The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989 Stephen Deering
    3  * Copyright (c) 1992, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * Stephen Deering of Stanford University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   34  */
   35 
   36 /*
   37  * IP multicast forwarding procedures
   38  *
   39  * Written by David Waitzman, BBN Labs, August 1988.
   40  * Modified by Steve Deering, Stanford, February 1989.
   41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   42  * Modified by Van Jacobson, LBL, January 1993
   43  * Modified by Ajit Thyagarajan, PARC, August 1993
   44  * Modified by Bill Fenner, PARC, April 1995
   45  * Modified by Ahmed Helmy, SGI, June 1996
   46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   48  * Modified by Hitoshi Asaeda, WIDE, August 2000
   49  * Modified by Pavlin Radoslavov, ICSI, October 2002
   50  *
   51  * MROUTING Revision: 3.5
   52  * and PIM-SMv2 and PIM-DM support, advanced API support,
   53  * bandwidth metering and signaling
   54  */
   55 
   56 /*
   57  * TODO: Prefix functions with ipmf_.
   58  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
   59  * domain attachment (if_afdata) so we can track consumers of that service.
   60  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
   61  * move it to socket options.
   62  * TODO: Cleanup LSRR removal further.
   63  * TODO: Push RSVP stubs into raw_ip.c.
   64  * TODO: Use bitstring.h for vif set.
   65  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
   66  * TODO: Sync ip6_mroute.c with this file.
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD: releng/10.4/sys/netinet/ip_mroute.c 314667 2017-03-04 13:03:31Z avg $");
   71 
   72 #include "opt_inet.h"
   73 #include "opt_mrouting.h"
   74 
   75 #define _PIM_VT 1
   76 
   77 #include <sys/param.h>
   78 #include <sys/kernel.h>
   79 #include <sys/stddef.h>
   80 #include <sys/lock.h>
   81 #include <sys/ktr.h>
   82 #include <sys/malloc.h>
   83 #include <sys/mbuf.h>
   84 #include <sys/module.h>
   85 #include <sys/priv.h>
   86 #include <sys/protosw.h>
   87 #include <sys/signalvar.h>
   88 #include <sys/socket.h>
   89 #include <sys/socketvar.h>
   90 #include <sys/sockio.h>
   91 #include <sys/sx.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/syslog.h>
   94 #include <sys/systm.h>
   95 #include <sys/time.h>
   96 #include <sys/counter.h>
   97 
   98 #include <net/if.h>
   99 #include <net/netisr.h>
  100 #include <net/route.h>
  101 #include <net/vnet.h>
  102 
  103 #include <netinet/in.h>
  104 #include <netinet/igmp.h>
  105 #include <netinet/in_systm.h>
  106 #include <netinet/in_var.h>
  107 #include <netinet/ip.h>
  108 #include <netinet/ip_encap.h>
  109 #include <netinet/ip_mroute.h>
  110 #include <netinet/ip_var.h>
  111 #include <netinet/ip_options.h>
  112 #include <netinet/pim.h>
  113 #include <netinet/pim_var.h>
  114 #include <netinet/udp.h>
  115 
  116 #include <machine/in_cksum.h>
  117 
  118 #ifndef KTR_IPMF
  119 #define KTR_IPMF KTR_INET
  120 #endif
  121 
  122 #define         VIFI_INVALID    ((vifi_t) -1)
  123 #define         M_HASCL(m)      ((m)->m_flags & M_EXT)
  124 
  125 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
  126 #define V_last_tv_sec   VNET(last_tv_sec)
  127 
  128 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
  129 
  130 /*
  131  * Locking.  We use two locks: one for the virtual interface table and
  132  * one for the forwarding table.  These locks may be nested in which case
  133  * the VIF lock must always be taken first.  Note that each lock is used
  134  * to cover not only the specific data structure but also related data
  135  * structures.
  136  */
  137 
  138 static struct mtx mrouter_mtx;
  139 #define MROUTER_LOCK()          mtx_lock(&mrouter_mtx)
  140 #define MROUTER_UNLOCK()        mtx_unlock(&mrouter_mtx)
  141 #define MROUTER_LOCK_ASSERT()   mtx_assert(&mrouter_mtx, MA_OWNED)
  142 #define MROUTER_LOCK_INIT()                                             \
  143         mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
  144 #define MROUTER_LOCK_DESTROY()  mtx_destroy(&mrouter_mtx)
  145 
  146 static int ip_mrouter_cnt;      /* # of vnets with active mrouters */
  147 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
  148 
  149 static VNET_PCPUSTAT_DEFINE(struct mrtstat, mrtstat);
  150 VNET_PCPUSTAT_SYSINIT(mrtstat);
  151 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
  152 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
  153     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
  154     "netinet/ip_mroute.h)");
  155 
  156 static VNET_DEFINE(u_long, mfchash);
  157 #define V_mfchash               VNET(mfchash)
  158 #define MFCHASH(a, g)                                                   \
  159         ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
  160           ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
  161 #define MFCHASHSIZE     256
  162 
  163 static u_long mfchashsize;                      /* Hash size */
  164 static VNET_DEFINE(u_char *, nexpire);          /* 0..mfchashsize-1 */
  165 #define V_nexpire               VNET(nexpire)
  166 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
  167 #define V_mfchashtbl            VNET(mfchashtbl)
  168 
  169 static struct mtx mfc_mtx;
  170 #define MFC_LOCK()              mtx_lock(&mfc_mtx)
  171 #define MFC_UNLOCK()            mtx_unlock(&mfc_mtx)
  172 #define MFC_LOCK_ASSERT()       mtx_assert(&mfc_mtx, MA_OWNED)
  173 #define MFC_LOCK_INIT()                                                 \
  174         mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
  175 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  176 
  177 static VNET_DEFINE(vifi_t, numvifs);
  178 #define V_numvifs               VNET(numvifs)
  179 static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
  180 #define V_viftable              VNET(viftable)
  181 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  182     &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
  183     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  184 
  185 static struct mtx vif_mtx;
  186 #define VIF_LOCK()              mtx_lock(&vif_mtx)
  187 #define VIF_UNLOCK()            mtx_unlock(&vif_mtx)
  188 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  189 #define VIF_LOCK_INIT()                                                 \
  190         mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
  191 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  192 
  193 static eventhandler_tag if_detach_event_tag = NULL;
  194 
  195 static VNET_DEFINE(struct callout, expire_upcalls_ch);
  196 #define V_expire_upcalls_ch     VNET(expire_upcalls_ch)
  197 
  198 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  199 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  200 
  201 /*
  202  * Bandwidth meter variables and constants
  203  */
  204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  205 /*
  206  * Pending timeouts are stored in a hash table, the key being the
  207  * expiration time. Periodically, the entries are analysed and processed.
  208  */
  209 #define BW_METER_BUCKETS        1024
  210 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
  211 #define V_bw_meter_timers       VNET(bw_meter_timers)
  212 static VNET_DEFINE(struct callout, bw_meter_ch);
  213 #define V_bw_meter_ch           VNET(bw_meter_ch)
  214 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  215 
  216 /*
  217  * Pending upcalls are stored in a vector which is flushed when
  218  * full, or periodically
  219  */
  220 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
  221 #define V_bw_upcalls            VNET(bw_upcalls)
  222 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
  223 #define V_bw_upcalls_n          VNET(bw_upcalls_n)
  224 static VNET_DEFINE(struct callout, bw_upcalls_ch);
  225 #define V_bw_upcalls_ch         VNET(bw_upcalls_ch)
  226 
  227 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  228 
  229 static VNET_PCPUSTAT_DEFINE(struct pimstat, pimstat);
  230 VNET_PCPUSTAT_SYSINIT(pimstat);
  231 VNET_PCPUSTAT_SYSUNINIT(pimstat);
  232 
  233 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
  234 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
  235     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  236 
  237 static u_long   pim_squelch_wholepkt = 0;
  238 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
  239     &pim_squelch_wholepkt, 0,
  240     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
  241 
  242 extern  struct domain inetdomain;
  243 static const struct protosw in_pim_protosw = {
  244         .pr_type =              SOCK_RAW,
  245         .pr_domain =            &inetdomain,
  246         .pr_protocol =          IPPROTO_PIM,
  247         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_LASTHDR,
  248         .pr_input =             pim_input,
  249         .pr_output =            (pr_output_t*)rip_output,
  250         .pr_ctloutput =         rip_ctloutput,
  251         .pr_usrreqs =           &rip_usrreqs
  252 };
  253 static const struct encaptab *pim_encap_cookie;
  254 
  255 static int pim_encapcheck(const struct mbuf *, int, int, void *);
  256 
  257 /*
  258  * Note: the PIM Register encapsulation adds the following in front of a
  259  * data packet:
  260  *
  261  * struct pim_encap_hdr {
  262  *    struct ip ip;
  263  *    struct pim_encap_pimhdr  pim;
  264  * }
  265  *
  266  */
  267 
  268 struct pim_encap_pimhdr {
  269         struct pim pim;
  270         uint32_t   flags;
  271 };
  272 #define         PIM_ENCAP_TTL   64
  273 
  274 static struct ip pim_encap_iphdr = {
  275 #if BYTE_ORDER == LITTLE_ENDIAN
  276         sizeof(struct ip) >> 2,
  277         IPVERSION,
  278 #else
  279         IPVERSION,
  280         sizeof(struct ip) >> 2,
  281 #endif
  282         0,                      /* tos */
  283         sizeof(struct ip),      /* total length */
  284         0,                      /* id */
  285         0,                      /* frag offset */
  286         PIM_ENCAP_TTL,
  287         IPPROTO_PIM,
  288         0,                      /* checksum */
  289 };
  290 
  291 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  292     {
  293         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  294         0,                      /* reserved */
  295         0,                      /* checksum */
  296     },
  297     0                           /* flags */
  298 };
  299 
  300 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
  301 #define V_reg_vif_num           VNET(reg_vif_num)
  302 static VNET_DEFINE(struct ifnet, multicast_register_if);
  303 #define V_multicast_register_if VNET(multicast_register_if)
  304 
  305 /*
  306  * Private variables.
  307  */
  308 
  309 static u_long   X_ip_mcast_src(int);
  310 static int      X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
  311                     struct ip_moptions *);
  312 static int      X_ip_mrouter_done(void);
  313 static int      X_ip_mrouter_get(struct socket *, struct sockopt *);
  314 static int      X_ip_mrouter_set(struct socket *, struct sockopt *);
  315 static int      X_legal_vif_num(int);
  316 static int      X_mrt_ioctl(u_long, caddr_t, int);
  317 
  318 static int      add_bw_upcall(struct bw_upcall *);
  319 static int      add_mfc(struct mfcctl2 *);
  320 static int      add_vif(struct vifctl *);
  321 static void     bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
  322 static void     bw_meter_process(void);
  323 static void     bw_meter_receive_packet(struct bw_meter *, int,
  324                     struct timeval *);
  325 static void     bw_upcalls_send(void);
  326 static int      del_bw_upcall(struct bw_upcall *);
  327 static int      del_mfc(struct mfcctl2 *);
  328 static int      del_vif(vifi_t);
  329 static int      del_vif_locked(vifi_t);
  330 static void     expire_bw_meter_process(void *);
  331 static void     expire_bw_upcalls_send(void *);
  332 static void     expire_mfc(struct mfc *);
  333 static void     expire_upcalls(void *);
  334 static void     free_bw_list(struct bw_meter *);
  335 static int      get_sg_cnt(struct sioc_sg_req *);
  336 static int      get_vif_cnt(struct sioc_vif_req *);
  337 static void     if_detached_event(void *, struct ifnet *);
  338 static int      ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  339 static int      ip_mrouter_init(struct socket *, int);
  340 static __inline struct mfc *
  341                 mfc_find(struct in_addr *, struct in_addr *);
  342 static void     phyint_send(struct ip *, struct vif *, struct mbuf *);
  343 static struct mbuf *
  344                 pim_register_prepare(struct ip *, struct mbuf *);
  345 static int      pim_register_send(struct ip *, struct vif *,
  346                     struct mbuf *, struct mfc *);
  347 static int      pim_register_send_rp(struct ip *, struct vif *,
  348                     struct mbuf *, struct mfc *);
  349 static int      pim_register_send_upcall(struct ip *, struct vif *,
  350                     struct mbuf *, struct mfc *);
  351 static void     schedule_bw_meter(struct bw_meter *, struct timeval *);
  352 static void     send_packet(struct vif *, struct mbuf *);
  353 static int      set_api_config(uint32_t *);
  354 static int      set_assert(int);
  355 static int      socket_send(struct socket *, struct mbuf *,
  356                     struct sockaddr_in *);
  357 static void     unschedule_bw_meter(struct bw_meter *);
  358 
  359 /*
  360  * Kernel multicast forwarding API capabilities and setup.
  361  * If more API capabilities are added to the kernel, they should be
  362  * recorded in `mrt_api_support'.
  363  */
  364 #define MRT_API_VERSION         0x0305
  365 
  366 static const int mrt_api_version = MRT_API_VERSION;
  367 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  368                                          MRT_MFC_FLAGS_BORDER_VIF |
  369                                          MRT_MFC_RP |
  370                                          MRT_MFC_BW_UPCALL);
  371 static VNET_DEFINE(uint32_t, mrt_api_config);
  372 #define V_mrt_api_config        VNET(mrt_api_config)
  373 static VNET_DEFINE(int, pim_assert_enabled);
  374 #define V_pim_assert_enabled    VNET(pim_assert_enabled)
  375 static struct timeval pim_assert_interval = { 3, 0 };   /* Rate limit */
  376 
  377 /*
  378  * Find a route for a given origin IP address and multicast group address.
  379  * Statistics must be updated by the caller.
  380  */
  381 static __inline struct mfc *
  382 mfc_find(struct in_addr *o, struct in_addr *g)
  383 {
  384         struct mfc *rt;
  385 
  386         MFC_LOCK_ASSERT();
  387 
  388         LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
  389                 if (in_hosteq(rt->mfc_origin, *o) &&
  390                     in_hosteq(rt->mfc_mcastgrp, *g) &&
  391                     TAILQ_EMPTY(&rt->mfc_stall))
  392                         break;
  393         }
  394 
  395         return (rt);
  396 }
  397 
  398 /*
  399  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
  400  */
  401 static int
  402 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  403 {
  404     int error, optval;
  405     vifi_t      vifi;
  406     struct      vifctl vifc;
  407     struct      mfcctl2 mfc;
  408     struct      bw_upcall bw_upcall;
  409     uint32_t    i;
  410 
  411     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
  412         return EPERM;
  413 
  414     error = 0;
  415     switch (sopt->sopt_name) {
  416     case MRT_INIT:
  417         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  418         if (error)
  419             break;
  420         error = ip_mrouter_init(so, optval);
  421         break;
  422 
  423     case MRT_DONE:
  424         error = ip_mrouter_done();
  425         break;
  426 
  427     case MRT_ADD_VIF:
  428         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  429         if (error)
  430             break;
  431         error = add_vif(&vifc);
  432         break;
  433 
  434     case MRT_DEL_VIF:
  435         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  436         if (error)
  437             break;
  438         error = del_vif(vifi);
  439         break;
  440 
  441     case MRT_ADD_MFC:
  442     case MRT_DEL_MFC:
  443         /*
  444          * select data size depending on API version.
  445          */
  446         if (sopt->sopt_name == MRT_ADD_MFC &&
  447                 V_mrt_api_config & MRT_API_FLAGS_ALL) {
  448             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  449                                 sizeof(struct mfcctl2));
  450         } else {
  451             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  452                                 sizeof(struct mfcctl));
  453             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  454                         sizeof(mfc) - sizeof(struct mfcctl));
  455         }
  456         if (error)
  457             break;
  458         if (sopt->sopt_name == MRT_ADD_MFC)
  459             error = add_mfc(&mfc);
  460         else
  461             error = del_mfc(&mfc);
  462         break;
  463 
  464     case MRT_ASSERT:
  465         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  466         if (error)
  467             break;
  468         set_assert(optval);
  469         break;
  470 
  471     case MRT_API_CONFIG:
  472         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  473         if (!error)
  474             error = set_api_config(&i);
  475         if (!error)
  476             error = sooptcopyout(sopt, &i, sizeof i);
  477         break;
  478 
  479     case MRT_ADD_BW_UPCALL:
  480     case MRT_DEL_BW_UPCALL:
  481         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  482                                 sizeof bw_upcall);
  483         if (error)
  484             break;
  485         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  486             error = add_bw_upcall(&bw_upcall);
  487         else
  488             error = del_bw_upcall(&bw_upcall);
  489         break;
  490 
  491     default:
  492         error = EOPNOTSUPP;
  493         break;
  494     }
  495     return error;
  496 }
  497 
  498 /*
  499  * Handle MRT getsockopt commands
  500  */
  501 static int
  502 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  503 {
  504     int error;
  505 
  506     switch (sopt->sopt_name) {
  507     case MRT_VERSION:
  508         error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
  509         break;
  510 
  511     case MRT_ASSERT:
  512         error = sooptcopyout(sopt, &V_pim_assert_enabled,
  513             sizeof V_pim_assert_enabled);
  514         break;
  515 
  516     case MRT_API_SUPPORT:
  517         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  518         break;
  519 
  520     case MRT_API_CONFIG:
  521         error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
  522         break;
  523 
  524     default:
  525         error = EOPNOTSUPP;
  526         break;
  527     }
  528     return error;
  529 }
  530 
  531 /*
  532  * Handle ioctl commands to obtain information from the cache
  533  */
  534 static int
  535 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
  536 {
  537     int error = 0;
  538 
  539     /*
  540      * Currently the only function calling this ioctl routine is rtioctl().
  541      * Typically, only root can create the raw socket in order to execute
  542      * this ioctl method, however the request might be coming from a prison
  543      */
  544     error = priv_check(curthread, PRIV_NETINET_MROUTE);
  545     if (error)
  546         return (error);
  547     switch (cmd) {
  548     case (SIOCGETVIFCNT):
  549         error = get_vif_cnt((struct sioc_vif_req *)data);
  550         break;
  551 
  552     case (SIOCGETSGCNT):
  553         error = get_sg_cnt((struct sioc_sg_req *)data);
  554         break;
  555 
  556     default:
  557         error = EINVAL;
  558         break;
  559     }
  560     return error;
  561 }
  562 
  563 /*
  564  * returns the packet, byte, rpf-failure count for the source group provided
  565  */
  566 static int
  567 get_sg_cnt(struct sioc_sg_req *req)
  568 {
  569     struct mfc *rt;
  570 
  571     MFC_LOCK();
  572     rt = mfc_find(&req->src, &req->grp);
  573     if (rt == NULL) {
  574         MFC_UNLOCK();
  575         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  576         return EADDRNOTAVAIL;
  577     }
  578     req->pktcnt = rt->mfc_pkt_cnt;
  579     req->bytecnt = rt->mfc_byte_cnt;
  580     req->wrong_if = rt->mfc_wrong_if;
  581     MFC_UNLOCK();
  582     return 0;
  583 }
  584 
  585 /*
  586  * returns the input and output packet and byte counts on the vif provided
  587  */
  588 static int
  589 get_vif_cnt(struct sioc_vif_req *req)
  590 {
  591     vifi_t vifi = req->vifi;
  592 
  593     VIF_LOCK();
  594     if (vifi >= V_numvifs) {
  595         VIF_UNLOCK();
  596         return EINVAL;
  597     }
  598 
  599     req->icount = V_viftable[vifi].v_pkt_in;
  600     req->ocount = V_viftable[vifi].v_pkt_out;
  601     req->ibytes = V_viftable[vifi].v_bytes_in;
  602     req->obytes = V_viftable[vifi].v_bytes_out;
  603     VIF_UNLOCK();
  604 
  605     return 0;
  606 }
  607 
  608 static void
  609 if_detached_event(void *arg __unused, struct ifnet *ifp)
  610 {
  611     vifi_t vifi;
  612     u_long i;
  613 
  614     MROUTER_LOCK();
  615 
  616     if (V_ip_mrouter == NULL) {
  617         MROUTER_UNLOCK();
  618         return;
  619     }
  620 
  621     VIF_LOCK();
  622     MFC_LOCK();
  623 
  624     /*
  625      * Tear down multicast forwarder state associated with this ifnet.
  626      * 1. Walk the vif list, matching vifs against this ifnet.
  627      * 2. Walk the multicast forwarding cache (mfc) looking for
  628      *    inner matches with this vif's index.
  629      * 3. Expire any matching multicast forwarding cache entries.
  630      * 4. Free vif state. This should disable ALLMULTI on the interface.
  631      */
  632     for (vifi = 0; vifi < V_numvifs; vifi++) {
  633         if (V_viftable[vifi].v_ifp != ifp)
  634                 continue;
  635         for (i = 0; i < mfchashsize; i++) {
  636                 struct mfc *rt, *nrt;
  637 
  638                 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
  639                         if (rt->mfc_parent == vifi) {
  640                                 expire_mfc(rt);
  641                         }
  642                 }
  643         }
  644         del_vif_locked(vifi);
  645     }
  646 
  647     MFC_UNLOCK();
  648     VIF_UNLOCK();
  649 
  650     MROUTER_UNLOCK();
  651 }
  652                         
  653 /*
  654  * Enable multicast forwarding.
  655  */
  656 static int
  657 ip_mrouter_init(struct socket *so, int version)
  658 {
  659 
  660     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
  661         so->so_type, so->so_proto->pr_protocol);
  662 
  663     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  664         return EOPNOTSUPP;
  665 
  666     if (version != 1)
  667         return ENOPROTOOPT;
  668 
  669     MROUTER_LOCK();
  670 
  671     if (ip_mrouter_unloading) {
  672         MROUTER_UNLOCK();
  673         return ENOPROTOOPT;
  674     }
  675 
  676     if (V_ip_mrouter != NULL) {
  677         MROUTER_UNLOCK();
  678         return EADDRINUSE;
  679     }
  680 
  681     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
  682         HASH_NOWAIT);
  683 
  684     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
  685         curvnet);
  686     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
  687         curvnet);
  688     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
  689         curvnet);
  690 
  691     V_ip_mrouter = so;
  692     ip_mrouter_cnt++;
  693 
  694     MROUTER_UNLOCK();
  695 
  696     CTR1(KTR_IPMF, "%s: done", __func__);
  697 
  698     return 0;
  699 }
  700 
  701 /*
  702  * Disable multicast forwarding.
  703  */
  704 static int
  705 X_ip_mrouter_done(void)
  706 {
  707     struct ifnet *ifp;
  708     u_long i;
  709     vifi_t vifi;
  710 
  711     MROUTER_LOCK();
  712 
  713     if (V_ip_mrouter == NULL) {
  714         MROUTER_UNLOCK();
  715         return EINVAL;
  716     }
  717 
  718     /*
  719      * Detach/disable hooks to the reset of the system.
  720      */
  721     V_ip_mrouter = NULL;
  722     ip_mrouter_cnt--;
  723     V_mrt_api_config = 0;
  724 
  725     VIF_LOCK();
  726 
  727     /*
  728      * For each phyint in use, disable promiscuous reception of all IP
  729      * multicasts.
  730      */
  731     for (vifi = 0; vifi < V_numvifs; vifi++) {
  732         if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
  733                 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  734             ifp = V_viftable[vifi].v_ifp;
  735             if_allmulti(ifp, 0);
  736         }
  737     }
  738     bzero((caddr_t)V_viftable, sizeof(V_viftable));
  739     V_numvifs = 0;
  740     V_pim_assert_enabled = 0;
  741     
  742     VIF_UNLOCK();
  743 
  744     callout_stop(&V_expire_upcalls_ch);
  745     callout_stop(&V_bw_upcalls_ch);
  746     callout_stop(&V_bw_meter_ch);
  747 
  748     MFC_LOCK();
  749 
  750     /*
  751      * Free all multicast forwarding cache entries.
  752      * Do not use hashdestroy(), as we must perform other cleanup.
  753      */
  754     for (i = 0; i < mfchashsize; i++) {
  755         struct mfc *rt, *nrt;
  756 
  757         LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
  758                 expire_mfc(rt);
  759         }
  760     }
  761     free(V_mfchashtbl, M_MRTABLE);
  762     V_mfchashtbl = NULL;
  763 
  764     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
  765 
  766     V_bw_upcalls_n = 0;
  767     bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
  768 
  769     MFC_UNLOCK();
  770 
  771     V_reg_vif_num = VIFI_INVALID;
  772 
  773     MROUTER_UNLOCK();
  774 
  775     CTR1(KTR_IPMF, "%s: done", __func__);
  776 
  777     return 0;
  778 }
  779 
  780 /*
  781  * Set PIM assert processing global
  782  */
  783 static int
  784 set_assert(int i)
  785 {
  786     if ((i != 1) && (i != 0))
  787         return EINVAL;
  788 
  789     V_pim_assert_enabled = i;
  790 
  791     return 0;
  792 }
  793 
  794 /*
  795  * Configure API capabilities
  796  */
  797 int
  798 set_api_config(uint32_t *apival)
  799 {
  800     u_long i;
  801 
  802     /*
  803      * We can set the API capabilities only if it is the first operation
  804      * after MRT_INIT. I.e.:
  805      *  - there are no vifs installed
  806      *  - pim_assert is not enabled
  807      *  - the MFC table is empty
  808      */
  809     if (V_numvifs > 0) {
  810         *apival = 0;
  811         return EPERM;
  812     }
  813     if (V_pim_assert_enabled) {
  814         *apival = 0;
  815         return EPERM;
  816     }
  817 
  818     MFC_LOCK();
  819 
  820     for (i = 0; i < mfchashsize; i++) {
  821         if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
  822             MFC_UNLOCK();
  823             *apival = 0;
  824             return EPERM;
  825         }
  826     }
  827 
  828     MFC_UNLOCK();
  829 
  830     V_mrt_api_config = *apival & mrt_api_support;
  831     *apival = V_mrt_api_config;
  832 
  833     return 0;
  834 }
  835 
  836 /*
  837  * Add a vif to the vif table
  838  */
  839 static int
  840 add_vif(struct vifctl *vifcp)
  841 {
  842     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
  843     struct sockaddr_in sin = {sizeof sin, AF_INET};
  844     struct ifaddr *ifa;
  845     struct ifnet *ifp;
  846     int error;
  847 
  848     VIF_LOCK();
  849     if (vifcp->vifc_vifi >= MAXVIFS) {
  850         VIF_UNLOCK();
  851         return EINVAL;
  852     }
  853     /* rate limiting is no longer supported by this code */
  854     if (vifcp->vifc_rate_limit != 0) {
  855         log(LOG_ERR, "rate limiting is no longer supported\n");
  856         VIF_UNLOCK();
  857         return EINVAL;
  858     }
  859     if (!in_nullhost(vifp->v_lcl_addr)) {
  860         VIF_UNLOCK();
  861         return EADDRINUSE;
  862     }
  863     if (in_nullhost(vifcp->vifc_lcl_addr)) {
  864         VIF_UNLOCK();
  865         return EADDRNOTAVAIL;
  866     }
  867 
  868     /* Find the interface with an address in AF_INET family */
  869     if (vifcp->vifc_flags & VIFF_REGISTER) {
  870         /*
  871          * XXX: Because VIFF_REGISTER does not really need a valid
  872          * local interface (e.g. it could be 127.0.0.2), we don't
  873          * check its address.
  874          */
  875         ifp = NULL;
  876     } else {
  877         sin.sin_addr = vifcp->vifc_lcl_addr;
  878         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  879         if (ifa == NULL) {
  880             VIF_UNLOCK();
  881             return EADDRNOTAVAIL;
  882         }
  883         ifp = ifa->ifa_ifp;
  884         ifa_free(ifa);
  885     }
  886 
  887     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
  888         CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
  889         VIF_UNLOCK();
  890         return EOPNOTSUPP;
  891     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  892         ifp = &V_multicast_register_if;
  893         CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
  894         if (V_reg_vif_num == VIFI_INVALID) {
  895             if_initname(&V_multicast_register_if, "register_vif", 0);
  896             V_multicast_register_if.if_flags = IFF_LOOPBACK;
  897             V_reg_vif_num = vifcp->vifc_vifi;
  898         }
  899     } else {            /* Make sure the interface supports multicast */
  900         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
  901             VIF_UNLOCK();
  902             return EOPNOTSUPP;
  903         }
  904 
  905         /* Enable promiscuous reception of all IP multicasts from the if */
  906         error = if_allmulti(ifp, 1);
  907         if (error) {
  908             VIF_UNLOCK();
  909             return error;
  910         }
  911     }
  912 
  913     vifp->v_flags     = vifcp->vifc_flags;
  914     vifp->v_threshold = vifcp->vifc_threshold;
  915     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
  916     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
  917     vifp->v_ifp       = ifp;
  918     /* initialize per vif pkt counters */
  919     vifp->v_pkt_in    = 0;
  920     vifp->v_pkt_out   = 0;
  921     vifp->v_bytes_in  = 0;
  922     vifp->v_bytes_out = 0;
  923 
  924     /* Adjust numvifs up if the vifi is higher than numvifs */
  925     if (V_numvifs <= vifcp->vifc_vifi)
  926         V_numvifs = vifcp->vifc_vifi + 1;
  927 
  928     VIF_UNLOCK();
  929 
  930     CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
  931         (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
  932         (int)vifcp->vifc_threshold);
  933 
  934     return 0;
  935 }
  936 
  937 /*
  938  * Delete a vif from the vif table
  939  */
  940 static int
  941 del_vif_locked(vifi_t vifi)
  942 {
  943     struct vif *vifp;
  944 
  945     VIF_LOCK_ASSERT();
  946 
  947     if (vifi >= V_numvifs) {
  948         return EINVAL;
  949     }
  950     vifp = &V_viftable[vifi];
  951     if (in_nullhost(vifp->v_lcl_addr)) {
  952         return EADDRNOTAVAIL;
  953     }
  954 
  955     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
  956         if_allmulti(vifp->v_ifp, 0);
  957 
  958     if (vifp->v_flags & VIFF_REGISTER)
  959         V_reg_vif_num = VIFI_INVALID;
  960 
  961     bzero((caddr_t)vifp, sizeof (*vifp));
  962 
  963     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
  964 
  965     /* Adjust numvifs down */
  966     for (vifi = V_numvifs; vifi > 0; vifi--)
  967         if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
  968             break;
  969     V_numvifs = vifi;
  970 
  971     return 0;
  972 }
  973 
  974 static int
  975 del_vif(vifi_t vifi)
  976 {
  977     int cc;
  978 
  979     VIF_LOCK();
  980     cc = del_vif_locked(vifi);
  981     VIF_UNLOCK();
  982 
  983     return cc;
  984 }
  985 
  986 /*
  987  * update an mfc entry without resetting counters and S,G addresses.
  988  */
  989 static void
  990 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
  991 {
  992     int i;
  993 
  994     rt->mfc_parent = mfccp->mfcc_parent;
  995     for (i = 0; i < V_numvifs; i++) {
  996         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
  997         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
  998             MRT_MFC_FLAGS_ALL;
  999     }
 1000     /* set the RP address */
 1001     if (V_mrt_api_config & MRT_MFC_RP)
 1002         rt->mfc_rp = mfccp->mfcc_rp;
 1003     else
 1004         rt->mfc_rp.s_addr = INADDR_ANY;
 1005 }
 1006 
 1007 /*
 1008  * fully initialize an mfc entry from the parameter.
 1009  */
 1010 static void
 1011 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1012 {
 1013     rt->mfc_origin     = mfccp->mfcc_origin;
 1014     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1015 
 1016     update_mfc_params(rt, mfccp);
 1017 
 1018     /* initialize pkt counters per src-grp */
 1019     rt->mfc_pkt_cnt    = 0;
 1020     rt->mfc_byte_cnt   = 0;
 1021     rt->mfc_wrong_if   = 0;
 1022     timevalclear(&rt->mfc_last_assert);
 1023 }
 1024 
 1025 static void
 1026 expire_mfc(struct mfc *rt)
 1027 {
 1028         struct rtdetq *rte, *nrte;
 1029 
 1030         MFC_LOCK_ASSERT();
 1031 
 1032         free_bw_list(rt->mfc_bw_meter);
 1033 
 1034         TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
 1035                 m_freem(rte->m);
 1036                 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
 1037                 free(rte, M_MRTABLE);
 1038         }
 1039 
 1040         LIST_REMOVE(rt, mfc_hash);
 1041         free(rt, M_MRTABLE);
 1042 }
 1043 
 1044 /*
 1045  * Add an mfc entry
 1046  */
 1047 static int
 1048 add_mfc(struct mfcctl2 *mfccp)
 1049 {
 1050     struct mfc *rt;
 1051     struct rtdetq *rte, *nrte;
 1052     u_long hash = 0;
 1053     u_short nstl;
 1054 
 1055     VIF_LOCK();
 1056     MFC_LOCK();
 1057 
 1058     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
 1059 
 1060     /* If an entry already exists, just update the fields */
 1061     if (rt) {
 1062         CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
 1063             __func__, inet_ntoa(mfccp->mfcc_origin),
 1064             (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1065             mfccp->mfcc_parent);
 1066         update_mfc_params(rt, mfccp);
 1067         MFC_UNLOCK();
 1068         VIF_UNLOCK();
 1069         return (0);
 1070     }
 1071 
 1072     /*
 1073      * Find the entry for which the upcall was made and update
 1074      */
 1075     nstl = 0;
 1076     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
 1077     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1078         if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1079             in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
 1080             !TAILQ_EMPTY(&rt->mfc_stall)) {
 1081                 CTR5(KTR_IPMF,
 1082                     "%s: add mfc orig %s group %lx parent %x qh %p",
 1083                     __func__, inet_ntoa(mfccp->mfcc_origin),
 1084                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1085                     mfccp->mfcc_parent,
 1086                     TAILQ_FIRST(&rt->mfc_stall));
 1087                 if (nstl++)
 1088                         CTR1(KTR_IPMF, "%s: multiple matches", __func__);
 1089 
 1090                 init_mfc_params(rt, mfccp);
 1091                 rt->mfc_expire = 0;     /* Don't clean this guy up */
 1092                 V_nexpire[hash]--;
 1093 
 1094                 /* Free queued packets, but attempt to forward them first. */
 1095                 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
 1096                         if (rte->ifp != NULL)
 1097                                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1098                         m_freem(rte->m);
 1099                         TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
 1100                         rt->mfc_nstall--;
 1101                         free(rte, M_MRTABLE);
 1102                 }
 1103         }
 1104     }
 1105 
 1106     /*
 1107      * It is possible that an entry is being inserted without an upcall
 1108      */
 1109     if (nstl == 0) {
 1110         CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
 1111         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1112                 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1113                     in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
 1114                         init_mfc_params(rt, mfccp);
 1115                         if (rt->mfc_expire)
 1116                             V_nexpire[hash]--;
 1117                         rt->mfc_expire = 0;
 1118                         break; /* XXX */
 1119                 }
 1120         }
 1121 
 1122         if (rt == NULL) {               /* no upcall, so make a new entry */
 1123             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1124             if (rt == NULL) {
 1125                 MFC_UNLOCK();
 1126                 VIF_UNLOCK();
 1127                 return (ENOBUFS);
 1128             }
 1129 
 1130             init_mfc_params(rt, mfccp);
 1131             TAILQ_INIT(&rt->mfc_stall);
 1132             rt->mfc_nstall = 0;
 1133 
 1134             rt->mfc_expire     = 0;
 1135             rt->mfc_bw_meter = NULL;
 1136 
 1137             /* insert new entry at head of hash chain */
 1138             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1139         }
 1140     }
 1141 
 1142     MFC_UNLOCK();
 1143     VIF_UNLOCK();
 1144 
 1145     return (0);
 1146 }
 1147 
 1148 /*
 1149  * Delete an mfc entry
 1150  */
 1151 static int
 1152 del_mfc(struct mfcctl2 *mfccp)
 1153 {
 1154     struct in_addr      origin;
 1155     struct in_addr      mcastgrp;
 1156     struct mfc          *rt;
 1157 
 1158     origin = mfccp->mfcc_origin;
 1159     mcastgrp = mfccp->mfcc_mcastgrp;
 1160 
 1161     CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
 1162         inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
 1163 
 1164     MFC_LOCK();
 1165 
 1166     rt = mfc_find(&origin, &mcastgrp);
 1167     if (rt == NULL) {
 1168         MFC_UNLOCK();
 1169         return EADDRNOTAVAIL;
 1170     }
 1171 
 1172     /*
 1173      * free the bw_meter entries
 1174      */
 1175     free_bw_list(rt->mfc_bw_meter);
 1176     rt->mfc_bw_meter = NULL;
 1177 
 1178     LIST_REMOVE(rt, mfc_hash);
 1179     free(rt, M_MRTABLE);
 1180 
 1181     MFC_UNLOCK();
 1182 
 1183     return (0);
 1184 }
 1185 
 1186 /*
 1187  * Send a message to the routing daemon on the multicast routing socket.
 1188  */
 1189 static int
 1190 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1191 {
 1192     if (s) {
 1193         SOCKBUF_LOCK(&s->so_rcv);
 1194         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1195             NULL) != 0) {
 1196             sorwakeup_locked(s);
 1197             return 0;
 1198         }
 1199         SOCKBUF_UNLOCK(&s->so_rcv);
 1200     }
 1201     m_freem(mm);
 1202     return -1;
 1203 }
 1204 
 1205 /*
 1206  * IP multicast forwarding function. This function assumes that the packet
 1207  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1208  * pointed to by "ifp", and the packet is to be relayed to other networks
 1209  * that have members of the packet's destination IP multicast group.
 1210  *
 1211  * The packet is returned unscathed to the caller, unless it is
 1212  * erroneous, in which case a non-zero return value tells the caller to
 1213  * discard it.
 1214  */
 1215 
 1216 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1217 
 1218 static int
 1219 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1220     struct ip_moptions *imo)
 1221 {
 1222     struct mfc *rt;
 1223     int error;
 1224     vifi_t vifi;
 1225 
 1226     CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
 1227         inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
 1228 
 1229     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1230                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1231         /*
 1232          * Packet arrived via a physical interface or
 1233          * an encapsulated tunnel or a register_vif.
 1234          */
 1235     } else {
 1236         /*
 1237          * Packet arrived through a source-route tunnel.
 1238          * Source-route tunnels are no longer supported.
 1239          */
 1240         return (1);
 1241     }
 1242 
 1243     VIF_LOCK();
 1244     MFC_LOCK();
 1245     if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
 1246         if (ip->ip_ttl < MAXTTL)
 1247             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1248         error = ip_mdq(m, ifp, NULL, vifi);
 1249         MFC_UNLOCK();
 1250         VIF_UNLOCK();
 1251         return error;
 1252     }
 1253 
 1254     /*
 1255      * Don't forward a packet with time-to-live of zero or one,
 1256      * or a packet destined to a local-only group.
 1257      */
 1258     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
 1259         MFC_UNLOCK();
 1260         VIF_UNLOCK();
 1261         return 0;
 1262     }
 1263 
 1264     /*
 1265      * Determine forwarding vifs from the forwarding cache table
 1266      */
 1267     MRTSTAT_INC(mrts_mfc_lookups);
 1268     rt = mfc_find(&ip->ip_src, &ip->ip_dst);
 1269 
 1270     /* Entry exists, so forward if necessary */
 1271     if (rt != NULL) {
 1272         error = ip_mdq(m, ifp, rt, -1);
 1273         MFC_UNLOCK();
 1274         VIF_UNLOCK();
 1275         return error;
 1276     } else {
 1277         /*
 1278          * If we don't have a route for packet's origin,
 1279          * Make a copy of the packet & send message to routing daemon
 1280          */
 1281 
 1282         struct mbuf *mb0;
 1283         struct rtdetq *rte;
 1284         u_long hash;
 1285         int hlen = ip->ip_hl << 2;
 1286 
 1287         MRTSTAT_INC(mrts_mfc_misses);
 1288         MRTSTAT_INC(mrts_no_route);
 1289         CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
 1290             inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
 1291 
 1292         /*
 1293          * Allocate mbufs early so that we don't do extra work if we are
 1294          * just going to fail anyway.  Make sure to pullup the header so
 1295          * that other people can't step on it.
 1296          */
 1297         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
 1298             M_NOWAIT|M_ZERO);
 1299         if (rte == NULL) {
 1300             MFC_UNLOCK();
 1301             VIF_UNLOCK();
 1302             return ENOBUFS;
 1303         }
 1304 
 1305         mb0 = m_copypacket(m, M_NOWAIT);
 1306         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1307             mb0 = m_pullup(mb0, hlen);
 1308         if (mb0 == NULL) {
 1309             free(rte, M_MRTABLE);
 1310             MFC_UNLOCK();
 1311             VIF_UNLOCK();
 1312             return ENOBUFS;
 1313         }
 1314 
 1315         /* is there an upcall waiting for this flow ? */
 1316         hash = MFCHASH(ip->ip_src, ip->ip_dst);
 1317         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1318                 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
 1319                     in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
 1320                     !TAILQ_EMPTY(&rt->mfc_stall))
 1321                         break;
 1322         }
 1323 
 1324         if (rt == NULL) {
 1325             int i;
 1326             struct igmpmsg *im;
 1327             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1328             struct mbuf *mm;
 1329 
 1330             /*
 1331              * Locate the vifi for the incoming interface for this packet.
 1332              * If none found, drop packet.
 1333              */
 1334             for (vifi = 0; vifi < V_numvifs &&
 1335                     V_viftable[vifi].v_ifp != ifp; vifi++)
 1336                 ;
 1337             if (vifi >= V_numvifs)      /* vif not found, drop packet */
 1338                 goto non_fatal;
 1339 
 1340             /* no upcall, so make a new entry */
 1341             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1342             if (rt == NULL)
 1343                 goto fail;
 1344 
 1345             /* Make a copy of the header to send to the user level process */
 1346             mm = m_copy(mb0, 0, hlen);
 1347             if (mm == NULL)
 1348                 goto fail1;
 1349 
 1350             /*
 1351              * Send message to routing daemon to install
 1352              * a route into the kernel table
 1353              */
 1354 
 1355             im = mtod(mm, struct igmpmsg *);
 1356             im->im_msgtype = IGMPMSG_NOCACHE;
 1357             im->im_mbz = 0;
 1358             im->im_vif = vifi;
 1359 
 1360             MRTSTAT_INC(mrts_upcalls);
 1361 
 1362             k_igmpsrc.sin_addr = ip->ip_src;
 1363             if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1364                 CTR0(KTR_IPMF, "ip_mforward: socket queue full");
 1365                 MRTSTAT_INC(mrts_upq_sockfull);
 1366 fail1:
 1367                 free(rt, M_MRTABLE);
 1368 fail:
 1369                 free(rte, M_MRTABLE);
 1370                 m_freem(mb0);
 1371                 MFC_UNLOCK();
 1372                 VIF_UNLOCK();
 1373                 return ENOBUFS;
 1374             }
 1375 
 1376             /* insert new entry at head of hash chain */
 1377             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1378             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1379             rt->mfc_expire            = UPCALL_EXPIRE;
 1380             V_nexpire[hash]++;
 1381             for (i = 0; i < V_numvifs; i++) {
 1382                 rt->mfc_ttls[i] = 0;
 1383                 rt->mfc_flags[i] = 0;
 1384             }
 1385             rt->mfc_parent = -1;
 1386 
 1387             /* clear the RP address */
 1388             rt->mfc_rp.s_addr = INADDR_ANY;
 1389             rt->mfc_bw_meter = NULL;
 1390 
 1391             /* initialize pkt counters per src-grp */
 1392             rt->mfc_pkt_cnt = 0;
 1393             rt->mfc_byte_cnt = 0;
 1394             rt->mfc_wrong_if = 0;
 1395             timevalclear(&rt->mfc_last_assert);
 1396 
 1397             TAILQ_INIT(&rt->mfc_stall);
 1398             rt->mfc_nstall = 0;
 1399 
 1400             /* link into table */
 1401             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1402             TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
 1403             rt->mfc_nstall++;
 1404 
 1405         } else {
 1406             /* determine if queue has overflowed */
 1407             if (rt->mfc_nstall > MAX_UPQ) {
 1408                 MRTSTAT_INC(mrts_upq_ovflw);
 1409 non_fatal:
 1410                 free(rte, M_MRTABLE);
 1411                 m_freem(mb0);
 1412                 MFC_UNLOCK();
 1413                 VIF_UNLOCK();
 1414                 return (0);
 1415             }
 1416             TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
 1417             rt->mfc_nstall++;
 1418         }
 1419 
 1420         rte->m                  = mb0;
 1421         rte->ifp                = ifp;
 1422 
 1423         MFC_UNLOCK();
 1424         VIF_UNLOCK();
 1425 
 1426         return 0;
 1427     }
 1428 }
 1429 
 1430 /*
 1431  * Clean up the cache entry if upcall is not serviced
 1432  */
 1433 static void
 1434 expire_upcalls(void *arg)
 1435 {
 1436     u_long i;
 1437 
 1438     CURVNET_SET((struct vnet *) arg);
 1439 
 1440     MFC_LOCK();
 1441 
 1442     for (i = 0; i < mfchashsize; i++) {
 1443         struct mfc *rt, *nrt;
 1444 
 1445         if (V_nexpire[i] == 0)
 1446             continue;
 1447 
 1448         LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
 1449                 if (TAILQ_EMPTY(&rt->mfc_stall))
 1450                         continue;
 1451 
 1452                 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
 1453                         continue;
 1454 
 1455                 /*
 1456                  * free the bw_meter entries
 1457                  */
 1458                 while (rt->mfc_bw_meter != NULL) {
 1459                     struct bw_meter *x = rt->mfc_bw_meter;
 1460 
 1461                     rt->mfc_bw_meter = x->bm_mfc_next;
 1462                     free(x, M_BWMETER);
 1463                 }
 1464 
 1465                 MRTSTAT_INC(mrts_cache_cleanups);
 1466                 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
 1467                     (u_long)ntohl(rt->mfc_origin.s_addr),
 1468                     (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
 1469 
 1470                 expire_mfc(rt);
 1471             }
 1472     }
 1473 
 1474     MFC_UNLOCK();
 1475 
 1476     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
 1477         curvnet);
 1478 
 1479     CURVNET_RESTORE();
 1480 }
 1481 
 1482 /*
 1483  * Packet forwarding routine once entry in the cache is made
 1484  */
 1485 static int
 1486 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1487 {
 1488     struct ip  *ip = mtod(m, struct ip *);
 1489     vifi_t vifi;
 1490     int plen = ntohs(ip->ip_len);
 1491 
 1492     VIF_LOCK_ASSERT();
 1493 
 1494     /*
 1495      * If xmt_vif is not -1, send on only the requested vif.
 1496      *
 1497      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1498      */
 1499     if (xmt_vif < V_numvifs) {
 1500         if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1501                 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
 1502         else
 1503                 phyint_send(ip, V_viftable + xmt_vif, m);
 1504         return 1;
 1505     }
 1506 
 1507     /*
 1508      * Don't forward if it didn't arrive from the parent vif for its origin.
 1509      */
 1510     vifi = rt->mfc_parent;
 1511     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
 1512         CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
 1513             __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
 1514         MRTSTAT_INC(mrts_wrong_if);
 1515         ++rt->mfc_wrong_if;
 1516         /*
 1517          * If we are doing PIM assert processing, send a message
 1518          * to the routing daemon.
 1519          *
 1520          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1521          * can complete the SPT switch, regardless of the type
 1522          * of the iif (broadcast media, GRE tunnel, etc).
 1523          */
 1524         if (V_pim_assert_enabled && (vifi < V_numvifs) &&
 1525             V_viftable[vifi].v_ifp) {
 1526 
 1527             if (ifp == &V_multicast_register_if)
 1528                 PIMSTAT_INC(pims_rcv_registers_wrongiif);
 1529 
 1530             /* Get vifi for the incoming packet */
 1531             for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
 1532                 vifi++)
 1533                 ;
 1534             if (vifi >= V_numvifs)
 1535                 return 0;       /* The iif is not found: ignore the packet. */
 1536 
 1537             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1538                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1539 
 1540             if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
 1541                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1542                 struct igmpmsg *im;
 1543                 int hlen = ip->ip_hl << 2;
 1544                 struct mbuf *mm = m_copy(m, 0, hlen);
 1545 
 1546                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1547                     mm = m_pullup(mm, hlen);
 1548                 if (mm == NULL)
 1549                     return ENOBUFS;
 1550 
 1551                 im = mtod(mm, struct igmpmsg *);
 1552                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1553                 im->im_mbz              = 0;
 1554                 im->im_vif              = vifi;
 1555 
 1556                 MRTSTAT_INC(mrts_upcalls);
 1557 
 1558                 k_igmpsrc.sin_addr = im->im_src;
 1559                 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1560                     CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 1561                     MRTSTAT_INC(mrts_upq_sockfull);
 1562                     return ENOBUFS;
 1563                 }
 1564             }
 1565         }
 1566         return 0;
 1567     }
 1568 
 1569 
 1570     /* If I sourced this packet, it counts as output, else it was input. */
 1571     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
 1572         V_viftable[vifi].v_pkt_out++;
 1573         V_viftable[vifi].v_bytes_out += plen;
 1574     } else {
 1575         V_viftable[vifi].v_pkt_in++;
 1576         V_viftable[vifi].v_bytes_in += plen;
 1577     }
 1578     rt->mfc_pkt_cnt++;
 1579     rt->mfc_byte_cnt += plen;
 1580 
 1581     /*
 1582      * For each vif, decide if a copy of the packet should be forwarded.
 1583      * Forward if:
 1584      *          - the ttl exceeds the vif's threshold
 1585      *          - there are group members downstream on interface
 1586      */
 1587     for (vifi = 0; vifi < V_numvifs; vifi++)
 1588         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1589             V_viftable[vifi].v_pkt_out++;
 1590             V_viftable[vifi].v_bytes_out += plen;
 1591             if (V_viftable[vifi].v_flags & VIFF_REGISTER)
 1592                 pim_register_send(ip, V_viftable + vifi, m, rt);
 1593             else
 1594                 phyint_send(ip, V_viftable + vifi, m);
 1595         }
 1596 
 1597     /*
 1598      * Perform upcall-related bw measuring.
 1599      */
 1600     if (rt->mfc_bw_meter != NULL) {
 1601         struct bw_meter *x;
 1602         struct timeval now;
 1603 
 1604         microtime(&now);
 1605         MFC_LOCK_ASSERT();
 1606         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1607             bw_meter_receive_packet(x, plen, &now);
 1608     }
 1609 
 1610     return 0;
 1611 }
 1612 
 1613 /*
 1614  * Check if a vif number is legal/ok. This is used by in_mcast.c.
 1615  */
 1616 static int
 1617 X_legal_vif_num(int vif)
 1618 {
 1619         int ret;
 1620 
 1621         ret = 0;
 1622         if (vif < 0)
 1623                 return (ret);
 1624 
 1625         VIF_LOCK();
 1626         if (vif < V_numvifs)
 1627                 ret = 1;
 1628         VIF_UNLOCK();
 1629 
 1630         return (ret);
 1631 }
 1632 
 1633 /*
 1634  * Return the local address used by this vif
 1635  */
 1636 static u_long
 1637 X_ip_mcast_src(int vifi)
 1638 {
 1639         in_addr_t addr;
 1640 
 1641         addr = INADDR_ANY;
 1642         if (vifi < 0)
 1643                 return (addr);
 1644 
 1645         VIF_LOCK();
 1646         if (vifi < V_numvifs)
 1647                 addr = V_viftable[vifi].v_lcl_addr.s_addr;
 1648         VIF_UNLOCK();
 1649 
 1650         return (addr);
 1651 }
 1652 
 1653 static void
 1654 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1655 {
 1656     struct mbuf *mb_copy;
 1657     int hlen = ip->ip_hl << 2;
 1658 
 1659     VIF_LOCK_ASSERT();
 1660 
 1661     /*
 1662      * Make a new reference to the packet; make sure that
 1663      * the IP header is actually copied, not just referenced,
 1664      * so that ip_output() only scribbles on the copy.
 1665      */
 1666     mb_copy = m_copypacket(m, M_NOWAIT);
 1667     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1668         mb_copy = m_pullup(mb_copy, hlen);
 1669     if (mb_copy == NULL)
 1670         return;
 1671 
 1672     send_packet(vifp, mb_copy);
 1673 }
 1674 
 1675 static void
 1676 send_packet(struct vif *vifp, struct mbuf *m)
 1677 {
 1678         struct ip_moptions imo;
 1679         struct in_multi *imm[2];
 1680         int error;
 1681 
 1682         VIF_LOCK_ASSERT();
 1683 
 1684         imo.imo_multicast_ifp  = vifp->v_ifp;
 1685         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 1686         imo.imo_multicast_loop = 1;
 1687         imo.imo_multicast_vif  = -1;
 1688         imo.imo_num_memberships = 0;
 1689         imo.imo_max_memberships = 2;
 1690         imo.imo_membership  = &imm[0];
 1691 
 1692         /*
 1693          * Re-entrancy should not be a problem here, because
 1694          * the packets that we send out and are looped back at us
 1695          * should get rejected because they appear to come from
 1696          * the loopback interface, thus preventing looping.
 1697          */
 1698         error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
 1699         CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
 1700             (ptrdiff_t)(vifp - V_viftable), error);
 1701 }
 1702 
 1703 /*
 1704  * Stubs for old RSVP socket shim implementation.
 1705  */
 1706 
 1707 static int
 1708 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
 1709 {
 1710 
 1711         return (EOPNOTSUPP);
 1712 }
 1713 
 1714 static void
 1715 X_ip_rsvp_force_done(struct socket *so __unused)
 1716 {
 1717 
 1718 }
 1719 
 1720 static void
 1721 X_rsvp_input(struct mbuf *m, int off __unused)
 1722 {
 1723 
 1724         if (!V_rsvp_on)
 1725                 m_freem(m);
 1726 }
 1727 
 1728 /*
 1729  * Code for bandwidth monitors
 1730  */
 1731 
 1732 /*
 1733  * Define common interface for timeval-related methods
 1734  */
 1735 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 1736 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 1737 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 1738 
 1739 static uint32_t
 1740 compute_bw_meter_flags(struct bw_upcall *req)
 1741 {
 1742     uint32_t flags = 0;
 1743 
 1744     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 1745         flags |= BW_METER_UNIT_PACKETS;
 1746     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 1747         flags |= BW_METER_UNIT_BYTES;
 1748     if (req->bu_flags & BW_UPCALL_GEQ)
 1749         flags |= BW_METER_GEQ;
 1750     if (req->bu_flags & BW_UPCALL_LEQ)
 1751         flags |= BW_METER_LEQ;
 1752 
 1753     return flags;
 1754 }
 1755 
 1756 /*
 1757  * Add a bw_meter entry
 1758  */
 1759 static int
 1760 add_bw_upcall(struct bw_upcall *req)
 1761 {
 1762     struct mfc *mfc;
 1763     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 1764                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 1765     struct timeval now;
 1766     struct bw_meter *x;
 1767     uint32_t flags;
 1768 
 1769     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1770         return EOPNOTSUPP;
 1771 
 1772     /* Test if the flags are valid */
 1773     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 1774         return EINVAL;
 1775     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 1776         return EINVAL;
 1777     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1778             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1779         return EINVAL;
 1780 
 1781     /* Test if the threshold time interval is valid */
 1782     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 1783         return EINVAL;
 1784 
 1785     flags = compute_bw_meter_flags(req);
 1786 
 1787     /*
 1788      * Find if we have already same bw_meter entry
 1789      */
 1790     MFC_LOCK();
 1791     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1792     if (mfc == NULL) {
 1793         MFC_UNLOCK();
 1794         return EADDRNOTAVAIL;
 1795     }
 1796     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 1797         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1798                            &req->bu_threshold.b_time, ==)) &&
 1799             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 1800             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 1801             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 1802             MFC_UNLOCK();
 1803             return 0;           /* XXX Already installed */
 1804         }
 1805     }
 1806 
 1807     /* Allocate the new bw_meter entry */
 1808     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 1809     if (x == NULL) {
 1810         MFC_UNLOCK();
 1811         return ENOBUFS;
 1812     }
 1813 
 1814     /* Set the new bw_meter entry */
 1815     x->bm_threshold.b_time = req->bu_threshold.b_time;
 1816     microtime(&now);
 1817     x->bm_start_time = now;
 1818     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 1819     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 1820     x->bm_measured.b_packets = 0;
 1821     x->bm_measured.b_bytes = 0;
 1822     x->bm_flags = flags;
 1823     x->bm_time_next = NULL;
 1824     x->bm_time_hash = BW_METER_BUCKETS;
 1825 
 1826     /* Add the new bw_meter entry to the front of entries for this MFC */
 1827     x->bm_mfc = mfc;
 1828     x->bm_mfc_next = mfc->mfc_bw_meter;
 1829     mfc->mfc_bw_meter = x;
 1830     schedule_bw_meter(x, &now);
 1831     MFC_UNLOCK();
 1832 
 1833     return 0;
 1834 }
 1835 
 1836 static void
 1837 free_bw_list(struct bw_meter *list)
 1838 {
 1839     while (list != NULL) {
 1840         struct bw_meter *x = list;
 1841 
 1842         list = list->bm_mfc_next;
 1843         unschedule_bw_meter(x);
 1844         free(x, M_BWMETER);
 1845     }
 1846 }
 1847 
 1848 /*
 1849  * Delete one or multiple bw_meter entries
 1850  */
 1851 static int
 1852 del_bw_upcall(struct bw_upcall *req)
 1853 {
 1854     struct mfc *mfc;
 1855     struct bw_meter *x;
 1856 
 1857     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1858         return EOPNOTSUPP;
 1859 
 1860     MFC_LOCK();
 1861 
 1862     /* Find the corresponding MFC entry */
 1863     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1864     if (mfc == NULL) {
 1865         MFC_UNLOCK();
 1866         return EADDRNOTAVAIL;
 1867     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 1868         /*
 1869          * Delete all bw_meter entries for this mfc
 1870          */
 1871         struct bw_meter *list;
 1872 
 1873         list = mfc->mfc_bw_meter;
 1874         mfc->mfc_bw_meter = NULL;
 1875         free_bw_list(list);
 1876         MFC_UNLOCK();
 1877         return 0;
 1878     } else {                    /* Delete a single bw_meter entry */
 1879         struct bw_meter *prev;
 1880         uint32_t flags = 0;
 1881 
 1882         flags = compute_bw_meter_flags(req);
 1883 
 1884         /* Find the bw_meter entry to delete */
 1885         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 1886              prev = x, x = x->bm_mfc_next) {
 1887             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1888                                &req->bu_threshold.b_time, ==)) &&
 1889                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 1890                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 1891                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 1892                 break;
 1893         }
 1894         if (x != NULL) { /* Delete entry from the list for this MFC */
 1895             if (prev != NULL)
 1896                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 1897             else
 1898                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 1899 
 1900             unschedule_bw_meter(x);
 1901             MFC_UNLOCK();
 1902             /* Free the bw_meter entry */
 1903             free(x, M_BWMETER);
 1904             return 0;
 1905         } else {
 1906             MFC_UNLOCK();
 1907             return EINVAL;
 1908         }
 1909     }
 1910     /* NOTREACHED */
 1911 }
 1912 
 1913 /*
 1914  * Perform bandwidth measurement processing that may result in an upcall
 1915  */
 1916 static void
 1917 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 1918 {
 1919     struct timeval delta;
 1920 
 1921     MFC_LOCK_ASSERT();
 1922 
 1923     delta = *nowp;
 1924     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 1925 
 1926     if (x->bm_flags & BW_METER_GEQ) {
 1927         /*
 1928          * Processing for ">=" type of bw_meter entry
 1929          */
 1930         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 1931             /* Reset the bw_meter entry */
 1932             x->bm_start_time = *nowp;
 1933             x->bm_measured.b_packets = 0;
 1934             x->bm_measured.b_bytes = 0;
 1935             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 1936         }
 1937 
 1938         /* Record that a packet is received */
 1939         x->bm_measured.b_packets++;
 1940         x->bm_measured.b_bytes += plen;
 1941 
 1942         /*
 1943          * Test if we should deliver an upcall
 1944          */
 1945         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 1946             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1947                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 1948                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1949                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 1950                 /* Prepare an upcall for delivery */
 1951                 bw_meter_prepare_upcall(x, nowp);
 1952                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 1953             }
 1954         }
 1955     } else if (x->bm_flags & BW_METER_LEQ) {
 1956         /*
 1957          * Processing for "<=" type of bw_meter entry
 1958          */
 1959         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 1960             /*
 1961              * We are behind time with the multicast forwarding table
 1962              * scanning for "<=" type of bw_meter entries, so test now
 1963              * if we should deliver an upcall.
 1964              */
 1965             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1966                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 1967                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1968                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 1969                 /* Prepare an upcall for delivery */
 1970                 bw_meter_prepare_upcall(x, nowp);
 1971             }
 1972             /* Reschedule the bw_meter entry */
 1973             unschedule_bw_meter(x);
 1974             schedule_bw_meter(x, nowp);
 1975         }
 1976 
 1977         /* Record that a packet is received */
 1978         x->bm_measured.b_packets++;
 1979         x->bm_measured.b_bytes += plen;
 1980 
 1981         /*
 1982          * Test if we should restart the measuring interval
 1983          */
 1984         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 1985              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 1986             (x->bm_flags & BW_METER_UNIT_BYTES &&
 1987              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 1988             /* Don't restart the measuring interval */
 1989         } else {
 1990             /* Do restart the measuring interval */
 1991             /*
 1992              * XXX: note that we don't unschedule and schedule, because this
 1993              * might be too much overhead per packet. Instead, when we process
 1994              * all entries for a given timer hash bin, we check whether it is
 1995              * really a timeout. If not, we reschedule at that time.
 1996              */
 1997             x->bm_start_time = *nowp;
 1998             x->bm_measured.b_packets = 0;
 1999             x->bm_measured.b_bytes = 0;
 2000             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2001         }
 2002     }
 2003 }
 2004 
 2005 /*
 2006  * Prepare a bandwidth-related upcall
 2007  */
 2008 static void
 2009 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2010 {
 2011     struct timeval delta;
 2012     struct bw_upcall *u;
 2013 
 2014     MFC_LOCK_ASSERT();
 2015 
 2016     /*
 2017      * Compute the measured time interval
 2018      */
 2019     delta = *nowp;
 2020     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2021 
 2022     /*
 2023      * If there are too many pending upcalls, deliver them now
 2024      */
 2025     if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
 2026         bw_upcalls_send();
 2027 
 2028     /*
 2029      * Set the bw_upcall entry
 2030      */
 2031     u = &V_bw_upcalls[V_bw_upcalls_n++];
 2032     u->bu_src = x->bm_mfc->mfc_origin;
 2033     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2034     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2035     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2036     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2037     u->bu_measured.b_time = delta;
 2038     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2039     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2040     u->bu_flags = 0;
 2041     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2042         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2043     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2044         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2045     if (x->bm_flags & BW_METER_GEQ)
 2046         u->bu_flags |= BW_UPCALL_GEQ;
 2047     if (x->bm_flags & BW_METER_LEQ)
 2048         u->bu_flags |= BW_UPCALL_LEQ;
 2049 }
 2050 
 2051 /*
 2052  * Send the pending bandwidth-related upcalls
 2053  */
 2054 static void
 2055 bw_upcalls_send(void)
 2056 {
 2057     struct mbuf *m;
 2058     int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
 2059     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2060     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2061                                       0,                /* unused2 */
 2062                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2063                                       0,                /* im_mbz  */
 2064                                       0,                /* im_vif  */
 2065                                       0,                /* unused3 */
 2066                                       { 0 },            /* im_src  */
 2067                                       { 0 } };          /* im_dst  */
 2068 
 2069     MFC_LOCK_ASSERT();
 2070 
 2071     if (V_bw_upcalls_n == 0)
 2072         return;                 /* No pending upcalls */
 2073 
 2074     V_bw_upcalls_n = 0;
 2075 
 2076     /*
 2077      * Allocate a new mbuf, initialize it with the header and
 2078      * the payload for the pending calls.
 2079      */
 2080     m = m_gethdr(M_NOWAIT, MT_DATA);
 2081     if (m == NULL) {
 2082         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2083         return;
 2084     }
 2085 
 2086     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2087     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
 2088 
 2089     /*
 2090      * Send the upcalls
 2091      * XXX do we need to set the address in k_igmpsrc ?
 2092      */
 2093     MRTSTAT_INC(mrts_upcalls);
 2094     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
 2095         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2096         MRTSTAT_INC(mrts_upq_sockfull);
 2097     }
 2098 }
 2099 
 2100 /*
 2101  * Compute the timeout hash value for the bw_meter entries
 2102  */
 2103 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2104     do {                                                                \
 2105         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2106                                                                         \
 2107         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2108         (hash) = next_timeval.tv_sec;                                   \
 2109         if (next_timeval.tv_usec)                                       \
 2110             (hash)++; /* XXX: make sure we don't timeout early */       \
 2111         (hash) %= BW_METER_BUCKETS;                                     \
 2112     } while (0)
 2113 
 2114 /*
 2115  * Schedule a timer to process periodically bw_meter entry of type "<="
 2116  * by linking the entry in the proper hash bucket.
 2117  */
 2118 static void
 2119 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2120 {
 2121     int time_hash;
 2122 
 2123     MFC_LOCK_ASSERT();
 2124 
 2125     if (!(x->bm_flags & BW_METER_LEQ))
 2126         return;         /* XXX: we schedule timers only for "<=" entries */
 2127 
 2128     /*
 2129      * Reset the bw_meter entry
 2130      */
 2131     x->bm_start_time = *nowp;
 2132     x->bm_measured.b_packets = 0;
 2133     x->bm_measured.b_bytes = 0;
 2134     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2135 
 2136     /*
 2137      * Compute the timeout hash value and insert the entry
 2138      */
 2139     BW_METER_TIMEHASH(x, time_hash);
 2140     x->bm_time_next = V_bw_meter_timers[time_hash];
 2141     V_bw_meter_timers[time_hash] = x;
 2142     x->bm_time_hash = time_hash;
 2143 }
 2144 
 2145 /*
 2146  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2147  * by removing the entry from the proper hash bucket.
 2148  */
 2149 static void
 2150 unschedule_bw_meter(struct bw_meter *x)
 2151 {
 2152     int time_hash;
 2153     struct bw_meter *prev, *tmp;
 2154 
 2155     MFC_LOCK_ASSERT();
 2156 
 2157     if (!(x->bm_flags & BW_METER_LEQ))
 2158         return;         /* XXX: we schedule timers only for "<=" entries */
 2159 
 2160     /*
 2161      * Compute the timeout hash value and delete the entry
 2162      */
 2163     time_hash = x->bm_time_hash;
 2164     if (time_hash >= BW_METER_BUCKETS)
 2165         return;         /* Entry was not scheduled */
 2166 
 2167     for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
 2168              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2169         if (tmp == x)
 2170             break;
 2171 
 2172     if (tmp == NULL)
 2173         panic("unschedule_bw_meter: bw_meter entry not found");
 2174 
 2175     if (prev != NULL)
 2176         prev->bm_time_next = x->bm_time_next;
 2177     else
 2178         V_bw_meter_timers[time_hash] = x->bm_time_next;
 2179 
 2180     x->bm_time_next = NULL;
 2181     x->bm_time_hash = BW_METER_BUCKETS;
 2182 }
 2183 
 2184 
 2185 /*
 2186  * Process all "<=" type of bw_meter that should be processed now,
 2187  * and for each entry prepare an upcall if necessary. Each processed
 2188  * entry is rescheduled again for the (periodic) processing.
 2189  *
 2190  * This is run periodically (once per second normally). On each round,
 2191  * all the potentially matching entries are in the hash slot that we are
 2192  * looking at.
 2193  */
 2194 static void
 2195 bw_meter_process()
 2196 {
 2197     uint32_t loops;
 2198     int i;
 2199     struct timeval now, process_endtime;
 2200 
 2201     microtime(&now);
 2202     if (V_last_tv_sec == now.tv_sec)
 2203         return;         /* nothing to do */
 2204 
 2205     loops = now.tv_sec - V_last_tv_sec;
 2206     V_last_tv_sec = now.tv_sec;
 2207     if (loops > BW_METER_BUCKETS)
 2208         loops = BW_METER_BUCKETS;
 2209 
 2210     MFC_LOCK();
 2211     /*
 2212      * Process all bins of bw_meter entries from the one after the last
 2213      * processed to the current one. On entry, i points to the last bucket
 2214      * visited, so we need to increment i at the beginning of the loop.
 2215      */
 2216     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2217         struct bw_meter *x, *tmp_list;
 2218 
 2219         if (++i >= BW_METER_BUCKETS)
 2220             i = 0;
 2221 
 2222         /* Disconnect the list of bw_meter entries from the bin */
 2223         tmp_list = V_bw_meter_timers[i];
 2224         V_bw_meter_timers[i] = NULL;
 2225 
 2226         /* Process the list of bw_meter entries */
 2227         while (tmp_list != NULL) {
 2228             x = tmp_list;
 2229             tmp_list = tmp_list->bm_time_next;
 2230 
 2231             /* Test if the time interval is over */
 2232             process_endtime = x->bm_start_time;
 2233             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2234             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2235                 /* Not yet: reschedule, but don't reset */
 2236                 int time_hash;
 2237 
 2238                 BW_METER_TIMEHASH(x, time_hash);
 2239                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2240                     /*
 2241                      * XXX: somehow the bin processing is a bit ahead of time.
 2242                      * Put the entry in the next bin.
 2243                      */
 2244                     if (++time_hash >= BW_METER_BUCKETS)
 2245                         time_hash = 0;
 2246                 }
 2247                 x->bm_time_next = V_bw_meter_timers[time_hash];
 2248                 V_bw_meter_timers[time_hash] = x;
 2249                 x->bm_time_hash = time_hash;
 2250 
 2251                 continue;
 2252             }
 2253 
 2254             /*
 2255              * Test if we should deliver an upcall
 2256              */
 2257             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2258                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2259                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2260                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2261                 /* Prepare an upcall for delivery */
 2262                 bw_meter_prepare_upcall(x, &now);
 2263             }
 2264 
 2265             /*
 2266              * Reschedule for next processing
 2267              */
 2268             schedule_bw_meter(x, &now);
 2269         }
 2270     }
 2271 
 2272     /* Send all upcalls that are pending delivery */
 2273     bw_upcalls_send();
 2274 
 2275     MFC_UNLOCK();
 2276 }
 2277 
 2278 /*
 2279  * A periodic function for sending all upcalls that are pending delivery
 2280  */
 2281 static void
 2282 expire_bw_upcalls_send(void *arg)
 2283 {
 2284     CURVNET_SET((struct vnet *) arg);
 2285 
 2286     MFC_LOCK();
 2287     bw_upcalls_send();
 2288     MFC_UNLOCK();
 2289 
 2290     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
 2291         curvnet);
 2292     CURVNET_RESTORE();
 2293 }
 2294 
 2295 /*
 2296  * A periodic function for periodic scanning of the multicast forwarding
 2297  * table for processing all "<=" bw_meter entries.
 2298  */
 2299 static void
 2300 expire_bw_meter_process(void *arg)
 2301 {
 2302     CURVNET_SET((struct vnet *) arg);
 2303 
 2304     if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
 2305         bw_meter_process();
 2306 
 2307     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
 2308         curvnet);
 2309     CURVNET_RESTORE();
 2310 }
 2311 
 2312 /*
 2313  * End of bandwidth monitoring code
 2314  */
 2315 
 2316 /*
 2317  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2318  *
 2319  */
 2320 static int
 2321 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
 2322     struct mfc *rt)
 2323 {
 2324     struct mbuf *mb_copy, *mm;
 2325 
 2326     /*
 2327      * Do not send IGMP_WHOLEPKT notifications to userland, if the
 2328      * rendezvous point was unspecified, and we were told not to.
 2329      */
 2330     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
 2331         in_nullhost(rt->mfc_rp))
 2332         return 0;
 2333 
 2334     mb_copy = pim_register_prepare(ip, m);
 2335     if (mb_copy == NULL)
 2336         return ENOBUFS;
 2337 
 2338     /*
 2339      * Send all the fragments. Note that the mbuf for each fragment
 2340      * is freed by the sending machinery.
 2341      */
 2342     for (mm = mb_copy; mm; mm = mb_copy) {
 2343         mb_copy = mm->m_nextpkt;
 2344         mm->m_nextpkt = 0;
 2345         mm = m_pullup(mm, sizeof(struct ip));
 2346         if (mm != NULL) {
 2347             ip = mtod(mm, struct ip *);
 2348             if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
 2349                 pim_register_send_rp(ip, vifp, mm, rt);
 2350             } else {
 2351                 pim_register_send_upcall(ip, vifp, mm, rt);
 2352             }
 2353         }
 2354     }
 2355 
 2356     return 0;
 2357 }
 2358 
 2359 /*
 2360  * Return a copy of the data packet that is ready for PIM Register
 2361  * encapsulation.
 2362  * XXX: Note that in the returned copy the IP header is a valid one.
 2363  */
 2364 static struct mbuf *
 2365 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2366 {
 2367     struct mbuf *mb_copy = NULL;
 2368     int mtu;
 2369 
 2370     /* Take care of delayed checksums */
 2371     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2372         in_delayed_cksum(m);
 2373         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2374     }
 2375 
 2376     /*
 2377      * Copy the old packet & pullup its IP header into the
 2378      * new mbuf so we can modify it.
 2379      */
 2380     mb_copy = m_copypacket(m, M_NOWAIT);
 2381     if (mb_copy == NULL)
 2382         return NULL;
 2383     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2384     if (mb_copy == NULL)
 2385         return NULL;
 2386 
 2387     /* take care of the TTL */
 2388     ip = mtod(mb_copy, struct ip *);
 2389     --ip->ip_ttl;
 2390 
 2391     /* Compute the MTU after the PIM Register encapsulation */
 2392     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2393 
 2394     if (ntohs(ip->ip_len) <= mtu) {
 2395         /* Turn the IP header into a valid one */
 2396         ip->ip_sum = 0;
 2397         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2398     } else {
 2399         /* Fragment the packet */
 2400         mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
 2401         if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
 2402             m_freem(mb_copy);
 2403             return NULL;
 2404         }
 2405     }
 2406     return mb_copy;
 2407 }
 2408 
 2409 /*
 2410  * Send an upcall with the data packet to the user-level process.
 2411  */
 2412 static int
 2413 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 2414     struct mbuf *mb_copy, struct mfc *rt)
 2415 {
 2416     struct mbuf *mb_first;
 2417     int len = ntohs(ip->ip_len);
 2418     struct igmpmsg *im;
 2419     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2420 
 2421     VIF_LOCK_ASSERT();
 2422 
 2423     /*
 2424      * Add a new mbuf with an upcall header
 2425      */
 2426     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
 2427     if (mb_first == NULL) {
 2428         m_freem(mb_copy);
 2429         return ENOBUFS;
 2430     }
 2431     mb_first->m_data += max_linkhdr;
 2432     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 2433     mb_first->m_len = sizeof(struct igmpmsg);
 2434     mb_first->m_next = mb_copy;
 2435 
 2436     /* Send message to routing daemon */
 2437     im = mtod(mb_first, struct igmpmsg *);
 2438     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 2439     im->im_mbz          = 0;
 2440     im->im_vif          = vifp - V_viftable;
 2441     im->im_src          = ip->ip_src;
 2442     im->im_dst          = ip->ip_dst;
 2443 
 2444     k_igmpsrc.sin_addr  = ip->ip_src;
 2445 
 2446     MRTSTAT_INC(mrts_upcalls);
 2447 
 2448     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 2449         CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 2450         MRTSTAT_INC(mrts_upq_sockfull);
 2451         return ENOBUFS;
 2452     }
 2453 
 2454     /* Keep statistics */
 2455     PIMSTAT_INC(pims_snd_registers_msgs);
 2456     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2457 
 2458     return 0;
 2459 }
 2460 
 2461 /*
 2462  * Encapsulate the data packet in PIM Register message and send it to the RP.
 2463  */
 2464 static int
 2465 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
 2466     struct mfc *rt)
 2467 {
 2468     struct mbuf *mb_first;
 2469     struct ip *ip_outer;
 2470     struct pim_encap_pimhdr *pimhdr;
 2471     int len = ntohs(ip->ip_len);
 2472     vifi_t vifi = rt->mfc_parent;
 2473 
 2474     VIF_LOCK_ASSERT();
 2475 
 2476     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
 2477         m_freem(mb_copy);
 2478         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 2479     }
 2480 
 2481     /*
 2482      * Add a new mbuf with the encapsulating header
 2483      */
 2484     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
 2485     if (mb_first == NULL) {
 2486         m_freem(mb_copy);
 2487         return ENOBUFS;
 2488     }
 2489     mb_first->m_data += max_linkhdr;
 2490     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2491     mb_first->m_next = mb_copy;
 2492 
 2493     mb_first->m_pkthdr.len = len + mb_first->m_len;
 2494 
 2495     /*
 2496      * Fill in the encapsulating IP and PIM header
 2497      */
 2498     ip_outer = mtod(mb_first, struct ip *);
 2499     *ip_outer = pim_encap_iphdr;
 2500     ip_outer->ip_id = ip_newid();
 2501     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
 2502         sizeof(pim_encap_pimhdr));
 2503     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
 2504     ip_outer->ip_dst = rt->mfc_rp;
 2505     /*
 2506      * Copy the inner header TOS to the outer header, and take care of the
 2507      * IP_DF bit.
 2508      */
 2509     ip_outer->ip_tos = ip->ip_tos;
 2510     if (ip->ip_off & htons(IP_DF))
 2511         ip_outer->ip_off |= htons(IP_DF);
 2512     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 2513                                          + sizeof(pim_encap_iphdr));
 2514     *pimhdr = pim_encap_pimhdr;
 2515     /* If the iif crosses a border, set the Border-bit */
 2516     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
 2517         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 2518 
 2519     mb_first->m_data += sizeof(pim_encap_iphdr);
 2520     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 2521     mb_first->m_data -= sizeof(pim_encap_iphdr);
 2522 
 2523     send_packet(vifp, mb_first);
 2524 
 2525     /* Keep statistics */
 2526     PIMSTAT_INC(pims_snd_registers_msgs);
 2527     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2528 
 2529     return 0;
 2530 }
 2531 
 2532 /*
 2533  * pim_encapcheck() is called by the encap4_input() path at runtime to
 2534  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
 2535  * into the kernel.
 2536  */
 2537 static int
 2538 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
 2539 {
 2540 
 2541 #ifdef DIAGNOSTIC
 2542     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
 2543 #endif
 2544     if (proto != IPPROTO_PIM)
 2545         return 0;       /* not for us; reject the datagram. */
 2546 
 2547     return 64;          /* claim the datagram. */
 2548 }
 2549 
 2550 /*
 2551  * PIM-SMv2 and PIM-DM messages processing.
 2552  * Receives and verifies the PIM control messages, and passes them
 2553  * up to the listening socket, using rip_input().
 2554  * The only message with special processing is the PIM_REGISTER message
 2555  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 2556  * is passed to if_simloop().
 2557  */
 2558 void
 2559 pim_input(struct mbuf *m, int iphlen)
 2560 {
 2561     struct ip *ip = mtod(m, struct ip *);
 2562     struct pim *pim;
 2563     int minlen;
 2564     int datalen = ntohs(ip->ip_len) - iphlen;
 2565     int ip_tos;
 2566 
 2567     /* Keep statistics */
 2568     PIMSTAT_INC(pims_rcv_total_msgs);
 2569     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
 2570 
 2571     /*
 2572      * Validate lengths
 2573      */
 2574     if (datalen < PIM_MINLEN) {
 2575         PIMSTAT_INC(pims_rcv_tooshort);
 2576         CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
 2577             __func__, datalen, inet_ntoa(ip->ip_src));
 2578         m_freem(m);
 2579         return;
 2580     }
 2581 
 2582     /*
 2583      * If the packet is at least as big as a REGISTER, go agead
 2584      * and grab the PIM REGISTER header size, to avoid another
 2585      * possible m_pullup() later.
 2586      *
 2587      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 2588      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 2589      */
 2590     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 2591     /*
 2592      * Get the IP and PIM headers in contiguous memory, and
 2593      * possibly the PIM REGISTER header.
 2594      */
 2595     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == 0) {
 2596         CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
 2597         return;
 2598     }
 2599 
 2600     /* m_pullup() may have given us a new mbuf so reset ip. */
 2601     ip = mtod(m, struct ip *);
 2602     ip_tos = ip->ip_tos;
 2603 
 2604     /* adjust mbuf to point to the PIM header */
 2605     m->m_data += iphlen;
 2606     m->m_len  -= iphlen;
 2607     pim = mtod(m, struct pim *);
 2608 
 2609     /*
 2610      * Validate checksum. If PIM REGISTER, exclude the data packet.
 2611      *
 2612      * XXX: some older PIMv2 implementations don't make this distinction,
 2613      * so for compatibility reason perform the checksum over part of the
 2614      * message, and if error, then over the whole message.
 2615      */
 2616     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 2617         /* do nothing, checksum okay */
 2618     } else if (in_cksum(m, datalen)) {
 2619         PIMSTAT_INC(pims_rcv_badsum);
 2620         CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
 2621         m_freem(m);
 2622         return;
 2623     }
 2624 
 2625     /* PIM version check */
 2626     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 2627         PIMSTAT_INC(pims_rcv_badversion);
 2628         CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
 2629             (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
 2630         m_freem(m);
 2631         return;
 2632     }
 2633 
 2634     /* restore mbuf back to the outer IP */
 2635     m->m_data -= iphlen;
 2636     m->m_len  += iphlen;
 2637 
 2638     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 2639         /*
 2640          * Since this is a REGISTER, we'll make a copy of the register
 2641          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 2642          * routing daemon.
 2643          */
 2644         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 2645         struct mbuf *mcp;
 2646         struct ip *encap_ip;
 2647         u_int32_t *reghdr;
 2648         struct ifnet *vifp;
 2649 
 2650         VIF_LOCK();
 2651         if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
 2652             VIF_UNLOCK();
 2653             CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
 2654                 (int)V_reg_vif_num);
 2655             m_freem(m);
 2656             return;
 2657         }
 2658         /* XXX need refcnt? */
 2659         vifp = V_viftable[V_reg_vif_num].v_ifp;
 2660         VIF_UNLOCK();
 2661 
 2662         /*
 2663          * Validate length
 2664          */
 2665         if (datalen < PIM_REG_MINLEN) {
 2666             PIMSTAT_INC(pims_rcv_tooshort);
 2667             PIMSTAT_INC(pims_rcv_badregisters);
 2668             CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
 2669             m_freem(m);
 2670             return;
 2671         }
 2672 
 2673         reghdr = (u_int32_t *)(pim + 1);
 2674         encap_ip = (struct ip *)(reghdr + 1);
 2675 
 2676         CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
 2677             __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
 2678 
 2679         /* verify the version number of the inner packet */
 2680         if (encap_ip->ip_v != IPVERSION) {
 2681             PIMSTAT_INC(pims_rcv_badregisters);
 2682             CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
 2683             m_freem(m);
 2684             return;
 2685         }
 2686 
 2687         /* verify the inner packet is destined to a mcast group */
 2688         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 2689             PIMSTAT_INC(pims_rcv_badregisters);
 2690             CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
 2691                 inet_ntoa(encap_ip->ip_dst));
 2692             m_freem(m);
 2693             return;
 2694         }
 2695 
 2696         /* If a NULL_REGISTER, pass it to the daemon */
 2697         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 2698             goto pim_input_to_daemon;
 2699 
 2700         /*
 2701          * Copy the TOS from the outer IP header to the inner IP header.
 2702          */
 2703         if (encap_ip->ip_tos != ip_tos) {
 2704             /* Outer TOS -> inner TOS */
 2705             encap_ip->ip_tos = ip_tos;
 2706             /* Recompute the inner header checksum. Sigh... */
 2707 
 2708             /* adjust mbuf to point to the inner IP header */
 2709             m->m_data += (iphlen + PIM_MINLEN);
 2710             m->m_len  -= (iphlen + PIM_MINLEN);
 2711 
 2712             encap_ip->ip_sum = 0;
 2713             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 2714 
 2715             /* restore mbuf to point back to the outer IP header */
 2716             m->m_data -= (iphlen + PIM_MINLEN);
 2717             m->m_len  += (iphlen + PIM_MINLEN);
 2718         }
 2719 
 2720         /*
 2721          * Decapsulate the inner IP packet and loopback to forward it
 2722          * as a normal multicast packet. Also, make a copy of the
 2723          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 2724          * to pass to the daemon later, so it can take the appropriate
 2725          * actions (e.g., send back PIM_REGISTER_STOP).
 2726          * XXX: here m->m_data points to the outer IP header.
 2727          */
 2728         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 2729         if (mcp == NULL) {
 2730             CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
 2731             m_freem(m);
 2732             return;
 2733         }
 2734 
 2735         /* Keep statistics */
 2736         /* XXX: registers_bytes include only the encap. mcast pkt */
 2737         PIMSTAT_INC(pims_rcv_registers_msgs);
 2738         PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
 2739 
 2740         /*
 2741          * forward the inner ip packet; point m_data at the inner ip.
 2742          */
 2743         m_adj(m, iphlen + PIM_MINLEN);
 2744 
 2745         CTR4(KTR_IPMF,
 2746             "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
 2747             __func__,
 2748             (u_long)ntohl(encap_ip->ip_src.s_addr),
 2749             (u_long)ntohl(encap_ip->ip_dst.s_addr),
 2750             (int)V_reg_vif_num);
 2751 
 2752         /* NB: vifp was collected above; can it change on us? */
 2753         if_simloop(vifp, m, dst.sin_family, 0);
 2754 
 2755         /* prepare the register head to send to the mrouting daemon */
 2756         m = mcp;
 2757     }
 2758 
 2759 pim_input_to_daemon:
 2760     /*
 2761      * Pass the PIM message up to the daemon; if it is a Register message,
 2762      * pass the 'head' only up to the daemon. This includes the
 2763      * outer IP header, PIM header, PIM-Register header and the
 2764      * inner IP header.
 2765      * XXX: the outer IP header pkt size of a Register is not adjust to
 2766      * reflect the fact that the inner multicast data is truncated.
 2767      */
 2768     rip_input(m, iphlen);
 2769 
 2770     return;
 2771 }
 2772 
 2773 static int
 2774 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
 2775 {
 2776         struct mfc      *rt;
 2777         int              error, i;
 2778 
 2779         if (req->newptr)
 2780                 return (EPERM);
 2781         if (V_mfchashtbl == NULL)       /* XXX unlocked */
 2782                 return (0);
 2783         error = sysctl_wire_old_buffer(req, 0);
 2784         if (error)
 2785                 return (error);
 2786 
 2787         MFC_LOCK();
 2788         for (i = 0; i < mfchashsize; i++) {
 2789                 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
 2790                         error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
 2791                         if (error)
 2792                                 goto out_locked;
 2793                 }
 2794         }
 2795 out_locked:
 2796         MFC_UNLOCK();
 2797         return (error);
 2798 }
 2799 
 2800 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
 2801     sysctl_mfctable, "IPv4 Multicast Forwarding Table "
 2802     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
 2803 
 2804 static void
 2805 vnet_mroute_init(const void *unused __unused)
 2806 {
 2807 
 2808         MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
 2809         bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
 2810         callout_init(&V_expire_upcalls_ch, 1);
 2811         callout_init(&V_bw_upcalls_ch, 1);
 2812         callout_init(&V_bw_meter_ch, 1);
 2813 }
 2814 
 2815 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
 2816         NULL);
 2817 
 2818 static void
 2819 vnet_mroute_uninit(const void *unused __unused)
 2820 {
 2821 
 2822         FREE(V_nexpire, M_MRTABLE);
 2823         V_nexpire = NULL;
 2824 }
 2825 
 2826 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 
 2827         vnet_mroute_uninit, NULL);
 2828 
 2829 static int
 2830 ip_mroute_modevent(module_t mod, int type, void *unused)
 2831 {
 2832 
 2833     switch (type) {
 2834     case MOD_LOAD:
 2835         MROUTER_LOCK_INIT();
 2836 
 2837         if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 
 2838             if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
 2839         if (if_detach_event_tag == NULL) {
 2840                 printf("ip_mroute: unable to register "
 2841                     "ifnet_departure_event handler\n");
 2842                 MROUTER_LOCK_DESTROY();
 2843                 return (EINVAL);
 2844         }
 2845 
 2846         MFC_LOCK_INIT();
 2847         VIF_LOCK_INIT();
 2848 
 2849         mfchashsize = MFCHASHSIZE;
 2850         if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
 2851             !powerof2(mfchashsize)) {
 2852                 printf("WARNING: %s not a power of 2; using default\n",
 2853                     "net.inet.ip.mfchashsize");
 2854                 mfchashsize = MFCHASHSIZE;
 2855         }
 2856 
 2857         pim_squelch_wholepkt = 0;
 2858         TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
 2859             &pim_squelch_wholepkt);
 2860 
 2861         pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
 2862             pim_encapcheck, &in_pim_protosw, NULL);
 2863         if (pim_encap_cookie == NULL) {
 2864                 printf("ip_mroute: unable to attach pim encap\n");
 2865                 VIF_LOCK_DESTROY();
 2866                 MFC_LOCK_DESTROY();
 2867                 MROUTER_LOCK_DESTROY();
 2868                 return (EINVAL);
 2869         }
 2870 
 2871         ip_mcast_src = X_ip_mcast_src;
 2872         ip_mforward = X_ip_mforward;
 2873         ip_mrouter_done = X_ip_mrouter_done;
 2874         ip_mrouter_get = X_ip_mrouter_get;
 2875         ip_mrouter_set = X_ip_mrouter_set;
 2876 
 2877         ip_rsvp_force_done = X_ip_rsvp_force_done;
 2878         ip_rsvp_vif = X_ip_rsvp_vif;
 2879 
 2880         legal_vif_num = X_legal_vif_num;
 2881         mrt_ioctl = X_mrt_ioctl;
 2882         rsvp_input_p = X_rsvp_input;
 2883         break;
 2884 
 2885     case MOD_UNLOAD:
 2886         /*
 2887          * Typically module unload happens after the user-level
 2888          * process has shutdown the kernel services (the check
 2889          * below insures someone can't just yank the module out
 2890          * from under a running process).  But if the module is
 2891          * just loaded and then unloaded w/o starting up a user
 2892          * process we still need to cleanup.
 2893          */
 2894         MROUTER_LOCK();
 2895         if (ip_mrouter_cnt != 0) {
 2896             MROUTER_UNLOCK();
 2897             return (EINVAL);
 2898         }
 2899         ip_mrouter_unloading = 1;
 2900         MROUTER_UNLOCK();
 2901 
 2902         EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
 2903 
 2904         if (pim_encap_cookie) {
 2905             encap_detach(pim_encap_cookie);
 2906             pim_encap_cookie = NULL;
 2907         }
 2908 
 2909         ip_mcast_src = NULL;
 2910         ip_mforward = NULL;
 2911         ip_mrouter_done = NULL;
 2912         ip_mrouter_get = NULL;
 2913         ip_mrouter_set = NULL;
 2914 
 2915         ip_rsvp_force_done = NULL;
 2916         ip_rsvp_vif = NULL;
 2917 
 2918         legal_vif_num = NULL;
 2919         mrt_ioctl = NULL;
 2920         rsvp_input_p = NULL;
 2921 
 2922         VIF_LOCK_DESTROY();
 2923         MFC_LOCK_DESTROY();
 2924         MROUTER_LOCK_DESTROY();
 2925         break;
 2926 
 2927     default:
 2928         return EOPNOTSUPP;
 2929     }
 2930     return 0;
 2931 }
 2932 
 2933 static moduledata_t ip_mroutemod = {
 2934     "ip_mroute",
 2935     ip_mroute_modevent,
 2936     0
 2937 };
 2938 
 2939 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);

Cache object: c79e66f392405c2c6d2fbec117c93544


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.