The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-3-Clause
    3  *
    4  * Copyright (c) 1989 Stephen Deering
    5  * Copyright (c) 1992, 1993
    6  *      The Regents of the University of California.  All rights reserved.
    7  *
    8  * This code is derived from software contributed to Berkeley by
    9  * Stephen Deering of Stanford University.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  * 3. Neither the name of the University nor the names of its contributors
   20  *    may be used to endorse or promote products derived from this software
   21  *    without specific prior written permission.
   22  *
   23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   33  * SUCH DAMAGE.
   34  *
   35  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   36  */
   37 
   38 /*
   39  * IP multicast forwarding procedures
   40  *
   41  * Written by David Waitzman, BBN Labs, August 1988.
   42  * Modified by Steve Deering, Stanford, February 1989.
   43  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   44  * Modified by Van Jacobson, LBL, January 1993
   45  * Modified by Ajit Thyagarajan, PARC, August 1993
   46  * Modified by Bill Fenner, PARC, April 1995
   47  * Modified by Ahmed Helmy, SGI, June 1996
   48  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   49  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   50  * Modified by Hitoshi Asaeda, WIDE, August 2000
   51  * Modified by Pavlin Radoslavov, ICSI, October 2002
   52  *
   53  * MROUTING Revision: 3.5
   54  * and PIM-SMv2 and PIM-DM support, advanced API support,
   55  * bandwidth metering and signaling
   56  */
   57 
   58 /*
   59  * TODO: Prefix functions with ipmf_.
   60  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
   61  * domain attachment (if_afdata) so we can track consumers of that service.
   62  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
   63  * move it to socket options.
   64  * TODO: Cleanup LSRR removal further.
   65  * TODO: Push RSVP stubs into raw_ip.c.
   66  * TODO: Use bitstring.h for vif set.
   67  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
   68  * TODO: Sync ip6_mroute.c with this file.
   69  */
   70 
   71 #include <sys/cdefs.h>
   72 __FBSDID("$FreeBSD$");
   73 
   74 #include "opt_inet.h"
   75 #include "opt_mrouting.h"
   76 
   77 #define _PIM_VT 1
   78 
   79 #include <sys/param.h>
   80 #include <sys/kernel.h>
   81 #include <sys/stddef.h>
   82 #include <sys/eventhandler.h>
   83 #include <sys/lock.h>
   84 #include <sys/ktr.h>
   85 #include <sys/malloc.h>
   86 #include <sys/mbuf.h>
   87 #include <sys/module.h>
   88 #include <sys/priv.h>
   89 #include <sys/protosw.h>
   90 #include <sys/signalvar.h>
   91 #include <sys/socket.h>
   92 #include <sys/socketvar.h>
   93 #include <sys/sockio.h>
   94 #include <sys/sx.h>
   95 #include <sys/sysctl.h>
   96 #include <sys/syslog.h>
   97 #include <sys/systm.h>
   98 #include <sys/time.h>
   99 #include <sys/counter.h>
  100 
  101 #include <net/if.h>
  102 #include <net/if_var.h>
  103 #include <net/netisr.h>
  104 #include <net/route.h>
  105 #include <net/vnet.h>
  106 
  107 #include <netinet/in.h>
  108 #include <netinet/igmp.h>
  109 #include <netinet/in_systm.h>
  110 #include <netinet/in_var.h>
  111 #include <netinet/ip.h>
  112 #include <netinet/ip_encap.h>
  113 #include <netinet/ip_mroute.h>
  114 #include <netinet/ip_var.h>
  115 #include <netinet/ip_options.h>
  116 #include <netinet/pim.h>
  117 #include <netinet/pim_var.h>
  118 #include <netinet/udp.h>
  119 
  120 #include <machine/in_cksum.h>
  121 
  122 #ifndef KTR_IPMF
  123 #define KTR_IPMF KTR_INET
  124 #endif
  125 
  126 #define         VIFI_INVALID    ((vifi_t) -1)
  127 
  128 VNET_DEFINE_STATIC(uint32_t, last_tv_sec); /* last time we processed this */
  129 #define V_last_tv_sec   VNET(last_tv_sec)
  130 
  131 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
  132 
  133 /*
  134  * Locking.  We use two locks: one for the virtual interface table and
  135  * one for the forwarding table.  These locks may be nested in which case
  136  * the VIF lock must always be taken first.  Note that each lock is used
  137  * to cover not only the specific data structure but also related data
  138  * structures.
  139  */
  140 
  141 static struct mtx mrouter_mtx;
  142 #define MROUTER_LOCK()          mtx_lock(&mrouter_mtx)
  143 #define MROUTER_UNLOCK()        mtx_unlock(&mrouter_mtx)
  144 #define MROUTER_LOCK_ASSERT()   mtx_assert(&mrouter_mtx, MA_OWNED)
  145 #define MROUTER_LOCK_INIT()                                             \
  146         mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
  147 #define MROUTER_LOCK_DESTROY()  mtx_destroy(&mrouter_mtx)
  148 
  149 static int ip_mrouter_cnt;      /* # of vnets with active mrouters */
  150 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
  151 
  152 VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat);
  153 VNET_PCPUSTAT_SYSINIT(mrtstat);
  154 VNET_PCPUSTAT_SYSUNINIT(mrtstat);
  155 SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat,
  156     mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
  157     "netinet/ip_mroute.h)");
  158 
  159 VNET_DEFINE_STATIC(u_long, mfchash);
  160 #define V_mfchash               VNET(mfchash)
  161 #define MFCHASH(a, g)                                                   \
  162         ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
  163           ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
  164 #define MFCHASHSIZE     256
  165 
  166 static u_long mfchashsize;                      /* Hash size */
  167 VNET_DEFINE_STATIC(u_char *, nexpire);          /* 0..mfchashsize-1 */
  168 #define V_nexpire               VNET(nexpire)
  169 VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
  170 #define V_mfchashtbl            VNET(mfchashtbl)
  171 
  172 static struct mtx mfc_mtx;
  173 #define MFC_LOCK()              mtx_lock(&mfc_mtx)
  174 #define MFC_UNLOCK()            mtx_unlock(&mfc_mtx)
  175 #define MFC_LOCK_ASSERT()       mtx_assert(&mfc_mtx, MA_OWNED)
  176 #define MFC_LOCK_INIT()                                                 \
  177         mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
  178 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  179 
  180 VNET_DEFINE_STATIC(vifi_t, numvifs);
  181 #define V_numvifs               VNET(numvifs)
  182 VNET_DEFINE_STATIC(struct vif *, viftable);
  183 #define V_viftable              VNET(viftable)
  184 
  185 static struct mtx vif_mtx;
  186 #define VIF_LOCK()              mtx_lock(&vif_mtx)
  187 #define VIF_UNLOCK()            mtx_unlock(&vif_mtx)
  188 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  189 #define VIF_LOCK_INIT()                                                 \
  190         mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
  191 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  192 
  193 static eventhandler_tag if_detach_event_tag = NULL;
  194 
  195 VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch);
  196 #define V_expire_upcalls_ch     VNET(expire_upcalls_ch)
  197 
  198 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  199 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  200 
  201 /*
  202  * Bandwidth meter variables and constants
  203  */
  204 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  205 /*
  206  * Pending timeouts are stored in a hash table, the key being the
  207  * expiration time. Periodically, the entries are analysed and processed.
  208  */
  209 #define BW_METER_BUCKETS        1024
  210 VNET_DEFINE_STATIC(struct bw_meter **, bw_meter_timers);
  211 #define V_bw_meter_timers       VNET(bw_meter_timers)
  212 VNET_DEFINE_STATIC(struct callout, bw_meter_ch);
  213 #define V_bw_meter_ch           VNET(bw_meter_ch)
  214 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  215 
  216 /*
  217  * Pending upcalls are stored in a vector which is flushed when
  218  * full, or periodically
  219  */
  220 VNET_DEFINE_STATIC(struct bw_upcall *, bw_upcalls);
  221 #define V_bw_upcalls            VNET(bw_upcalls)
  222 VNET_DEFINE_STATIC(u_int, bw_upcalls_n); /* # of pending upcalls */
  223 #define V_bw_upcalls_n          VNET(bw_upcalls_n)
  224 VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch);
  225 #define V_bw_upcalls_ch         VNET(bw_upcalls_ch)
  226 
  227 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  228 
  229 VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat);
  230 VNET_PCPUSTAT_SYSINIT(pimstat);
  231 VNET_PCPUSTAT_SYSUNINIT(pimstat);
  232 
  233 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
  234 SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat,
  235     pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  236 
  237 static u_long   pim_squelch_wholepkt = 0;
  238 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
  239     &pim_squelch_wholepkt, 0,
  240     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
  241 
  242 static const struct encaptab *pim_encap_cookie;
  243 static int pim_encapcheck(const struct mbuf *, int, int, void *);
  244 static int pim_input(struct mbuf *, int, int, void *);
  245 
  246 static const struct encap_config ipv4_encap_cfg = {
  247         .proto = IPPROTO_PIM,
  248         .min_length = sizeof(struct ip) + PIM_MINLEN,
  249         .exact_match = 8,
  250         .check = pim_encapcheck,
  251         .input = pim_input
  252 };
  253 
  254 /*
  255  * Note: the PIM Register encapsulation adds the following in front of a
  256  * data packet:
  257  *
  258  * struct pim_encap_hdr {
  259  *    struct ip ip;
  260  *    struct pim_encap_pimhdr  pim;
  261  * }
  262  *
  263  */
  264 
  265 struct pim_encap_pimhdr {
  266         struct pim pim;
  267         uint32_t   flags;
  268 };
  269 #define         PIM_ENCAP_TTL   64
  270 
  271 static struct ip pim_encap_iphdr = {
  272 #if BYTE_ORDER == LITTLE_ENDIAN
  273         sizeof(struct ip) >> 2,
  274         IPVERSION,
  275 #else
  276         IPVERSION,
  277         sizeof(struct ip) >> 2,
  278 #endif
  279         0,                      /* tos */
  280         sizeof(struct ip),      /* total length */
  281         0,                      /* id */
  282         0,                      /* frag offset */
  283         PIM_ENCAP_TTL,
  284         IPPROTO_PIM,
  285         0,                      /* checksum */
  286 };
  287 
  288 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  289     {
  290         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  291         0,                      /* reserved */
  292         0,                      /* checksum */
  293     },
  294     0                           /* flags */
  295 };
  296 
  297 VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID;
  298 #define V_reg_vif_num           VNET(reg_vif_num)
  299 VNET_DEFINE_STATIC(struct ifnet, multicast_register_if);
  300 #define V_multicast_register_if VNET(multicast_register_if)
  301 
  302 /*
  303  * Private variables.
  304  */
  305 
  306 static u_long   X_ip_mcast_src(int);
  307 static int      X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
  308                     struct ip_moptions *);
  309 static int      X_ip_mrouter_done(void);
  310 static int      X_ip_mrouter_get(struct socket *, struct sockopt *);
  311 static int      X_ip_mrouter_set(struct socket *, struct sockopt *);
  312 static int      X_legal_vif_num(int);
  313 static int      X_mrt_ioctl(u_long, caddr_t, int);
  314 
  315 static int      add_bw_upcall(struct bw_upcall *);
  316 static int      add_mfc(struct mfcctl2 *);
  317 static int      add_vif(struct vifctl *);
  318 static void     bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
  319 static void     bw_meter_process(void);
  320 static void     bw_meter_receive_packet(struct bw_meter *, int,
  321                     struct timeval *);
  322 static void     bw_upcalls_send(void);
  323 static int      del_bw_upcall(struct bw_upcall *);
  324 static int      del_mfc(struct mfcctl2 *);
  325 static int      del_vif(vifi_t);
  326 static int      del_vif_locked(vifi_t);
  327 static void     expire_bw_meter_process(void *);
  328 static void     expire_bw_upcalls_send(void *);
  329 static void     expire_mfc(struct mfc *);
  330 static void     expire_upcalls(void *);
  331 static void     free_bw_list(struct bw_meter *);
  332 static int      get_sg_cnt(struct sioc_sg_req *);
  333 static int      get_vif_cnt(struct sioc_vif_req *);
  334 static void     if_detached_event(void *, struct ifnet *);
  335 static int      ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  336 static int      ip_mrouter_init(struct socket *, int);
  337 static __inline struct mfc *
  338                 mfc_find(struct in_addr *, struct in_addr *);
  339 static void     phyint_send(struct ip *, struct vif *, struct mbuf *);
  340 static struct mbuf *
  341                 pim_register_prepare(struct ip *, struct mbuf *);
  342 static int      pim_register_send(struct ip *, struct vif *,
  343                     struct mbuf *, struct mfc *);
  344 static int      pim_register_send_rp(struct ip *, struct vif *,
  345                     struct mbuf *, struct mfc *);
  346 static int      pim_register_send_upcall(struct ip *, struct vif *,
  347                     struct mbuf *, struct mfc *);
  348 static void     schedule_bw_meter(struct bw_meter *, struct timeval *);
  349 static void     send_packet(struct vif *, struct mbuf *);
  350 static int      set_api_config(uint32_t *);
  351 static int      set_assert(int);
  352 static int      socket_send(struct socket *, struct mbuf *,
  353                     struct sockaddr_in *);
  354 static void     unschedule_bw_meter(struct bw_meter *);
  355 
  356 /*
  357  * Kernel multicast forwarding API capabilities and setup.
  358  * If more API capabilities are added to the kernel, they should be
  359  * recorded in `mrt_api_support'.
  360  */
  361 #define MRT_API_VERSION         0x0305
  362 
  363 static const int mrt_api_version = MRT_API_VERSION;
  364 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  365                                          MRT_MFC_FLAGS_BORDER_VIF |
  366                                          MRT_MFC_RP |
  367                                          MRT_MFC_BW_UPCALL);
  368 VNET_DEFINE_STATIC(uint32_t, mrt_api_config);
  369 #define V_mrt_api_config        VNET(mrt_api_config)
  370 VNET_DEFINE_STATIC(int, pim_assert_enabled);
  371 #define V_pim_assert_enabled    VNET(pim_assert_enabled)
  372 static struct timeval pim_assert_interval = { 3, 0 };   /* Rate limit */
  373 
  374 /*
  375  * Find a route for a given origin IP address and multicast group address.
  376  * Statistics must be updated by the caller.
  377  */
  378 static __inline struct mfc *
  379 mfc_find(struct in_addr *o, struct in_addr *g)
  380 {
  381         struct mfc *rt;
  382 
  383         MFC_LOCK_ASSERT();
  384 
  385         LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
  386                 if (in_hosteq(rt->mfc_origin, *o) &&
  387                     in_hosteq(rt->mfc_mcastgrp, *g) &&
  388                     TAILQ_EMPTY(&rt->mfc_stall))
  389                         break;
  390         }
  391 
  392         return (rt);
  393 }
  394 
  395 /*
  396  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
  397  */
  398 static int
  399 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  400 {
  401     int error, optval;
  402     vifi_t      vifi;
  403     struct      vifctl vifc;
  404     struct      mfcctl2 mfc;
  405     struct      bw_upcall bw_upcall;
  406     uint32_t    i;
  407 
  408     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
  409         return EPERM;
  410 
  411     error = 0;
  412     switch (sopt->sopt_name) {
  413     case MRT_INIT:
  414         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  415         if (error)
  416             break;
  417         error = ip_mrouter_init(so, optval);
  418         break;
  419 
  420     case MRT_DONE:
  421         error = ip_mrouter_done();
  422         break;
  423 
  424     case MRT_ADD_VIF:
  425         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  426         if (error)
  427             break;
  428         error = add_vif(&vifc);
  429         break;
  430 
  431     case MRT_DEL_VIF:
  432         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  433         if (error)
  434             break;
  435         error = del_vif(vifi);
  436         break;
  437 
  438     case MRT_ADD_MFC:
  439     case MRT_DEL_MFC:
  440         /*
  441          * select data size depending on API version.
  442          */
  443         if (sopt->sopt_name == MRT_ADD_MFC &&
  444                 V_mrt_api_config & MRT_API_FLAGS_ALL) {
  445             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  446                                 sizeof(struct mfcctl2));
  447         } else {
  448             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  449                                 sizeof(struct mfcctl));
  450             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  451                         sizeof(mfc) - sizeof(struct mfcctl));
  452         }
  453         if (error)
  454             break;
  455         if (sopt->sopt_name == MRT_ADD_MFC)
  456             error = add_mfc(&mfc);
  457         else
  458             error = del_mfc(&mfc);
  459         break;
  460 
  461     case MRT_ASSERT:
  462         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  463         if (error)
  464             break;
  465         set_assert(optval);
  466         break;
  467 
  468     case MRT_API_CONFIG:
  469         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  470         if (!error)
  471             error = set_api_config(&i);
  472         if (!error)
  473             error = sooptcopyout(sopt, &i, sizeof i);
  474         break;
  475 
  476     case MRT_ADD_BW_UPCALL:
  477     case MRT_DEL_BW_UPCALL:
  478         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  479                                 sizeof bw_upcall);
  480         if (error)
  481             break;
  482         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  483             error = add_bw_upcall(&bw_upcall);
  484         else
  485             error = del_bw_upcall(&bw_upcall);
  486         break;
  487 
  488     default:
  489         error = EOPNOTSUPP;
  490         break;
  491     }
  492     return error;
  493 }
  494 
  495 /*
  496  * Handle MRT getsockopt commands
  497  */
  498 static int
  499 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  500 {
  501     int error;
  502 
  503     switch (sopt->sopt_name) {
  504     case MRT_VERSION:
  505         error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
  506         break;
  507 
  508     case MRT_ASSERT:
  509         error = sooptcopyout(sopt, &V_pim_assert_enabled,
  510             sizeof V_pim_assert_enabled);
  511         break;
  512 
  513     case MRT_API_SUPPORT:
  514         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  515         break;
  516 
  517     case MRT_API_CONFIG:
  518         error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
  519         break;
  520 
  521     default:
  522         error = EOPNOTSUPP;
  523         break;
  524     }
  525     return error;
  526 }
  527 
  528 /*
  529  * Handle ioctl commands to obtain information from the cache
  530  */
  531 static int
  532 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
  533 {
  534     int error = 0;
  535 
  536     /*
  537      * Currently the only function calling this ioctl routine is rtioctl_fib().
  538      * Typically, only root can create the raw socket in order to execute
  539      * this ioctl method, however the request might be coming from a prison
  540      */
  541     error = priv_check(curthread, PRIV_NETINET_MROUTE);
  542     if (error)
  543         return (error);
  544     switch (cmd) {
  545     case (SIOCGETVIFCNT):
  546         error = get_vif_cnt((struct sioc_vif_req *)data);
  547         break;
  548 
  549     case (SIOCGETSGCNT):
  550         error = get_sg_cnt((struct sioc_sg_req *)data);
  551         break;
  552 
  553     default:
  554         error = EINVAL;
  555         break;
  556     }
  557     return error;
  558 }
  559 
  560 /*
  561  * returns the packet, byte, rpf-failure count for the source group provided
  562  */
  563 static int
  564 get_sg_cnt(struct sioc_sg_req *req)
  565 {
  566     struct mfc *rt;
  567 
  568     MFC_LOCK();
  569     rt = mfc_find(&req->src, &req->grp);
  570     if (rt == NULL) {
  571         MFC_UNLOCK();
  572         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  573         return EADDRNOTAVAIL;
  574     }
  575     req->pktcnt = rt->mfc_pkt_cnt;
  576     req->bytecnt = rt->mfc_byte_cnt;
  577     req->wrong_if = rt->mfc_wrong_if;
  578     MFC_UNLOCK();
  579     return 0;
  580 }
  581 
  582 /*
  583  * returns the input and output packet and byte counts on the vif provided
  584  */
  585 static int
  586 get_vif_cnt(struct sioc_vif_req *req)
  587 {
  588     vifi_t vifi = req->vifi;
  589 
  590     VIF_LOCK();
  591     if (vifi >= V_numvifs) {
  592         VIF_UNLOCK();
  593         return EINVAL;
  594     }
  595 
  596     req->icount = V_viftable[vifi].v_pkt_in;
  597     req->ocount = V_viftable[vifi].v_pkt_out;
  598     req->ibytes = V_viftable[vifi].v_bytes_in;
  599     req->obytes = V_viftable[vifi].v_bytes_out;
  600     VIF_UNLOCK();
  601 
  602     return 0;
  603 }
  604 
  605 static void
  606 if_detached_event(void *arg __unused, struct ifnet *ifp)
  607 {
  608     vifi_t vifi;
  609     u_long i;
  610 
  611     MROUTER_LOCK();
  612 
  613     if (V_ip_mrouter == NULL) {
  614         MROUTER_UNLOCK();
  615         return;
  616     }
  617 
  618     VIF_LOCK();
  619     MFC_LOCK();
  620 
  621     /*
  622      * Tear down multicast forwarder state associated with this ifnet.
  623      * 1. Walk the vif list, matching vifs against this ifnet.
  624      * 2. Walk the multicast forwarding cache (mfc) looking for
  625      *    inner matches with this vif's index.
  626      * 3. Expire any matching multicast forwarding cache entries.
  627      * 4. Free vif state. This should disable ALLMULTI on the interface.
  628      */
  629     for (vifi = 0; vifi < V_numvifs; vifi++) {
  630         if (V_viftable[vifi].v_ifp != ifp)
  631                 continue;
  632         for (i = 0; i < mfchashsize; i++) {
  633                 struct mfc *rt, *nrt;
  634 
  635                 LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
  636                         if (rt->mfc_parent == vifi) {
  637                                 expire_mfc(rt);
  638                         }
  639                 }
  640         }
  641         del_vif_locked(vifi);
  642     }
  643 
  644     MFC_UNLOCK();
  645     VIF_UNLOCK();
  646 
  647     MROUTER_UNLOCK();
  648 }
  649                         
  650 /*
  651  * Enable multicast forwarding.
  652  */
  653 static int
  654 ip_mrouter_init(struct socket *so, int version)
  655 {
  656 
  657     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
  658         so->so_type, so->so_proto->pr_protocol);
  659 
  660     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  661         return EOPNOTSUPP;
  662 
  663     if (version != 1)
  664         return ENOPROTOOPT;
  665 
  666     MROUTER_LOCK();
  667 
  668     if (ip_mrouter_unloading) {
  669         MROUTER_UNLOCK();
  670         return ENOPROTOOPT;
  671     }
  672 
  673     if (V_ip_mrouter != NULL) {
  674         MROUTER_UNLOCK();
  675         return EADDRINUSE;
  676     }
  677 
  678     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
  679         HASH_NOWAIT);
  680 
  681     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
  682         curvnet);
  683     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
  684         curvnet);
  685     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
  686         curvnet);
  687 
  688     V_ip_mrouter = so;
  689     ip_mrouter_cnt++;
  690 
  691     MROUTER_UNLOCK();
  692 
  693     CTR1(KTR_IPMF, "%s: done", __func__);
  694 
  695     return 0;
  696 }
  697 
  698 /*
  699  * Disable multicast forwarding.
  700  */
  701 static int
  702 X_ip_mrouter_done(void)
  703 {
  704     struct ifnet *ifp;
  705     u_long i;
  706     vifi_t vifi;
  707 
  708     MROUTER_LOCK();
  709 
  710     if (V_ip_mrouter == NULL) {
  711         MROUTER_UNLOCK();
  712         return EINVAL;
  713     }
  714 
  715     /*
  716      * Detach/disable hooks to the reset of the system.
  717      */
  718     V_ip_mrouter = NULL;
  719     ip_mrouter_cnt--;
  720     V_mrt_api_config = 0;
  721 
  722     VIF_LOCK();
  723 
  724     /*
  725      * For each phyint in use, disable promiscuous reception of all IP
  726      * multicasts.
  727      */
  728     for (vifi = 0; vifi < V_numvifs; vifi++) {
  729         if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
  730                 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  731             ifp = V_viftable[vifi].v_ifp;
  732             if_allmulti(ifp, 0);
  733         }
  734     }
  735     bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS);
  736     V_numvifs = 0;
  737     V_pim_assert_enabled = 0;
  738     
  739     VIF_UNLOCK();
  740 
  741     callout_stop(&V_expire_upcalls_ch);
  742     callout_stop(&V_bw_upcalls_ch);
  743     callout_stop(&V_bw_meter_ch);
  744 
  745     MFC_LOCK();
  746 
  747     /*
  748      * Free all multicast forwarding cache entries.
  749      * Do not use hashdestroy(), as we must perform other cleanup.
  750      */
  751     for (i = 0; i < mfchashsize; i++) {
  752         struct mfc *rt, *nrt;
  753 
  754         LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
  755                 expire_mfc(rt);
  756         }
  757     }
  758     free(V_mfchashtbl, M_MRTABLE);
  759     V_mfchashtbl = NULL;
  760 
  761     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
  762 
  763     V_bw_upcalls_n = 0;
  764     bzero(V_bw_meter_timers, BW_METER_BUCKETS * sizeof(*V_bw_meter_timers));
  765 
  766     MFC_UNLOCK();
  767 
  768     V_reg_vif_num = VIFI_INVALID;
  769 
  770     MROUTER_UNLOCK();
  771 
  772     CTR1(KTR_IPMF, "%s: done", __func__);
  773 
  774     return 0;
  775 }
  776 
  777 /*
  778  * Set PIM assert processing global
  779  */
  780 static int
  781 set_assert(int i)
  782 {
  783     if ((i != 1) && (i != 0))
  784         return EINVAL;
  785 
  786     V_pim_assert_enabled = i;
  787 
  788     return 0;
  789 }
  790 
  791 /*
  792  * Configure API capabilities
  793  */
  794 int
  795 set_api_config(uint32_t *apival)
  796 {
  797     u_long i;
  798 
  799     /*
  800      * We can set the API capabilities only if it is the first operation
  801      * after MRT_INIT. I.e.:
  802      *  - there are no vifs installed
  803      *  - pim_assert is not enabled
  804      *  - the MFC table is empty
  805      */
  806     if (V_numvifs > 0) {
  807         *apival = 0;
  808         return EPERM;
  809     }
  810     if (V_pim_assert_enabled) {
  811         *apival = 0;
  812         return EPERM;
  813     }
  814 
  815     MFC_LOCK();
  816 
  817     for (i = 0; i < mfchashsize; i++) {
  818         if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
  819             MFC_UNLOCK();
  820             *apival = 0;
  821             return EPERM;
  822         }
  823     }
  824 
  825     MFC_UNLOCK();
  826 
  827     V_mrt_api_config = *apival & mrt_api_support;
  828     *apival = V_mrt_api_config;
  829 
  830     return 0;
  831 }
  832 
  833 /*
  834  * Add a vif to the vif table
  835  */
  836 static int
  837 add_vif(struct vifctl *vifcp)
  838 {
  839     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
  840     struct sockaddr_in sin = {sizeof sin, AF_INET};
  841     struct ifaddr *ifa;
  842     struct ifnet *ifp;
  843     int error;
  844 
  845     VIF_LOCK();
  846     if (vifcp->vifc_vifi >= MAXVIFS) {
  847         VIF_UNLOCK();
  848         return EINVAL;
  849     }
  850     /* rate limiting is no longer supported by this code */
  851     if (vifcp->vifc_rate_limit != 0) {
  852         log(LOG_ERR, "rate limiting is no longer supported\n");
  853         VIF_UNLOCK();
  854         return EINVAL;
  855     }
  856     if (!in_nullhost(vifp->v_lcl_addr)) {
  857         VIF_UNLOCK();
  858         return EADDRINUSE;
  859     }
  860     if (in_nullhost(vifcp->vifc_lcl_addr)) {
  861         VIF_UNLOCK();
  862         return EADDRNOTAVAIL;
  863     }
  864 
  865     /* Find the interface with an address in AF_INET family */
  866     if (vifcp->vifc_flags & VIFF_REGISTER) {
  867         /*
  868          * XXX: Because VIFF_REGISTER does not really need a valid
  869          * local interface (e.g. it could be 127.0.0.2), we don't
  870          * check its address.
  871          */
  872         ifp = NULL;
  873     } else {
  874         sin.sin_addr = vifcp->vifc_lcl_addr;
  875         NET_EPOCH_ENTER();
  876         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  877         if (ifa == NULL) {
  878                 NET_EPOCH_EXIT();
  879             VIF_UNLOCK();
  880             return EADDRNOTAVAIL;
  881         }
  882         ifp = ifa->ifa_ifp;
  883         NET_EPOCH_EXIT();
  884     }
  885 
  886     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
  887         CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
  888         VIF_UNLOCK();
  889         return EOPNOTSUPP;
  890     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  891         ifp = &V_multicast_register_if;
  892         CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
  893         if (V_reg_vif_num == VIFI_INVALID) {
  894             if_initname(&V_multicast_register_if, "register_vif", 0);
  895             V_multicast_register_if.if_flags = IFF_LOOPBACK;
  896             V_reg_vif_num = vifcp->vifc_vifi;
  897         }
  898     } else {            /* Make sure the interface supports multicast */
  899         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
  900             VIF_UNLOCK();
  901             return EOPNOTSUPP;
  902         }
  903 
  904         /* Enable promiscuous reception of all IP multicasts from the if */
  905         error = if_allmulti(ifp, 1);
  906         if (error) {
  907             VIF_UNLOCK();
  908             return error;
  909         }
  910     }
  911 
  912     vifp->v_flags     = vifcp->vifc_flags;
  913     vifp->v_threshold = vifcp->vifc_threshold;
  914     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
  915     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
  916     vifp->v_ifp       = ifp;
  917     /* initialize per vif pkt counters */
  918     vifp->v_pkt_in    = 0;
  919     vifp->v_pkt_out   = 0;
  920     vifp->v_bytes_in  = 0;
  921     vifp->v_bytes_out = 0;
  922 
  923     /* Adjust numvifs up if the vifi is higher than numvifs */
  924     if (V_numvifs <= vifcp->vifc_vifi)
  925         V_numvifs = vifcp->vifc_vifi + 1;
  926 
  927     VIF_UNLOCK();
  928 
  929     CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__,
  930         (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr),
  931         (int)vifcp->vifc_threshold);
  932 
  933     return 0;
  934 }
  935 
  936 /*
  937  * Delete a vif from the vif table
  938  */
  939 static int
  940 del_vif_locked(vifi_t vifi)
  941 {
  942     struct vif *vifp;
  943 
  944     VIF_LOCK_ASSERT();
  945 
  946     if (vifi >= V_numvifs) {
  947         return EINVAL;
  948     }
  949     vifp = &V_viftable[vifi];
  950     if (in_nullhost(vifp->v_lcl_addr)) {
  951         return EADDRNOTAVAIL;
  952     }
  953 
  954     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
  955         if_allmulti(vifp->v_ifp, 0);
  956 
  957     if (vifp->v_flags & VIFF_REGISTER)
  958         V_reg_vif_num = VIFI_INVALID;
  959 
  960     bzero((caddr_t)vifp, sizeof (*vifp));
  961 
  962     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
  963 
  964     /* Adjust numvifs down */
  965     for (vifi = V_numvifs; vifi > 0; vifi--)
  966         if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
  967             break;
  968     V_numvifs = vifi;
  969 
  970     return 0;
  971 }
  972 
  973 static int
  974 del_vif(vifi_t vifi)
  975 {
  976     int cc;
  977 
  978     VIF_LOCK();
  979     cc = del_vif_locked(vifi);
  980     VIF_UNLOCK();
  981 
  982     return cc;
  983 }
  984 
  985 /*
  986  * update an mfc entry without resetting counters and S,G addresses.
  987  */
  988 static void
  989 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
  990 {
  991     int i;
  992 
  993     rt->mfc_parent = mfccp->mfcc_parent;
  994     for (i = 0; i < V_numvifs; i++) {
  995         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
  996         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
  997             MRT_MFC_FLAGS_ALL;
  998     }
  999     /* set the RP address */
 1000     if (V_mrt_api_config & MRT_MFC_RP)
 1001         rt->mfc_rp = mfccp->mfcc_rp;
 1002     else
 1003         rt->mfc_rp.s_addr = INADDR_ANY;
 1004 }
 1005 
 1006 /*
 1007  * fully initialize an mfc entry from the parameter.
 1008  */
 1009 static void
 1010 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1011 {
 1012     rt->mfc_origin     = mfccp->mfcc_origin;
 1013     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1014 
 1015     update_mfc_params(rt, mfccp);
 1016 
 1017     /* initialize pkt counters per src-grp */
 1018     rt->mfc_pkt_cnt    = 0;
 1019     rt->mfc_byte_cnt   = 0;
 1020     rt->mfc_wrong_if   = 0;
 1021     timevalclear(&rt->mfc_last_assert);
 1022 }
 1023 
 1024 static void
 1025 expire_mfc(struct mfc *rt)
 1026 {
 1027         struct rtdetq *rte, *nrte;
 1028 
 1029         MFC_LOCK_ASSERT();
 1030 
 1031         free_bw_list(rt->mfc_bw_meter);
 1032 
 1033         TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
 1034                 m_freem(rte->m);
 1035                 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
 1036                 free(rte, M_MRTABLE);
 1037         }
 1038 
 1039         LIST_REMOVE(rt, mfc_hash);
 1040         free(rt, M_MRTABLE);
 1041 }
 1042 
 1043 /*
 1044  * Add an mfc entry
 1045  */
 1046 static int
 1047 add_mfc(struct mfcctl2 *mfccp)
 1048 {
 1049     struct mfc *rt;
 1050     struct rtdetq *rte, *nrte;
 1051     u_long hash = 0;
 1052     u_short nstl;
 1053 
 1054     VIF_LOCK();
 1055     MFC_LOCK();
 1056 
 1057     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
 1058 
 1059     /* If an entry already exists, just update the fields */
 1060     if (rt) {
 1061         CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x",
 1062             __func__, ntohl(mfccp->mfcc_origin.s_addr),
 1063             (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1064             mfccp->mfcc_parent);
 1065         update_mfc_params(rt, mfccp);
 1066         MFC_UNLOCK();
 1067         VIF_UNLOCK();
 1068         return (0);
 1069     }
 1070 
 1071     /*
 1072      * Find the entry for which the upcall was made and update
 1073      */
 1074     nstl = 0;
 1075     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
 1076     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1077         if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1078             in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
 1079             !TAILQ_EMPTY(&rt->mfc_stall)) {
 1080                 CTR5(KTR_IPMF,
 1081                     "%s: add mfc orig 0x%08x group %lx parent %x qh %p",
 1082                     __func__, ntohl(mfccp->mfcc_origin.s_addr),
 1083                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1084                     mfccp->mfcc_parent,
 1085                     TAILQ_FIRST(&rt->mfc_stall));
 1086                 if (nstl++)
 1087                         CTR1(KTR_IPMF, "%s: multiple matches", __func__);
 1088 
 1089                 init_mfc_params(rt, mfccp);
 1090                 rt->mfc_expire = 0;     /* Don't clean this guy up */
 1091                 V_nexpire[hash]--;
 1092 
 1093                 /* Free queued packets, but attempt to forward them first. */
 1094                 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
 1095                         if (rte->ifp != NULL)
 1096                                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1097                         m_freem(rte->m);
 1098                         TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
 1099                         rt->mfc_nstall--;
 1100                         free(rte, M_MRTABLE);
 1101                 }
 1102         }
 1103     }
 1104 
 1105     /*
 1106      * It is possible that an entry is being inserted without an upcall
 1107      */
 1108     if (nstl == 0) {
 1109         CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
 1110         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1111                 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1112                     in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
 1113                         init_mfc_params(rt, mfccp);
 1114                         if (rt->mfc_expire)
 1115                             V_nexpire[hash]--;
 1116                         rt->mfc_expire = 0;
 1117                         break; /* XXX */
 1118                 }
 1119         }
 1120 
 1121         if (rt == NULL) {               /* no upcall, so make a new entry */
 1122             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1123             if (rt == NULL) {
 1124                 MFC_UNLOCK();
 1125                 VIF_UNLOCK();
 1126                 return (ENOBUFS);
 1127             }
 1128 
 1129             init_mfc_params(rt, mfccp);
 1130             TAILQ_INIT(&rt->mfc_stall);
 1131             rt->mfc_nstall = 0;
 1132 
 1133             rt->mfc_expire     = 0;
 1134             rt->mfc_bw_meter = NULL;
 1135 
 1136             /* insert new entry at head of hash chain */
 1137             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1138         }
 1139     }
 1140 
 1141     MFC_UNLOCK();
 1142     VIF_UNLOCK();
 1143 
 1144     return (0);
 1145 }
 1146 
 1147 /*
 1148  * Delete an mfc entry
 1149  */
 1150 static int
 1151 del_mfc(struct mfcctl2 *mfccp)
 1152 {
 1153     struct in_addr      origin;
 1154     struct in_addr      mcastgrp;
 1155     struct mfc          *rt;
 1156 
 1157     origin = mfccp->mfcc_origin;
 1158     mcastgrp = mfccp->mfcc_mcastgrp;
 1159 
 1160     CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__,
 1161         ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1162 
 1163     MFC_LOCK();
 1164 
 1165     rt = mfc_find(&origin, &mcastgrp);
 1166     if (rt == NULL) {
 1167         MFC_UNLOCK();
 1168         return EADDRNOTAVAIL;
 1169     }
 1170 
 1171     /*
 1172      * free the bw_meter entries
 1173      */
 1174     free_bw_list(rt->mfc_bw_meter);
 1175     rt->mfc_bw_meter = NULL;
 1176 
 1177     LIST_REMOVE(rt, mfc_hash);
 1178     free(rt, M_MRTABLE);
 1179 
 1180     MFC_UNLOCK();
 1181 
 1182     return (0);
 1183 }
 1184 
 1185 /*
 1186  * Send a message to the routing daemon on the multicast routing socket.
 1187  */
 1188 static int
 1189 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1190 {
 1191     if (s) {
 1192         SOCKBUF_LOCK(&s->so_rcv);
 1193         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1194             NULL) != 0) {
 1195             sorwakeup_locked(s);
 1196             return 0;
 1197         }
 1198         soroverflow_locked(s);
 1199     }
 1200     m_freem(mm);
 1201     return -1;
 1202 }
 1203 
 1204 /*
 1205  * IP multicast forwarding function. This function assumes that the packet
 1206  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1207  * pointed to by "ifp", and the packet is to be relayed to other networks
 1208  * that have members of the packet's destination IP multicast group.
 1209  *
 1210  * The packet is returned unscathed to the caller, unless it is
 1211  * erroneous, in which case a non-zero return value tells the caller to
 1212  * discard it.
 1213  */
 1214 
 1215 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1216 
 1217 static int
 1218 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1219     struct ip_moptions *imo)
 1220 {
 1221     struct mfc *rt;
 1222     int error;
 1223     vifi_t vifi;
 1224 
 1225     CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p",
 1226         ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
 1227 
 1228     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1229                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1230         /*
 1231          * Packet arrived via a physical interface or
 1232          * an encapsulated tunnel or a register_vif.
 1233          */
 1234     } else {
 1235         /*
 1236          * Packet arrived through a source-route tunnel.
 1237          * Source-route tunnels are no longer supported.
 1238          */
 1239         return (1);
 1240     }
 1241 
 1242     VIF_LOCK();
 1243     MFC_LOCK();
 1244     if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
 1245         if (ip->ip_ttl < MAXTTL)
 1246             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1247         error = ip_mdq(m, ifp, NULL, vifi);
 1248         MFC_UNLOCK();
 1249         VIF_UNLOCK();
 1250         return error;
 1251     }
 1252 
 1253     /*
 1254      * Don't forward a packet with time-to-live of zero or one,
 1255      * or a packet destined to a local-only group.
 1256      */
 1257     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
 1258         MFC_UNLOCK();
 1259         VIF_UNLOCK();
 1260         return 0;
 1261     }
 1262 
 1263     /*
 1264      * Determine forwarding vifs from the forwarding cache table
 1265      */
 1266     MRTSTAT_INC(mrts_mfc_lookups);
 1267     rt = mfc_find(&ip->ip_src, &ip->ip_dst);
 1268 
 1269     /* Entry exists, so forward if necessary */
 1270     if (rt != NULL) {
 1271         error = ip_mdq(m, ifp, rt, -1);
 1272         MFC_UNLOCK();
 1273         VIF_UNLOCK();
 1274         return error;
 1275     } else {
 1276         /*
 1277          * If we don't have a route for packet's origin,
 1278          * Make a copy of the packet & send message to routing daemon
 1279          */
 1280 
 1281         struct mbuf *mb0;
 1282         struct rtdetq *rte;
 1283         u_long hash;
 1284         int hlen = ip->ip_hl << 2;
 1285 
 1286         MRTSTAT_INC(mrts_mfc_misses);
 1287         MRTSTAT_INC(mrts_no_route);
 1288         CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)",
 1289             ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr));
 1290 
 1291         /*
 1292          * Allocate mbufs early so that we don't do extra work if we are
 1293          * just going to fail anyway.  Make sure to pullup the header so
 1294          * that other people can't step on it.
 1295          */
 1296         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
 1297             M_NOWAIT|M_ZERO);
 1298         if (rte == NULL) {
 1299             MFC_UNLOCK();
 1300             VIF_UNLOCK();
 1301             return ENOBUFS;
 1302         }
 1303 
 1304         mb0 = m_copypacket(m, M_NOWAIT);
 1305         if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen))
 1306             mb0 = m_pullup(mb0, hlen);
 1307         if (mb0 == NULL) {
 1308             free(rte, M_MRTABLE);
 1309             MFC_UNLOCK();
 1310             VIF_UNLOCK();
 1311             return ENOBUFS;
 1312         }
 1313 
 1314         /* is there an upcall waiting for this flow ? */
 1315         hash = MFCHASH(ip->ip_src, ip->ip_dst);
 1316         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1317                 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
 1318                     in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
 1319                     !TAILQ_EMPTY(&rt->mfc_stall))
 1320                         break;
 1321         }
 1322 
 1323         if (rt == NULL) {
 1324             int i;
 1325             struct igmpmsg *im;
 1326             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1327             struct mbuf *mm;
 1328 
 1329             /*
 1330              * Locate the vifi for the incoming interface for this packet.
 1331              * If none found, drop packet.
 1332              */
 1333             for (vifi = 0; vifi < V_numvifs &&
 1334                     V_viftable[vifi].v_ifp != ifp; vifi++)
 1335                 ;
 1336             if (vifi >= V_numvifs)      /* vif not found, drop packet */
 1337                 goto non_fatal;
 1338 
 1339             /* no upcall, so make a new entry */
 1340             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1341             if (rt == NULL)
 1342                 goto fail;
 1343 
 1344             /* Make a copy of the header to send to the user level process */
 1345             mm = m_copym(mb0, 0, hlen, M_NOWAIT);
 1346             if (mm == NULL)
 1347                 goto fail1;
 1348 
 1349             /*
 1350              * Send message to routing daemon to install
 1351              * a route into the kernel table
 1352              */
 1353 
 1354             im = mtod(mm, struct igmpmsg *);
 1355             im->im_msgtype = IGMPMSG_NOCACHE;
 1356             im->im_mbz = 0;
 1357             im->im_vif = vifi;
 1358 
 1359             MRTSTAT_INC(mrts_upcalls);
 1360 
 1361             k_igmpsrc.sin_addr = ip->ip_src;
 1362             if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1363                 CTR0(KTR_IPMF, "ip_mforward: socket queue full");
 1364                 MRTSTAT_INC(mrts_upq_sockfull);
 1365 fail1:
 1366                 free(rt, M_MRTABLE);
 1367 fail:
 1368                 free(rte, M_MRTABLE);
 1369                 m_freem(mb0);
 1370                 MFC_UNLOCK();
 1371                 VIF_UNLOCK();
 1372                 return ENOBUFS;
 1373             }
 1374 
 1375             /* insert new entry at head of hash chain */
 1376             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1377             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1378             rt->mfc_expire            = UPCALL_EXPIRE;
 1379             V_nexpire[hash]++;
 1380             for (i = 0; i < V_numvifs; i++) {
 1381                 rt->mfc_ttls[i] = 0;
 1382                 rt->mfc_flags[i] = 0;
 1383             }
 1384             rt->mfc_parent = -1;
 1385 
 1386             /* clear the RP address */
 1387             rt->mfc_rp.s_addr = INADDR_ANY;
 1388             rt->mfc_bw_meter = NULL;
 1389 
 1390             /* initialize pkt counters per src-grp */
 1391             rt->mfc_pkt_cnt = 0;
 1392             rt->mfc_byte_cnt = 0;
 1393             rt->mfc_wrong_if = 0;
 1394             timevalclear(&rt->mfc_last_assert);
 1395 
 1396             TAILQ_INIT(&rt->mfc_stall);
 1397             rt->mfc_nstall = 0;
 1398 
 1399             /* link into table */
 1400             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1401             TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
 1402             rt->mfc_nstall++;
 1403 
 1404         } else {
 1405             /* determine if queue has overflowed */
 1406             if (rt->mfc_nstall > MAX_UPQ) {
 1407                 MRTSTAT_INC(mrts_upq_ovflw);
 1408 non_fatal:
 1409                 free(rte, M_MRTABLE);
 1410                 m_freem(mb0);
 1411                 MFC_UNLOCK();
 1412                 VIF_UNLOCK();
 1413                 return (0);
 1414             }
 1415             TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
 1416             rt->mfc_nstall++;
 1417         }
 1418 
 1419         rte->m                  = mb0;
 1420         rte->ifp                = ifp;
 1421 
 1422         MFC_UNLOCK();
 1423         VIF_UNLOCK();
 1424 
 1425         return 0;
 1426     }
 1427 }
 1428 
 1429 /*
 1430  * Clean up the cache entry if upcall is not serviced
 1431  */
 1432 static void
 1433 expire_upcalls(void *arg)
 1434 {
 1435     u_long i;
 1436 
 1437     CURVNET_SET((struct vnet *) arg);
 1438 
 1439     MFC_LOCK();
 1440 
 1441     for (i = 0; i < mfchashsize; i++) {
 1442         struct mfc *rt, *nrt;
 1443 
 1444         if (V_nexpire[i] == 0)
 1445             continue;
 1446 
 1447         LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) {
 1448                 if (TAILQ_EMPTY(&rt->mfc_stall))
 1449                         continue;
 1450 
 1451                 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
 1452                         continue;
 1453 
 1454                 /*
 1455                  * free the bw_meter entries
 1456                  */
 1457                 while (rt->mfc_bw_meter != NULL) {
 1458                     struct bw_meter *x = rt->mfc_bw_meter;
 1459 
 1460                     rt->mfc_bw_meter = x->bm_mfc_next;
 1461                     free(x, M_BWMETER);
 1462                 }
 1463 
 1464                 MRTSTAT_INC(mrts_cache_cleanups);
 1465                 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
 1466                     (u_long)ntohl(rt->mfc_origin.s_addr),
 1467                     (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
 1468 
 1469                 expire_mfc(rt);
 1470             }
 1471     }
 1472 
 1473     MFC_UNLOCK();
 1474 
 1475     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
 1476         curvnet);
 1477 
 1478     CURVNET_RESTORE();
 1479 }
 1480 
 1481 /*
 1482  * Packet forwarding routine once entry in the cache is made
 1483  */
 1484 static int
 1485 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1486 {
 1487     struct ip  *ip = mtod(m, struct ip *);
 1488     vifi_t vifi;
 1489     int plen = ntohs(ip->ip_len);
 1490 
 1491     VIF_LOCK_ASSERT();
 1492 
 1493     /*
 1494      * If xmt_vif is not -1, send on only the requested vif.
 1495      *
 1496      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1497      */
 1498     if (xmt_vif < V_numvifs) {
 1499         if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1500                 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
 1501         else
 1502                 phyint_send(ip, V_viftable + xmt_vif, m);
 1503         return 1;
 1504     }
 1505 
 1506     /*
 1507      * Don't forward if it didn't arrive from the parent vif for its origin.
 1508      */
 1509     vifi = rt->mfc_parent;
 1510     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
 1511         CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
 1512             __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
 1513         MRTSTAT_INC(mrts_wrong_if);
 1514         ++rt->mfc_wrong_if;
 1515         /*
 1516          * If we are doing PIM assert processing, send a message
 1517          * to the routing daemon.
 1518          *
 1519          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1520          * can complete the SPT switch, regardless of the type
 1521          * of the iif (broadcast media, GRE tunnel, etc).
 1522          */
 1523         if (V_pim_assert_enabled && (vifi < V_numvifs) &&
 1524             V_viftable[vifi].v_ifp) {
 1525 
 1526             if (ifp == &V_multicast_register_if)
 1527                 PIMSTAT_INC(pims_rcv_registers_wrongiif);
 1528 
 1529             /* Get vifi for the incoming packet */
 1530             for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
 1531                 vifi++)
 1532                 ;
 1533             if (vifi >= V_numvifs)
 1534                 return 0;       /* The iif is not found: ignore the packet. */
 1535 
 1536             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1537                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1538 
 1539             if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
 1540                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1541                 struct igmpmsg *im;
 1542                 int hlen = ip->ip_hl << 2;
 1543                 struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT);
 1544 
 1545                 if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen))
 1546                     mm = m_pullup(mm, hlen);
 1547                 if (mm == NULL)
 1548                     return ENOBUFS;
 1549 
 1550                 im = mtod(mm, struct igmpmsg *);
 1551                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1552                 im->im_mbz              = 0;
 1553                 im->im_vif              = vifi;
 1554 
 1555                 MRTSTAT_INC(mrts_upcalls);
 1556 
 1557                 k_igmpsrc.sin_addr = im->im_src;
 1558                 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1559                     CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 1560                     MRTSTAT_INC(mrts_upq_sockfull);
 1561                     return ENOBUFS;
 1562                 }
 1563             }
 1564         }
 1565         return 0;
 1566     }
 1567 
 1568 
 1569     /* If I sourced this packet, it counts as output, else it was input. */
 1570     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
 1571         V_viftable[vifi].v_pkt_out++;
 1572         V_viftable[vifi].v_bytes_out += plen;
 1573     } else {
 1574         V_viftable[vifi].v_pkt_in++;
 1575         V_viftable[vifi].v_bytes_in += plen;
 1576     }
 1577     rt->mfc_pkt_cnt++;
 1578     rt->mfc_byte_cnt += plen;
 1579 
 1580     /*
 1581      * For each vif, decide if a copy of the packet should be forwarded.
 1582      * Forward if:
 1583      *          - the ttl exceeds the vif's threshold
 1584      *          - there are group members downstream on interface
 1585      */
 1586     for (vifi = 0; vifi < V_numvifs; vifi++)
 1587         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1588             V_viftable[vifi].v_pkt_out++;
 1589             V_viftable[vifi].v_bytes_out += plen;
 1590             if (V_viftable[vifi].v_flags & VIFF_REGISTER)
 1591                 pim_register_send(ip, V_viftable + vifi, m, rt);
 1592             else
 1593                 phyint_send(ip, V_viftable + vifi, m);
 1594         }
 1595 
 1596     /*
 1597      * Perform upcall-related bw measuring.
 1598      */
 1599     if (rt->mfc_bw_meter != NULL) {
 1600         struct bw_meter *x;
 1601         struct timeval now;
 1602 
 1603         microtime(&now);
 1604         MFC_LOCK_ASSERT();
 1605         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1606             bw_meter_receive_packet(x, plen, &now);
 1607     }
 1608 
 1609     return 0;
 1610 }
 1611 
 1612 /*
 1613  * Check if a vif number is legal/ok. This is used by in_mcast.c.
 1614  */
 1615 static int
 1616 X_legal_vif_num(int vif)
 1617 {
 1618         int ret;
 1619 
 1620         ret = 0;
 1621         if (vif < 0)
 1622                 return (ret);
 1623 
 1624         VIF_LOCK();
 1625         if (vif < V_numvifs)
 1626                 ret = 1;
 1627         VIF_UNLOCK();
 1628 
 1629         return (ret);
 1630 }
 1631 
 1632 /*
 1633  * Return the local address used by this vif
 1634  */
 1635 static u_long
 1636 X_ip_mcast_src(int vifi)
 1637 {
 1638         in_addr_t addr;
 1639 
 1640         addr = INADDR_ANY;
 1641         if (vifi < 0)
 1642                 return (addr);
 1643 
 1644         VIF_LOCK();
 1645         if (vifi < V_numvifs)
 1646                 addr = V_viftable[vifi].v_lcl_addr.s_addr;
 1647         VIF_UNLOCK();
 1648 
 1649         return (addr);
 1650 }
 1651 
 1652 static void
 1653 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1654 {
 1655     struct mbuf *mb_copy;
 1656     int hlen = ip->ip_hl << 2;
 1657 
 1658     VIF_LOCK_ASSERT();
 1659 
 1660     /*
 1661      * Make a new reference to the packet; make sure that
 1662      * the IP header is actually copied, not just referenced,
 1663      * so that ip_output() only scribbles on the copy.
 1664      */
 1665     mb_copy = m_copypacket(m, M_NOWAIT);
 1666     if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen))
 1667         mb_copy = m_pullup(mb_copy, hlen);
 1668     if (mb_copy == NULL)
 1669         return;
 1670 
 1671     send_packet(vifp, mb_copy);
 1672 }
 1673 
 1674 static void
 1675 send_packet(struct vif *vifp, struct mbuf *m)
 1676 {
 1677         struct ip_moptions imo;
 1678         int error __unused;
 1679 
 1680         VIF_LOCK_ASSERT();
 1681 
 1682         imo.imo_multicast_ifp  = vifp->v_ifp;
 1683         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 1684         imo.imo_multicast_loop = 1;
 1685         imo.imo_multicast_vif  = -1;
 1686         STAILQ_INIT(&imo.imo_head);
 1687 
 1688         /*
 1689          * Re-entrancy should not be a problem here, because
 1690          * the packets that we send out and are looped back at us
 1691          * should get rejected because they appear to come from
 1692          * the loopback interface, thus preventing looping.
 1693          */
 1694         error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL);
 1695         CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
 1696             (ptrdiff_t)(vifp - V_viftable), error);
 1697 }
 1698 
 1699 /*
 1700  * Stubs for old RSVP socket shim implementation.
 1701  */
 1702 
 1703 static int
 1704 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
 1705 {
 1706 
 1707         return (EOPNOTSUPP);
 1708 }
 1709 
 1710 static void
 1711 X_ip_rsvp_force_done(struct socket *so __unused)
 1712 {
 1713 
 1714 }
 1715 
 1716 static int
 1717 X_rsvp_input(struct mbuf **mp, int *offp, int proto)
 1718 {
 1719         struct mbuf *m;
 1720 
 1721         m = *mp;
 1722         *mp = NULL;
 1723         if (!V_rsvp_on)
 1724                 m_freem(m);
 1725         return (IPPROTO_DONE);
 1726 }
 1727 
 1728 /*
 1729  * Code for bandwidth monitors
 1730  */
 1731 
 1732 /*
 1733  * Define common interface for timeval-related methods
 1734  */
 1735 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 1736 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 1737 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 1738 
 1739 static uint32_t
 1740 compute_bw_meter_flags(struct bw_upcall *req)
 1741 {
 1742     uint32_t flags = 0;
 1743 
 1744     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 1745         flags |= BW_METER_UNIT_PACKETS;
 1746     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 1747         flags |= BW_METER_UNIT_BYTES;
 1748     if (req->bu_flags & BW_UPCALL_GEQ)
 1749         flags |= BW_METER_GEQ;
 1750     if (req->bu_flags & BW_UPCALL_LEQ)
 1751         flags |= BW_METER_LEQ;
 1752 
 1753     return flags;
 1754 }
 1755 
 1756 /*
 1757  * Add a bw_meter entry
 1758  */
 1759 static int
 1760 add_bw_upcall(struct bw_upcall *req)
 1761 {
 1762     struct mfc *mfc;
 1763     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 1764                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 1765     struct timeval now;
 1766     struct bw_meter *x;
 1767     uint32_t flags;
 1768 
 1769     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1770         return EOPNOTSUPP;
 1771 
 1772     /* Test if the flags are valid */
 1773     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 1774         return EINVAL;
 1775     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 1776         return EINVAL;
 1777     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1778             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1779         return EINVAL;
 1780 
 1781     /* Test if the threshold time interval is valid */
 1782     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 1783         return EINVAL;
 1784 
 1785     flags = compute_bw_meter_flags(req);
 1786 
 1787     /*
 1788      * Find if we have already same bw_meter entry
 1789      */
 1790     MFC_LOCK();
 1791     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1792     if (mfc == NULL) {
 1793         MFC_UNLOCK();
 1794         return EADDRNOTAVAIL;
 1795     }
 1796     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 1797         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1798                            &req->bu_threshold.b_time, ==)) &&
 1799             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 1800             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 1801             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 1802             MFC_UNLOCK();
 1803             return 0;           /* XXX Already installed */
 1804         }
 1805     }
 1806 
 1807     /* Allocate the new bw_meter entry */
 1808     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 1809     if (x == NULL) {
 1810         MFC_UNLOCK();
 1811         return ENOBUFS;
 1812     }
 1813 
 1814     /* Set the new bw_meter entry */
 1815     x->bm_threshold.b_time = req->bu_threshold.b_time;
 1816     microtime(&now);
 1817     x->bm_start_time = now;
 1818     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 1819     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 1820     x->bm_measured.b_packets = 0;
 1821     x->bm_measured.b_bytes = 0;
 1822     x->bm_flags = flags;
 1823     x->bm_time_next = NULL;
 1824     x->bm_time_hash = BW_METER_BUCKETS;
 1825 
 1826     /* Add the new bw_meter entry to the front of entries for this MFC */
 1827     x->bm_mfc = mfc;
 1828     x->bm_mfc_next = mfc->mfc_bw_meter;
 1829     mfc->mfc_bw_meter = x;
 1830     schedule_bw_meter(x, &now);
 1831     MFC_UNLOCK();
 1832 
 1833     return 0;
 1834 }
 1835 
 1836 static void
 1837 free_bw_list(struct bw_meter *list)
 1838 {
 1839     while (list != NULL) {
 1840         struct bw_meter *x = list;
 1841 
 1842         list = list->bm_mfc_next;
 1843         unschedule_bw_meter(x);
 1844         free(x, M_BWMETER);
 1845     }
 1846 }
 1847 
 1848 /*
 1849  * Delete one or multiple bw_meter entries
 1850  */
 1851 static int
 1852 del_bw_upcall(struct bw_upcall *req)
 1853 {
 1854     struct mfc *mfc;
 1855     struct bw_meter *x;
 1856 
 1857     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1858         return EOPNOTSUPP;
 1859 
 1860     MFC_LOCK();
 1861 
 1862     /* Find the corresponding MFC entry */
 1863     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1864     if (mfc == NULL) {
 1865         MFC_UNLOCK();
 1866         return EADDRNOTAVAIL;
 1867     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 1868         /*
 1869          * Delete all bw_meter entries for this mfc
 1870          */
 1871         struct bw_meter *list;
 1872 
 1873         list = mfc->mfc_bw_meter;
 1874         mfc->mfc_bw_meter = NULL;
 1875         free_bw_list(list);
 1876         MFC_UNLOCK();
 1877         return 0;
 1878     } else {                    /* Delete a single bw_meter entry */
 1879         struct bw_meter *prev;
 1880         uint32_t flags = 0;
 1881 
 1882         flags = compute_bw_meter_flags(req);
 1883 
 1884         /* Find the bw_meter entry to delete */
 1885         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 1886              prev = x, x = x->bm_mfc_next) {
 1887             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1888                                &req->bu_threshold.b_time, ==)) &&
 1889                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 1890                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 1891                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 1892                 break;
 1893         }
 1894         if (x != NULL) { /* Delete entry from the list for this MFC */
 1895             if (prev != NULL)
 1896                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 1897             else
 1898                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 1899 
 1900             unschedule_bw_meter(x);
 1901             MFC_UNLOCK();
 1902             /* Free the bw_meter entry */
 1903             free(x, M_BWMETER);
 1904             return 0;
 1905         } else {
 1906             MFC_UNLOCK();
 1907             return EINVAL;
 1908         }
 1909     }
 1910     /* NOTREACHED */
 1911 }
 1912 
 1913 /*
 1914  * Perform bandwidth measurement processing that may result in an upcall
 1915  */
 1916 static void
 1917 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 1918 {
 1919     struct timeval delta;
 1920 
 1921     MFC_LOCK_ASSERT();
 1922 
 1923     delta = *nowp;
 1924     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 1925 
 1926     if (x->bm_flags & BW_METER_GEQ) {
 1927         /*
 1928          * Processing for ">=" type of bw_meter entry
 1929          */
 1930         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 1931             /* Reset the bw_meter entry */
 1932             x->bm_start_time = *nowp;
 1933             x->bm_measured.b_packets = 0;
 1934             x->bm_measured.b_bytes = 0;
 1935             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 1936         }
 1937 
 1938         /* Record that a packet is received */
 1939         x->bm_measured.b_packets++;
 1940         x->bm_measured.b_bytes += plen;
 1941 
 1942         /*
 1943          * Test if we should deliver an upcall
 1944          */
 1945         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 1946             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1947                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 1948                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1949                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 1950                 /* Prepare an upcall for delivery */
 1951                 bw_meter_prepare_upcall(x, nowp);
 1952                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 1953             }
 1954         }
 1955     } else if (x->bm_flags & BW_METER_LEQ) {
 1956         /*
 1957          * Processing for "<=" type of bw_meter entry
 1958          */
 1959         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 1960             /*
 1961              * We are behind time with the multicast forwarding table
 1962              * scanning for "<=" type of bw_meter entries, so test now
 1963              * if we should deliver an upcall.
 1964              */
 1965             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1966                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 1967                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1968                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 1969                 /* Prepare an upcall for delivery */
 1970                 bw_meter_prepare_upcall(x, nowp);
 1971             }
 1972             /* Reschedule the bw_meter entry */
 1973             unschedule_bw_meter(x);
 1974             schedule_bw_meter(x, nowp);
 1975         }
 1976 
 1977         /* Record that a packet is received */
 1978         x->bm_measured.b_packets++;
 1979         x->bm_measured.b_bytes += plen;
 1980 
 1981         /*
 1982          * Test if we should restart the measuring interval
 1983          */
 1984         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 1985              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 1986             (x->bm_flags & BW_METER_UNIT_BYTES &&
 1987              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 1988             /* Don't restart the measuring interval */
 1989         } else {
 1990             /* Do restart the measuring interval */
 1991             /*
 1992              * XXX: note that we don't unschedule and schedule, because this
 1993              * might be too much overhead per packet. Instead, when we process
 1994              * all entries for a given timer hash bin, we check whether it is
 1995              * really a timeout. If not, we reschedule at that time.
 1996              */
 1997             x->bm_start_time = *nowp;
 1998             x->bm_measured.b_packets = 0;
 1999             x->bm_measured.b_bytes = 0;
 2000             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2001         }
 2002     }
 2003 }
 2004 
 2005 /*
 2006  * Prepare a bandwidth-related upcall
 2007  */
 2008 static void
 2009 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2010 {
 2011     struct timeval delta;
 2012     struct bw_upcall *u;
 2013 
 2014     MFC_LOCK_ASSERT();
 2015 
 2016     /*
 2017      * Compute the measured time interval
 2018      */
 2019     delta = *nowp;
 2020     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2021 
 2022     /*
 2023      * If there are too many pending upcalls, deliver them now
 2024      */
 2025     if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
 2026         bw_upcalls_send();
 2027 
 2028     /*
 2029      * Set the bw_upcall entry
 2030      */
 2031     u = &V_bw_upcalls[V_bw_upcalls_n++];
 2032     u->bu_src = x->bm_mfc->mfc_origin;
 2033     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2034     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2035     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2036     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2037     u->bu_measured.b_time = delta;
 2038     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2039     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2040     u->bu_flags = 0;
 2041     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2042         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2043     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2044         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2045     if (x->bm_flags & BW_METER_GEQ)
 2046         u->bu_flags |= BW_UPCALL_GEQ;
 2047     if (x->bm_flags & BW_METER_LEQ)
 2048         u->bu_flags |= BW_UPCALL_LEQ;
 2049 }
 2050 
 2051 /*
 2052  * Send the pending bandwidth-related upcalls
 2053  */
 2054 static void
 2055 bw_upcalls_send(void)
 2056 {
 2057     struct mbuf *m;
 2058     int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
 2059     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2060     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2061                                       0,                /* unused2 */
 2062                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2063                                       0,                /* im_mbz  */
 2064                                       0,                /* im_vif  */
 2065                                       0,                /* unused3 */
 2066                                       { 0 },            /* im_src  */
 2067                                       { 0 } };          /* im_dst  */
 2068 
 2069     MFC_LOCK_ASSERT();
 2070 
 2071     if (V_bw_upcalls_n == 0)
 2072         return;                 /* No pending upcalls */
 2073 
 2074     V_bw_upcalls_n = 0;
 2075 
 2076     /*
 2077      * Allocate a new mbuf, initialize it with the header and
 2078      * the payload for the pending calls.
 2079      */
 2080     m = m_gethdr(M_NOWAIT, MT_DATA);
 2081     if (m == NULL) {
 2082         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2083         return;
 2084     }
 2085 
 2086     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2087     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
 2088 
 2089     /*
 2090      * Send the upcalls
 2091      * XXX do we need to set the address in k_igmpsrc ?
 2092      */
 2093     MRTSTAT_INC(mrts_upcalls);
 2094     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
 2095         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2096         MRTSTAT_INC(mrts_upq_sockfull);
 2097     }
 2098 }
 2099 
 2100 /*
 2101  * Compute the timeout hash value for the bw_meter entries
 2102  */
 2103 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2104     do {                                                                \
 2105         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2106                                                                         \
 2107         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2108         (hash) = next_timeval.tv_sec;                                   \
 2109         if (next_timeval.tv_usec)                                       \
 2110             (hash)++; /* XXX: make sure we don't timeout early */       \
 2111         (hash) %= BW_METER_BUCKETS;                                     \
 2112     } while (0)
 2113 
 2114 /*
 2115  * Schedule a timer to process periodically bw_meter entry of type "<="
 2116  * by linking the entry in the proper hash bucket.
 2117  */
 2118 static void
 2119 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2120 {
 2121     int time_hash;
 2122 
 2123     MFC_LOCK_ASSERT();
 2124 
 2125     if (!(x->bm_flags & BW_METER_LEQ))
 2126         return;         /* XXX: we schedule timers only for "<=" entries */
 2127 
 2128     /*
 2129      * Reset the bw_meter entry
 2130      */
 2131     x->bm_start_time = *nowp;
 2132     x->bm_measured.b_packets = 0;
 2133     x->bm_measured.b_bytes = 0;
 2134     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2135 
 2136     /*
 2137      * Compute the timeout hash value and insert the entry
 2138      */
 2139     BW_METER_TIMEHASH(x, time_hash);
 2140     x->bm_time_next = V_bw_meter_timers[time_hash];
 2141     V_bw_meter_timers[time_hash] = x;
 2142     x->bm_time_hash = time_hash;
 2143 }
 2144 
 2145 /*
 2146  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2147  * by removing the entry from the proper hash bucket.
 2148  */
 2149 static void
 2150 unschedule_bw_meter(struct bw_meter *x)
 2151 {
 2152     int time_hash;
 2153     struct bw_meter *prev, *tmp;
 2154 
 2155     MFC_LOCK_ASSERT();
 2156 
 2157     if (!(x->bm_flags & BW_METER_LEQ))
 2158         return;         /* XXX: we schedule timers only for "<=" entries */
 2159 
 2160     /*
 2161      * Compute the timeout hash value and delete the entry
 2162      */
 2163     time_hash = x->bm_time_hash;
 2164     if (time_hash >= BW_METER_BUCKETS)
 2165         return;         /* Entry was not scheduled */
 2166 
 2167     for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
 2168              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2169         if (tmp == x)
 2170             break;
 2171 
 2172     if (tmp == NULL)
 2173         panic("unschedule_bw_meter: bw_meter entry not found");
 2174 
 2175     if (prev != NULL)
 2176         prev->bm_time_next = x->bm_time_next;
 2177     else
 2178         V_bw_meter_timers[time_hash] = x->bm_time_next;
 2179 
 2180     x->bm_time_next = NULL;
 2181     x->bm_time_hash = BW_METER_BUCKETS;
 2182 }
 2183 
 2184 
 2185 /*
 2186  * Process all "<=" type of bw_meter that should be processed now,
 2187  * and for each entry prepare an upcall if necessary. Each processed
 2188  * entry is rescheduled again for the (periodic) processing.
 2189  *
 2190  * This is run periodically (once per second normally). On each round,
 2191  * all the potentially matching entries are in the hash slot that we are
 2192  * looking at.
 2193  */
 2194 static void
 2195 bw_meter_process()
 2196 {
 2197     uint32_t loops;
 2198     int i;
 2199     struct timeval now, process_endtime;
 2200 
 2201     microtime(&now);
 2202     if (V_last_tv_sec == now.tv_sec)
 2203         return;         /* nothing to do */
 2204 
 2205     loops = now.tv_sec - V_last_tv_sec;
 2206     V_last_tv_sec = now.tv_sec;
 2207     if (loops > BW_METER_BUCKETS)
 2208         loops = BW_METER_BUCKETS;
 2209 
 2210     MFC_LOCK();
 2211     /*
 2212      * Process all bins of bw_meter entries from the one after the last
 2213      * processed to the current one. On entry, i points to the last bucket
 2214      * visited, so we need to increment i at the beginning of the loop.
 2215      */
 2216     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2217         struct bw_meter *x, *tmp_list;
 2218 
 2219         if (++i >= BW_METER_BUCKETS)
 2220             i = 0;
 2221 
 2222         /* Disconnect the list of bw_meter entries from the bin */
 2223         tmp_list = V_bw_meter_timers[i];
 2224         V_bw_meter_timers[i] = NULL;
 2225 
 2226         /* Process the list of bw_meter entries */
 2227         while (tmp_list != NULL) {
 2228             x = tmp_list;
 2229             tmp_list = tmp_list->bm_time_next;
 2230 
 2231             /* Test if the time interval is over */
 2232             process_endtime = x->bm_start_time;
 2233             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2234             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2235                 /* Not yet: reschedule, but don't reset */
 2236                 int time_hash;
 2237 
 2238                 BW_METER_TIMEHASH(x, time_hash);
 2239                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2240                     /*
 2241                      * XXX: somehow the bin processing is a bit ahead of time.
 2242                      * Put the entry in the next bin.
 2243                      */
 2244                     if (++time_hash >= BW_METER_BUCKETS)
 2245                         time_hash = 0;
 2246                 }
 2247                 x->bm_time_next = V_bw_meter_timers[time_hash];
 2248                 V_bw_meter_timers[time_hash] = x;
 2249                 x->bm_time_hash = time_hash;
 2250 
 2251                 continue;
 2252             }
 2253 
 2254             /*
 2255              * Test if we should deliver an upcall
 2256              */
 2257             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2258                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2259                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2260                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2261                 /* Prepare an upcall for delivery */
 2262                 bw_meter_prepare_upcall(x, &now);
 2263             }
 2264 
 2265             /*
 2266              * Reschedule for next processing
 2267              */
 2268             schedule_bw_meter(x, &now);
 2269         }
 2270     }
 2271 
 2272     /* Send all upcalls that are pending delivery */
 2273     bw_upcalls_send();
 2274 
 2275     MFC_UNLOCK();
 2276 }
 2277 
 2278 /*
 2279  * A periodic function for sending all upcalls that are pending delivery
 2280  */
 2281 static void
 2282 expire_bw_upcalls_send(void *arg)
 2283 {
 2284     CURVNET_SET((struct vnet *) arg);
 2285 
 2286     MFC_LOCK();
 2287     bw_upcalls_send();
 2288     MFC_UNLOCK();
 2289 
 2290     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
 2291         curvnet);
 2292     CURVNET_RESTORE();
 2293 }
 2294 
 2295 /*
 2296  * A periodic function for periodic scanning of the multicast forwarding
 2297  * table for processing all "<=" bw_meter entries.
 2298  */
 2299 static void
 2300 expire_bw_meter_process(void *arg)
 2301 {
 2302     CURVNET_SET((struct vnet *) arg);
 2303 
 2304     if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
 2305         bw_meter_process();
 2306 
 2307     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
 2308         curvnet);
 2309     CURVNET_RESTORE();
 2310 }
 2311 
 2312 /*
 2313  * End of bandwidth monitoring code
 2314  */
 2315 
 2316 /*
 2317  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2318  *
 2319  */
 2320 static int
 2321 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
 2322     struct mfc *rt)
 2323 {
 2324     struct mbuf *mb_copy, *mm;
 2325 
 2326     /*
 2327      * Do not send IGMP_WHOLEPKT notifications to userland, if the
 2328      * rendezvous point was unspecified, and we were told not to.
 2329      */
 2330     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
 2331         in_nullhost(rt->mfc_rp))
 2332         return 0;
 2333 
 2334     mb_copy = pim_register_prepare(ip, m);
 2335     if (mb_copy == NULL)
 2336         return ENOBUFS;
 2337 
 2338     /*
 2339      * Send all the fragments. Note that the mbuf for each fragment
 2340      * is freed by the sending machinery.
 2341      */
 2342     for (mm = mb_copy; mm; mm = mb_copy) {
 2343         mb_copy = mm->m_nextpkt;
 2344         mm->m_nextpkt = 0;
 2345         mm = m_pullup(mm, sizeof(struct ip));
 2346         if (mm != NULL) {
 2347             ip = mtod(mm, struct ip *);
 2348             if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
 2349                 pim_register_send_rp(ip, vifp, mm, rt);
 2350             } else {
 2351                 pim_register_send_upcall(ip, vifp, mm, rt);
 2352             }
 2353         }
 2354     }
 2355 
 2356     return 0;
 2357 }
 2358 
 2359 /*
 2360  * Return a copy of the data packet that is ready for PIM Register
 2361  * encapsulation.
 2362  * XXX: Note that in the returned copy the IP header is a valid one.
 2363  */
 2364 static struct mbuf *
 2365 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2366 {
 2367     struct mbuf *mb_copy = NULL;
 2368     int mtu;
 2369 
 2370     /* Take care of delayed checksums */
 2371     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2372         in_delayed_cksum(m);
 2373         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2374     }
 2375 
 2376     /*
 2377      * Copy the old packet & pullup its IP header into the
 2378      * new mbuf so we can modify it.
 2379      */
 2380     mb_copy = m_copypacket(m, M_NOWAIT);
 2381     if (mb_copy == NULL)
 2382         return NULL;
 2383     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2384     if (mb_copy == NULL)
 2385         return NULL;
 2386 
 2387     /* take care of the TTL */
 2388     ip = mtod(mb_copy, struct ip *);
 2389     --ip->ip_ttl;
 2390 
 2391     /* Compute the MTU after the PIM Register encapsulation */
 2392     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2393 
 2394     if (ntohs(ip->ip_len) <= mtu) {
 2395         /* Turn the IP header into a valid one */
 2396         ip->ip_sum = 0;
 2397         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2398     } else {
 2399         /* Fragment the packet */
 2400         mb_copy->m_pkthdr.csum_flags |= CSUM_IP;
 2401         if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) {
 2402             m_freem(mb_copy);
 2403             return NULL;
 2404         }
 2405     }
 2406     return mb_copy;
 2407 }
 2408 
 2409 /*
 2410  * Send an upcall with the data packet to the user-level process.
 2411  */
 2412 static int
 2413 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 2414     struct mbuf *mb_copy, struct mfc *rt)
 2415 {
 2416     struct mbuf *mb_first;
 2417     int len = ntohs(ip->ip_len);
 2418     struct igmpmsg *im;
 2419     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2420 
 2421     VIF_LOCK_ASSERT();
 2422 
 2423     /*
 2424      * Add a new mbuf with an upcall header
 2425      */
 2426     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
 2427     if (mb_first == NULL) {
 2428         m_freem(mb_copy);
 2429         return ENOBUFS;
 2430     }
 2431     mb_first->m_data += max_linkhdr;
 2432     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 2433     mb_first->m_len = sizeof(struct igmpmsg);
 2434     mb_first->m_next = mb_copy;
 2435 
 2436     /* Send message to routing daemon */
 2437     im = mtod(mb_first, struct igmpmsg *);
 2438     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 2439     im->im_mbz          = 0;
 2440     im->im_vif          = vifp - V_viftable;
 2441     im->im_src          = ip->ip_src;
 2442     im->im_dst          = ip->ip_dst;
 2443 
 2444     k_igmpsrc.sin_addr  = ip->ip_src;
 2445 
 2446     MRTSTAT_INC(mrts_upcalls);
 2447 
 2448     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 2449         CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 2450         MRTSTAT_INC(mrts_upq_sockfull);
 2451         return ENOBUFS;
 2452     }
 2453 
 2454     /* Keep statistics */
 2455     PIMSTAT_INC(pims_snd_registers_msgs);
 2456     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2457 
 2458     return 0;
 2459 }
 2460 
 2461 /*
 2462  * Encapsulate the data packet in PIM Register message and send it to the RP.
 2463  */
 2464 static int
 2465 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
 2466     struct mfc *rt)
 2467 {
 2468     struct mbuf *mb_first;
 2469     struct ip *ip_outer;
 2470     struct pim_encap_pimhdr *pimhdr;
 2471     int len = ntohs(ip->ip_len);
 2472     vifi_t vifi = rt->mfc_parent;
 2473 
 2474     VIF_LOCK_ASSERT();
 2475 
 2476     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
 2477         m_freem(mb_copy);
 2478         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 2479     }
 2480 
 2481     /*
 2482      * Add a new mbuf with the encapsulating header
 2483      */
 2484     mb_first = m_gethdr(M_NOWAIT, MT_DATA);
 2485     if (mb_first == NULL) {
 2486         m_freem(mb_copy);
 2487         return ENOBUFS;
 2488     }
 2489     mb_first->m_data += max_linkhdr;
 2490     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2491     mb_first->m_next = mb_copy;
 2492 
 2493     mb_first->m_pkthdr.len = len + mb_first->m_len;
 2494 
 2495     /*
 2496      * Fill in the encapsulating IP and PIM header
 2497      */
 2498     ip_outer = mtod(mb_first, struct ip *);
 2499     *ip_outer = pim_encap_iphdr;
 2500     ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
 2501         sizeof(pim_encap_pimhdr));
 2502     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
 2503     ip_outer->ip_dst = rt->mfc_rp;
 2504     /*
 2505      * Copy the inner header TOS to the outer header, and take care of the
 2506      * IP_DF bit.
 2507      */
 2508     ip_outer->ip_tos = ip->ip_tos;
 2509     if (ip->ip_off & htons(IP_DF))
 2510         ip_outer->ip_off |= htons(IP_DF);
 2511     ip_fillid(ip_outer);
 2512     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 2513                                          + sizeof(pim_encap_iphdr));
 2514     *pimhdr = pim_encap_pimhdr;
 2515     /* If the iif crosses a border, set the Border-bit */
 2516     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
 2517         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 2518 
 2519     mb_first->m_data += sizeof(pim_encap_iphdr);
 2520     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 2521     mb_first->m_data -= sizeof(pim_encap_iphdr);
 2522 
 2523     send_packet(vifp, mb_first);
 2524 
 2525     /* Keep statistics */
 2526     PIMSTAT_INC(pims_snd_registers_msgs);
 2527     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2528 
 2529     return 0;
 2530 }
 2531 
 2532 /*
 2533  * pim_encapcheck() is called by the encap4_input() path at runtime to
 2534  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
 2535  * into the kernel.
 2536  */
 2537 static int
 2538 pim_encapcheck(const struct mbuf *m __unused, int off __unused,
 2539     int proto __unused, void *arg __unused)
 2540 {
 2541 
 2542     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
 2543     return (8);         /* claim the datagram. */
 2544 }
 2545 
 2546 /*
 2547  * PIM-SMv2 and PIM-DM messages processing.
 2548  * Receives and verifies the PIM control messages, and passes them
 2549  * up to the listening socket, using rip_input().
 2550  * The only message with special processing is the PIM_REGISTER message
 2551  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 2552  * is passed to if_simloop().
 2553  */
 2554 static int
 2555 pim_input(struct mbuf *m, int off, int proto, void *arg __unused)
 2556 {
 2557     struct ip *ip = mtod(m, struct ip *);
 2558     struct pim *pim;
 2559     int iphlen = off;
 2560     int minlen;
 2561     int datalen = ntohs(ip->ip_len) - iphlen;
 2562     int ip_tos;
 2563 
 2564     /* Keep statistics */
 2565     PIMSTAT_INC(pims_rcv_total_msgs);
 2566     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
 2567 
 2568     /*
 2569      * Validate lengths
 2570      */
 2571     if (datalen < PIM_MINLEN) {
 2572         PIMSTAT_INC(pims_rcv_tooshort);
 2573         CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x",
 2574             __func__, datalen, ntohl(ip->ip_src.s_addr));
 2575         m_freem(m);
 2576         return (IPPROTO_DONE);
 2577     }
 2578 
 2579     /*
 2580      * If the packet is at least as big as a REGISTER, go agead
 2581      * and grab the PIM REGISTER header size, to avoid another
 2582      * possible m_pullup() later.
 2583      *
 2584      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 2585      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 2586      */
 2587     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 2588     /*
 2589      * Get the IP and PIM headers in contiguous memory, and
 2590      * possibly the PIM REGISTER header.
 2591      */
 2592     if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) {
 2593         CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
 2594         return (IPPROTO_DONE);
 2595     }
 2596 
 2597     /* m_pullup() may have given us a new mbuf so reset ip. */
 2598     ip = mtod(m, struct ip *);
 2599     ip_tos = ip->ip_tos;
 2600 
 2601     /* adjust mbuf to point to the PIM header */
 2602     m->m_data += iphlen;
 2603     m->m_len  -= iphlen;
 2604     pim = mtod(m, struct pim *);
 2605 
 2606     /*
 2607      * Validate checksum. If PIM REGISTER, exclude the data packet.
 2608      *
 2609      * XXX: some older PIMv2 implementations don't make this distinction,
 2610      * so for compatibility reason perform the checksum over part of the
 2611      * message, and if error, then over the whole message.
 2612      */
 2613     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 2614         /* do nothing, checksum okay */
 2615     } else if (in_cksum(m, datalen)) {
 2616         PIMSTAT_INC(pims_rcv_badsum);
 2617         CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
 2618         m_freem(m);
 2619         return (IPPROTO_DONE);
 2620     }
 2621 
 2622     /* PIM version check */
 2623     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 2624         PIMSTAT_INC(pims_rcv_badversion);
 2625         CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
 2626             (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
 2627         m_freem(m);
 2628         return (IPPROTO_DONE);
 2629     }
 2630 
 2631     /* restore mbuf back to the outer IP */
 2632     m->m_data -= iphlen;
 2633     m->m_len  += iphlen;
 2634 
 2635     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 2636         /*
 2637          * Since this is a REGISTER, we'll make a copy of the register
 2638          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 2639          * routing daemon.
 2640          */
 2641         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 2642         struct mbuf *mcp;
 2643         struct ip *encap_ip;
 2644         u_int32_t *reghdr;
 2645         struct ifnet *vifp;
 2646 
 2647         VIF_LOCK();
 2648         if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
 2649             VIF_UNLOCK();
 2650             CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
 2651                 (int)V_reg_vif_num);
 2652             m_freem(m);
 2653             return (IPPROTO_DONE);
 2654         }
 2655         /* XXX need refcnt? */
 2656         vifp = V_viftable[V_reg_vif_num].v_ifp;
 2657         VIF_UNLOCK();
 2658 
 2659         /*
 2660          * Validate length
 2661          */
 2662         if (datalen < PIM_REG_MINLEN) {
 2663             PIMSTAT_INC(pims_rcv_tooshort);
 2664             PIMSTAT_INC(pims_rcv_badregisters);
 2665             CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
 2666             m_freem(m);
 2667             return (IPPROTO_DONE);
 2668         }
 2669 
 2670         reghdr = (u_int32_t *)(pim + 1);
 2671         encap_ip = (struct ip *)(reghdr + 1);
 2672 
 2673         CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d",
 2674             __func__, ntohl(encap_ip->ip_src.s_addr),
 2675             ntohs(encap_ip->ip_len));
 2676 
 2677         /* verify the version number of the inner packet */
 2678         if (encap_ip->ip_v != IPVERSION) {
 2679             PIMSTAT_INC(pims_rcv_badregisters);
 2680             CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
 2681             m_freem(m);
 2682             return (IPPROTO_DONE);
 2683         }
 2684 
 2685         /* verify the inner packet is destined to a mcast group */
 2686         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 2687             PIMSTAT_INC(pims_rcv_badregisters);
 2688             CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__,
 2689                 ntohl(encap_ip->ip_dst.s_addr));
 2690             m_freem(m);
 2691             return (IPPROTO_DONE);
 2692         }
 2693 
 2694         /* If a NULL_REGISTER, pass it to the daemon */
 2695         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 2696             goto pim_input_to_daemon;
 2697 
 2698         /*
 2699          * Copy the TOS from the outer IP header to the inner IP header.
 2700          */
 2701         if (encap_ip->ip_tos != ip_tos) {
 2702             /* Outer TOS -> inner TOS */
 2703             encap_ip->ip_tos = ip_tos;
 2704             /* Recompute the inner header checksum. Sigh... */
 2705 
 2706             /* adjust mbuf to point to the inner IP header */
 2707             m->m_data += (iphlen + PIM_MINLEN);
 2708             m->m_len  -= (iphlen + PIM_MINLEN);
 2709 
 2710             encap_ip->ip_sum = 0;
 2711             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 2712 
 2713             /* restore mbuf to point back to the outer IP header */
 2714             m->m_data -= (iphlen + PIM_MINLEN);
 2715             m->m_len  += (iphlen + PIM_MINLEN);
 2716         }
 2717 
 2718         /*
 2719          * Decapsulate the inner IP packet and loopback to forward it
 2720          * as a normal multicast packet. Also, make a copy of the
 2721          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 2722          * to pass to the daemon later, so it can take the appropriate
 2723          * actions (e.g., send back PIM_REGISTER_STOP).
 2724          * XXX: here m->m_data points to the outer IP header.
 2725          */
 2726         mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT);
 2727         if (mcp == NULL) {
 2728             CTR1(KTR_IPMF, "%s: m_copym() failed", __func__);
 2729             m_freem(m);
 2730             return (IPPROTO_DONE);
 2731         }
 2732 
 2733         /* Keep statistics */
 2734         /* XXX: registers_bytes include only the encap. mcast pkt */
 2735         PIMSTAT_INC(pims_rcv_registers_msgs);
 2736         PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
 2737 
 2738         /*
 2739          * forward the inner ip packet; point m_data at the inner ip.
 2740          */
 2741         m_adj(m, iphlen + PIM_MINLEN);
 2742 
 2743         CTR4(KTR_IPMF,
 2744             "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
 2745             __func__,
 2746             (u_long)ntohl(encap_ip->ip_src.s_addr),
 2747             (u_long)ntohl(encap_ip->ip_dst.s_addr),
 2748             (int)V_reg_vif_num);
 2749 
 2750         /* NB: vifp was collected above; can it change on us? */
 2751         if_simloop(vifp, m, dst.sin_family, 0);
 2752 
 2753         /* prepare the register head to send to the mrouting daemon */
 2754         m = mcp;
 2755     }
 2756 
 2757 pim_input_to_daemon:
 2758     /*
 2759      * Pass the PIM message up to the daemon; if it is a Register message,
 2760      * pass the 'head' only up to the daemon. This includes the
 2761      * outer IP header, PIM header, PIM-Register header and the
 2762      * inner IP header.
 2763      * XXX: the outer IP header pkt size of a Register is not adjust to
 2764      * reflect the fact that the inner multicast data is truncated.
 2765      */
 2766     return (rip_input(&m, &off, proto));
 2767 }
 2768 
 2769 static int
 2770 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
 2771 {
 2772         struct mfc      *rt;
 2773         int              error, i;
 2774 
 2775         if (req->newptr)
 2776                 return (EPERM);
 2777         if (V_mfchashtbl == NULL)       /* XXX unlocked */
 2778                 return (0);
 2779         error = sysctl_wire_old_buffer(req, 0);
 2780         if (error)
 2781                 return (error);
 2782 
 2783         MFC_LOCK();
 2784         for (i = 0; i < mfchashsize; i++) {
 2785                 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
 2786                         error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
 2787                         if (error)
 2788                                 goto out_locked;
 2789                 }
 2790         }
 2791 out_locked:
 2792         MFC_UNLOCK();
 2793         return (error);
 2794 }
 2795 
 2796 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
 2797     sysctl_mfctable, "IPv4 Multicast Forwarding Table "
 2798     "(struct *mfc[mfchashsize], netinet/ip_mroute.h)");
 2799 
 2800 static int
 2801 sysctl_viflist(SYSCTL_HANDLER_ARGS)
 2802 {
 2803         int error;
 2804 
 2805         if (req->newptr)
 2806                 return (EPERM);
 2807         if (V_viftable == NULL)         /* XXX unlocked */
 2808                 return (0);
 2809         error = sysctl_wire_old_buffer(req, sizeof(*V_viftable) * MAXVIFS);
 2810         if (error)
 2811                 return (error);
 2812 
 2813         VIF_LOCK();
 2814         error = SYSCTL_OUT(req, V_viftable, sizeof(*V_viftable) * MAXVIFS);
 2815         VIF_UNLOCK();
 2816         return (error);
 2817 }
 2818 
 2819 SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable,
 2820     CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
 2821     sysctl_viflist, "S,vif[MAXVIFS]",
 2822     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
 2823 
 2824 static void
 2825 vnet_mroute_init(const void *unused __unused)
 2826 {
 2827 
 2828         V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
 2829 
 2830         V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable),
 2831             M_MRTABLE, M_WAITOK|M_ZERO);
 2832         V_bw_meter_timers = mallocarray(BW_METER_BUCKETS,
 2833             sizeof(*V_bw_meter_timers), M_MRTABLE, M_WAITOK|M_ZERO);
 2834         V_bw_upcalls = mallocarray(BW_UPCALLS_MAX, sizeof(*V_bw_upcalls),
 2835             M_MRTABLE, M_WAITOK|M_ZERO);
 2836 
 2837         callout_init(&V_expire_upcalls_ch, 1);
 2838         callout_init(&V_bw_upcalls_ch, 1);
 2839         callout_init(&V_bw_meter_ch, 1);
 2840 }
 2841 
 2842 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init,
 2843         NULL);
 2844 
 2845 static void
 2846 vnet_mroute_uninit(const void *unused __unused)
 2847 {
 2848 
 2849         free(V_bw_upcalls, M_MRTABLE);
 2850         free(V_bw_meter_timers, M_MRTABLE);
 2851         free(V_viftable, M_MRTABLE);
 2852         free(V_nexpire, M_MRTABLE);
 2853         V_nexpire = NULL;
 2854 }
 2855 
 2856 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, 
 2857         vnet_mroute_uninit, NULL);
 2858 
 2859 static int
 2860 ip_mroute_modevent(module_t mod, int type, void *unused)
 2861 {
 2862 
 2863     switch (type) {
 2864     case MOD_LOAD:
 2865         MROUTER_LOCK_INIT();
 2866 
 2867         if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 
 2868             if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
 2869         if (if_detach_event_tag == NULL) {
 2870                 printf("ip_mroute: unable to register "
 2871                     "ifnet_departure_event handler\n");
 2872                 MROUTER_LOCK_DESTROY();
 2873                 return (EINVAL);
 2874         }
 2875 
 2876         MFC_LOCK_INIT();
 2877         VIF_LOCK_INIT();
 2878 
 2879         mfchashsize = MFCHASHSIZE;
 2880         if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
 2881             !powerof2(mfchashsize)) {
 2882                 printf("WARNING: %s not a power of 2; using default\n",
 2883                     "net.inet.ip.mfchashsize");
 2884                 mfchashsize = MFCHASHSIZE;
 2885         }
 2886 
 2887         pim_squelch_wholepkt = 0;
 2888         TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
 2889             &pim_squelch_wholepkt);
 2890 
 2891         pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK);
 2892         if (pim_encap_cookie == NULL) {
 2893                 printf("ip_mroute: unable to attach pim encap\n");
 2894                 VIF_LOCK_DESTROY();
 2895                 MFC_LOCK_DESTROY();
 2896                 MROUTER_LOCK_DESTROY();
 2897                 return (EINVAL);
 2898         }
 2899 
 2900         ip_mcast_src = X_ip_mcast_src;
 2901         ip_mforward = X_ip_mforward;
 2902         ip_mrouter_done = X_ip_mrouter_done;
 2903         ip_mrouter_get = X_ip_mrouter_get;
 2904         ip_mrouter_set = X_ip_mrouter_set;
 2905 
 2906         ip_rsvp_force_done = X_ip_rsvp_force_done;
 2907         ip_rsvp_vif = X_ip_rsvp_vif;
 2908 
 2909         legal_vif_num = X_legal_vif_num;
 2910         mrt_ioctl = X_mrt_ioctl;
 2911         rsvp_input_p = X_rsvp_input;
 2912         break;
 2913 
 2914     case MOD_UNLOAD:
 2915         /*
 2916          * Typically module unload happens after the user-level
 2917          * process has shutdown the kernel services (the check
 2918          * below insures someone can't just yank the module out
 2919          * from under a running process).  But if the module is
 2920          * just loaded and then unloaded w/o starting up a user
 2921          * process we still need to cleanup.
 2922          */
 2923         MROUTER_LOCK();
 2924         if (ip_mrouter_cnt != 0) {
 2925             MROUTER_UNLOCK();
 2926             return (EINVAL);
 2927         }
 2928         ip_mrouter_unloading = 1;
 2929         MROUTER_UNLOCK();
 2930 
 2931         EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
 2932 
 2933         if (pim_encap_cookie) {
 2934             ip_encap_detach(pim_encap_cookie);
 2935             pim_encap_cookie = NULL;
 2936         }
 2937 
 2938         ip_mcast_src = NULL;
 2939         ip_mforward = NULL;
 2940         ip_mrouter_done = NULL;
 2941         ip_mrouter_get = NULL;
 2942         ip_mrouter_set = NULL;
 2943 
 2944         ip_rsvp_force_done = NULL;
 2945         ip_rsvp_vif = NULL;
 2946 
 2947         legal_vif_num = NULL;
 2948         mrt_ioctl = NULL;
 2949         rsvp_input_p = NULL;
 2950 
 2951         VIF_LOCK_DESTROY();
 2952         MFC_LOCK_DESTROY();
 2953         MROUTER_LOCK_DESTROY();
 2954         break;
 2955 
 2956     default:
 2957         return EOPNOTSUPP;
 2958     }
 2959     return 0;
 2960 }
 2961 
 2962 static moduledata_t ip_mroutemod = {
 2963     "ip_mroute",
 2964     ip_mroute_modevent,
 2965     0
 2966 };
 2967 
 2968 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);

Cache object: 5e09f8a062dcc8d3720a0f4874dbee9b


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.