The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_input.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1993
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   30  */
   31 
   32 #include <sys/cdefs.h>
   33 __FBSDID("$FreeBSD: releng/8.4/sys/netinet/ip_input.c 247944 2013-03-07 21:17:37Z tuexen $");
   34 
   35 #include "opt_bootp.h"
   36 #include "opt_ipfw.h"
   37 #include "opt_ipstealth.h"
   38 #include "opt_ipsec.h"
   39 #include "opt_route.h"
   40 
   41 #include <sys/param.h>
   42 #include <sys/systm.h>
   43 #include <sys/callout.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/malloc.h>
   46 #include <sys/domain.h>
   47 #include <sys/protosw.h>
   48 #include <sys/socket.h>
   49 #include <sys/time.h>
   50 #include <sys/kernel.h>
   51 #include <sys/lock.h>
   52 #include <sys/rwlock.h>
   53 #include <sys/syslog.h>
   54 #include <sys/sysctl.h>
   55 
   56 #include <net/pfil.h>
   57 #include <net/if.h>
   58 #include <net/if_types.h>
   59 #include <net/if_var.h>
   60 #include <net/if_dl.h>
   61 #include <net/route.h>
   62 #include <net/netisr.h>
   63 #include <net/vnet.h>
   64 #include <net/flowtable.h>
   65 
   66 #include <netinet/in.h>
   67 #include <netinet/in_systm.h>
   68 #include <netinet/in_var.h>
   69 #include <netinet/ip.h>
   70 #include <netinet/in_pcb.h>
   71 #include <netinet/ip_var.h>
   72 #include <netinet/ip_fw.h>
   73 #include <netinet/ip_icmp.h>
   74 #include <netinet/ip_options.h>
   75 #include <machine/in_cksum.h>
   76 #include <netinet/ip_carp.h>
   77 #ifdef IPSEC
   78 #include <netinet/ip_ipsec.h>
   79 #endif /* IPSEC */
   80 
   81 #include <sys/socketvar.h>
   82 
   83 #include <security/mac/mac_framework.h>
   84 
   85 #ifdef CTASSERT
   86 CTASSERT(sizeof(struct ip) == 20);
   87 #endif
   88 
   89 struct  rwlock in_ifaddr_lock;
   90 RW_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock");
   91 
   92 VNET_DEFINE(int, rsvp_on);
   93 
   94 VNET_DEFINE(int, ipforwarding);
   95 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
   96     &VNET_NAME(ipforwarding), 0,
   97     "Enable IP forwarding between interfaces");
   98 
   99 static VNET_DEFINE(int, ipsendredirects) = 1;   /* XXX */
  100 #define V_ipsendredirects       VNET(ipsendredirects)
  101 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
  102     &VNET_NAME(ipsendredirects), 0,
  103     "Enable sending IP redirects");
  104 
  105 VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
  106 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
  107     &VNET_NAME(ip_defttl), 0,
  108     "Maximum TTL on IP packets");
  109 
  110 static VNET_DEFINE(int, ip_keepfaith);
  111 #define V_ip_keepfaith          VNET(ip_keepfaith)
  112 SYSCTL_VNET_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
  113     &VNET_NAME(ip_keepfaith), 0,
  114     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
  115 
  116 static VNET_DEFINE(int, ip_sendsourcequench);
  117 #define V_ip_sendsourcequench   VNET(ip_sendsourcequench)
  118 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
  119     &VNET_NAME(ip_sendsourcequench), 0,
  120     "Enable the transmission of source quench packets");
  121 
  122 VNET_DEFINE(int, ip_do_randomid);
  123 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
  124     &VNET_NAME(ip_do_randomid), 0,
  125     "Assign random ip_id values");
  126 
  127 /*
  128  * XXX - Setting ip_checkinterface mostly implements the receive side of
  129  * the Strong ES model described in RFC 1122, but since the routing table
  130  * and transmit implementation do not implement the Strong ES model,
  131  * setting this to 1 results in an odd hybrid.
  132  *
  133  * XXX - ip_checkinterface currently must be disabled if you use ipnat
  134  * to translate the destination address to another local interface.
  135  *
  136  * XXX - ip_checkinterface must be disabled if you add IP aliases
  137  * to the loopback interface instead of the interface where the
  138  * packets for those addresses are received.
  139  */
  140 static VNET_DEFINE(int, ip_checkinterface);
  141 #define V_ip_checkinterface     VNET(ip_checkinterface)
  142 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
  143     &VNET_NAME(ip_checkinterface), 0,
  144     "Verify packet arrives on correct interface");
  145 
  146 VNET_DEFINE(struct pfil_head, inet_pfil_hook);  /* Packet filter hooks */
  147 
  148 static struct netisr_handler ip_nh = {
  149         .nh_name = "ip",
  150         .nh_handler = ip_input,
  151         .nh_proto = NETISR_IP,
  152         .nh_policy = NETISR_POLICY_FLOW,
  153 };
  154 
  155 extern  struct domain inetdomain;
  156 extern  struct protosw inetsw[];
  157 u_char  ip_protox[IPPROTO_MAX];
  158 VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead);  /* first inet address */
  159 VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table  */
  160 VNET_DEFINE(u_long, in_ifaddrhmask);            /* mask for hash table */
  161 
  162 VNET_DEFINE(struct ipstat, ipstat);
  163 SYSCTL_VNET_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
  164     &VNET_NAME(ipstat), ipstat,
  165     "IP statistics (struct ipstat, netinet/ip_var.h)");
  166 
  167 static VNET_DEFINE(uma_zone_t, ipq_zone);
  168 static VNET_DEFINE(TAILQ_HEAD(ipqhead, ipq), ipq[IPREASS_NHASH]);
  169 static struct mtx ipqlock;
  170 
  171 #define V_ipq_zone              VNET(ipq_zone)
  172 #define V_ipq                   VNET(ipq)
  173 
  174 #define IPQ_LOCK()      mtx_lock(&ipqlock)
  175 #define IPQ_UNLOCK()    mtx_unlock(&ipqlock)
  176 #define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
  177 #define IPQ_LOCK_ASSERT()       mtx_assert(&ipqlock, MA_OWNED)
  178 
  179 static void     maxnipq_update(void);
  180 static void     ipq_zone_change(void *);
  181 static void     ip_drain_locked(void);
  182 
  183 static VNET_DEFINE(int, maxnipq);  /* Administrative limit on # reass queues. */
  184 static VNET_DEFINE(int, nipq);                  /* Total # of reass queues */
  185 #define V_maxnipq               VNET(maxnipq)
  186 #define V_nipq                  VNET(nipq)
  187 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
  188     &VNET_NAME(nipq), 0,
  189     "Current number of IPv4 fragment reassembly queue entries");
  190 
  191 static VNET_DEFINE(int, maxfragsperpacket);
  192 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  193 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
  194     &VNET_NAME(maxfragsperpacket), 0,
  195     "Maximum number of IPv4 fragments allowed per packet");
  196 
  197 struct callout  ipport_tick_callout;
  198 
  199 #ifdef IPCTL_DEFMTU
  200 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
  201     &ip_mtu, 0, "Default MTU");
  202 #endif
  203 
  204 #ifdef IPSTEALTH
  205 VNET_DEFINE(int, ipstealth);
  206 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
  207     &VNET_NAME(ipstealth), 0,
  208     "IP stealth mode, no TTL decrementation on forwarding");
  209 #endif
  210 
  211 #ifdef FLOWTABLE
  212 static VNET_DEFINE(int, ip_output_flowtable_size) = 2048;
  213 VNET_DEFINE(struct flowtable *, ip_ft);
  214 #define V_ip_output_flowtable_size      VNET(ip_output_flowtable_size)
  215 
  216 SYSCTL_VNET_INT(_net_inet_ip, OID_AUTO, output_flowtable_size, CTLFLAG_RDTUN,
  217     &VNET_NAME(ip_output_flowtable_size), 2048,
  218     "number of entries in the per-cpu output flow caches");
  219 #endif
  220 
  221 VNET_DEFINE(int, fw_one_pass) = 1;
  222 
  223 static void     ip_freef(struct ipqhead *, struct ipq *);
  224 
  225 /*
  226  * Kernel module interface for updating ipstat.  The argument is an index
  227  * into ipstat treated as an array of u_long.  While this encodes the general
  228  * layout of ipstat into the caller, it doesn't encode its location, so that
  229  * future changes to add, for example, per-CPU stats support won't cause
  230  * binary compatibility problems for kernel modules.
  231  */
  232 void
  233 kmod_ipstat_inc(int statnum)
  234 {
  235 
  236         (*((u_long *)&V_ipstat + statnum))++;
  237 }
  238 
  239 void
  240 kmod_ipstat_dec(int statnum)
  241 {
  242 
  243         (*((u_long *)&V_ipstat + statnum))--;
  244 }
  245 
  246 static int
  247 sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS)
  248 {
  249         int error, qlimit;
  250 
  251         netisr_getqlimit(&ip_nh, &qlimit);
  252         error = sysctl_handle_int(oidp, &qlimit, 0, req);
  253         if (error || !req->newptr)
  254                 return (error);
  255         if (qlimit < 1)
  256                 return (EINVAL);
  257         return (netisr_setqlimit(&ip_nh, qlimit));
  258 }
  259 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen,
  260     CTLTYPE_INT|CTLFLAG_RW, 0, 0, sysctl_netinet_intr_queue_maxlen, "I",
  261     "Maximum size of the IP input queue");
  262 
  263 static int
  264 sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS)
  265 {
  266         u_int64_t qdrops_long;
  267         int error, qdrops;
  268 
  269         netisr_getqdrops(&ip_nh, &qdrops_long);
  270         qdrops = qdrops_long;
  271         error = sysctl_handle_int(oidp, &qdrops, 0, req);
  272         if (error || !req->newptr)
  273                 return (error);
  274         if (qdrops != 0)
  275                 return (EINVAL);
  276         netisr_clearqdrops(&ip_nh);
  277         return (0);
  278 }
  279 
  280 SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops,
  281     CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_netinet_intr_queue_drops, "I",
  282     "Number of packets dropped from the IP input queue");
  283 
  284 /*
  285  * IP initialization: fill in IP protocol switch table.
  286  * All protocols not implemented in kernel go to raw IP protocol handler.
  287  */
  288 void
  289 ip_init(void)
  290 {
  291         struct protosw *pr;
  292         int i;
  293 
  294         V_ip_id = time_second & 0xffff;
  295 
  296         TAILQ_INIT(&V_in_ifaddrhead);
  297         V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask);
  298 
  299         /* Initialize IP reassembly queue. */
  300         for (i = 0; i < IPREASS_NHASH; i++)
  301                 TAILQ_INIT(&V_ipq[i]);
  302         V_maxnipq = nmbclusters / 32;
  303         V_maxfragsperpacket = 16;
  304         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  305             NULL, UMA_ALIGN_PTR, 0);
  306         maxnipq_update();
  307 
  308         /* Initialize packet filter hooks. */
  309         V_inet_pfil_hook.ph_type = PFIL_TYPE_AF;
  310         V_inet_pfil_hook.ph_af = AF_INET;
  311         if ((i = pfil_head_register(&V_inet_pfil_hook)) != 0)
  312                 printf("%s: WARNING: unable to register pfil hook, "
  313                         "error %d\n", __func__, i);
  314 
  315 #ifdef FLOWTABLE
  316         if (TUNABLE_INT_FETCH("net.inet.ip.output_flowtable_size",
  317                 &V_ip_output_flowtable_size)) {
  318                 if (V_ip_output_flowtable_size < 256)
  319                         V_ip_output_flowtable_size = 256;
  320                 if (!powerof2(V_ip_output_flowtable_size)) {
  321                         printf("flowtable must be power of 2 size\n");
  322                         V_ip_output_flowtable_size = 2048;
  323                 }
  324         } else {
  325                 /*
  326                  * round up to the next power of 2
  327                  */
  328                 V_ip_output_flowtable_size = 1 << fls((1024 + maxusers * 64)-1);
  329         }
  330         V_ip_ft = flowtable_alloc("ipv4", V_ip_output_flowtable_size, FL_PCPU);
  331 #endif
  332 
  333         /* Skip initialization of globals for non-default instances. */
  334         if (!IS_DEFAULT_VNET(curvnet))
  335                 return;
  336 
  337         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
  338         if (pr == NULL)
  339                 panic("ip_init: PF_INET not found");
  340 
  341         /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
  342         for (i = 0; i < IPPROTO_MAX; i++)
  343                 ip_protox[i] = pr - inetsw;
  344         /*
  345          * Cycle through IP protocols and put them into the appropriate place
  346          * in ip_protox[].
  347          */
  348         for (pr = inetdomain.dom_protosw;
  349             pr < inetdomain.dom_protoswNPROTOSW; pr++)
  350                 if (pr->pr_domain->dom_family == PF_INET &&
  351                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
  352                         /* Be careful to only index valid IP protocols. */
  353                         if (pr->pr_protocol < IPPROTO_MAX)
  354                                 ip_protox[pr->pr_protocol] = pr - inetsw;
  355                 }
  356 
  357         /* Start ipport_tick. */
  358         callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
  359         callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
  360         EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
  361                 SHUTDOWN_PRI_DEFAULT);
  362         EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
  363                 NULL, EVENTHANDLER_PRI_ANY);
  364 
  365         /* Initialize various other remaining things. */
  366         IPQ_LOCK_INIT();
  367         netisr_register(&ip_nh);
  368 }
  369 
  370 #ifdef VIMAGE
  371 void
  372 ip_destroy(void)
  373 {
  374 
  375         /* Cleanup in_ifaddr hash table; should be empty. */
  376         hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask);
  377 
  378         IPQ_LOCK();
  379         ip_drain_locked();
  380         IPQ_UNLOCK();
  381 
  382         uma_zdestroy(V_ipq_zone);
  383 }
  384 #endif
  385 
  386 void
  387 ip_fini(void *xtp)
  388 {
  389 
  390         callout_stop(&ipport_tick_callout);
  391 }
  392 
  393 /*
  394  * Ip input routine.  Checksum and byte swap header.  If fragmented
  395  * try to reassemble.  Process options.  Pass to next level.
  396  */
  397 void
  398 ip_input(struct mbuf *m)
  399 {
  400         struct ip *ip = NULL;
  401         struct in_ifaddr *ia = NULL;
  402         struct ifaddr *ifa;
  403         struct ifnet *ifp;
  404         int    checkif, hlen = 0;
  405         u_short sum;
  406         int dchg = 0;                           /* dest changed after fw */
  407         struct in_addr odst;                    /* original dst address */
  408 
  409         M_ASSERTPKTHDR(m);
  410 
  411         if (m->m_flags & M_FASTFWD_OURS) {
  412                 /*
  413                  * Firewall or NAT changed destination to local.
  414                  * We expect ip_len and ip_off to be in host byte order.
  415                  */
  416                 m->m_flags &= ~M_FASTFWD_OURS;
  417                 /* Set up some basics that will be used later. */
  418                 ip = mtod(m, struct ip *);
  419                 hlen = ip->ip_hl << 2;
  420                 goto ours;
  421         }
  422 
  423         IPSTAT_INC(ips_total);
  424 
  425         if (m->m_pkthdr.len < sizeof(struct ip))
  426                 goto tooshort;
  427 
  428         if (m->m_len < sizeof (struct ip) &&
  429             (m = m_pullup(m, sizeof (struct ip))) == NULL) {
  430                 IPSTAT_INC(ips_toosmall);
  431                 return;
  432         }
  433         ip = mtod(m, struct ip *);
  434 
  435         if (ip->ip_v != IPVERSION) {
  436                 IPSTAT_INC(ips_badvers);
  437                 goto bad;
  438         }
  439 
  440         hlen = ip->ip_hl << 2;
  441         if (hlen < sizeof(struct ip)) { /* minimum header length */
  442                 IPSTAT_INC(ips_badhlen);
  443                 goto bad;
  444         }
  445         if (hlen > m->m_len) {
  446                 if ((m = m_pullup(m, hlen)) == NULL) {
  447                         IPSTAT_INC(ips_badhlen);
  448                         return;
  449                 }
  450                 ip = mtod(m, struct ip *);
  451         }
  452 
  453         /* 127/8 must not appear on wire - RFC1122 */
  454         ifp = m->m_pkthdr.rcvif;
  455         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
  456             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
  457                 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
  458                         IPSTAT_INC(ips_badaddr);
  459                         goto bad;
  460                 }
  461         }
  462 
  463         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
  464                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
  465         } else {
  466                 if (hlen == sizeof(struct ip)) {
  467                         sum = in_cksum_hdr(ip);
  468                 } else {
  469                         sum = in_cksum(m, hlen);
  470                 }
  471         }
  472         if (sum) {
  473                 IPSTAT_INC(ips_badsum);
  474                 goto bad;
  475         }
  476 
  477 #ifdef ALTQ
  478         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
  479                 /* packet is dropped by traffic conditioner */
  480                 return;
  481 #endif
  482 
  483         /*
  484          * Convert fields to host representation.
  485          */
  486         ip->ip_len = ntohs(ip->ip_len);
  487         if (ip->ip_len < hlen) {
  488                 IPSTAT_INC(ips_badlen);
  489                 goto bad;
  490         }
  491         ip->ip_off = ntohs(ip->ip_off);
  492 
  493         /*
  494          * Check that the amount of data in the buffers
  495          * is as at least much as the IP header would have us expect.
  496          * Trim mbufs if longer than we expect.
  497          * Drop packet if shorter than we expect.
  498          */
  499         if (m->m_pkthdr.len < ip->ip_len) {
  500 tooshort:
  501                 IPSTAT_INC(ips_tooshort);
  502                 goto bad;
  503         }
  504         if (m->m_pkthdr.len > ip->ip_len) {
  505                 if (m->m_len == m->m_pkthdr.len) {
  506                         m->m_len = ip->ip_len;
  507                         m->m_pkthdr.len = ip->ip_len;
  508                 } else
  509                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
  510         }
  511 #ifdef IPSEC
  512         /*
  513          * Bypass packet filtering for packets previously handled by IPsec.
  514          */
  515         if (ip_ipsec_filtertunnel(m))
  516                 goto passin;
  517 #endif /* IPSEC */
  518 
  519         /*
  520          * Run through list of hooks for input packets.
  521          *
  522          * NB: Beware of the destination address changing (e.g.
  523          *     by NAT rewriting).  When this happens, tell
  524          *     ip_forward to do the right thing.
  525          */
  526 
  527         /* Jump over all PFIL processing if hooks are not active. */
  528         if (!PFIL_HOOKED(&V_inet_pfil_hook))
  529                 goto passin;
  530 
  531         odst = ip->ip_dst;
  532         if (pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_IN, NULL) != 0)
  533                 return;
  534         if (m == NULL)                  /* consumed by filter */
  535                 return;
  536 
  537         ip = mtod(m, struct ip *);
  538         dchg = (odst.s_addr != ip->ip_dst.s_addr);
  539         ifp = m->m_pkthdr.rcvif;
  540 
  541 #ifdef IPFIREWALL_FORWARD
  542         if (m->m_flags & M_FASTFWD_OURS) {
  543                 m->m_flags &= ~M_FASTFWD_OURS;
  544                 goto ours;
  545         }
  546         if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
  547                 /*
  548                  * Directly ship the packet on.  This allows forwarding
  549                  * packets originally destined to us to some other directly
  550                  * connected host.
  551                  */
  552                 ip_forward(m, dchg);
  553                 return;
  554         }
  555 #endif /* IPFIREWALL_FORWARD */
  556 
  557 passin:
  558         /*
  559          * Process options and, if not destined for us,
  560          * ship it on.  ip_dooptions returns 1 when an
  561          * error was detected (causing an icmp message
  562          * to be sent and the original packet to be freed).
  563          */
  564         if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
  565                 return;
  566 
  567         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
  568          * matter if it is destined to another node, or whether it is 
  569          * a multicast one, RSVP wants it! and prevents it from being forwarded
  570          * anywhere else. Also checks if the rsvp daemon is running before
  571          * grabbing the packet.
  572          */
  573         if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) 
  574                 goto ours;
  575 
  576         /*
  577          * Check our list of addresses, to see if the packet is for us.
  578          * If we don't have any addresses, assume any unicast packet
  579          * we receive might be for us (and let the upper layers deal
  580          * with it).
  581          */
  582         if (TAILQ_EMPTY(&V_in_ifaddrhead) &&
  583             (m->m_flags & (M_MCAST|M_BCAST)) == 0)
  584                 goto ours;
  585 
  586         /*
  587          * Enable a consistency check between the destination address
  588          * and the arrival interface for a unicast packet (the RFC 1122
  589          * strong ES model) if IP forwarding is disabled and the packet
  590          * is not locally generated and the packet is not subject to
  591          * 'ipfw fwd'.
  592          *
  593          * XXX - Checking also should be disabled if the destination
  594          * address is ipnat'ed to a different interface.
  595          *
  596          * XXX - Checking is incompatible with IP aliases added
  597          * to the loopback interface instead of the interface where
  598          * the packets are received.
  599          *
  600          * XXX - This is the case for carp vhost IPs as well so we
  601          * insert a workaround. If the packet got here, we already
  602          * checked with carp_iamatch() and carp_forus().
  603          */
  604         checkif = V_ip_checkinterface && (V_ipforwarding == 0) && 
  605             ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) &&
  606             ifp->if_carp == NULL && (dchg == 0);
  607 
  608         /*
  609          * Check for exact addresses in the hash bucket.
  610          */
  611         /* IN_IFADDR_RLOCK(); */
  612         LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
  613                 /*
  614                  * If the address matches, verify that the packet
  615                  * arrived via the correct interface if checking is
  616                  * enabled.
  617                  */
  618                 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && 
  619                     (!checkif || ia->ia_ifp == ifp)) {
  620                         ifa_ref(&ia->ia_ifa);
  621                         /* IN_IFADDR_RUNLOCK(); */
  622                         goto ours;
  623                 }
  624         }
  625         /* IN_IFADDR_RUNLOCK(); */
  626 
  627         /*
  628          * Check for broadcast addresses.
  629          *
  630          * Only accept broadcast packets that arrive via the matching
  631          * interface.  Reception of forwarded directed broadcasts would
  632          * be handled via ip_forward() and ether_output() with the loopback
  633          * into the stack for SIMPLEX interfaces handled by ether_output().
  634          */
  635         if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) {
  636                 IF_ADDR_RLOCK(ifp);
  637                 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
  638                         if (ifa->ifa_addr->sa_family != AF_INET)
  639                                 continue;
  640                         ia = ifatoia(ifa);
  641                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
  642                             ip->ip_dst.s_addr) {
  643                                 ifa_ref(ifa);
  644                                 IF_ADDR_RUNLOCK(ifp);
  645                                 goto ours;
  646                         }
  647                         if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr) {
  648                                 ifa_ref(ifa);
  649                                 IF_ADDR_RUNLOCK(ifp);
  650                                 goto ours;
  651                         }
  652 #ifdef BOOTP_COMPAT
  653                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) {
  654                                 ifa_ref(ifa);
  655                                 IF_ADDR_RUNLOCK(ifp);
  656                                 goto ours;
  657                         }
  658 #endif
  659                 }
  660                 IF_ADDR_RUNLOCK(ifp);
  661                 ia = NULL;
  662         }
  663         /* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
  664         if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
  665                 IPSTAT_INC(ips_cantforward);
  666                 m_freem(m);
  667                 return;
  668         }
  669         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
  670                 if (V_ip_mrouter) {
  671                         /*
  672                          * If we are acting as a multicast router, all
  673                          * incoming multicast packets are passed to the
  674                          * kernel-level multicast forwarding function.
  675                          * The packet is returned (relatively) intact; if
  676                          * ip_mforward() returns a non-zero value, the packet
  677                          * must be discarded, else it may be accepted below.
  678                          */
  679                         if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) {
  680                                 IPSTAT_INC(ips_cantforward);
  681                                 m_freem(m);
  682                                 return;
  683                         }
  684 
  685                         /*
  686                          * The process-level routing daemon needs to receive
  687                          * all multicast IGMP packets, whether or not this
  688                          * host belongs to their destination groups.
  689                          */
  690                         if (ip->ip_p == IPPROTO_IGMP)
  691                                 goto ours;
  692                         IPSTAT_INC(ips_forward);
  693                 }
  694                 /*
  695                  * Assume the packet is for us, to avoid prematurely taking
  696                  * a lock on the in_multi hash. Protocols must perform
  697                  * their own filtering and update statistics accordingly.
  698                  */
  699                 goto ours;
  700         }
  701         if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
  702                 goto ours;
  703         if (ip->ip_dst.s_addr == INADDR_ANY)
  704                 goto ours;
  705 
  706         /*
  707          * FAITH(Firewall Aided Internet Translator)
  708          */
  709         if (ifp && ifp->if_type == IFT_FAITH) {
  710                 if (V_ip_keepfaith) {
  711                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP) 
  712                                 goto ours;
  713                 }
  714                 m_freem(m);
  715                 return;
  716         }
  717 
  718         /*
  719          * Not for us; forward if possible and desirable.
  720          */
  721         if (V_ipforwarding == 0) {
  722                 IPSTAT_INC(ips_cantforward);
  723                 m_freem(m);
  724         } else {
  725 #ifdef IPSEC
  726                 if (ip_ipsec_fwd(m))
  727                         goto bad;
  728 #endif /* IPSEC */
  729                 ip_forward(m, dchg);
  730         }
  731         return;
  732 
  733 ours:
  734 #ifdef IPSTEALTH
  735         /*
  736          * IPSTEALTH: Process non-routing options only
  737          * if the packet is destined for us.
  738          */
  739         if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) {
  740                 if (ia != NULL)
  741                         ifa_free(&ia->ia_ifa);
  742                 return;
  743         }
  744 #endif /* IPSTEALTH */
  745 
  746         /* Count the packet in the ip address stats */
  747         if (ia != NULL) {
  748                 ia->ia_ifa.if_ipackets++;
  749                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
  750                 ifa_free(&ia->ia_ifa);
  751         }
  752 
  753         /*
  754          * Attempt reassembly; if it succeeds, proceed.
  755          * ip_reass() will return a different mbuf.
  756          */
  757         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
  758                 m = ip_reass(m);
  759                 if (m == NULL)
  760                         return;
  761                 ip = mtod(m, struct ip *);
  762                 /* Get the header length of the reassembled packet */
  763                 hlen = ip->ip_hl << 2;
  764         }
  765 
  766         /*
  767          * Further protocols expect the packet length to be w/o the
  768          * IP header.
  769          */
  770         ip->ip_len -= hlen;
  771 
  772 #ifdef IPSEC
  773         /*
  774          * enforce IPsec policy checking if we are seeing last header.
  775          * note that we do not visit this with protocols with pcb layer
  776          * code - like udp/tcp/raw ip.
  777          */
  778         if (ip_ipsec_input(m))
  779                 goto bad;
  780 #endif /* IPSEC */
  781 
  782         /*
  783          * Switch out to protocol's input routine.
  784          */
  785         IPSTAT_INC(ips_delivered);
  786 
  787         (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
  788         return;
  789 bad:
  790         m_freem(m);
  791 }
  792 
  793 /*
  794  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  795  * max has slightly different semantics than the sysctl, for historical
  796  * reasons.
  797  */
  798 static void
  799 maxnipq_update(void)
  800 {
  801 
  802         /*
  803          * -1 for unlimited allocation.
  804          */
  805         if (V_maxnipq < 0)
  806                 uma_zone_set_max(V_ipq_zone, 0);
  807         /*
  808          * Positive number for specific bound.
  809          */
  810         if (V_maxnipq > 0)
  811                 uma_zone_set_max(V_ipq_zone, V_maxnipq);
  812         /*
  813          * Zero specifies no further fragment queue allocation -- set the
  814          * bound very low, but rely on implementation elsewhere to actually
  815          * prevent allocation and reclaim current queues.
  816          */
  817         if (V_maxnipq == 0)
  818                 uma_zone_set_max(V_ipq_zone, 1);
  819 }
  820 
  821 static void
  822 ipq_zone_change(void *tag)
  823 {
  824 
  825         if (V_maxnipq > 0 && V_maxnipq < (nmbclusters / 32)) {
  826                 V_maxnipq = nmbclusters / 32;
  827                 maxnipq_update();
  828         }
  829 }
  830 
  831 static int
  832 sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
  833 {
  834         int error, i;
  835 
  836         i = V_maxnipq;
  837         error = sysctl_handle_int(oidp, &i, 0, req);
  838         if (error || !req->newptr)
  839                 return (error);
  840 
  841         /*
  842          * XXXRW: Might be a good idea to sanity check the argument and place
  843          * an extreme upper bound.
  844          */
  845         if (i < -1)
  846                 return (EINVAL);
  847         V_maxnipq = i;
  848         maxnipq_update();
  849         return (0);
  850 }
  851 
  852 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
  853     NULL, 0, sysctl_maxnipq, "I",
  854     "Maximum number of IPv4 fragment reassembly queue entries");
  855 
  856 /*
  857  * Take incoming datagram fragment and try to reassemble it into
  858  * whole datagram.  If the argument is the first fragment or one
  859  * in between the function will return NULL and store the mbuf
  860  * in the fragment chain.  If the argument is the last fragment
  861  * the packet will be reassembled and the pointer to the new
  862  * mbuf returned for further processing.  Only m_tags attached
  863  * to the first packet/fragment are preserved.
  864  * The IP header is *NOT* adjusted out of iplen.
  865  */
  866 struct mbuf *
  867 ip_reass(struct mbuf *m)
  868 {
  869         struct ip *ip;
  870         struct mbuf *p, *q, *nq, *t;
  871         struct ipq *fp = NULL;
  872         struct ipqhead *head;
  873         int i, hlen, next;
  874         u_int8_t ecn, ecn0;
  875         u_short hash;
  876 
  877         /* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
  878         if (V_maxnipq == 0 || V_maxfragsperpacket == 0) {
  879                 IPSTAT_INC(ips_fragments);
  880                 IPSTAT_INC(ips_fragdropped);
  881                 m_freem(m);
  882                 return (NULL);
  883         }
  884 
  885         ip = mtod(m, struct ip *);
  886         hlen = ip->ip_hl << 2;
  887 
  888         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  889         head = &V_ipq[hash];
  890         IPQ_LOCK();
  891 
  892         /*
  893          * Look for queue of fragments
  894          * of this datagram.
  895          */
  896         TAILQ_FOREACH(fp, head, ipq_list)
  897                 if (ip->ip_id == fp->ipq_id &&
  898                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  899                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  900 #ifdef MAC
  901                     mac_ipq_match(m, fp) &&
  902 #endif
  903                     ip->ip_p == fp->ipq_p)
  904                         goto found;
  905 
  906         fp = NULL;
  907 
  908         /*
  909          * Attempt to trim the number of allocated fragment queues if it
  910          * exceeds the administrative limit.
  911          */
  912         if ((V_nipq > V_maxnipq) && (V_maxnipq > 0)) {
  913                 /*
  914                  * drop something from the tail of the current queue
  915                  * before proceeding further
  916                  */
  917                 struct ipq *q = TAILQ_LAST(head, ipqhead);
  918                 if (q == NULL) {   /* gak */
  919                         for (i = 0; i < IPREASS_NHASH; i++) {
  920                                 struct ipq *r = TAILQ_LAST(&V_ipq[i], ipqhead);
  921                                 if (r) {
  922                                         IPSTAT_ADD(ips_fragtimeout,
  923                                             r->ipq_nfrags);
  924                                         ip_freef(&V_ipq[i], r);
  925                                         break;
  926                                 }
  927                         }
  928                 } else {
  929                         IPSTAT_ADD(ips_fragtimeout, q->ipq_nfrags);
  930                         ip_freef(head, q);
  931                 }
  932         }
  933 
  934 found:
  935         /*
  936          * Adjust ip_len to not reflect header,
  937          * convert offset of this to bytes.
  938          */
  939         ip->ip_len -= hlen;
  940         if (ip->ip_off & IP_MF) {
  941                 /*
  942                  * Make sure that fragments have a data length
  943                  * that's a non-zero multiple of 8 bytes.
  944                  */
  945                 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
  946                         IPSTAT_INC(ips_toosmall); /* XXX */
  947                         goto dropfrag;
  948                 }
  949                 m->m_flags |= M_FRAG;
  950         } else
  951                 m->m_flags &= ~M_FRAG;
  952         ip->ip_off <<= 3;
  953 
  954 
  955         /*
  956          * Attempt reassembly; if it succeeds, proceed.
  957          * ip_reass() will return a different mbuf.
  958          */
  959         IPSTAT_INC(ips_fragments);
  960         m->m_pkthdr.header = ip;
  961 
  962         /* Previous ip_reass() started here. */
  963         /*
  964          * Presence of header sizes in mbufs
  965          * would confuse code below.
  966          */
  967         m->m_data += hlen;
  968         m->m_len -= hlen;
  969 
  970         /*
  971          * If first fragment to arrive, create a reassembly queue.
  972          */
  973         if (fp == NULL) {
  974                 fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  975                 if (fp == NULL)
  976                         goto dropfrag;
  977 #ifdef MAC
  978                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  979                         uma_zfree(V_ipq_zone, fp);
  980                         fp = NULL;
  981                         goto dropfrag;
  982                 }
  983                 mac_ipq_create(m, fp);
  984 #endif
  985                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  986                 V_nipq++;
  987                 fp->ipq_nfrags = 1;
  988                 fp->ipq_ttl = IPFRAGTTL;
  989                 fp->ipq_p = ip->ip_p;
  990                 fp->ipq_id = ip->ip_id;
  991                 fp->ipq_src = ip->ip_src;
  992                 fp->ipq_dst = ip->ip_dst;
  993                 fp->ipq_frags = m;
  994                 m->m_nextpkt = NULL;
  995                 goto done;
  996         } else {
  997                 fp->ipq_nfrags++;
  998 #ifdef MAC
  999                 mac_ipq_update(m, fp);
 1000 #endif
 1001         }
 1002 
 1003 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
 1004 
 1005         /*
 1006          * Handle ECN by comparing this segment with the first one;
 1007          * if CE is set, do not lose CE.
 1008          * drop if CE and not-ECT are mixed for the same packet.
 1009          */
 1010         ecn = ip->ip_tos & IPTOS_ECN_MASK;
 1011         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
 1012         if (ecn == IPTOS_ECN_CE) {
 1013                 if (ecn0 == IPTOS_ECN_NOTECT)
 1014                         goto dropfrag;
 1015                 if (ecn0 != IPTOS_ECN_CE)
 1016                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
 1017         }
 1018         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
 1019                 goto dropfrag;
 1020 
 1021         /*
 1022          * Find a segment which begins after this one does.
 1023          */
 1024         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
 1025                 if (GETIP(q)->ip_off > ip->ip_off)
 1026                         break;
 1027 
 1028         /*
 1029          * If there is a preceding segment, it may provide some of
 1030          * our data already.  If so, drop the data from the incoming
 1031          * segment.  If it provides all of our data, drop us, otherwise
 1032          * stick new segment in the proper place.
 1033          *
 1034          * If some of the data is dropped from the preceding
 1035          * segment, then it's checksum is invalidated.
 1036          */
 1037         if (p) {
 1038                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
 1039                 if (i > 0) {
 1040                         if (i >= ip->ip_len)
 1041                                 goto dropfrag;
 1042                         m_adj(m, i);
 1043                         m->m_pkthdr.csum_flags = 0;
 1044                         ip->ip_off += i;
 1045                         ip->ip_len -= i;
 1046                 }
 1047                 m->m_nextpkt = p->m_nextpkt;
 1048                 p->m_nextpkt = m;
 1049         } else {
 1050                 m->m_nextpkt = fp->ipq_frags;
 1051                 fp->ipq_frags = m;
 1052         }
 1053 
 1054         /*
 1055          * While we overlap succeeding segments trim them or,
 1056          * if they are completely covered, dequeue them.
 1057          */
 1058         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
 1059              q = nq) {
 1060                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
 1061                 if (i < GETIP(q)->ip_len) {
 1062                         GETIP(q)->ip_len -= i;
 1063                         GETIP(q)->ip_off += i;
 1064                         m_adj(q, i);
 1065                         q->m_pkthdr.csum_flags = 0;
 1066                         break;
 1067                 }
 1068                 nq = q->m_nextpkt;
 1069                 m->m_nextpkt = nq;
 1070                 IPSTAT_INC(ips_fragdropped);
 1071                 fp->ipq_nfrags--;
 1072                 m_freem(q);
 1073         }
 1074 
 1075         /*
 1076          * Check for complete reassembly and perform frag per packet
 1077          * limiting.
 1078          *
 1079          * Frag limiting is performed here so that the nth frag has
 1080          * a chance to complete the packet before we drop the packet.
 1081          * As a result, n+1 frags are actually allowed per packet, but
 1082          * only n will ever be stored. (n = maxfragsperpacket.)
 1083          *
 1084          */
 1085         next = 0;
 1086         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
 1087                 if (GETIP(q)->ip_off != next) {
 1088                         if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1089                                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1090                                 ip_freef(head, fp);
 1091                         }
 1092                         goto done;
 1093                 }
 1094                 next += GETIP(q)->ip_len;
 1095         }
 1096         /* Make sure the last packet didn't have the IP_MF flag */
 1097         if (p->m_flags & M_FRAG) {
 1098                 if (fp->ipq_nfrags > V_maxfragsperpacket) {
 1099                         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1100                         ip_freef(head, fp);
 1101                 }
 1102                 goto done;
 1103         }
 1104 
 1105         /*
 1106          * Reassembly is complete.  Make sure the packet is a sane size.
 1107          */
 1108         q = fp->ipq_frags;
 1109         ip = GETIP(q);
 1110         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
 1111                 IPSTAT_INC(ips_toolong);
 1112                 IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
 1113                 ip_freef(head, fp);
 1114                 goto done;
 1115         }
 1116 
 1117         /*
 1118          * Concatenate fragments.
 1119          */
 1120         m = q;
 1121         t = m->m_next;
 1122         m->m_next = NULL;
 1123         m_cat(m, t);
 1124         nq = q->m_nextpkt;
 1125         q->m_nextpkt = NULL;
 1126         for (q = nq; q != NULL; q = nq) {
 1127                 nq = q->m_nextpkt;
 1128                 q->m_nextpkt = NULL;
 1129                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
 1130                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
 1131                 m_cat(m, q);
 1132         }
 1133         /*
 1134          * In order to do checksumming faster we do 'end-around carry' here
 1135          * (and not in for{} loop), though it implies we are not going to
 1136          * reassemble more than 64k fragments.
 1137          */
 1138         m->m_pkthdr.csum_data =
 1139             (m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
 1140 #ifdef MAC
 1141         mac_ipq_reassemble(fp, m);
 1142         mac_ipq_destroy(fp);
 1143 #endif
 1144 
 1145         /*
 1146          * Create header for new ip packet by modifying header of first
 1147          * packet;  dequeue and discard fragment reassembly header.
 1148          * Make header visible.
 1149          */
 1150         ip->ip_len = (ip->ip_hl << 2) + next;
 1151         ip->ip_src = fp->ipq_src;
 1152         ip->ip_dst = fp->ipq_dst;
 1153         TAILQ_REMOVE(head, fp, ipq_list);
 1154         V_nipq--;
 1155         uma_zfree(V_ipq_zone, fp);
 1156         m->m_len += (ip->ip_hl << 2);
 1157         m->m_data -= (ip->ip_hl << 2);
 1158         /* some debugging cruft by sklower, below, will go away soon */
 1159         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
 1160                 m_fixhdr(m);
 1161         IPSTAT_INC(ips_reassembled);
 1162         IPQ_UNLOCK();
 1163         return (m);
 1164 
 1165 dropfrag:
 1166         IPSTAT_INC(ips_fragdropped);
 1167         if (fp != NULL)
 1168                 fp->ipq_nfrags--;
 1169         m_freem(m);
 1170 done:
 1171         IPQ_UNLOCK();
 1172         return (NULL);
 1173 
 1174 #undef GETIP
 1175 }
 1176 
 1177 /*
 1178  * Free a fragment reassembly header and all
 1179  * associated datagrams.
 1180  */
 1181 static void
 1182 ip_freef(struct ipqhead *fhp, struct ipq *fp)
 1183 {
 1184         struct mbuf *q;
 1185 
 1186         IPQ_LOCK_ASSERT();
 1187 
 1188         while (fp->ipq_frags) {
 1189                 q = fp->ipq_frags;
 1190                 fp->ipq_frags = q->m_nextpkt;
 1191                 m_freem(q);
 1192         }
 1193         TAILQ_REMOVE(fhp, fp, ipq_list);
 1194         uma_zfree(V_ipq_zone, fp);
 1195         V_nipq--;
 1196 }
 1197 
 1198 /*
 1199  * IP timer processing;
 1200  * if a timer expires on a reassembly
 1201  * queue, discard it.
 1202  */
 1203 void
 1204 ip_slowtimo(void)
 1205 {
 1206         VNET_ITERATOR_DECL(vnet_iter);
 1207         struct ipq *fp;
 1208         int i;
 1209 
 1210         VNET_LIST_RLOCK_NOSLEEP();
 1211         IPQ_LOCK();
 1212         VNET_FOREACH(vnet_iter) {
 1213                 CURVNET_SET(vnet_iter);
 1214                 for (i = 0; i < IPREASS_NHASH; i++) {
 1215                         for(fp = TAILQ_FIRST(&V_ipq[i]); fp;) {
 1216                                 struct ipq *fpp;
 1217 
 1218                                 fpp = fp;
 1219                                 fp = TAILQ_NEXT(fp, ipq_list);
 1220                                 if(--fpp->ipq_ttl == 0) {
 1221                                         IPSTAT_ADD(ips_fragtimeout,
 1222                                             fpp->ipq_nfrags);
 1223                                         ip_freef(&V_ipq[i], fpp);
 1224                                 }
 1225                         }
 1226                 }
 1227                 /*
 1228                  * If we are over the maximum number of fragments
 1229                  * (due to the limit being lowered), drain off
 1230                  * enough to get down to the new limit.
 1231                  */
 1232                 if (V_maxnipq >= 0 && V_nipq > V_maxnipq) {
 1233                         for (i = 0; i < IPREASS_NHASH; i++) {
 1234                                 while (V_nipq > V_maxnipq &&
 1235                                     !TAILQ_EMPTY(&V_ipq[i])) {
 1236                                         IPSTAT_ADD(ips_fragdropped,
 1237                                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1238                                         ip_freef(&V_ipq[i],
 1239                                             TAILQ_FIRST(&V_ipq[i]));
 1240                                 }
 1241                         }
 1242                 }
 1243                 CURVNET_RESTORE();
 1244         }
 1245         IPQ_UNLOCK();
 1246         VNET_LIST_RUNLOCK_NOSLEEP();
 1247 }
 1248 
 1249 /*
 1250  * Drain off all datagram fragments.
 1251  */
 1252 static void
 1253 ip_drain_locked(void)
 1254 {
 1255         int     i;
 1256 
 1257         IPQ_LOCK_ASSERT();
 1258 
 1259         for (i = 0; i < IPREASS_NHASH; i++) {
 1260                 while(!TAILQ_EMPTY(&V_ipq[i])) {
 1261                         IPSTAT_ADD(ips_fragdropped,
 1262                             TAILQ_FIRST(&V_ipq[i])->ipq_nfrags);
 1263                         ip_freef(&V_ipq[i], TAILQ_FIRST(&V_ipq[i]));
 1264                 }
 1265         }
 1266 }
 1267 
 1268 void
 1269 ip_drain(void)
 1270 {
 1271         VNET_ITERATOR_DECL(vnet_iter);
 1272 
 1273         VNET_LIST_RLOCK_NOSLEEP();
 1274         IPQ_LOCK();
 1275         VNET_FOREACH(vnet_iter) {
 1276                 CURVNET_SET(vnet_iter);
 1277                 ip_drain_locked();
 1278                 CURVNET_RESTORE();
 1279         }
 1280         IPQ_UNLOCK();
 1281         VNET_LIST_RUNLOCK_NOSLEEP();
 1282         in_rtqdrain();
 1283 }
 1284 
 1285 /*
 1286  * The protocol to be inserted into ip_protox[] must be already registered
 1287  * in inetsw[], either statically or through pf_proto_register().
 1288  */
 1289 int
 1290 ipproto_register(short ipproto)
 1291 {
 1292         struct protosw *pr;
 1293 
 1294         /* Sanity checks. */
 1295         if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
 1296                 return (EPROTONOSUPPORT);
 1297 
 1298         /*
 1299          * The protocol slot must not be occupied by another protocol
 1300          * already.  An index pointing to IPPROTO_RAW is unused.
 1301          */
 1302         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1303         if (pr == NULL)
 1304                 return (EPFNOSUPPORT);
 1305         if (ip_protox[ipproto] != pr - inetsw)  /* IPPROTO_RAW */
 1306                 return (EEXIST);
 1307 
 1308         /* Find the protocol position in inetsw[] and set the index. */
 1309         for (pr = inetdomain.dom_protosw;
 1310              pr < inetdomain.dom_protoswNPROTOSW; pr++) {
 1311                 if (pr->pr_domain->dom_family == PF_INET &&
 1312                     pr->pr_protocol && pr->pr_protocol == ipproto) {
 1313                         ip_protox[pr->pr_protocol] = pr - inetsw;
 1314                         return (0);
 1315                 }
 1316         }
 1317         return (EPROTONOSUPPORT);
 1318 }
 1319 
 1320 int
 1321 ipproto_unregister(short ipproto)
 1322 {
 1323         struct protosw *pr;
 1324 
 1325         /* Sanity checks. */
 1326         if (ipproto <= 0 || ipproto >= IPPROTO_MAX)
 1327                 return (EPROTONOSUPPORT);
 1328 
 1329         /* Check if the protocol was indeed registered. */
 1330         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
 1331         if (pr == NULL)
 1332                 return (EPFNOSUPPORT);
 1333         if (ip_protox[ipproto] == pr - inetsw)  /* IPPROTO_RAW */
 1334                 return (ENOENT);
 1335 
 1336         /* Reset the protocol slot to IPPROTO_RAW. */
 1337         ip_protox[ipproto] = pr - inetsw;
 1338         return (0);
 1339 }
 1340 
 1341 /*
 1342  * Given address of next destination (final or next hop), return (referenced)
 1343  * internet address info of interface to be used to get there.
 1344  */
 1345 struct in_ifaddr *
 1346 ip_rtaddr(struct in_addr dst, u_int fibnum)
 1347 {
 1348         struct route sro;
 1349         struct sockaddr_in *sin;
 1350         struct in_ifaddr *ia;
 1351 
 1352         bzero(&sro, sizeof(sro));
 1353         sin = (struct sockaddr_in *)&sro.ro_dst;
 1354         sin->sin_family = AF_INET;
 1355         sin->sin_len = sizeof(*sin);
 1356         sin->sin_addr = dst;
 1357         in_rtalloc_ign(&sro, 0, fibnum);
 1358 
 1359         if (sro.ro_rt == NULL)
 1360                 return (NULL);
 1361 
 1362         ia = ifatoia(sro.ro_rt->rt_ifa);
 1363         ifa_ref(&ia->ia_ifa);
 1364         RTFREE(sro.ro_rt);
 1365         return (ia);
 1366 }
 1367 
 1368 u_char inetctlerrmap[PRC_NCMDS] = {
 1369         0,              0,              0,              0,
 1370         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
 1371         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
 1372         EMSGSIZE,       EHOSTUNREACH,   0,              0,
 1373         0,              0,              EHOSTUNREACH,   0,
 1374         ENOPROTOOPT,    ECONNREFUSED
 1375 };
 1376 
 1377 /*
 1378  * Forward a packet.  If some error occurs return the sender
 1379  * an icmp packet.  Note we can't always generate a meaningful
 1380  * icmp message because icmp doesn't have a large enough repertoire
 1381  * of codes and types.
 1382  *
 1383  * If not forwarding, just drop the packet.  This could be confusing
 1384  * if ipforwarding was zero but some routing protocol was advancing
 1385  * us as a gateway to somewhere.  However, we must let the routing
 1386  * protocol deal with that.
 1387  *
 1388  * The srcrt parameter indicates whether the packet is being forwarded
 1389  * via a source route.
 1390  */
 1391 void
 1392 ip_forward(struct mbuf *m, int srcrt)
 1393 {
 1394         struct ip *ip = mtod(m, struct ip *);
 1395         struct in_ifaddr *ia;
 1396         struct mbuf *mcopy;
 1397         struct in_addr dest;
 1398         struct route ro;
 1399         int error, type = 0, code = 0, mtu = 0;
 1400 
 1401         if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
 1402                 IPSTAT_INC(ips_cantforward);
 1403                 m_freem(m);
 1404                 return;
 1405         }
 1406 #ifdef IPSTEALTH
 1407         if (!V_ipstealth) {
 1408 #endif
 1409                 if (ip->ip_ttl <= IPTTLDEC) {
 1410                         icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
 1411                             0, 0);
 1412                         return;
 1413                 }
 1414 #ifdef IPSTEALTH
 1415         }
 1416 #endif
 1417 
 1418         ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
 1419 #ifndef IPSEC
 1420         /*
 1421          * 'ia' may be NULL if there is no route for this destination.
 1422          * In case of IPsec, Don't discard it just yet, but pass it to
 1423          * ip_output in case of outgoing IPsec policy.
 1424          */
 1425         if (!srcrt && ia == NULL) {
 1426                 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
 1427                 return;
 1428         }
 1429 #endif
 1430 
 1431         /*
 1432          * Save the IP header and at most 8 bytes of the payload,
 1433          * in case we need to generate an ICMP message to the src.
 1434          *
 1435          * XXX this can be optimized a lot by saving the data in a local
 1436          * buffer on the stack (72 bytes at most), and only allocating the
 1437          * mbuf if really necessary. The vast majority of the packets
 1438          * are forwarded without having to send an ICMP back (either
 1439          * because unnecessary, or because rate limited), so we are
 1440          * really we are wasting a lot of work here.
 1441          *
 1442          * We don't use m_copy() because it might return a reference
 1443          * to a shared cluster. Both this function and ip_output()
 1444          * assume exclusive access to the IP header in `m', so any
 1445          * data in a cluster may change before we reach icmp_error().
 1446          */
 1447         MGETHDR(mcopy, M_DONTWAIT, m->m_type);
 1448         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
 1449                 /*
 1450                  * It's probably ok if the pkthdr dup fails (because
 1451                  * the deep copy of the tag chain failed), but for now
 1452                  * be conservative and just discard the copy since
 1453                  * code below may some day want the tags.
 1454                  */
 1455                 m_free(mcopy);
 1456                 mcopy = NULL;
 1457         }
 1458         if (mcopy != NULL) {
 1459                 mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
 1460                 mcopy->m_pkthdr.len = mcopy->m_len;
 1461                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
 1462         }
 1463 
 1464 #ifdef IPSTEALTH
 1465         if (!V_ipstealth) {
 1466 #endif
 1467                 ip->ip_ttl -= IPTTLDEC;
 1468 #ifdef IPSTEALTH
 1469         }
 1470 #endif
 1471 
 1472         /*
 1473          * If forwarding packet using same interface that it came in on,
 1474          * perhaps should send a redirect to sender to shortcut a hop.
 1475          * Only send redirect if source is sending directly to us,
 1476          * and if packet was not source routed (or has any options).
 1477          * Also, don't send redirect if forwarding using a default route
 1478          * or a route modified by a redirect.
 1479          */
 1480         dest.s_addr = 0;
 1481         if (!srcrt && V_ipsendredirects &&
 1482             ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) {
 1483                 struct sockaddr_in *sin;
 1484                 struct rtentry *rt;
 1485 
 1486                 bzero(&ro, sizeof(ro));
 1487                 sin = (struct sockaddr_in *)&ro.ro_dst;
 1488                 sin->sin_family = AF_INET;
 1489                 sin->sin_len = sizeof(*sin);
 1490                 sin->sin_addr = ip->ip_dst;
 1491                 in_rtalloc_ign(&ro, 0, M_GETFIB(m));
 1492 
 1493                 rt = ro.ro_rt;
 1494 
 1495                 if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
 1496                     satosin(rt_key(rt))->sin_addr.s_addr != 0) {
 1497 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
 1498                         u_long src = ntohl(ip->ip_src.s_addr);
 1499 
 1500                         if (RTA(rt) &&
 1501                             (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
 1502                                 if (rt->rt_flags & RTF_GATEWAY)
 1503                                         dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
 1504                                 else
 1505                                         dest.s_addr = ip->ip_dst.s_addr;
 1506                                 /* Router requirements says to only send host redirects */
 1507                                 type = ICMP_REDIRECT;
 1508                                 code = ICMP_REDIRECT_HOST;
 1509                         }
 1510                 }
 1511                 if (rt)
 1512                         RTFREE(rt);
 1513         }
 1514 
 1515         /*
 1516          * Try to cache the route MTU from ip_output so we can consider it for
 1517          * the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
 1518          */
 1519         bzero(&ro, sizeof(ro));
 1520 
 1521         error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
 1522 
 1523         if (error == EMSGSIZE && ro.ro_rt)
 1524                 mtu = ro.ro_rt->rt_rmx.rmx_mtu;
 1525         if (ro.ro_rt)
 1526                 RTFREE(ro.ro_rt);
 1527 
 1528         if (error)
 1529                 IPSTAT_INC(ips_cantforward);
 1530         else {
 1531                 IPSTAT_INC(ips_forward);
 1532                 if (type)
 1533                         IPSTAT_INC(ips_redirectsent);
 1534                 else {
 1535                         if (mcopy)
 1536                                 m_freem(mcopy);
 1537                         if (ia != NULL)
 1538                                 ifa_free(&ia->ia_ifa);
 1539                         return;
 1540                 }
 1541         }
 1542         if (mcopy == NULL) {
 1543                 if (ia != NULL)
 1544                         ifa_free(&ia->ia_ifa);
 1545                 return;
 1546         }
 1547 
 1548         switch (error) {
 1549 
 1550         case 0:                         /* forwarded, but need redirect */
 1551                 /* type, code set above */
 1552                 break;
 1553 
 1554         case ENETUNREACH:
 1555         case EHOSTUNREACH:
 1556         case ENETDOWN:
 1557         case EHOSTDOWN:
 1558         default:
 1559                 type = ICMP_UNREACH;
 1560                 code = ICMP_UNREACH_HOST;
 1561                 break;
 1562 
 1563         case EMSGSIZE:
 1564                 type = ICMP_UNREACH;
 1565                 code = ICMP_UNREACH_NEEDFRAG;
 1566 
 1567 #ifdef IPSEC
 1568                 /* 
 1569                  * If IPsec is configured for this path,
 1570                  * override any possibly mtu value set by ip_output.
 1571                  */ 
 1572                 mtu = ip_ipsec_mtu(mcopy, mtu);
 1573 #endif /* IPSEC */
 1574                 /*
 1575                  * If the MTU was set before make sure we are below the
 1576                  * interface MTU.
 1577                  * If the MTU wasn't set before use the interface mtu or
 1578                  * fall back to the next smaller mtu step compared to the
 1579                  * current packet size.
 1580                  */
 1581                 if (mtu != 0) {
 1582                         if (ia != NULL)
 1583                                 mtu = min(mtu, ia->ia_ifp->if_mtu);
 1584                 } else {
 1585                         if (ia != NULL)
 1586                                 mtu = ia->ia_ifp->if_mtu;
 1587                         else
 1588                                 mtu = ip_next_mtu(ip->ip_len, 0);
 1589                 }
 1590                 IPSTAT_INC(ips_cantfrag);
 1591                 break;
 1592 
 1593         case ENOBUFS:
 1594                 /*
 1595                  * A router should not generate ICMP_SOURCEQUENCH as
 1596                  * required in RFC1812 Requirements for IP Version 4 Routers.
 1597                  * Source quench could be a big problem under DoS attacks,
 1598                  * or if the underlying interface is rate-limited.
 1599                  * Those who need source quench packets may re-enable them
 1600                  * via the net.inet.ip.sendsourcequench sysctl.
 1601                  */
 1602                 if (V_ip_sendsourcequench == 0) {
 1603                         m_freem(mcopy);
 1604                         if (ia != NULL)
 1605                                 ifa_free(&ia->ia_ifa);
 1606                         return;
 1607                 } else {
 1608                         type = ICMP_SOURCEQUENCH;
 1609                         code = 0;
 1610                 }
 1611                 break;
 1612 
 1613         case EACCES:                    /* ipfw denied packet */
 1614                 m_freem(mcopy);
 1615                 if (ia != NULL)
 1616                         ifa_free(&ia->ia_ifa);
 1617                 return;
 1618         }
 1619         if (ia != NULL)
 1620                 ifa_free(&ia->ia_ifa);
 1621         icmp_error(mcopy, type, code, dest.s_addr, mtu);
 1622 }
 1623 
 1624 void
 1625 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
 1626     struct mbuf *m)
 1627 {
 1628 
 1629         if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
 1630                 struct bintime bt;
 1631 
 1632                 bintime(&bt);
 1633                 if (inp->inp_socket->so_options & SO_BINTIME) {
 1634                         *mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
 1635                         SCM_BINTIME, SOL_SOCKET);
 1636                         if (*mp)
 1637                                 mp = &(*mp)->m_next;
 1638                 }
 1639                 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
 1640                         struct timeval tv;
 1641 
 1642                         bintime2timeval(&bt, &tv);
 1643                         *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
 1644                                 SCM_TIMESTAMP, SOL_SOCKET);
 1645                         if (*mp)
 1646                                 mp = &(*mp)->m_next;
 1647                 }
 1648         }
 1649         if (inp->inp_flags & INP_RECVDSTADDR) {
 1650                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
 1651                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
 1652                 if (*mp)
 1653                         mp = &(*mp)->m_next;
 1654         }
 1655         if (inp->inp_flags & INP_RECVTTL) {
 1656                 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
 1657                     sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
 1658                 if (*mp)
 1659                         mp = &(*mp)->m_next;
 1660         }
 1661 #ifdef notyet
 1662         /* XXX
 1663          * Moving these out of udp_input() made them even more broken
 1664          * than they already were.
 1665          */
 1666         /* options were tossed already */
 1667         if (inp->inp_flags & INP_RECVOPTS) {
 1668                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
 1669                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
 1670                 if (*mp)
 1671                         mp = &(*mp)->m_next;
 1672         }
 1673         /* ip_srcroute doesn't do what we want here, need to fix */
 1674         if (inp->inp_flags & INP_RECVRETOPTS) {
 1675                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
 1676                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
 1677                 if (*mp)
 1678                         mp = &(*mp)->m_next;
 1679         }
 1680 #endif
 1681         if (inp->inp_flags & INP_RECVIF) {
 1682                 struct ifnet *ifp;
 1683                 struct sdlbuf {
 1684                         struct sockaddr_dl sdl;
 1685                         u_char  pad[32];
 1686                 } sdlbuf;
 1687                 struct sockaddr_dl *sdp;
 1688                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
 1689 
 1690                 if (((ifp = m->m_pkthdr.rcvif)) 
 1691                 && ( ifp->if_index && (ifp->if_index <= V_if_index))) {
 1692                         sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
 1693                         /*
 1694                          * Change our mind and don't try copy.
 1695                          */
 1696                         if ((sdp->sdl_family != AF_LINK)
 1697                         || (sdp->sdl_len > sizeof(sdlbuf))) {
 1698                                 goto makedummy;
 1699                         }
 1700                         bcopy(sdp, sdl2, sdp->sdl_len);
 1701                 } else {
 1702 makedummy:      
 1703                         sdl2->sdl_len
 1704                                 = offsetof(struct sockaddr_dl, sdl_data[0]);
 1705                         sdl2->sdl_family = AF_LINK;
 1706                         sdl2->sdl_index = 0;
 1707                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
 1708                 }
 1709                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
 1710                         IP_RECVIF, IPPROTO_IP);
 1711                 if (*mp)
 1712                         mp = &(*mp)->m_next;
 1713         }
 1714         if (inp->inp_flags & INP_RECVTOS) {
 1715                 *mp = sbcreatecontrol((caddr_t) &ip->ip_tos,
 1716                     sizeof(u_char), IP_RECVTOS, IPPROTO_IP);
 1717                 if (*mp)
 1718                         mp = &(*mp)->m_next;
 1719         }
 1720 }
 1721 
 1722 /*
 1723  * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
 1724  * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
 1725  * locking.  This code remains in ip_input.c as ip_mroute.c is optionally
 1726  * compiled.
 1727  */
 1728 static VNET_DEFINE(int, ip_rsvp_on);
 1729 VNET_DEFINE(struct socket *, ip_rsvpd);
 1730 
 1731 #define V_ip_rsvp_on            VNET(ip_rsvp_on)
 1732 
 1733 int
 1734 ip_rsvp_init(struct socket *so)
 1735 {
 1736 
 1737         if (so->so_type != SOCK_RAW ||
 1738             so->so_proto->pr_protocol != IPPROTO_RSVP)
 1739                 return EOPNOTSUPP;
 1740 
 1741         if (V_ip_rsvpd != NULL)
 1742                 return EADDRINUSE;
 1743 
 1744         V_ip_rsvpd = so;
 1745         /*
 1746          * This may seem silly, but we need to be sure we don't over-increment
 1747          * the RSVP counter, in case something slips up.
 1748          */
 1749         if (!V_ip_rsvp_on) {
 1750                 V_ip_rsvp_on = 1;
 1751                 V_rsvp_on++;
 1752         }
 1753 
 1754         return 0;
 1755 }
 1756 
 1757 int
 1758 ip_rsvp_done(void)
 1759 {
 1760 
 1761         V_ip_rsvpd = NULL;
 1762         /*
 1763          * This may seem silly, but we need to be sure we don't over-decrement
 1764          * the RSVP counter, in case something slips up.
 1765          */
 1766         if (V_ip_rsvp_on) {
 1767                 V_ip_rsvp_on = 0;
 1768                 V_rsvp_on--;
 1769         }
 1770         return 0;
 1771 }
 1772 
 1773 void
 1774 rsvp_input(struct mbuf *m, int off)     /* XXX must fixup manually */
 1775 {
 1776 
 1777         if (rsvp_input_p) { /* call the real one if loaded */
 1778                 rsvp_input_p(m, off);
 1779                 return;
 1780         }
 1781 
 1782         /* Can still get packets with rsvp_on = 0 if there is a local member
 1783          * of the group to which the RSVP packet is addressed.  But in this
 1784          * case we want to throw the packet away.
 1785          */
 1786         
 1787         if (!V_rsvp_on) {
 1788                 m_freem(m);
 1789                 return;
 1790         }
 1791 
 1792         if (V_ip_rsvpd != NULL) { 
 1793                 rip_input(m, off);
 1794                 return;
 1795         }
 1796         /* Drop the packet */
 1797         m_freem(m);
 1798 }

Cache object: df56f5eb44947ca908d89039726374e7


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.