
 1430         /*
 1431          * 'ia' may be NULL if there is no route for this destination.
 1432          * In case of IPsec, Don't discard it just yet, but pass it to
 1433          * ip_output in case of outgoing IPsec policy.
 1434          */
 1435         if (!srcrt && ia == NULL) {
 1436                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1437                 return;
 1438         }
 1439 #endif
 1440 
 1441         /*
 1442          * Save the IP header and at most 8 bytes of the payload,
 1443          * in case we need to generate an ICMP message to the src.
 1444          *
 1445          * XXX this can be optimized a lot by saving the data in a local
 1446          * buffer on the stack (72 bytes at most), and only allocating the
 1447          * mbuf if really necessary. The vast majority of the packets
 1448          * are forwarded without having to send an ICMP back (either
 1449          * because unnecessary, or because rate limited), so we are
 1450          * really we are wasting a lot of work here.
 1451          *
 1452          * We don't use m_copy() because it might return a reference
 1453          * to a shared cluster. Both this function and ip_output()
 1454          * assume exclusive access to the IP header in `m', so any
 1455          * data in a cluster may change before we reach icmp_error().
 1456          */
 1457         MGETHDR(mcopy, M_DONTWAIT, m->m_type);
 1458         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
 1459                 /*
 1460                  * It's probably ok if the pkthdr dup fails (because
 1461                  * the deep copy of the tag chain failed), but for now
 1462                  * be conservative and just discard the copy since
 1463                  * code below may some day want the tags.
 1464                  */
 1465                 m_free(mcopy);
 1466                 mcopy = NULL;
 1467         }
 1468         if (mcopy != NULL) {
 1469                 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
 1470                 mcopy->m_pkthdr.len = mcopy->m_len;
 1471                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1472         }
 1473 
 1474 #ifdef IPSTEALTH
 1475         if (!V_ipstealth) {
 1476 #endif
 1477                 ip->ip_ttl -= IPTTLDEC;
 1478 #ifdef IPSTEALTH
 1479         }
 1480 #endif
 1481 
 1482         /*
 1483          * If forwarding packet using same interface that it came in on,
 1484          * perhaps should send a redirect to sender to shortcut a hop.
 1485          * Only send redirect if source is sending directly to us,
 1486          * and if packet was not source routed (or has any options).
 1487          * Also, don't send redirect if forwarding using a default route
 1488          * or a route modified by a redirect.
 1489          */
 1490         dest.s_addr = 0;
 1491         if (!srcrt && V_ipsendredirects &&
 1492             ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1493                 struct sockaddr_in *sin;
 1494                 struct rtentry *rt;
 1495 
 1496                 bzero(&ro, sizeof(ro));
 1497                 sin = (struct sockaddr_in *)&ro.ro_dst;
 1498                 sin->sin_family = AF_INET;
 1499                 sin->sin_len = sizeof(*sin);
 1500                 sin->sin_addr = ip->ip_dst;
 1501                 in_rtalloc_ign(&ro, 0, M_GETFIB(m));
 1502 
 1503                 rt = ro.ro_rt;
 1504 
 1505                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1506                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1507 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1508                         u_long src = ntohl(ip->ip_src.s_addr);
 1509 
 1510                         if (RTA(rt) &&
 1511                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1512                                 if (rt->rt_flags & RTF_GATEWAY)
 1513                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1514                                 else
 1515                                         dest.s_addr = ip->ip_dst.s_addr;
 1516                                 /* Router requirements says to only send host redirects */
 1517                                 type = ICMP_REDIRECT;
 1518                                 code = ICMP_REDIRECT_HOST;
 1519                         }
 1520                 }
 1521                 if (rt)
 1522                         RTFREE(rt);
 1523         }
 1524 
 1525         /*
 1526          * Try to cache the route MTU from ip_output so we can consider it for
 1527          * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
 1528          */
 1529         bzero(&ro, sizeof(ro));
 1530 
 1531         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1532 
 1533         if (error == EMSGSIZE && ro.ro_rt)
 1534                 mtu = ro.ro_rt->rt_rmx.rmx_mtu;
 1535         if (ro.ro_rt)
 1536                 RTFREE(ro.ro_rt);
 1537 
 1538         if (error)
 1539                 IPSTAT_INC(ips_cantforward);
 1540         else {
 1541                 IPSTAT_INC(ips_forward);
 1542                 if (type)
 1543                         IPSTAT_INC(ips_redirectsent);
 1544                 else {
 1545                         if (mcopy)
 1546                                 m_freem(mcopy);
 1547                         if (ia != NULL)
 1548                                 ifa_free(&ia->ia_ifa);
 1549                         return;
 1550                 }
 1551         }
 1552         if (mcopy == NULL) {
 1553                 if (ia != NULL)
 1554                         ifa_free(&ia->ia_ifa);
 1555                 return;
 1556         }
 1557 
 1558         switch (error) {
 1559 
 1560         case 0:                         /* forwarded, but need redirect */
 1561                 /* type, code set above */
 1562                 break;
 1563 
 1564         case ENETUNREACH:
 1565         case EHOSTUNREACH:
 1566         case ENETDOWN:
 1567         case EHOSTDOWN:
 1568         default:
 1569                 type = ICMP_UNREACH;
 1570                 code = ICMP_UNREACH_HOST;
 1571                 break;
 1572 
 1573         case EMSGSIZE:
 1574                 type = ICMP_UNREACH;
 1575                 code = ICMP_UNREACH_NEEDFRAG;
 1576 
 1577 #ifdef IPSEC
 1578                 /* 
 1579                  * If IPsec is configured for this path,
 1580                  * override any possibly mtu value set by ip_output.
 1581                  */ 
 1582                 mtu = ip_ipsec_mtu(mcopy, mtu);
 1583 #endif /* IPSEC */
 1584                 /*
 1585                  * If the MTU was set before make sure we are below the
 1586                  * interface MTU.
 1587                  * If the MTU wasn't set before use the interface mtu or
 1588                  * fall back to the next smaller mtu step compared to the
 1589                  * current packet size.
 1590                  */
 1591                 if (mtu != 0) {
 1592                         if (ia != NULL)
 1593                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1594                 } else {
 1595                         if (ia != NULL)
 1596                                 mtu = ia->ia_ifp->if_mtu;
 1597                         else
 1598                                 mtu = ip_next_mtu(ip->ip_len, 0);
 1599                 }
 1600                 IPSTAT_INC(ips_cantfrag);
 1601                 break;
 1602 
 1603         case ENOBUFS:
 1604                 /*
 1605                  * A router should not generate ICMP_SOURCEQUENCH as
 1606                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1607                  * Source quench could be a big problem under DoS attacks,
 1608                  * or if the underlying interface is rate-limited.
 1609                  * Those who need source quench packets may re-enable them
 1610                  * via the net.inet.ip.sendsourcequench sysctl.
 1611                  */
 1612                 if (V_ip_sendsourcequench == 0) {
 1613                         m_freem(mcopy);
 1614                         if (ia != NULL)
 1615                                 ifa_free(&ia->ia_ifa);
 1616                         return;
 1617                 } else {
 1618                         type = ICMP_SOURCEQUENCH;
 1619                         code = 0;
 1620                 }
 1621                 break;
 1622 
 1623         case EACCES:                    /* ipfw denied packet */
 1624                 m_freem(mcopy);
 1625                 if (ia != NULL)
 1626                         ifa_free(&ia->ia_ifa);
 1627                 return;
 1628         }
 1629         if (ia != NULL)
 1630                 ifa_free(&ia->ia_ifa);
 1631         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1632 }
 1633 
 1634 void
 1635 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1636     struct mbuf *m)
 1637 {
 1638 
 1639         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1640                 struct bintime bt;
 1641 
 1642                 bintime(&bt);
 1643                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1644                         *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
 1645                         SCM_BINTIME, SOL_SOCKET);
 1646                         if (*mp)
 1647                                 mp = &(*mp)->m_next;
 1648                 }
 1649                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1650                         struct timeval tv;
 1651 
 1652                         bintime2timeval(&bt, &tv);
 1653                         *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
 1654                                 SCM_TIMESTAMP, SOL_SOCKET);
 1655                         if (*mp)
 1656                                 mp = &(*mp)->m_next;
 1657                 }
 1658         }
 1659         if (inp->inp_flags & INP_RECVDSTADDR) {
 1660                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
 1661                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1662                 if (*mp)
 1663                         mp = &(*mp)->m_next;
 1664         }
 1665         if (inp->inp_flags & INP_RECVTTL) {
 1666                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
 1667                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1668                 if (*mp)
 1669                         mp = &(*mp)->m_next;
 1670         }
 1671 #ifdef notyet
 1672         /* XXX
 1673          * Moving these out of udp_input() made them even more broken
 1674          * than they already were.
 1675          */
 1676         /* options were tossed already */
 1677         if (inp->inp_flags & INP_RECVOPTS) {
 1678                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
 1679                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1680                 if (*mp)
 1681                         mp = &(*mp)->m_next;
 1682         }
 1683         /* ip_srcroute doesn't do what we want here, need to fix */
 1684         if (inp->inp_flags & INP_RECVRETOPTS) {
 1685                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
 1686                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1687                 if (*mp)
 1688                         mp = &(*mp)->m_next;
 1689         }
 1690 #endif
 1691         if (inp->inp_flags & INP_RECVIF) {
 1692                 struct ifnet *ifp;
 1693                 struct sdlbuf {
 1694                         struct sockaddr_dl sdl;
 1695                         u_char  pad[32];
 1696                 } sdlbuf;
 1697                 struct sockaddr_dl *sdp;
 1698                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1699 
 1700                 if (((ifp = m->m_pkthdr.rcvif)) 
 1701                 && ( ifp->if_index && (ifp->if_index <= V_if_index))) {
 1702                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1703                         /*
 1704                          * Change our mind and don't try copy.
 1705                          */
 1706                         if ((sdp->sdl_family != AF_LINK)
 1707                         || (sdp->sdl_len > sizeof(sdlbuf))) {
 1708                                 goto makedummy;
 1709                         }
 1710                         bcopy(sdp, sdl2, sdp->sdl_len);
 1711                 } else {
 1712 makedummy:      
 1713                         sdl2->sdl_len
 1714                                 = offsetof(struct sockaddr_dl, sdl_data[0]);
 1715                         sdl2->sdl_family = AF_LINK;
 1716                         sdl2->sdl_index = 0;
 1717                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1718                 }
 1719                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
 1720                         IP_RECVIF, IPPROTO_IP);
 1721                 if (*mp)
 1722                         mp = &(*mp)->m_next;
 1723         }
 1724 }
 1725 
 1726 /*
 1727  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1728  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1729  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1730  * compiled.
 1731  */
 1732 static VNET_DEFINE(int, ip_rsvp_on);
 1733 VNET_DEFINE(struct socket *, ip_rsvpd);
 1734 
 1735 #define V_ip_rsvp_on            VNET(ip_rsvp_on)
 1736 
 1737 int
 1738 ip_rsvp_init(struct socket *so)
 1739 {
 1740 
 1741         if (so->so_type != SOCK_RAW ||
 1742             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1743                 return EOPNOTSUPP;
 1744 
 1745         if (V_ip_rsvpd != NULL)
 1746                 return EADDRINUSE;
 1747 
 1748         V_ip_rsvpd = so;
 1749         /*
 1750          * This may seem silly, but we need to be sure we don't over-increment
 1751          * the RSVP counter, in case something slips up.
 1752          */
 1753         if (!V_ip_rsvp_on) {
 1754                 V_ip_rsvp_on = 1;
 1755                 V_rsvp_on++;
 1756         }
 1757 
 1758         return 0;
 1759 }
 1760 
 1761 int
 1762 ip_rsvp_done(void)
 1763 {
 1764 
 1765         V_ip_rsvpd = NULL;
 1766         /*
 1767          * This may seem silly, but we need to be sure we don't over-decrement
 1768          * the RSVP counter, in case something slips up.
 1769          */
 1770         if (V_ip_rsvp_on) {
 1771                 V_ip_rsvp_on = 0;
 1772                 V_rsvp_on--;
 1773         }
 1774         return 0;
 1775 }
 1776 
 1777 void
 1778 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1779 {
 1780 
 1781         if (rsvp_input_p) { /* call the real one if loaded */
 1782                 rsvp_input_p(m, off);
 1783                 return;
 1784         }
 1785 
 1786         /* Can still get packets with rsvp_on = 0 if there is a local member
 1787          * of the group to which the RSVP packet is addressed.  But in this
 1788          * case we want to throw the packet away.
 1789          */
 1790         
 1791         if (!V_rsvp_on) {
 1792                 m_freem(m);
 1793                 return;
 1794         }
 1795 
 1796         if (V_ip_rsvpd != NULL) { 
 1797                 rip_input(m, off);
 1798                 return;
 1799         }
 1800         /* Drop the packet */
 1801         m_freem(m);
 1802 }

Cache object: cd8c6ce059f56a6aa3caccef8d515c6e


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.