The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1989 Stephen Deering
    5  * Copyright (c) 1992, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * Stephen Deering of Stanford University.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   36  */
   37 
   38 /*
   39  * IP multicast forwarding procedures
   40  *
   41  * Written by David Waitzman, BBN Labs, August 1988.
   42  * Modified by Steve Deering, Stanford, February 1989.
   43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   44  * Modified by Van Jacobson, LBL, January 1993
   45  * Modified by Ajit Thyagarajan, PARC, August 1993
   46  * Modified by Bill Fenner, PARC, April 1995
   47  * Modified by Ahmed Helmy, SGI, June 1996
   48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   50  * Modified by Hitoshi Asaeda, WIDE, August 2000
   51  * Modified by Pavlin Radoslavov, ICSI, October 2002
   52  * Modified by Wojciech Macek, Semihalf, May 2021
   53  *
   54  * MROUTING Revision: 3.5
   55  * and PIM-SMv2 and PIM-DM support, advanced API support,
   56  * bandwidth metering and signaling
   57  */
   58 
   59 /*
   60  * TODO: Prefix functions with ipmf_.
   61  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
   62  * domain attachment (if_afdata) so we can track consumers of that service.
   63  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
   64  * move it to socket options.
   65  * TODO: Cleanup LSRR removal further.
   66  * TODO: Push RSVP stubs into raw_ip.c.
   67  * TODO: Use bitstring.h for vif set.
   68  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
   69  * TODO: Sync ip6_mroute.c with this file.
   70  */
   71 
   72 #include <sys/cdefs.h>
   73 __FBSDID("$FreeBSD$");
   74 
   75 #include "opt_inet.h"
   76 #include "opt_mrouting.h"
   77 
   78 #define _PIM_VT 1
   79 
   80 #include <sys/types.h>
   81 #include <sys/param.h>
   82 #include <sys/kernel.h>
   83 #include <sys/stddef.h>
   84 #include <sys/condvar.h>
   85 #include <sys/eventhandler.h>
   86 #include <sys/lock.h>
   87 #include <sys/kthread.h>
   88 #include <sys/ktr.h>
   89 #include <sys/malloc.h>
   90 #include <sys/mbuf.h>
   91 #include <sys/module.h>
   92 #include <sys/priv.h>
   93 #include <sys/protosw.h>
   94 #include <sys/signalvar.h>
   95 #include <sys/socket.h>
   96 #include <sys/socketvar.h>
   97 #include <sys/sockio.h>
   98 #include <sys/sx.h>
   99 #include <sys/sysctl.h>
  100 #include <sys/syslog.h>
  101 #include <sys/systm.h>
  102 #include <sys/taskqueue.h>
  103 #include <sys/time.h>
  104 #include <sys/counter.h>
  105 #include <machine/atomic.h>
  106 
  107 #include <net/if.h>
  108 #include <net/if_var.h>
  109 #include <net/if_types.h>
  110 #include <net/netisr.h>
  111 #include <net/route.h>
  112 #include <net/vnet.h>
  113 
  114 #include <netinet/in.h>
  115 #include <netinet/igmp.h>
  116 #include <netinet/in_systm.h>
  117 #include <netinet/in_var.h>
  118 #include <netinet/ip.h>
  119 #include <netinet/ip_encap.h>
  120 #include <netinet/ip_mroute.h>
  121 #include <netinet/ip_var.h>
  122 #include <netinet/ip_options.h>
  123 #include <netinet/pim.h>
  124 #include <netinet/pim_var.h>
  125 #include <netinet/udp.h>
  126 
  127 #include <machine/in_cksum.h>
  128 
  129 #ifndef KTR_IPMF
  130 #define KTR_IPMF KTR_INET
  131 #endif
  132 
  133 #define         VIFI_INVALID    ((vifi_t) -1)
  134 
  135 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
  136 
  137 /*
  138  * Locking.  We use two locks: one for the virtual interface table and
  139  * one for the forwarding table.  These locks may be nested in which case
  140  * the VIF lock must always be taken first.  Note that each lock is used
  141  * to cover not only the specific data structure but also related data
  142  * structures.
  143  */
  144 
  145 static struct rwlock mrouter_mtx;
  146 #define MRW_RLOCK()             rw_rlock(&mrouter_mtx)
  147 #define MRW_WLOCK()             rw_wlock(&mrouter_mtx)
  148 #define MRW_RUNLOCK()   rw_runlock(&mrouter_mtx)
  149 #define MRW_WUNLOCK()   rw_wunlock(&mrouter_mtx)
  150 #define MRW_UNLOCK()    rw_unlock(&mrouter_mtx)
  151 #define MRW_LOCK_ASSERT()       rw_assert(&mrouter_mtx, RA_LOCKED)
  152 #define MRW_WLOCK_ASSERT()      rw_assert(&mrouter_mtx, RA_WLOCKED)
  153 #define MRW_LOCK_TRY_UPGRADE()  rw_try_upgrade(&mrouter_mtx)
  154 #define MRW_WOWNED()    rw_wowned(&mrouter_mtx)
  155 #define MRW_LOCK_INIT()                                         \
  156         rw_init(&mrouter_mtx, "IPv4 multicast forwarding")
  157 #define MRW_LOCK_DESTROY()      rw_destroy(&mrouter_mtx)
  158 
  159 static int ip_mrouter_cnt;      /* # of vnets with active mrouters */
  160 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
  161 
  162 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
  163 VNET_PCPUSTAT_SYSINIT(mrtstat);
  164 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
  165 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
  166     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
  167     "netinet/ip_mroute.h)");
  168 
  169 VNET_DEFINE_STATIC(u_long, mfchash);
  170 #define V_mfchash               VNET(mfchash)
  171 #define MFCHASH(a, g)                                                   \
  172         ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
  173           ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
  174 #define MFCHASHSIZE     256
  175 
  176 static u_long mfchashsize;                      /* Hash size */
  177 VNET_DEFINE_STATIC(u_char *, nexpire);          /* 0..mfchashsize-1 */
  178 #define V_nexpire               VNET(nexpire)
  179 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
  180 #define V_mfchashtbl            VNET(mfchashtbl)
  181 VNET_DEFINE_STATIC(struct taskqueue *, task_queue);
  182 #define V_task_queue            VNET(task_queue)
  183 VNET_DEFINE_STATIC(struct task, task);
  184 #define V_task          VNET(task)
  185 
  186 VNET_DEFINE_STATIC(vifi_t, numvifs);
  187 #define V_numvifs               VNET(numvifs)
  188 VNET_DEFINE_STATIC(struct vif *, viftable);
  189 #define V_viftable              VNET(viftable)
  190 
  191 static eventhandler_tag if_detach_event_tag = NULL;
  192 
  193 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
  194 #define V_expire_upcalls_ch     VNET(expire_upcalls_ch)
  195 
  196 VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx);
  197 #define V_buf_ring_mtx  VNET(buf_ring_mtx)
  198 
  199 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  200 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  201 
  202 /*
  203  * Bandwidth meter variables and constants
  204  */
  205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  206 
  207 /*
  208  * Pending upcalls are stored in a ring which is flushed when
  209  * full, or periodically
  210  */
  211 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
  212 #define V_bw_upcalls_ch         VNET(bw_upcalls_ch)
  213 VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring);
  214 #define V_bw_upcalls_ring       VNET(bw_upcalls_ring)
  215 VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx);
  216 #define V_bw_upcalls_ring_mtx           VNET(bw_upcalls_ring_mtx)
  217 
  218 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  219 
  220 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
  221 VNET_PCPUSTAT_SYSINIT(pimstat);
  222 VNET_PCPUSTAT_SYSUNINIT(pimstat);
  223 
  224 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  225     "PIM");
  226 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
  227     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  228 
  229 static u_long   pim_squelch_wholepkt = 0;
  230 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
  231     &pim_squelch_wholepkt, 0,
  232     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
  233 
  234 static const struct encaptab *pim_encap_cookie;
  235 static int pim_encapcheck(const struct mbuf *, int, int, void *);
  236 static int pim_input(struct mbuf *, int, int, void *);
  237 
  238 extern int in_mcast_loop;
  239 
  240 static const struct encap_config ipv4_encap_cfg = {
  241         .proto = IPPROTO_PIM,
  242         .min_length = sizeof(struct ip) + PIM_MINLEN,
  243         .exact_match = 8,
  244         .check = pim_encapcheck,
  245         .input = pim_input
  246 };
  247 
  248 /*
  249  * Note: the PIM Register encapsulation adds the following in front of a
  250  * data packet:
  251  *
  252  * struct pim_encap_hdr {
  253  *    struct ip ip;
  254  *    struct pim_encap_pimhdr  pim;
  255  * }
  256  *
  257  */
  258 
  259 struct pim_encap_pimhdr {
  260         struct pim pim;
  261         uint32_t   flags;
  262 };
  263 #define         PIM_ENCAP_TTL   64
  264 
  265 static struct ip pim_encap_iphdr = {
  266 #if BYTE_ORDER == LITTLE_ENDIAN
  267         sizeof(struct ip) >> 2,
  268         IPVERSION,
  269 #else
  270         IPVERSION,
  271         sizeof(struct ip) >> 2,
  272 #endif
  273         0,                      /* tos */
  274         sizeof(struct ip),      /* total length */
  275         0,                      /* id */
  276         0,                      /* frag offset */
  277         PIM_ENCAP_TTL,
  278         IPPROTO_PIM,
  279         0,                      /* checksum */
  280 };
  281 
  282 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  283     {
  284         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  285         0,                      /* reserved */
  286         0,                      /* checksum */
  287     },
  288     0                           /* flags */
  289 };
  290 
  291 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
  292 #define V_reg_vif_num           VNET(reg_vif_num)
  293 VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if);
  294 #define V_multicast_register_if VNET(multicast_register_if)
  295 
  296 /*
  297  * Private variables.
  298  */
  299 
  300 static u_long   X_ip_mcast_src(int);
  301 static int      X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
  302                     struct ip_moptions *);
  303 static int      X_ip_mrouter_done(void);
  304 static int      X_ip_mrouter_get(struct socket *, struct sockopt *);
  305 static int      X_ip_mrouter_set(struct socket *, struct sockopt *);
  306 static int      X_legal_vif_num(int);
  307 static int      X_mrt_ioctl(u_long, caddr_t, int);
  308 
  309 static int      add_bw_upcall(struct bw_upcall *);
  310 static int      add_mfc(struct mfcctl2 *);
  311 static int      add_vif(struct vifctl *);
  312 static void     bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
  313 static void     bw_meter_geq_receive_packet(struct bw_meter *, int,
  314                     struct timeval *);
  315 static void     bw_upcalls_send(void);
  316 static int      del_bw_upcall(struct bw_upcall *);
  317 static int      del_mfc(struct mfcctl2 *);
  318 static int      del_vif(vifi_t);
  319 static int      del_vif_locked(vifi_t, struct ifnet **);
  320 static void     expire_bw_upcalls_send(void *);
  321 static void     expire_mfc(struct mfc *);
  322 static void     expire_upcalls(void *);
  323 static void     free_bw_list(struct bw_meter *);
  324 static int      get_sg_cnt(struct sioc_sg_req *);
  325 static int      get_vif_cnt(struct sioc_vif_req *);
  326 static void     if_detached_event(void *, struct ifnet *);
  327 static int      ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  328 static int      ip_mrouter_init(struct socket *, int);
  329 static __inline struct mfc *
  330                 mfc_find(struct in_addr *, struct in_addr *);
  331 static void     phyint_send(struct ip *, struct vif *, struct mbuf *);
  332 static struct mbuf *
  333                 pim_register_prepare(struct ip *, struct mbuf *);
  334 static int      pim_register_send(struct ip *, struct vif *,
  335                     struct mbuf *, struct mfc *);
  336 static int      pim_register_send_rp(struct ip *, struct vif *,
  337                     struct mbuf *, struct mfc *);
  338 static int      pim_register_send_upcall(struct ip *, struct vif *,
  339                     struct mbuf *, struct mfc *);
  340 static void     send_packet(struct vif *, struct mbuf *);
  341 static int      set_api_config(uint32_t *);
  342 static int      set_assert(int);
  343 static int      socket_send(struct socket *, struct mbuf *,
  344                     struct sockaddr_in *);
  345 
  346 /*
  347  * Kernel multicast forwarding API capabilities and setup.
  348  * If more API capabilities are added to the kernel, they should be
  349  * recorded in `mrt_api_support'.
  350  */
  351 #define MRT_API_VERSION         0x0305
  352 
  353 static const int mrt_api_version = MRT_API_VERSION;
  354 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  355                                          MRT_MFC_FLAGS_BORDER_VIF |
  356                                          MRT_MFC_RP |
  357                                          MRT_MFC_BW_UPCALL);
  358 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
  359 #define V_mrt_api_config        VNET(mrt_api_config)
  360 VNET_DEFINE_STATIC(int, pim_assert_enabled);
  361 #define V_pim_assert_enabled    VNET(pim_assert_enabled)
  362 static struct timeval pim_assert_interval = { 3, 0 };   /* Rate limit */
  363 
  364 /*
  365  * Find a route for a given origin IP address and multicast group address.
  366  * Statistics must be updated by the caller.
  367  */
  368 static __inline struct mfc *
  369 mfc_find(struct in_addr *o, struct in_addr *g)
  370 {
  371         struct mfc *rt;
  372 
  373         /*
  374          * Might be called both RLOCK and WLOCK.
  375          * Check if any, it's caller responsibility
  376          * to choose correct option.
  377          */
  378         MRW_LOCK_ASSERT();
  379 
  380         LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
  381                 if (in_hosteq(rt->mfc_origin, *o) &&
  382                     in_hosteq(rt->mfc_mcastgrp, *g) &&
  383                     buf_ring_empty(rt->mfc_stall_ring))
  384                         break;
  385         }
  386 
  387         return (rt);
  388 }
  389 
  390 static __inline struct mfc *
  391 mfc_alloc(void)
  392 {
  393         struct mfc *rt;
  394         rt = (struct mfc*) malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO);
  395         if (rt == NULL)
  396                 return rt;
  397 
  398         rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE,
  399             M_NOWAIT, &V_buf_ring_mtx);
  400         if (rt->mfc_stall_ring == NULL) {
  401                 free(rt, M_MRTABLE);
  402                 return NULL;
  403         }
  404 
  405         return rt;
  406 }
  407 
  408 /*
  409  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
  410  */
  411 static int
  412 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  413 {
  414     int error, optval;
  415     vifi_t      vifi;
  416     struct      vifctl vifc;
  417     struct      mfcctl2 mfc;
  418     struct      bw_upcall bw_upcall;
  419     uint32_t    i;
  420 
  421     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
  422         return EPERM;
  423 
  424     error = 0;
  425     switch (sopt->sopt_name) {
  426     case MRT_INIT:
  427         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  428         if (error)
  429             break;
  430         error = ip_mrouter_init(so, optval);
  431         break;
  432 
  433     case MRT_DONE:
  434         error = ip_mrouter_done();
  435         break;
  436 
  437     case MRT_ADD_VIF:
  438         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  439         if (error)
  440             break;
  441         error = add_vif(&vifc);
  442         break;
  443 
  444     case MRT_DEL_VIF:
  445         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  446         if (error)
  447             break;
  448         error = del_vif(vifi);
  449         break;
  450 
  451     case MRT_ADD_MFC:
  452     case MRT_DEL_MFC:
  453         /*
  454          * select data size depending on API version.
  455          */
  456         if (sopt->sopt_name == MRT_ADD_MFC &&
  457                 V_mrt_api_config & MRT_API_FLAGS_ALL) {
  458             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  459                                 sizeof(struct mfcctl2));
  460         } else {
  461             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  462                                 sizeof(struct mfcctl));
  463             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  464                         sizeof(mfc) - sizeof(struct mfcctl));
  465         }
  466         if (error)
  467             break;
  468         if (sopt->sopt_name == MRT_ADD_MFC)
  469             error = add_mfc(&mfc);
  470         else
  471             error = del_mfc(&mfc);
  472         break;
  473 
  474     case MRT_ASSERT:
  475         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  476         if (error)
  477             break;
  478         set_assert(optval);
  479         break;
  480 
  481     case MRT_API_CONFIG:
  482         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  483         if (!error)
  484             error = set_api_config(&i);
  485         if (!error)
  486             error = sooptcopyout(sopt, &i, sizeof i);
  487         break;
  488 
  489     case MRT_ADD_BW_UPCALL:
  490     case MRT_DEL_BW_UPCALL:
  491         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  492                                 sizeof bw_upcall);
  493         if (error)
  494             break;
  495         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  496             error = add_bw_upcall(&bw_upcall);
  497         else
  498             error = del_bw_upcall(&bw_upcall);
  499         break;
  500 
  501     default:
  502         error = EOPNOTSUPP;
  503         break;
  504     }
  505     return error;
  506 }
  507 
  508 /*
  509  * Handle MRT getsockopt commands
  510  */
  511 static int
  512 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  513 {
  514     int error;
  515 
  516     switch (sopt->sopt_name) {
  517     case MRT_VERSION:
  518         error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
  519         break;
  520 
  521     case MRT_ASSERT:
  522         error = sooptcopyout(sopt, &V_pim_assert_enabled,
  523             sizeof V_pim_assert_enabled);
  524         break;
  525 
  526     case MRT_API_SUPPORT:
  527         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  528         break;
  529 
  530     case MRT_API_CONFIG:
  531         error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
  532         break;
  533 
  534     default:
  535         error = EOPNOTSUPP;
  536         break;
  537     }
  538     return error;
  539 }
  540 
  541 /*
  542  * Handle ioctl commands to obtain information from the cache
  543  */
  544 static int
  545 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
  546 {
  547     int error = 0;
  548 
  549     /*
  550      * Currently the only function calling this ioctl routine is rtioctl_fib().
  551      * Typically, only root can create the raw socket in order to execute
  552      * this ioctl method, however the request might be coming from a prison
  553      */
  554     error = priv_check(curthread, PRIV_NETINET_MROUTE);
  555     if (error)
  556         return (error);
  557     switch (cmd) {
  558     case (SIOCGETVIFCNT):
  559         error = get_vif_cnt((struct sioc_vif_req *)data);
  560         break;
  561 
  562     case (SIOCGETSGCNT):
  563         error = get_sg_cnt((struct sioc_sg_req *)data);
  564         break;
  565 
  566     default:
  567         error = EINVAL;
  568         break;
  569     }
  570     return error;
  571 }
  572 
  573 /*
  574  * returns the packet, byte, rpf-failure count for the source group provided
  575  */
  576 static int
  577 get_sg_cnt(struct sioc_sg_req *req)
  578 {
  579     struct mfc *rt;
  580 
  581     MRW_RLOCK();
  582     rt = mfc_find(&req->src, &req->grp);
  583     if (rt == NULL) {
  584             MRW_RUNLOCK();
  585         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  586         return EADDRNOTAVAIL;
  587     }
  588     req->pktcnt = rt->mfc_pkt_cnt;
  589     req->bytecnt = rt->mfc_byte_cnt;
  590     req->wrong_if = rt->mfc_wrong_if;
  591     MRW_RUNLOCK();
  592     return 0;
  593 }
  594 
  595 /*
  596  * returns the input and output packet and byte counts on the vif provided
  597  */
  598 static int
  599 get_vif_cnt(struct sioc_vif_req *req)
  600 {
  601     vifi_t vifi = req->vifi;
  602 
  603     MRW_RLOCK();
  604     if (vifi >= V_numvifs) {
  605         MRW_RUNLOCK();
  606         return EINVAL;
  607     }
  608 
  609     mtx_lock_spin(&V_viftable[vifi].v_spin);
  610     req->icount = V_viftable[vifi].v_pkt_in;
  611     req->ocount = V_viftable[vifi].v_pkt_out;
  612     req->ibytes = V_viftable[vifi].v_bytes_in;
  613     req->obytes = V_viftable[vifi].v_bytes_out;
  614     mtx_unlock_spin(&V_viftable[vifi].v_spin);
  615     MRW_RUNLOCK();
  616 
  617     return 0;
  618 }
  619 
  620 static void
  621 if_detached_event(void *arg __unused, struct ifnet *ifp)
  622 {
  623     vifi_t vifi;
  624     u_long i, vifi_cnt = 0;
  625     struct ifnet *free_ptr;
  626 
  627     MRW_WLOCK();
  628 
  629     if (V_ip_mrouter == NULL) {
  630         MRW_WUNLOCK();
  631         return;
  632     }
  633 
  634     /*
  635      * Tear down multicast forwarder state associated with this ifnet.
  636      * 1. Walk the vif list, matching vifs against this ifnet.
  637      * 2. Walk the multicast forwarding cache (mfc) looking for
  638      *    inner matches with this vif's index.
  639      * 3. Expire any matching multicast forwarding cache entries.
  640      * 4. Free vif state. This should disable ALLMULTI on the interface.
  641      */
  642     for (vifi = 0; vifi < V_numvifs; vifi++) {
  643         if (V_viftable[vifi].v_ifp != ifp)
  644                 continue;
  645         for (i = 0; i < mfchashsize; i++) {
  646                 struct mfc *rt, *nrt;
  647 
  648                 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
  649                         if (rt->mfc_parent == vifi) {
  650                                 expire_mfc(rt);
  651                         }
  652                 }
  653         }
  654         del_vif_locked(vifi, &free_ptr);
  655         if (free_ptr != NULL)
  656                 vifi_cnt++;
  657     }
  658 
  659     MRW_WUNLOCK();
  660 
  661     /*
  662      * Free IFP. We don't have to use free_ptr here as it is the same
  663      * that ifp. Perform free as many times as required in case
  664      * refcount is greater than 1.
  665      */
  666     for (i = 0; i < vifi_cnt; i++)
  667             if_free(ifp);
  668 }
  669 
  670 static void
  671 ip_mrouter_upcall_thread(void *arg, int pending __unused)
  672 {
  673         CURVNET_SET((struct vnet *) arg);
  674 
  675         MRW_WLOCK();
  676         bw_upcalls_send();
  677         MRW_WUNLOCK();
  678 
  679         CURVNET_RESTORE();
  680 }
  681 
  682 /*
  683  * Enable multicast forwarding.
  684  */
  685 static int
  686 ip_mrouter_init(struct socket *so, int version)
  687 {
  688 
  689     CTR2(KTR_IPMF, "%s: so %p", __func__, so);
  690 
  691     if (version != 1)
  692         return ENOPROTOOPT;
  693 
  694     MRW_WLOCK();
  695 
  696     if (ip_mrouter_unloading) {
  697         MRW_WUNLOCK();
  698         return ENOPROTOOPT;
  699     }
  700 
  701     if (V_ip_mrouter != NULL) {
  702         MRW_WUNLOCK();
  703         return EADDRINUSE;
  704     }
  705 
  706     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
  707         HASH_NOWAIT);
  708 
  709     /* Create upcall ring */
  710     mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF);
  711     V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE,
  712         M_NOWAIT, &V_bw_upcalls_ring_mtx);
  713     if (!V_bw_upcalls_ring) {
  714         MRW_WUNLOCK();
  715         return (ENOMEM);
  716     }
  717 
  718     TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet);
  719     taskqueue_cancel(V_task_queue, &V_task, NULL);
  720     taskqueue_unblock(V_task_queue);
  721 
  722     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
  723         curvnet);
  724     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
  725         curvnet);
  726 
  727     V_ip_mrouter = so;
  728     atomic_add_int(&ip_mrouter_cnt, 1);
  729 
  730     /* This is a mutex required by buf_ring init, but not used internally */
  731     mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF);
  732 
  733     MRW_WUNLOCK();
  734 
  735     CTR1(KTR_IPMF, "%s: done", __func__);
  736 
  737     return 0;
  738 }
  739 
  740 /*
  741  * Disable multicast forwarding.
  742  */
  743 static int
  744 X_ip_mrouter_done(void)
  745 {
  746     struct ifnet **ifps;
  747     int nifp;
  748     u_long i;
  749     vifi_t vifi;
  750     struct bw_upcall *bu;
  751 
  752     if (V_ip_mrouter == NULL)
  753         return (EINVAL);
  754 
  755     /*
  756      * Detach/disable hooks to the reset of the system.
  757      */
  758     V_ip_mrouter = NULL;
  759     atomic_subtract_int(&ip_mrouter_cnt, 1);
  760     V_mrt_api_config = 0;
  761 
  762     /*
  763      * Wait for all epoch sections to complete to ensure
  764      * V_ip_mrouter = NULL is visible to others.
  765      */
  766     epoch_wait_preempt(net_epoch_preempt);
  767 
  768     /* Stop and drain task queue */
  769     taskqueue_block(V_task_queue);
  770     while (taskqueue_cancel(V_task_queue, &V_task, NULL)) {
  771         taskqueue_drain(V_task_queue, &V_task);
  772     }
  773 
  774     ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK);
  775 
  776     MRW_WLOCK();
  777     taskqueue_cancel(V_task_queue, &V_task, NULL);
  778 
  779     /* Destroy upcall ring */
  780     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
  781         free(bu, M_MRTABLE);
  782     }
  783     buf_ring_free(V_bw_upcalls_ring, M_MRTABLE);
  784     mtx_destroy(&V_bw_upcalls_ring_mtx);
  785 
  786     /*
  787      * For each phyint in use, prepare to disable promiscuous reception
  788      * of all IP multicasts.  Defer the actual call until the lock is released;
  789      * just record the list of interfaces while locked.  Some interfaces use
  790      * sx locks in their ioctl routines, which is not allowed while holding
  791      * a non-sleepable lock.
  792      */
  793     KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible"));
  794     for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) {
  795         if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
  796                 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  797             ifps[nifp++] = V_viftable[vifi].v_ifp;
  798         }
  799     }
  800     bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
  801     V_numvifs = 0;
  802     V_pim_assert_enabled = 0;
  803 
  804     callout_stop(&V_expire_upcalls_ch);
  805     callout_stop(&V_bw_upcalls_ch);
  806 
  807     /*
  808      * Free all multicast forwarding cache entries.
  809      * Do not use hashdestroy(), as we must perform other cleanup.
  810      */
  811     for (i = 0; i < mfchashsize; i++) {
  812         struct mfc *rt, *nrt;
  813 
  814         LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
  815                 expire_mfc(rt);
  816         }
  817     }
  818     free(V_mfchashtbl, M_MRTABLE);
  819     V_mfchashtbl = NULL;
  820 
  821     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
  822 
  823     V_reg_vif_num = VIFI_INVALID;
  824 
  825     mtx_destroy(&V_buf_ring_mtx);
  826 
  827     MRW_WUNLOCK();
  828 
  829     /*
  830      * Now drop our claim on promiscuous multicast on the interfaces recorded
  831      * above.  This is safe to do now because ALLMULTI is reference counted.
  832      */
  833     for (vifi = 0; vifi < nifp; vifi++)
  834             if_allmulti(ifps[vifi], 0);
  835     free(ifps, M_TEMP);
  836 
  837     CTR1(KTR_IPMF, "%s: done", __func__);
  838 
  839     return 0;
  840 }
  841 
  842 /*
  843  * Set PIM assert processing global
  844  */
  845 static int
  846 set_assert(int i)
  847 {
  848     if ((i != 1) && (i != 0))
  849         return EINVAL;
  850 
  851     V_pim_assert_enabled = i;
  852 
  853     return 0;
  854 }
  855 
  856 /*
  857  * Configure API capabilities
  858  */
  859 int
  860 set_api_config(uint32_t *apival)
  861 {
  862     u_long i;
  863 
  864     /*
  865      * We can set the API capabilities only if it is the first operation
  866      * after MRT_INIT. I.e.:
  867      *  - there are no vifs installed
  868      *  - pim_assert is not enabled
  869      *  - the MFC table is empty
  870      */
  871     if (V_numvifs > 0) {
  872         *apival = 0;
  873         return EPERM;
  874     }
  875     if (V_pim_assert_enabled) {
  876         *apival = 0;
  877         return EPERM;
  878     }
  879 
  880     MRW_RLOCK();
  881 
  882     for (i = 0; i < mfchashsize; i++) {
  883         if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
  884             MRW_RUNLOCK();
  885             *apival = 0;
  886             return EPERM;
  887         }
  888     }
  889 
  890     MRW_RUNLOCK();
  891 
  892     V_mrt_api_config = *apival & mrt_api_support;
  893     *apival = V_mrt_api_config;
  894 
  895     return 0;
  896 }
  897 
  898 /*
  899  * Add a vif to the vif table
  900  */
  901 static int
  902 add_vif(struct vifctl *vifcp)
  903 {
  904     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
  905     struct sockaddr_in sin = {sizeof sin, AF_INET};
  906     struct ifaddr *ifa;
  907     struct ifnet *ifp;
  908     int error;
  909 
  910 
  911     if (vifcp->vifc_vifi >= MAXVIFS)
  912         return EINVAL;
  913     /* rate limiting is no longer supported by this code */
  914     if (vifcp->vifc_rate_limit != 0) {
  915         log(LOG_ERR, "rate limiting is no longer supported\n");
  916         return EINVAL;
  917     }
  918 
  919     if (in_nullhost(vifcp->vifc_lcl_addr))
  920         return EADDRNOTAVAIL;
  921 
  922     /* Find the interface with an address in AF_INET family */
  923     if (vifcp->vifc_flags & VIFF_REGISTER) {
  924         /*
  925          * XXX: Because VIFF_REGISTER does not really need a valid
  926          * local interface (e.g. it could be 127.0.0.2), we don't
  927          * check its address.
  928          */
  929         ifp = NULL;
  930     } else {
  931         struct epoch_tracker et;
  932 
  933         sin.sin_addr = vifcp->vifc_lcl_addr;
  934         NET_EPOCH_ENTER(et);
  935         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  936         if (ifa == NULL) {
  937             NET_EPOCH_EXIT(et);
  938             return EADDRNOTAVAIL;
  939         }
  940         ifp = ifa->ifa_ifp;
  941         /* XXX FIXME we need to take a ref on ifp and cleanup properly! */
  942         NET_EPOCH_EXIT(et);
  943     }
  944 
  945     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
  946         CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
  947         return EOPNOTSUPP;
  948     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  949         ifp = V_multicast_register_if = if_alloc(IFT_LOOP);
  950         CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
  951         if (V_reg_vif_num == VIFI_INVALID) {
  952             if_initname(V_multicast_register_if, "register_vif", 0);
  953             V_reg_vif_num = vifcp->vifc_vifi;
  954         }
  955     } else {            /* Make sure the interface supports multicast */
  956         if ((ifp->if_flags & IFF_MULTICAST) == 0)
  957             return EOPNOTSUPP;
  958 
  959         /* Enable promiscuous reception of all IP multicasts from the if */
  960         error = if_allmulti(ifp, 1);
  961         if (error)
  962             return error;
  963     }
  964 
  965     MRW_WLOCK();
  966 
  967     if (!in_nullhost(vifp->v_lcl_addr)) {
  968         if (ifp)
  969                 V_multicast_register_if = NULL;
  970         MRW_WUNLOCK();
  971         if (ifp)
  972                 if_free(ifp);
  973         return EADDRINUSE;
  974     }
  975 
  976     vifp->v_flags     = vifcp->vifc_flags;
  977     vifp->v_threshold = vifcp->vifc_threshold;
  978     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
  979     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
  980     vifp->v_ifp       = ifp;
  981     /* initialize per vif pkt counters */
  982     vifp->v_pkt_in    = 0;
  983     vifp->v_pkt_out   = 0;
  984     vifp->v_bytes_in  = 0;
  985     vifp->v_bytes_out = 0;
  986     sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi);
  987     mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN);
  988 
  989     /* Adjust numvifs up if the vifi is higher than numvifs */
  990     if (V_numvifs <= vifcp->vifc_vifi)
  991         V_numvifs = vifcp->vifc_vifi + 1;
  992 
  993     MRW_WUNLOCK();
  994 
  995     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
  996         (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
  997         (int)vifcp->vifc_threshold);
  998 
  999     return 0;
 1000 }
 1001 
 1002 /*
 1003  * Delete a vif from the vif table
 1004  */
 1005 static int
 1006 del_vif_locked(vifi_t vifi, struct ifnet **ifp_free)
 1007 {
 1008     struct vif *vifp;
 1009 
 1010     *ifp_free = NULL;
 1011 
 1012     MRW_WLOCK_ASSERT();
 1013 
 1014     if (vifi >= V_numvifs) {
 1015         return EINVAL;
 1016     }
 1017     vifp = &V_viftable[vifi];
 1018     if (in_nullhost(vifp->v_lcl_addr)) {
 1019         return EADDRNOTAVAIL;
 1020     }
 1021 
 1022     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1023         if_allmulti(vifp->v_ifp, 0);
 1024 
 1025     if (vifp->v_flags & VIFF_REGISTER) {
 1026         V_reg_vif_num = VIFI_INVALID;
 1027         if (vifp->v_ifp) {
 1028             if (vifp->v_ifp == V_multicast_register_if)
 1029                 V_multicast_register_if = NULL;
 1030             *ifp_free = vifp->v_ifp;
 1031         }
 1032     }
 1033 
 1034     mtx_destroy(&vifp->v_spin);
 1035 
 1036     bzero((caddr_t)vifp, sizeof (*vifp));
 1037 
 1038     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
 1039 
 1040     /* Adjust numvifs down */
 1041     for (vifi = V_numvifs; vifi > 0; vifi--)
 1042         if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
 1043             break;
 1044     V_numvifs = vifi;
 1045 
 1046     return 0;
 1047 }
 1048 
 1049 static int
 1050 del_vif(vifi_t vifi)
 1051 {
 1052     int cc;
 1053     struct ifnet *free_ptr;
 1054 
 1055     MRW_WLOCK();
 1056     cc = del_vif_locked(vifi, &free_ptr);
 1057     MRW_WUNLOCK();
 1058 
 1059     if (free_ptr)
 1060             if_free(free_ptr);
 1061 
 1062     return cc;
 1063 }
 1064 
 1065 /*
 1066  * update an mfc entry without resetting counters and S,G addresses.
 1067  */
 1068 static void
 1069 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1070 {
 1071     int i;
 1072 
 1073     rt->mfc_parent = mfccp->mfcc_parent;
 1074     for (i = 0; i < V_numvifs; i++) {
 1075         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1076         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
 1077             MRT_MFC_FLAGS_ALL;
 1078     }
 1079     /* set the RP address */
 1080     if (V_mrt_api_config & MRT_MFC_RP)
 1081         rt->mfc_rp = mfccp->mfcc_rp;
 1082     else
 1083         rt->mfc_rp.s_addr = INADDR_ANY;
 1084 }
 1085 
 1086 /*
 1087  * fully initialize an mfc entry from the parameter.
 1088  */
 1089 static void
 1090 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1091 {
 1092     rt->mfc_origin     = mfccp->mfcc_origin;
 1093     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1094 
 1095     update_mfc_params(rt, mfccp);
 1096 
 1097     /* initialize pkt counters per src-grp */
 1098     rt->mfc_pkt_cnt    = 0;
 1099     rt->mfc_byte_cnt   = 0;
 1100     rt->mfc_wrong_if   = 0;
 1101     timevalclear(&rt->mfc_last_assert);
 1102 }
 1103 
 1104 static void
 1105 expire_mfc(struct mfc *rt)
 1106 {
 1107         struct rtdetq *rte;
 1108 
 1109         MRW_WLOCK_ASSERT();
 1110 
 1111         free_bw_list(rt->mfc_bw_meter_leq);
 1112         free_bw_list(rt->mfc_bw_meter_geq);
 1113 
 1114         while (!buf_ring_empty(rt->mfc_stall_ring)) {
 1115                 rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
 1116                 if (rte) {
 1117                         m_freem(rte->m);
 1118                         free(rte, M_MRTABLE);
 1119                 }
 1120         }
 1121         buf_ring_free(rt->mfc_stall_ring, M_MRTABLE);
 1122 
 1123         LIST_REMOVE(rt, mfc_hash);
 1124         free(rt, M_MRTABLE);
 1125 }
 1126 
 1127 /*
 1128  * Add an mfc entry
 1129  */
 1130 static int
 1131 add_mfc(struct mfcctl2 *mfccp)
 1132 {
 1133     struct mfc *rt;
 1134     struct rtdetq *rte;
 1135     u_long hash = 0;
 1136     u_short nstl;
 1137     struct epoch_tracker et;
 1138 
 1139     MRW_WLOCK();
 1140     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
 1141 
 1142     /* If an entry already exists, just update the fields */
 1143     if (rt) {
 1144         CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
 1145             __func__, ntohl(mfccp->mfcc_origin.s_addr),
 1146             (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1147             mfccp->mfcc_parent);
 1148         update_mfc_params(rt, mfccp);
 1149         MRW_WUNLOCK();
 1150         return (0);
 1151     }
 1152 
 1153     /*
 1154      * Find the entry for which the upcall was made and update
 1155      */
 1156     nstl = 0;
 1157     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
 1158     NET_EPOCH_ENTER(et);
 1159     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1160         if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1161             in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
 1162             !buf_ring_empty(rt->mfc_stall_ring)) {
 1163                 CTR5(KTR_IPMF,
 1164                     "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
 1165                     __func__, ntohl(mfccp->mfcc_origin.s_addr),
 1166                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1167                     mfccp->mfcc_parent,
 1168                     rt->mfc_stall_ring);
 1169                 if (nstl++)
 1170                         CTR1(KTR_IPMF, "%s: multiple matches", __func__);
 1171 
 1172                 init_mfc_params(rt, mfccp);
 1173                 rt->mfc_expire = 0;     /* Don't clean this guy up */
 1174                 V_nexpire[hash]--;
 1175 
 1176                 /* Free queued packets, but attempt to forward them first. */
 1177                 while (!buf_ring_empty(rt->mfc_stall_ring)) {
 1178                         rte = buf_ring_dequeue_mc(rt->mfc_stall_ring);
 1179                         if (rte->ifp != NULL)
 1180                                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1181                         m_freem(rte->m);
 1182                         free(rte, M_MRTABLE);
 1183                 }
 1184         }
 1185     }
 1186     NET_EPOCH_EXIT(et);
 1187 
 1188     /*
 1189      * It is possible that an entry is being inserted without an upcall
 1190      */
 1191     if (nstl == 0) {
 1192         CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
 1193         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1194                 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1195                     in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
 1196                         init_mfc_params(rt, mfccp);
 1197                         if (rt->mfc_expire)
 1198                             V_nexpire[hash]--;
 1199                         rt->mfc_expire = 0;
 1200                         break; /* XXX */
 1201                 }
 1202         }
 1203 
 1204         if (rt == NULL) {               /* no upcall, so make a new entry */
 1205             rt = mfc_alloc();
 1206             if (rt == NULL) {
 1207                 MRW_WUNLOCK();
 1208                 return (ENOBUFS);
 1209             }
 1210 
 1211             init_mfc_params(rt, mfccp);
 1212 
 1213             rt->mfc_expire     = 0;
 1214             rt->mfc_bw_meter_leq = NULL;
 1215             rt->mfc_bw_meter_geq = NULL;
 1216 
 1217             /* insert new entry at head of hash chain */
 1218             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1219         }
 1220     }
 1221 
 1222     MRW_WUNLOCK();
 1223 
 1224     return (0);
 1225 }
 1226 
 1227 /*
 1228  * Delete an mfc entry
 1229  */
 1230 static int
 1231 del_mfc(struct mfcctl2 *mfccp)
 1232 {
 1233     struct in_addr      origin;
 1234     struct in_addr      mcastgrp;
 1235     struct mfc          *rt;
 1236 
 1237     origin = mfccp->mfcc_origin;
 1238     mcastgrp = mfccp->mfcc_mcastgrp;
 1239 
 1240     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
 1241         ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1242 
 1243     MRW_WLOCK();
 1244 
 1245     rt = mfc_find(&origin, &mcastgrp);
 1246     if (rt == NULL) {
 1247         MRW_WUNLOCK();
 1248         return EADDRNOTAVAIL;
 1249     }
 1250 
 1251     /*
 1252      * free the bw_meter entries
 1253      */
 1254     free_bw_list(rt->mfc_bw_meter_leq);
 1255     rt->mfc_bw_meter_leq = NULL;
 1256     free_bw_list(rt->mfc_bw_meter_geq);
 1257     rt->mfc_bw_meter_geq = NULL;
 1258 
 1259     LIST_REMOVE(rt, mfc_hash);
 1260     free(rt, M_MRTABLE);
 1261 
 1262     MRW_WUNLOCK();
 1263 
 1264     return (0);
 1265 }
 1266 
 1267 /*
 1268  * Send a message to the routing daemon on the multicast routing socket.
 1269  */
 1270 static int
 1271 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1272 {
 1273     if (s) {
 1274         SOCKBUF_LOCK(&s->so_rcv);
 1275         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1276             NULL) != 0) {
 1277             sorwakeup_locked(s);
 1278             return 0;
 1279         }
 1280         soroverflow_locked(s);
 1281     }
 1282     m_freem(mm);
 1283     return -1;
 1284 }
 1285 
 1286 /*
 1287  * IP multicast forwarding function. This function assumes that the packet
 1288  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1289  * pointed to by "ifp", and the packet is to be relayed to other networks
 1290  * that have members of the packet's destination IP multicast group.
 1291  *
 1292  * The packet is returned unscathed to the caller, unless it is
 1293  * erroneous, in which case a non-zero return value tells the caller to
 1294  * discard it.
 1295  */
 1296 
 1297 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1298 
 1299 static int
 1300 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1301     struct ip_moptions *imo)
 1302 {
 1303         struct mfc *rt;
 1304         int error;
 1305         vifi_t vifi;
 1306         struct mbuf *mb0;
 1307         struct rtdetq *rte;
 1308         u_long hash;
 1309         int hlen;
 1310 
 1311         CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
 1312             ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
 1313 
 1314         if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1315             ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
 1316                 /*
 1317                  * Packet arrived via a physical interface or
 1318                  * an encapsulated tunnel or a register_vif.
 1319                  */
 1320         } else {
 1321                 /*
 1322                  * Packet arrived through a source-route tunnel.
 1323                  * Source-route tunnels are no longer supported.
 1324                  */
 1325                 return (1);
 1326         }
 1327 
 1328         /*
 1329          * BEGIN: MCAST ROUTING HOT PATH
 1330          */
 1331         MRW_RLOCK();
 1332         if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
 1333                 if (ip->ip_ttl < MAXTTL)
 1334                         ip->ip_ttl++; /* compensate for -1 in *_send routines */
 1335                 error = ip_mdq(m, ifp, NULL, vifi);
 1336                 MRW_RUNLOCK();
 1337                 return error;
 1338         }
 1339 
 1340         /*
 1341          * Don't forward a packet with time-to-live of zero or one,
 1342          * or a packet destined to a local-only group.
 1343          */
 1344         if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
 1345                 MRW_RUNLOCK();
 1346                 return 0;
 1347         }
 1348 
 1349         mfc_find_retry:
 1350         /*
 1351          * Determine forwarding vifs from the forwarding cache table
 1352          */
 1353         MRTSTAT_INC(mrts_mfc_lookups);
 1354         rt = mfc_find(&ip->ip_src, &ip->ip_dst);
 1355 
 1356         /* Entry exists, so forward if necessary */
 1357         if (rt != NULL) {
 1358                 error = ip_mdq(m, ifp, rt, -1);
 1359                 /* Generic unlock here as we might release R or W lock */
 1360                 MRW_UNLOCK();
 1361                 return error;
 1362         }
 1363 
 1364         /*
 1365          * END: MCAST ROUTING HOT PATH
 1366          */
 1367 
 1368         /* Further processing must be done with WLOCK taken */
 1369         if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) {
 1370                 MRW_RUNLOCK();
 1371                 MRW_WLOCK();
 1372                 goto mfc_find_retry;
 1373         }
 1374 
 1375         /*
 1376          * If we don't have a route for packet's origin,
 1377          * Make a copy of the packet & send message to routing daemon
 1378          */
 1379         hlen = ip->ip_hl << 2;
 1380 
 1381         MRTSTAT_INC(mrts_mfc_misses);
 1382         MRTSTAT_INC(mrts_no_route);
 1383         CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
 1384             ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
 1385 
 1386         /*
 1387          * Allocate mbufs early so that we don't do extra work if we are
 1388          * just going to fail anyway.  Make sure to pullup the header so
 1389          * that other people can't step on it.
 1390          */
 1391         rte = (struct rtdetq*) malloc((sizeof *rte), M_MRTABLE,
 1392             M_NOWAIT|M_ZERO);
 1393         if (rte == NULL) {
 1394                 MRW_WUNLOCK();
 1395                 return ENOBUFS;
 1396         }
 1397 
 1398         mb0 = m_copypacket(m, M_NOWAIT);
 1399         if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
 1400                 mb0 = m_pullup(mb0, hlen);
 1401         if (mb0 == NULL) {
 1402                 free(rte, M_MRTABLE);
 1403                 MRW_WUNLOCK();
 1404                 return ENOBUFS;
 1405         }
 1406 
 1407         /* is there an upcall waiting for this flow ? */
 1408         hash = MFCHASH(ip->ip_src, ip->ip_dst);
 1409         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash)
 1410         {
 1411                 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
 1412                     in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
 1413                     !buf_ring_empty(rt->mfc_stall_ring))
 1414                         break;
 1415         }
 1416 
 1417         if (rt == NULL) {
 1418                 int i;
 1419                 struct igmpmsg *im;
 1420                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1421                 struct mbuf *mm;
 1422 
 1423                 /*
 1424                  * Locate the vifi for the incoming interface for this packet.
 1425                  * If none found, drop packet.
 1426                  */
 1427                 for (vifi = 0; vifi < V_numvifs &&
 1428                     V_viftable[vifi].v_ifp != ifp; vifi++)
 1429                         ;
 1430                 if (vifi >= V_numvifs) /* vif not found, drop packet */
 1431                         goto non_fatal;
 1432 
 1433                 /* no upcall, so make a new entry */
 1434                 rt = mfc_alloc();
 1435                 if (rt == NULL)
 1436                         goto fail;
 1437 
 1438                 /* Make a copy of the header to send to the user level process */
 1439                 mm = m_copym(mb0, 0, hlen, M_NOWAIT);
 1440                 if (mm == NULL)
 1441                         goto fail1;
 1442 
 1443                 /*
 1444                  * Send message to routing daemon to install
 1445                  * a route into the kernel table
 1446                  */
 1447 
 1448                 im = mtod(mm, struct igmpmsg*);
 1449                 im->im_msgtype = IGMPMSG_NOCACHE;
 1450                 im->im_mbz = 0;
 1451                 im->im_vif = vifi;
 1452 
 1453                 MRTSTAT_INC(mrts_upcalls);
 1454 
 1455                 k_igmpsrc.sin_addr = ip->ip_src;
 1456                 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1457                         CTR0(KTR_IPMF, "ip_mforward: socket queue full");
 1458                         MRTSTAT_INC(mrts_upq_sockfull);
 1459                         fail1: free(rt, M_MRTABLE);
 1460                         fail: free(rte, M_MRTABLE);
 1461                         m_freem(mb0);
 1462                         MRW_WUNLOCK();
 1463                         return ENOBUFS;
 1464                 }
 1465 
 1466                 /* insert new entry at head of hash chain */
 1467                 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
 1468                 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
 1469                 rt->mfc_expire = UPCALL_EXPIRE;
 1470                 V_nexpire[hash]++;
 1471                 for (i = 0; i < V_numvifs; i++) {
 1472                         rt->mfc_ttls[i] = 0;
 1473                         rt->mfc_flags[i] = 0;
 1474                 }
 1475                 rt->mfc_parent = -1;
 1476 
 1477                 /* clear the RP address */
 1478                 rt->mfc_rp.s_addr = INADDR_ANY;
 1479                 rt->mfc_bw_meter_leq = NULL;
 1480                 rt->mfc_bw_meter_geq = NULL;
 1481 
 1482                 /* initialize pkt counters per src-grp */
 1483                 rt->mfc_pkt_cnt = 0;
 1484                 rt->mfc_byte_cnt = 0;
 1485                 rt->mfc_wrong_if = 0;
 1486                 timevalclear(&rt->mfc_last_assert);
 1487 
 1488                 buf_ring_enqueue(rt->mfc_stall_ring, rte);
 1489 
 1490                 /* Add RT to hashtable as it didn't exist before */
 1491                 LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1492         } else {
 1493                 /* determine if queue has overflowed */
 1494                 if (buf_ring_full(rt->mfc_stall_ring)) {
 1495                         MRTSTAT_INC(mrts_upq_ovflw);
 1496                         non_fatal: free(rte, M_MRTABLE);
 1497                         m_freem(mb0);
 1498                         MRW_WUNLOCK();
 1499                         return (0);
 1500                 }
 1501 
 1502                 buf_ring_enqueue(rt->mfc_stall_ring, rte);
 1503         }
 1504 
 1505         rte->m = mb0;
 1506         rte->ifp = ifp;
 1507 
 1508         MRW_WUNLOCK();
 1509 
 1510         return 0;
 1511 }
 1512 
 1513 /*
 1514  * Clean up the cache entry if upcall is not serviced
 1515  */
 1516 static void
 1517 expire_upcalls(void *arg)
 1518 {
 1519     u_long i;
 1520 
 1521     CURVNET_SET((struct vnet *) arg);
 1522 
 1523     /*This callout is always run with MRW_WLOCK taken. */
 1524 
 1525     for (i = 0; i < mfchashsize; i++) {
 1526         struct mfc *rt, *nrt;
 1527 
 1528         if (V_nexpire[i] == 0)
 1529             continue;
 1530 
 1531         LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
 1532                 if (buf_ring_empty(rt->mfc_stall_ring))
 1533                         continue;
 1534 
 1535                 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
 1536                         continue;
 1537 
 1538                 MRTSTAT_INC(mrts_cache_cleanups);
 1539                 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
 1540                     (u_long)ntohl(rt->mfc_origin.s_addr),
 1541                     (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
 1542 
 1543                 expire_mfc(rt);
 1544             }
 1545     }
 1546 
 1547     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
 1548         curvnet);
 1549 
 1550     CURVNET_RESTORE();
 1551 }
 1552 
 1553 /*
 1554  * Packet forwarding routine once entry in the cache is made
 1555  */
 1556 static int
 1557 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1558 {
 1559     struct ip  *ip = mtod(m, struct ip *);
 1560     vifi_t vifi;
 1561     int plen = ntohs(ip->ip_len);
 1562 
 1563     MRW_LOCK_ASSERT();
 1564     NET_EPOCH_ASSERT();
 1565 
 1566     /*
 1567      * If xmt_vif is not -1, send on only the requested vif.
 1568      *
 1569      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1570      */
 1571     if (xmt_vif < V_numvifs) {
 1572         if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1573                 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
 1574         else
 1575                 phyint_send(ip, V_viftable + xmt_vif, m);
 1576         return 1;
 1577     }
 1578 
 1579     /*
 1580      * Don't forward if it didn't arrive from the parent vif for its origin.
 1581      */
 1582     vifi = rt->mfc_parent;
 1583     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
 1584         CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
 1585             __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
 1586         MRTSTAT_INC(mrts_wrong_if);
 1587         ++rt->mfc_wrong_if;
 1588         /*
 1589          * If we are doing PIM assert processing, send a message
 1590          * to the routing daemon.
 1591          *
 1592          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1593          * can complete the SPT switch, regardless of the type
 1594          * of the iif (broadcast media, GRE tunnel, etc).
 1595          */
 1596         if (V_pim_assert_enabled && (vifi < V_numvifs) &&
 1597             V_viftable[vifi].v_ifp) {
 1598             if (ifp == V_multicast_register_if)
 1599                 PIMSTAT_INC(pims_rcv_registers_wrongiif);
 1600 
 1601             /* Get vifi for the incoming packet */
 1602             for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
 1603                 vifi++)
 1604                 ;
 1605             if (vifi >= V_numvifs)
 1606                 return 0;       /* The iif is not found: ignore the packet. */
 1607 
 1608             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1609                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1610 
 1611             if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
 1612                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1613                 struct igmpmsg *im;
 1614                 int hlen = ip->ip_hl << 2;
 1615                 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
 1616 
 1617                 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
 1618                     mm = m_pullup(mm, hlen);
 1619                 if (mm == NULL)
 1620                     return ENOBUFS;
 1621 
 1622                 im = mtod(mm, struct igmpmsg *);
 1623                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1624                 im->im_mbz              = 0;
 1625                 im->im_vif              = vifi;
 1626 
 1627                 MRTSTAT_INC(mrts_upcalls);
 1628 
 1629                 k_igmpsrc.sin_addr = im->im_src;
 1630                 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1631                     CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 1632                     MRTSTAT_INC(mrts_upq_sockfull);
 1633                     return ENOBUFS;
 1634                 }
 1635             }
 1636         }
 1637         return 0;
 1638     }
 1639 
 1640     /* If I sourced this packet, it counts as output, else it was input. */
 1641     mtx_lock_spin(&V_viftable[vifi].v_spin);
 1642     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
 1643         V_viftable[vifi].v_pkt_out++;
 1644         V_viftable[vifi].v_bytes_out += plen;
 1645     } else {
 1646         V_viftable[vifi].v_pkt_in++;
 1647         V_viftable[vifi].v_bytes_in += plen;
 1648     }
 1649     mtx_unlock_spin(&V_viftable[vifi].v_spin);
 1650 
 1651     rt->mfc_pkt_cnt++;
 1652     rt->mfc_byte_cnt += plen;
 1653 
 1654     /*
 1655      * For each vif, decide if a copy of the packet should be forwarded.
 1656      * Forward if:
 1657      *          - the ttl exceeds the vif's threshold
 1658      *          - there are group members downstream on interface
 1659      */
 1660     for (vifi = 0; vifi < V_numvifs; vifi++)
 1661         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1662             V_viftable[vifi].v_pkt_out++;
 1663             V_viftable[vifi].v_bytes_out += plen;
 1664             if (V_viftable[vifi].v_flags & VIFF_REGISTER)
 1665                 pim_register_send(ip, V_viftable + vifi, m, rt);
 1666             else
 1667                 phyint_send(ip, V_viftable + vifi, m);
 1668         }
 1669 
 1670     /*
 1671      * Perform upcall-related bw measuring.
 1672      */
 1673     if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) {
 1674         struct bw_meter *x;
 1675         struct timeval now;
 1676 
 1677         microtime(&now);
 1678         /* Process meters for Greater-or-EQual case */
 1679         for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next)
 1680                 bw_meter_geq_receive_packet(x, plen, &now);
 1681 
 1682         /* Process meters for Lower-or-EQual case */
 1683         for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) {
 1684                 /*
 1685                  * Record that a packet is received.
 1686                  * Spin lock has to be taken as callout context
 1687                  * (expire_bw_meter_leq) might modify these fields
 1688                  * as well
 1689                  */
 1690                 mtx_lock_spin(&x->bm_spin);
 1691                 x->bm_measured.b_packets++;
 1692                 x->bm_measured.b_bytes += plen;
 1693                 mtx_unlock_spin(&x->bm_spin);
 1694         }
 1695     }
 1696 
 1697     return 0;
 1698 }
 1699 
 1700 /*
 1701  * Check if a vif number is legal/ok. This is used by in_mcast.c.
 1702  */
 1703 static int
 1704 X_legal_vif_num(int vif)
 1705 {
 1706         int ret;
 1707 
 1708         ret = 0;
 1709         if (vif < 0)
 1710                 return (ret);
 1711 
 1712         MRW_RLOCK();
 1713         if (vif < V_numvifs)
 1714                 ret = 1;
 1715         MRW_RUNLOCK();
 1716 
 1717         return (ret);
 1718 }
 1719 
 1720 /*
 1721  * Return the local address used by this vif
 1722  */
 1723 static u_long
 1724 X_ip_mcast_src(int vifi)
 1725 {
 1726         in_addr_t addr;
 1727 
 1728         addr = INADDR_ANY;
 1729         if (vifi < 0)
 1730                 return (addr);
 1731 
 1732         MRW_RLOCK();
 1733         if (vifi < V_numvifs)
 1734                 addr = V_viftable[vifi].v_lcl_addr.s_addr;
 1735         MRW_RUNLOCK();
 1736 
 1737         return (addr);
 1738 }
 1739 
 1740 static void
 1741 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1742 {
 1743     struct mbuf *mb_copy;
 1744     int hlen = ip->ip_hl << 2;
 1745 
 1746     MRW_LOCK_ASSERT();
 1747 
 1748     /*
 1749      * Make a new reference to the packet; make sure that
 1750      * the IP header is actually copied, not just referenced,
 1751      * so that ip_output() only scribbles on the copy.
 1752      */
 1753     mb_copy = m_copypacket(m, M_NOWAIT);
 1754     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
 1755         mb_copy = m_pullup(mb_copy, hlen);
 1756     if (mb_copy == NULL)
 1757         return;
 1758 
 1759     send_packet(vifp, mb_copy);
 1760 }
 1761 
 1762 static void
 1763 send_packet(struct vif *vifp, struct mbuf *m)
 1764 {
 1765         struct ip_moptions imo;
 1766         int error __unused;
 1767 
 1768         MRW_LOCK_ASSERT();
 1769         NET_EPOCH_ASSERT();
 1770 
 1771         imo.imo_multicast_ifp  = vifp->v_ifp;
 1772         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 1773         imo.imo_multicast_loop = !!in_mcast_loop;
 1774         imo.imo_multicast_vif  = -1;
 1775         STAILQ_INIT(&imo.imo_head);
 1776 
 1777         /*
 1778          * Re-entrancy should not be a problem here, because
 1779          * the packets that we send out and are looped back at us
 1780          * should get rejected because they appear to come from
 1781          * the loopback interface, thus preventing looping.
 1782          */
 1783         error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
 1784         CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
 1785             (ptrdiff_t)(vifp - V_viftable), error);
 1786 }
 1787 
 1788 /*
 1789  * Stubs for old RSVP socket shim implementation.
 1790  */
 1791 
 1792 static int
 1793 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
 1794 {
 1795 
 1796         return (EOPNOTSUPP);
 1797 }
 1798 
 1799 static void
 1800 X_ip_rsvp_force_done(struct socket *so __unused)
 1801 {
 1802 
 1803 }
 1804 
 1805 static int
 1806 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
 1807 {
 1808         struct mbuf *m;
 1809 
 1810         m = *mp;
 1811         *mp = NULL;
 1812         if (!V_rsvp_on)
 1813                 m_freem(m);
 1814         return (IPPROTO_DONE);
 1815 }
 1816 
 1817 /*
 1818  * Code for bandwidth monitors
 1819  */
 1820 
 1821 /*
 1822  * Define common interface for timeval-related methods
 1823  */
 1824 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 1825 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 1826 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 1827 
 1828 static uint32_t
 1829 compute_bw_meter_flags(struct bw_upcall *req)
 1830 {
 1831     uint32_t flags = 0;
 1832 
 1833     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 1834         flags |= BW_METER_UNIT_PACKETS;
 1835     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 1836         flags |= BW_METER_UNIT_BYTES;
 1837     if (req->bu_flags & BW_UPCALL_GEQ)
 1838         flags |= BW_METER_GEQ;
 1839     if (req->bu_flags & BW_UPCALL_LEQ)
 1840         flags |= BW_METER_LEQ;
 1841 
 1842     return flags;
 1843 }
 1844 
 1845 static void
 1846 expire_bw_meter_leq(void *arg)
 1847 {
 1848         struct bw_meter *x = arg;
 1849         struct timeval now;
 1850         /*
 1851          * INFO:
 1852          * callout is always executed with MRW_WLOCK taken
 1853          */
 1854 
 1855         CURVNET_SET((struct vnet *)x->arg);
 1856 
 1857         microtime(&now);
 1858 
 1859         /*
 1860          * Test if we should deliver an upcall
 1861          */
 1862         if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1863             (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 1864             ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1865             (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 1866                 /* Prepare an upcall for delivery */
 1867                 bw_meter_prepare_upcall(x, &now);
 1868         }
 1869 
 1870         /* Send all upcalls that are pending delivery */
 1871         taskqueue_enqueue(V_task_queue, &V_task);
 1872 
 1873         /* Reset counters */
 1874         x->bm_start_time = now;
 1875         /* Spin lock has to be taken as ip_forward context
 1876          * might modify these fields as well
 1877          */
 1878         mtx_lock_spin(&x->bm_spin);
 1879         x->bm_measured.b_bytes = 0;
 1880         x->bm_measured.b_packets = 0;
 1881         mtx_unlock_spin(&x->bm_spin);
 1882 
 1883         callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time));
 1884 
 1885         CURVNET_RESTORE();
 1886 }
 1887 
 1888 /*
 1889  * Add a bw_meter entry
 1890  */
 1891 static int
 1892 add_bw_upcall(struct bw_upcall *req)
 1893 {
 1894         struct mfc *mfc;
 1895         struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 1896         BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 1897         struct timeval now;
 1898         struct bw_meter *x, **bwm_ptr;
 1899         uint32_t flags;
 1900 
 1901         if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1902                 return EOPNOTSUPP;
 1903 
 1904         /* Test if the flags are valid */
 1905         if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 1906                 return EINVAL;
 1907         if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 1908                 return EINVAL;
 1909         if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1910                         == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1911                 return EINVAL;
 1912 
 1913         /* Test if the threshold time interval is valid */
 1914         if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 1915                 return EINVAL;
 1916 
 1917         flags = compute_bw_meter_flags(req);
 1918 
 1919         /*
 1920          * Find if we have already same bw_meter entry
 1921          */
 1922         MRW_WLOCK();
 1923         mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1924         if (mfc == NULL) {
 1925                 MRW_WUNLOCK();
 1926                 return EADDRNOTAVAIL;
 1927         }
 1928 
 1929         /* Choose an appropriate bw_meter list */
 1930         if (req->bu_flags & BW_UPCALL_GEQ)
 1931                 bwm_ptr = &mfc->mfc_bw_meter_geq;
 1932         else
 1933                 bwm_ptr = &mfc->mfc_bw_meter_leq;
 1934 
 1935         for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) {
 1936                 if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1937                     &req->bu_threshold.b_time, ==))
 1938                     && (x->bm_threshold.b_packets
 1939                     == req->bu_threshold.b_packets)
 1940                     && (x->bm_threshold.b_bytes
 1941                     == req->bu_threshold.b_bytes)
 1942                     && (x->bm_flags & BW_METER_USER_FLAGS)
 1943                     == flags) {
 1944                         MRW_WUNLOCK();
 1945                         return 0; /* XXX Already installed */
 1946                 }
 1947         }
 1948 
 1949         /* Allocate the new bw_meter entry */
 1950         x = (struct bw_meter*) malloc(sizeof(*x), M_BWMETER,
 1951             M_ZERO | M_NOWAIT);
 1952         if (x == NULL) {
 1953                 MRW_WUNLOCK();
 1954                 return ENOBUFS;
 1955         }
 1956 
 1957         /* Set the new bw_meter entry */
 1958         x->bm_threshold.b_time = req->bu_threshold.b_time;
 1959         microtime(&now);
 1960         x->bm_start_time = now;
 1961         x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 1962         x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 1963         x->bm_measured.b_packets = 0;
 1964         x->bm_measured.b_bytes = 0;
 1965         x->bm_flags = flags;
 1966         x->bm_time_next = NULL;
 1967         x->bm_mfc = mfc;
 1968         x->arg = curvnet;
 1969         sprintf(x->bm_spin_name, "BM spin %p", x);
 1970         mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN);
 1971 
 1972         /* For LEQ case create periodic callout */
 1973         if (req->bu_flags & BW_UPCALL_LEQ) {
 1974                 callout_init_rw(&x->bm_meter_callout, &mrouter_mtx, CALLOUT_SHAREDLOCK);
 1975                 callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time),
 1976                     expire_bw_meter_leq, x);
 1977         }
 1978 
 1979         /* Add the new bw_meter entry to the front of entries for this MFC */
 1980         x->bm_mfc_next = *bwm_ptr;
 1981         *bwm_ptr = x;
 1982 
 1983         MRW_WUNLOCK();
 1984 
 1985         return 0;
 1986 }
 1987 
 1988 static void
 1989 free_bw_list(struct bw_meter *list)
 1990 {
 1991     while (list != NULL) {
 1992         struct bw_meter *x = list;
 1993 
 1994         /* MRW_WLOCK must be held here */
 1995         if (x->bm_flags & BW_METER_LEQ) {
 1996                 callout_drain(&x->bm_meter_callout);
 1997                 mtx_destroy(&x->bm_spin);
 1998         }
 1999 
 2000         list = list->bm_mfc_next;
 2001         free(x, M_BWMETER);
 2002     }
 2003 }
 2004 
 2005 /*
 2006  * Delete one or multiple bw_meter entries
 2007  */
 2008 static int
 2009 del_bw_upcall(struct bw_upcall *req)
 2010 {
 2011     struct mfc *mfc;
 2012     struct bw_meter *x, **bwm_ptr;
 2013 
 2014     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 2015         return EOPNOTSUPP;
 2016 
 2017     MRW_WLOCK();
 2018 
 2019     /* Find the corresponding MFC entry */
 2020     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 2021     if (mfc == NULL) {
 2022         MRW_WUNLOCK();
 2023         return EADDRNOTAVAIL;
 2024     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2025         /*
 2026          * Delete all bw_meter entries for this mfc
 2027          */
 2028         struct bw_meter *list;
 2029 
 2030         /* Free LEQ list */
 2031         list = mfc->mfc_bw_meter_leq;
 2032         mfc->mfc_bw_meter_leq = NULL;
 2033         free_bw_list(list);
 2034 
 2035         /* Free GEQ list */
 2036         list = mfc->mfc_bw_meter_geq;
 2037         mfc->mfc_bw_meter_geq = NULL;
 2038         free_bw_list(list);
 2039         MRW_WUNLOCK();
 2040         return 0;
 2041     } else {                    /* Delete a single bw_meter entry */
 2042         struct bw_meter *prev;
 2043         uint32_t flags = 0;
 2044 
 2045         flags = compute_bw_meter_flags(req);
 2046 
 2047         /* Choose an appropriate bw_meter list */
 2048         if (req->bu_flags & BW_UPCALL_GEQ)
 2049                 bwm_ptr = &mfc->mfc_bw_meter_geq;
 2050         else
 2051                 bwm_ptr = &mfc->mfc_bw_meter_leq;
 2052 
 2053         /* Find the bw_meter entry to delete */
 2054         for (prev = NULL, x = *bwm_ptr; x != NULL;
 2055              prev = x, x = x->bm_mfc_next) {
 2056             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2057                                &req->bu_threshold.b_time, ==)) &&
 2058                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2059                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2060                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2061                 break;
 2062         }
 2063         if (x != NULL) { /* Delete entry from the list for this MFC */
 2064             if (prev != NULL)
 2065                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2066             else
 2067                 *bwm_ptr = x->bm_mfc_next;/* new head of list */
 2068 
 2069             if (req->bu_flags & BW_UPCALL_LEQ)
 2070                     callout_stop(&x->bm_meter_callout);
 2071 
 2072             MRW_WUNLOCK();
 2073             /* Free the bw_meter entry */
 2074             free(x, M_BWMETER);
 2075             return 0;
 2076         } else {
 2077             MRW_WUNLOCK();
 2078             return EINVAL;
 2079         }
 2080     }
 2081     /* NOTREACHED */
 2082 }
 2083 
 2084 /*
 2085  * Perform bandwidth measurement processing that may result in an upcall
 2086  */
 2087 static void
 2088 bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2089 {
 2090         struct timeval delta;
 2091 
 2092         MRW_LOCK_ASSERT();
 2093 
 2094         delta = *nowp;
 2095         BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2096 
 2097         /*
 2098          * Processing for ">=" type of bw_meter entry.
 2099          * bm_spin does not have to be hold here as in GEQ
 2100          * case this is the only context accessing bm_measured.
 2101          */
 2102         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2103             /* Reset the bw_meter entry */
 2104             x->bm_start_time = *nowp;
 2105             x->bm_measured.b_packets = 0;
 2106             x->bm_measured.b_bytes = 0;
 2107             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2108         }
 2109 
 2110         /* Record that a packet is received */
 2111         x->bm_measured.b_packets++;
 2112         x->bm_measured.b_bytes += plen;
 2113 
 2114         /*
 2115          * Test if we should deliver an upcall
 2116          */
 2117         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 2118                 if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2119                     (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2120                     ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2121                     (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2122                         /* Prepare an upcall for delivery */
 2123                         bw_meter_prepare_upcall(x, nowp);
 2124                         x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2125                 }
 2126         }
 2127 }
 2128 
 2129 /*
 2130  * Prepare a bandwidth-related upcall
 2131  */
 2132 static void
 2133 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2134 {
 2135         struct timeval delta;
 2136         struct bw_upcall *u;
 2137 
 2138         MRW_LOCK_ASSERT();
 2139 
 2140         /*
 2141          * Compute the measured time interval
 2142          */
 2143         delta = *nowp;
 2144         BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2145 
 2146         /*
 2147          * Set the bw_upcall entry
 2148          */
 2149         u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO);
 2150         if (!u) {
 2151                 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n");
 2152                 return;
 2153         }
 2154         u->bu_src = x->bm_mfc->mfc_origin;
 2155         u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2156         u->bu_threshold.b_time = x->bm_threshold.b_time;
 2157         u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2158         u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2159         u->bu_measured.b_time = delta;
 2160         u->bu_measured.b_packets = x->bm_measured.b_packets;
 2161         u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2162         u->bu_flags = 0;
 2163         if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2164                 u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2165         if (x->bm_flags & BW_METER_UNIT_BYTES)
 2166                 u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2167         if (x->bm_flags & BW_METER_GEQ)
 2168                 u->bu_flags |= BW_UPCALL_GEQ;
 2169         if (x->bm_flags & BW_METER_LEQ)
 2170                 u->bu_flags |= BW_UPCALL_LEQ;
 2171 
 2172         if (buf_ring_enqueue(V_bw_upcalls_ring, u))
 2173                 log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n");
 2174         if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) {
 2175                 taskqueue_enqueue(V_task_queue, &V_task);
 2176         }
 2177 }
 2178 /*
 2179  * Send the pending bandwidth-related upcalls
 2180  */
 2181 static void
 2182 bw_upcalls_send(void)
 2183 {
 2184     struct mbuf *m;
 2185     int len = 0;
 2186     struct bw_upcall *bu;
 2187     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2188     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2189                                       0,                /* unused2 */
 2190                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2191                                       0,                /* im_mbz  */
 2192                                       0,                /* im_vif  */
 2193                                       0,                /* unused3 */
 2194                                       { 0 },            /* im_src  */
 2195                                       { 0 } };          /* im_dst  */
 2196 
 2197     MRW_LOCK_ASSERT();
 2198 
 2199     if (buf_ring_empty(V_bw_upcalls_ring))
 2200         return;
 2201 
 2202     /*
 2203      * Allocate a new mbuf, initialize it with the header and
 2204      * the payload for the pending calls.
 2205      */
 2206     m = m_gethdr(M_NOWAIT, MT_DATA);
 2207     if (m == NULL) {
 2208         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2209         return;
 2210     }
 2211 
 2212     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2213     len += sizeof(struct igmpmsg);
 2214     while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) {
 2215         m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu);
 2216         len += sizeof(struct bw_upcall);
 2217         free(bu, M_MRTABLE);
 2218     }
 2219 
 2220     /*
 2221      * Send the upcalls
 2222      * XXX do we need to set the address in k_igmpsrc ?
 2223      */
 2224     MRTSTAT_INC(mrts_upcalls);
 2225     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
 2226         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2227         MRTSTAT_INC(mrts_upq_sockfull);
 2228     }
 2229 }
 2230 
 2231 /*
 2232  * A periodic function for sending all upcalls that are pending delivery
 2233  */
 2234 static void
 2235 expire_bw_upcalls_send(void *arg)
 2236 {
 2237     CURVNET_SET((struct vnet *) arg);
 2238 
 2239     /* This callout is run with MRW_RLOCK taken */
 2240 
 2241     bw_upcalls_send();
 2242 
 2243     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
 2244         curvnet);
 2245     CURVNET_RESTORE();
 2246 }
 2247 
 2248 /*
 2249  * End of bandwidth monitoring code
 2250  */
 2251 
 2252 /*
 2253  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2254  *
 2255  */
 2256 static int
 2257 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
 2258     struct mfc *rt)
 2259 {
 2260     struct mbuf *mb_copy, *mm;
 2261 
 2262     /*
 2263      * Do not send IGMP_WHOLEPKT notifications to userland, if the
 2264      * rendezvous point was unspecified, and we were told not to.
 2265      */
 2266     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
 2267         in_nullhost(rt->mfc_rp))
 2268         return 0;
 2269 
 2270     mb_copy = pim_register_prepare(ip, m);
 2271     if (mb_copy == NULL)
 2272         return ENOBUFS;
 2273 
 2274     /*
 2275      * Send all the fragments. Note that the mbuf for each fragment
 2276      * is freed by the sending machinery.
 2277      */
 2278     for (mm = mb_copy; mm; mm = mb_copy) {
 2279         mb_copy = mm->m_nextpkt;
 2280         mm->m_nextpkt = 0;
 2281         mm = m_pullup(mm, sizeof(struct ip));
 2282         if (mm != NULL) {
 2283             ip = mtod(mm, struct ip *);
 2284             if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
 2285                 pim_register_send_rp(ip, vifp, mm, rt);
 2286             } else {
 2287                 pim_register_send_upcall(ip, vifp, mm, rt);
 2288             }
 2289         }
 2290     }
 2291 
 2292     return 0;
 2293 }
 2294 
 2295 /*
 2296  * Return a copy of the data packet that is ready for PIM Register
 2297  * encapsulation.
 2298  * XXX: Note that in the returned copy the IP header is a valid one.
 2299  */
 2300 static struct mbuf *
 2301 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2302 {
 2303     struct mbuf *mb_copy = NULL;
 2304     int mtu;
 2305 
 2306     /* Take care of delayed checksums */
 2307     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2308         in_delayed_cksum(m);
 2309         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2310     }
 2311 
 2312     /*
 2313      * Copy the old packet & pullup its IP header into the
 2314      * new mbuf so we can modify it.
 2315      */
 2316     mb_copy = m_copypacket(m, M_NOWAIT);
 2317     if (mb_copy == NULL)
 2318         return NULL;
 2319     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2320     if (mb_copy == NULL)
 2321         return NULL;
 2322 
 2323     /* take care of the TTL */
 2324     ip = mtod(mb_copy, struct ip *);
 2325     --ip->ip_ttl;
 2326 
 2327     /* Compute the MTU after the PIM Register encapsulation */
 2328     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2329 
 2330     if (ntohs(ip->ip_len) <= mtu) {
 2331         /* Turn the IP header into a valid one */
 2332         ip->ip_sum = 0;
 2333         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2334     } else {
 2335         /* Fragment the packet */
 2336         mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
 2337         if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
 2338             m_freem(mb_copy);
 2339             return NULL;
 2340         }
 2341     }
 2342     return mb_copy;
 2343 }
 2344 
 2345 /*
 2346  * Send an upcall with the data packet to the user-level process.
 2347  */
 2348 static int
 2349 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 2350     struct mbuf *mb_copy, struct mfc *rt)
 2351 {
 2352     struct mbuf *mb_first;
 2353     int len = ntohs(ip->ip_len);
 2354     struct igmpmsg *im;
 2355     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2356 
 2357     MRW_LOCK_ASSERT();
 2358 
 2359     /*
 2360      * Add a new mbuf with an upcall header
 2361      */
 2362     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
 2363     if (mb_first == NULL) {
 2364         m_freem(mb_copy);
 2365         return ENOBUFS;
 2366     }
 2367     mb_first->m_data += max_linkhdr;
 2368     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 2369     mb_first->m_len = sizeof(struct igmpmsg);
 2370     mb_first->m_next = mb_copy;
 2371 
 2372     /* Send message to routing daemon */
 2373     im = mtod(mb_first, struct igmpmsg *);
 2374     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 2375     im->im_mbz          = 0;
 2376     im->im_vif          = vifp - V_viftable;
 2377     im->im_src          = ip->ip_src;
 2378     im->im_dst          = ip->ip_dst;
 2379 
 2380     k_igmpsrc.sin_addr  = ip->ip_src;
 2381 
 2382     MRTSTAT_INC(mrts_upcalls);
 2383 
 2384     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 2385         CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 2386         MRTSTAT_INC(mrts_upq_sockfull);
 2387         return ENOBUFS;
 2388     }
 2389 
 2390     /* Keep statistics */
 2391     PIMSTAT_INC(pims_snd_registers_msgs);
 2392     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2393 
 2394     return 0;
 2395 }
 2396 
 2397 /*
 2398  * Encapsulate the data packet in PIM Register message and send it to the RP.
 2399  */
 2400 static int
 2401 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
 2402     struct mfc *rt)
 2403 {
 2404     struct mbuf *mb_first;
 2405     struct ip *ip_outer;
 2406     struct pim_encap_pimhdr *pimhdr;
 2407     int len = ntohs(ip->ip_len);
 2408     vifi_t vifi = rt->mfc_parent;
 2409 
 2410     MRW_LOCK_ASSERT();
 2411 
 2412     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
 2413         m_freem(mb_copy);
 2414         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 2415     }
 2416 
 2417     /*
 2418      * Add a new mbuf with the encapsulating header
 2419      */
 2420     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
 2421     if (mb_first == NULL) {
 2422         m_freem(mb_copy);
 2423         return ENOBUFS;
 2424     }
 2425     mb_first->m_data += max_linkhdr;
 2426     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2427     mb_first->m_next = mb_copy;
 2428 
 2429     mb_first->m_pkthdr.len = len + mb_first->m_len;
 2430 
 2431     /*
 2432      * Fill in the encapsulating IP and PIM header
 2433      */
 2434     ip_outer = mtod(mb_first, struct ip *);
 2435     *ip_outer = pim_encap_iphdr;
 2436     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
 2437         sizeof(pim_encap_pimhdr));
 2438     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
 2439     ip_outer->ip_dst = rt->mfc_rp;
 2440     /*
 2441      * Copy the inner header TOS to the outer header, and take care of the
 2442      * IP_DF bit.
 2443      */
 2444     ip_outer->ip_tos = ip->ip_tos;
 2445     if (ip->ip_off & htons(IP_DF))
 2446         ip_outer->ip_off |= htons(IP_DF);
 2447     ip_fillid(ip_outer);
 2448     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 2449                                          + sizeof(pim_encap_iphdr));
 2450     *pimhdr = pim_encap_pimhdr;
 2451     /* If the iif crosses a border, set the Border-bit */
 2452     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
 2453         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 2454 
 2455     mb_first->m_data += sizeof(pim_encap_iphdr);
 2456     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 2457     mb_first->m_data -= sizeof(pim_encap_iphdr);
 2458 
 2459     send_packet(vifp, mb_first);
 2460 
 2461     /* Keep statistics */
 2462     PIMSTAT_INC(pims_snd_registers_msgs);
 2463     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2464 
 2465     return 0;
 2466 }
 2467 
 2468 /*
 2469  * pim_encapcheck() is called by the encap4_input() path at runtime to
 2470  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
 2471  * into the kernel.
 2472  */
 2473 static int
 2474 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
 2475     int proto __unused, void *arg __unused)
 2476 {
 2477 
 2478     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
 2479     return (8);         /* claim the datagram. */
 2480 }
 2481 
 2482 /*
 2483  * PIM-SMv2 and PIM-DM messages processing.
 2484  * Receives and verifies the PIM control messages, and passes them
 2485  * up to the listening socket, using rip_input().
 2486  * The only message with special processing is the PIM_REGISTER message
 2487  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 2488  * is passed to if_simloop().
 2489  */
 2490 static int
 2491 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
 2492 {
 2493     struct ip *ip = mtod(m, struct ip *);
 2494     struct pim *pim;
 2495     int iphlen = off;
 2496     int minlen;
 2497     int datalen = ntohs(ip->ip_len) - iphlen;
 2498     int ip_tos;
 2499 
 2500     /* Keep statistics */
 2501     PIMSTAT_INC(pims_rcv_total_msgs);
 2502     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
 2503 
 2504     /*
 2505      * Validate lengths
 2506      */
 2507     if (datalen < PIM_MINLEN) {
 2508         PIMSTAT_INC(pims_rcv_tooshort);
 2509         CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
 2510             __func__, datalen, ntohl(ip->ip_src.s_addr));
 2511         m_freem(m);
 2512         return (IPPROTO_DONE);
 2513     }
 2514 
 2515     /*
 2516      * If the packet is at least as big as a REGISTER, go agead
 2517      * and grab the PIM REGISTER header size, to avoid another
 2518      * possible m_pullup() later.
 2519      *
 2520      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 2521      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 2522      */
 2523     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 2524     /*
 2525      * Get the IP and PIM headers in contiguous memory, and
 2526      * possibly the PIM REGISTER header.
 2527      */
 2528     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
 2529         CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
 2530         return (IPPROTO_DONE);
 2531     }
 2532 
 2533     /* m_pullup() may have given us a new mbuf so reset ip. */
 2534     ip = mtod(m, struct ip *);
 2535     ip_tos = ip->ip_tos;
 2536 
 2537     /* adjust mbuf to point to the PIM header */
 2538     m->m_data += iphlen;
 2539     m->m_len  -= iphlen;
 2540     pim = mtod(m, struct pim *);
 2541 
 2542     /*
 2543      * Validate checksum. If PIM REGISTER, exclude the data packet.
 2544      *
 2545      * XXX: some older PIMv2 implementations don't make this distinction,
 2546      * so for compatibility reason perform the checksum over part of the
 2547      * message, and if error, then over the whole message.
 2548      */
 2549     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 2550         /* do nothing, checksum okay */
 2551     } else if (in_cksum(m, datalen)) {
 2552         PIMSTAT_INC(pims_rcv_badsum);
 2553         CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
 2554         m_freem(m);
 2555         return (IPPROTO_DONE);
 2556     }
 2557 
 2558     /* PIM version check */
 2559     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 2560         PIMSTAT_INC(pims_rcv_badversion);
 2561         CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
 2562             (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
 2563         m_freem(m);
 2564         return (IPPROTO_DONE);
 2565     }
 2566 
 2567     /* restore mbuf back to the outer IP */
 2568     m->m_data -= iphlen;
 2569     m->m_len  += iphlen;
 2570 
 2571     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 2572         /*
 2573          * Since this is a REGISTER, we'll make a copy of the register
 2574          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 2575          * routing daemon.
 2576          */
 2577         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 2578         struct mbuf *mcp;
 2579         struct ip *encap_ip;
 2580         u_int32_t *reghdr;
 2581         struct ifnet *vifp;
 2582 
 2583         MRW_RLOCK();
 2584         if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
 2585             MRW_RUNLOCK();
 2586             CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
 2587                 (int)V_reg_vif_num);
 2588             m_freem(m);
 2589             return (IPPROTO_DONE);
 2590         }
 2591         /* XXX need refcnt? */
 2592         vifp = V_viftable[V_reg_vif_num].v_ifp;
 2593         MRW_RUNLOCK();
 2594 
 2595         /*
 2596          * Validate length
 2597          */
 2598         if (datalen < PIM_REG_MINLEN) {
 2599             PIMSTAT_INC(pims_rcv_tooshort);
 2600             PIMSTAT_INC(pims_rcv_badregisters);
 2601             CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
 2602             m_freem(m);
 2603             return (IPPROTO_DONE);
 2604         }
 2605 
 2606         reghdr = (u_int32_t *)(pim + 1);
 2607         encap_ip = (struct ip *)(reghdr + 1);
 2608 
 2609         CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
 2610             __func__, ntohl(encap_ip->ip_src.s_addr),
 2611             ntohs(encap_ip->ip_len));
 2612 
 2613         /* verify the version number of the inner packet */
 2614         if (encap_ip->ip_v != IPVERSION) {
 2615             PIMSTAT_INC(pims_rcv_badregisters);
 2616             CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
 2617             m_freem(m);
 2618             return (IPPROTO_DONE);
 2619         }
 2620 
 2621         /* verify the inner packet is destined to a mcast group */
 2622         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 2623             PIMSTAT_INC(pims_rcv_badregisters);
 2624             CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
 2625                 ntohl(encap_ip->ip_dst.s_addr));
 2626             m_freem(m);
 2627             return (IPPROTO_DONE);
 2628         }
 2629 
 2630         /* If a NULL_REGISTER, pass it to the daemon */
 2631         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 2632             goto pim_input_to_daemon;
 2633 
 2634         /*
 2635          * Copy the TOS from the outer IP header to the inner IP header.
 2636          */
 2637         if (encap_ip->ip_tos != ip_tos) {
 2638             /* Outer TOS -> inner TOS */
 2639             encap_ip->ip_tos = ip_tos;
 2640             /* Recompute the inner header checksum. Sigh... */
 2641 
 2642             /* adjust mbuf to point to the inner IP header */
 2643             m->m_data += (iphlen + PIM_MINLEN);
 2644             m->m_len  -= (iphlen + PIM_MINLEN);
 2645 
 2646             encap_ip->ip_sum = 0;
 2647             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 2648 
 2649             /* restore mbuf to point back to the outer IP header */
 2650             m->m_data -= (iphlen + PIM_MINLEN);
 2651             m->m_len  += (iphlen + PIM_MINLEN);
 2652         }
 2653 
 2654         /*
 2655          * Decapsulate the inner IP packet and loopback to forward it
 2656          * as a normal multicast packet. Also, make a copy of the
 2657          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 2658          * to pass to the daemon later, so it can take the appropriate
 2659          * actions (e.g., send back PIM_REGISTER_STOP).
 2660          * XXX: here m->m_data points to the outer IP header.
 2661          */
 2662         mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
 2663         if (mcp == NULL) {
 2664             CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
 2665             m_freem(m);
 2666             return (IPPROTO_DONE);
 2667         }
 2668 
 2669         /* Keep statistics */
 2670         /* XXX: registers_bytes include only the encap. mcast pkt */
 2671         PIMSTAT_INC(pims_rcv_registers_msgs);
 2672         PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
 2673 
 2674         /*
 2675          * forward the inner ip packet; point m_data at the inner ip.
 2676          */
 2677         m_adj(m, iphlen + PIM_MINLEN);
 2678 
 2679         CTR4(KTR_IPMF,
 2680             "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
 2681             __func__,
 2682             (u_long)ntohl(encap_ip->ip_src.s_addr),
 2683             (u_long)ntohl(encap_ip->ip_dst.s_addr),
 2684             (int)V_reg_vif_num);
 2685 
 2686         /* NB: vifp was collected above; can it change on us? */
 2687         if_simloop(vifp, m, dst.sin_family, 0);
 2688 
 2689         /* prepare the register head to send to the mrouting daemon */
 2690         m = mcp;
 2691     }
 2692 
 2693 pim_input_to_daemon:
 2694     /*
 2695      * Pass the PIM message up to the daemon; if it is a Register message,
 2696      * pass the 'head' only up to the daemon. This includes the
 2697      * outer IP header, PIM header, PIM-Register header and the
 2698      * inner IP header.
 2699      * XXX: the outer IP header pkt size of a Register is not adjust to
 2700      * reflect the fact that the inner multicast data is truncated.
 2701      */
 2702     return (rip_input(&m, &off, proto));
 2703 }
 2704 
 2705 static int
 2706 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
 2707 {
 2708         struct mfc      *rt;
 2709         int              error, i;
 2710 
 2711         if (req->newptr)
 2712                 return (EPERM);
 2713         if (V_mfchashtbl == NULL)       /* XXX unlocked */
 2714                 return (0);
 2715         error = sysctl_wire_old_buffer(req, 0);
 2716         if (error)
 2717                 return (error);
 2718 
 2719         MRW_RLOCK();
 2720         for (i = 0; i < mfchashsize; i++) {
 2721                 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
 2722                         error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
 2723                         if (error)
 2724                                 goto out_locked;
 2725                 }
 2726         }
 2727 out_locked:
 2728         MRW_RUNLOCK();
 2729         return (error);
 2730 }
 2731 
 2732 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable,
 2733     CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable,
 2734     "IPv4 Multicast Forwarding Table "
 2735     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
 2736 
 2737 static int
 2738 sysctl_viflist(SYSCTL_HANDLER_ARGS)
 2739 {
 2740         int error, i;
 2741 
 2742         if (req->newptr)
 2743                 return (EPERM);
 2744         if (V_viftable == NULL)         /* XXX unlocked */
 2745                 return (0);
 2746         error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS);
 2747         if (error)
 2748                 return (error);
 2749 
 2750         MRW_RLOCK();
 2751         /* Copy out user-visible portion of vif entry. */
 2752         for (i = 0; i < MAXVIFS; i++) {
 2753                 error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN);
 2754                 if (error)
 2755                         break;
 2756         }
 2757         MRW_RUNLOCK();
 2758         return (error);
 2759 }
 2760 
 2761 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
 2762     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
 2763     sysctl_viflist, "S,vif[MAXVIFS]",
 2764     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
 2765 
 2766 static void
 2767 vnet_mroute_init(const void *unused __unused)
 2768 {
 2769 
 2770         V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
 2771 
 2772         V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
 2773             M_MRTABLE, M_WAITOK|M_ZERO);
 2774 
 2775         callout_init_rw(&V_expire_upcalls_ch, &mrouter_mtx, 0);
 2776         callout_init_rw(&V_bw_upcalls_ch, &mrouter_mtx, 0);
 2777 
 2778         /* Prepare taskqueue */
 2779         V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT,
 2780                     taskqueue_thread_enqueue, &V_task_queue);
 2781         taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task");
 2782 }
 2783 
 2784 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
 2785         NULL);
 2786 
 2787 static void
 2788 vnet_mroute_uninit(const void *unused __unused)
 2789 {
 2790 
 2791         /* Taskqueue should be cancelled and drained before freeing */
 2792         taskqueue_free(V_task_queue);
 2793 
 2794         free(V_viftable, M_MRTABLE);
 2795         free(V_nexpire, M_MRTABLE);
 2796         V_nexpire = NULL;
 2797 }
 2798 
 2799 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE,
 2800         vnet_mroute_uninit, NULL);
 2801 
 2802 static int
 2803 ip_mroute_modevent(module_t mod, int type, void *unused)
 2804 {
 2805 
 2806     switch (type) {
 2807     case MOD_LOAD:
 2808         MRW_LOCK_INIT();
 2809 
 2810         if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
 2811             if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
 2812         if (if_detach_event_tag == NULL) {
 2813                 printf("ip_mroute: unable to register "
 2814                     "ifnet_departure_event handler\n");
 2815                 MRW_LOCK_DESTROY();
 2816                 return (EINVAL);
 2817         }
 2818 
 2819         mfchashsize = MFCHASHSIZE;
 2820         if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
 2821             !powerof2(mfchashsize)) {
 2822                 printf("WARNING: %s not a power of 2; using default\n",
 2823                     "net.inet.ip.mfchashsize");
 2824                 mfchashsize = MFCHASHSIZE;
 2825         }
 2826 
 2827         pim_squelch_wholepkt = 0;
 2828         TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
 2829             &pim_squelch_wholepkt);
 2830 
 2831         pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
 2832         if (pim_encap_cookie == NULL) {
 2833                 printf("ip_mroute: unable to attach pim encap\n");
 2834                 MRW_LOCK_DESTROY();
 2835                 return (EINVAL);
 2836         }
 2837 
 2838         ip_mcast_src = X_ip_mcast_src;
 2839         ip_mforward = X_ip_mforward;
 2840         ip_mrouter_done = X_ip_mrouter_done;
 2841         ip_mrouter_get = X_ip_mrouter_get;
 2842         ip_mrouter_set = X_ip_mrouter_set;
 2843 
 2844         ip_rsvp_force_done = X_ip_rsvp_force_done;
 2845         ip_rsvp_vif = X_ip_rsvp_vif;
 2846 
 2847         legal_vif_num = X_legal_vif_num;
 2848         mrt_ioctl = X_mrt_ioctl;
 2849         rsvp_input_p = X_rsvp_input;
 2850         break;
 2851 
 2852     case MOD_UNLOAD:
 2853         /*
 2854          * Typically module unload happens after the user-level
 2855          * process has shutdown the kernel services (the check
 2856          * below insures someone can't just yank the module out
 2857          * from under a running process).  But if the module is
 2858          * just loaded and then unloaded w/o starting up a user
 2859          * process we still need to cleanup.
 2860          */
 2861         MRW_WLOCK();
 2862         if (ip_mrouter_cnt != 0) {
 2863             MRW_WUNLOCK();
 2864             return (EINVAL);
 2865         }
 2866         ip_mrouter_unloading = 1;
 2867         MRW_WUNLOCK();
 2868 
 2869         EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
 2870 
 2871         if (pim_encap_cookie) {
 2872             ip_encap_detach(pim_encap_cookie);
 2873             pim_encap_cookie = NULL;
 2874         }
 2875 
 2876         ip_mcast_src = NULL;
 2877         ip_mforward = NULL;
 2878         ip_mrouter_done = NULL;
 2879         ip_mrouter_get = NULL;
 2880         ip_mrouter_set = NULL;
 2881 
 2882         ip_rsvp_force_done = NULL;
 2883         ip_rsvp_vif = NULL;
 2884 
 2885         legal_vif_num = NULL;
 2886         mrt_ioctl = NULL;
 2887         rsvp_input_p = NULL;
 2888 
 2889         MRW_LOCK_DESTROY();
 2890         break;
 2891 
 2892     default:
 2893         return EOPNOTSUPP;
 2894     }
 2895     return 0;
 2896 }
 2897 
 2898 static moduledata_t ip_mroutemod = {
 2899     "ip_mroute",
 2900     ip_mroute_modevent,
 2901     0
 2902 };
 2903 
 2904 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);

Cache object: 8eb484c508a46110c7b87dc55b5c6e82


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.