The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * IP multicast forwarding procedures
    3  *
    4  * Written by David Waitzman, BBN Labs, August 1988.
    5  * Modified by Steve Deering, Stanford, February 1989.
    6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
    7  * Modified by Van Jacobson, LBL, January 1993
    8  * Modified by Ajit Thyagarajan, PARC, August 1993
    9  * Modified by Bill Fenner, PARC, April 1995
   10  * Modified by Ahmed Helmy, SGI, June 1996
   11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   13  * Modified by Hitoshi Asaeda, WIDE, August 2000
   14  * Modified by Pavlin Radoslavov, ICSI, October 2002
   15  *
   16  * MROUTING Revision: 3.5
   17  * and PIM-SMv2 and PIM-DM support, advanced API support,
   18  * bandwidth metering and signaling
   19  *
   20  * $FreeBSD: releng/5.2/sys/netinet/ip_mroute.c 123782 2003-12-23 19:21:16Z sam $
   21  */
   22 
   23 #include "opt_mac.h"
   24 #include "opt_mrouting.h"
   25 #include "opt_random_ip_id.h"
   26 
   27 #ifdef PIM
   28 #define _PIM_VT 1
   29 #endif
   30 
   31 #include <sys/param.h>
   32 #include <sys/kernel.h>
   33 #include <sys/lock.h>
   34 #include <sys/mac.h>
   35 #include <sys/malloc.h>
   36 #include <sys/mbuf.h>
   37 #include <sys/protosw.h>
   38 #include <sys/signalvar.h>
   39 #include <sys/socket.h>
   40 #include <sys/socketvar.h>
   41 #include <sys/sockio.h>
   42 #include <sys/sx.h>
   43 #include <sys/sysctl.h>
   44 #include <sys/syslog.h>
   45 #include <sys/systm.h>
   46 #include <sys/time.h>
   47 #include <net/if.h>
   48 #include <net/netisr.h>
   49 #include <net/route.h>
   50 #include <netinet/in.h>
   51 #include <netinet/igmp.h>
   52 #include <netinet/in_systm.h>
   53 #include <netinet/in_var.h>
   54 #include <netinet/ip.h>
   55 #include <netinet/ip_encap.h>
   56 #include <netinet/ip_mroute.h>
   57 #include <netinet/ip_var.h>
   58 #ifdef PIM
   59 #include <netinet/pim.h>
   60 #include <netinet/pim_var.h>
   61 #endif
   62 #include <netinet/udp.h>
   63 #include <machine/in_cksum.h>
   64 
   65 /*
   66  * Control debugging code for rsvp and multicast routing code.
   67  * Can only set them with the debugger.
   68  */
   69 static u_int    rsvpdebug;              /* non-zero enables debugging   */
   70 
   71 static u_int    mrtdebug;               /* any set of the flags below   */
   72 #define         DEBUG_MFC       0x02
   73 #define         DEBUG_FORWARD   0x04
   74 #define         DEBUG_EXPIRE    0x08
   75 #define         DEBUG_XMIT      0x10
   76 #define         DEBUG_PIM       0x20
   77 
   78 #define         VIFI_INVALID    ((vifi_t) -1)
   79 
   80 #define M_HASCL(m)      ((m)->m_flags & M_EXT)
   81 
   82 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
   83 
   84 /*
   85  * Locking.  We use two locks: one for the virtual interface table and
   86  * one for the forwarding table.  These locks may be nested in which case
   87  * the VIF lock must always be taken first.  Note that each lock is used
   88  * to cover not only the specific data structure but also related data
   89  * structures.  It may be better to add more fine-grained locking later;
   90  * it's not clear how performance-critical this code is.
   91  */
   92 
   93 static struct mrtstat   mrtstat;
   94 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
   95     &mrtstat, mrtstat,
   96     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
   97 
   98 static struct mfc       *mfctable[MFCTBLSIZ];
   99 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
  100     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
  101     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
  102 
  103 static struct mtx mfc_mtx;
  104 #define MFC_LOCK()      mtx_lock(&mfc_mtx)
  105 #define MFC_UNLOCK()    mtx_unlock(&mfc_mtx)
  106 #define MFC_LOCK_ASSERT()       mtx_assert(&mfc_mtx, MA_OWNED)
  107 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
  108 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  109 
  110 static struct vif       viftable[MAXVIFS];
  111 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  112     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
  113     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  114 
  115 static struct mtx vif_mtx;
  116 #define VIF_LOCK()      mtx_lock(&vif_mtx)
  117 #define VIF_UNLOCK()    mtx_unlock(&vif_mtx)
  118 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  119 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
  120 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  121 
  122 static u_char           nexpire[MFCTBLSIZ];
  123 
  124 static struct callout expire_upcalls_ch;
  125 
  126 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  127 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  128 
  129 /*
  130  * Define the token bucket filter structures
  131  * tbftable -> each vif has one of these for storing info 
  132  */
  133 
  134 static struct tbf tbftable[MAXVIFS];
  135 #define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
  136 
  137 /*
  138  * 'Interfaces' associated with decapsulator (so we can tell
  139  * packets that went through it from ones that get reflected
  140  * by a broken gateway).  These interfaces are never linked into
  141  * the system ifnet list & no routes point to them.  I.e., packets
  142  * can't be sent this way.  They only exist as a placeholder for
  143  * multicast source verification.
  144  */
  145 static struct ifnet multicast_decap_if[MAXVIFS];
  146 
  147 #define ENCAP_TTL 64
  148 #define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
  149 
  150 /* prototype IP hdr for encapsulated packets */
  151 static struct ip multicast_encap_iphdr = {
  152 #if BYTE_ORDER == LITTLE_ENDIAN
  153         sizeof(struct ip) >> 2, IPVERSION,
  154 #else
  155         IPVERSION, sizeof(struct ip) >> 2,
  156 #endif
  157         0,                              /* tos */
  158         sizeof(struct ip),              /* total length */
  159         0,                              /* id */
  160         0,                              /* frag offset */
  161         ENCAP_TTL, ENCAP_PROTO, 
  162         0,                              /* checksum */
  163 };
  164 
  165 /*
  166  * Bandwidth meter variables and constants
  167  */
  168 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  169 /*
  170  * Pending timeouts are stored in a hash table, the key being the
  171  * expiration time. Periodically, the entries are analysed and processed.
  172  */
  173 #define BW_METER_BUCKETS        1024
  174 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
  175 static struct callout bw_meter_ch;
  176 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  177 
  178 /*
  179  * Pending upcalls are stored in a vector which is flushed when
  180  * full, or periodically
  181  */
  182 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
  183 static u_int    bw_upcalls_n; /* # of pending upcalls */
  184 static struct callout bw_upcalls_ch;
  185 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  186 
  187 #ifdef PIM
  188 static struct pimstat pimstat;
  189 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  190     &pimstat, pimstat,
  191     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  192 
  193 /*
  194  * Note: the PIM Register encapsulation adds the following in front of a
  195  * data packet:
  196  *
  197  * struct pim_encap_hdr {
  198  *    struct ip ip;
  199  *    struct pim_encap_pimhdr  pim;
  200  * }
  201  *
  202  */
  203 
  204 struct pim_encap_pimhdr {
  205         struct pim pim;
  206         uint32_t   flags;
  207 };
  208 
  209 static struct ip pim_encap_iphdr = {
  210 #if BYTE_ORDER == LITTLE_ENDIAN
  211         sizeof(struct ip) >> 2,
  212         IPVERSION,
  213 #else
  214         IPVERSION,
  215         sizeof(struct ip) >> 2,
  216 #endif
  217         0,                      /* tos */
  218         sizeof(struct ip),      /* total length */
  219         0,                      /* id */
  220         0,                      /* frag offset */ 
  221         ENCAP_TTL,
  222         IPPROTO_PIM,
  223         0,                      /* checksum */
  224 };
  225 
  226 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  227     {
  228         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  229         0,                      /* reserved */
  230         0,                      /* checksum */
  231     },
  232     0                           /* flags */
  233 };
  234 
  235 static struct ifnet multicast_register_if;
  236 static vifi_t reg_vif_num = VIFI_INVALID;
  237 #endif /* PIM */
  238 
  239 /*
  240  * Private variables.
  241  */
  242 static vifi_t      numvifs;
  243 static const struct encaptab *encap_cookie;
  244 
  245 /*
  246  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
  247  * given a datagram's src ip address.
  248  */
  249 static u_long last_encap_src;
  250 static struct vif *last_encap_vif;
  251 
  252 /*
  253  * Callout for queue processing.
  254  */
  255 static struct callout tbf_reprocess_ch;
  256 
  257 static u_long   X_ip_mcast_src(int vifi);
  258 static int      X_ip_mforward(struct ip *ip, struct ifnet *ifp,
  259                         struct mbuf *m, struct ip_moptions *imo);
  260 static int      X_ip_mrouter_done(void);
  261 static int      X_ip_mrouter_get(struct socket *so, struct sockopt *m);
  262 static int      X_ip_mrouter_set(struct socket *so, struct sockopt *m);
  263 static int      X_legal_vif_num(int vif);
  264 static int      X_mrt_ioctl(int cmd, caddr_t data);
  265 
  266 static int get_sg_cnt(struct sioc_sg_req *);
  267 static int get_vif_cnt(struct sioc_vif_req *);
  268 static int ip_mrouter_init(struct socket *, int);
  269 static int add_vif(struct vifctl *);
  270 static int del_vif(vifi_t);
  271 static int add_mfc(struct mfcctl2 *);
  272 static int del_mfc(struct mfcctl2 *);
  273 static int set_api_config(uint32_t *); /* chose API capabilities */
  274 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
  275 static int set_assert(int);
  276 static void expire_upcalls(void *);
  277 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  278 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
  279 static void encap_send(struct ip *, struct vif *, struct mbuf *);
  280 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
  281 static void tbf_queue(struct vif *, struct mbuf *);
  282 static void tbf_process_q(struct vif *);
  283 static void tbf_reprocess_q(void *);
  284 static int tbf_dq_sel(struct vif *, struct ip *);
  285 static void tbf_send_packet(struct vif *, struct mbuf *);
  286 static void tbf_update_tokens(struct vif *);
  287 static int priority(struct vif *, struct ip *);
  288 
  289 /*
  290  * Bandwidth monitoring
  291  */
  292 static void free_bw_list(struct bw_meter *list);
  293 static int add_bw_upcall(struct bw_upcall *);
  294 static int del_bw_upcall(struct bw_upcall *);
  295 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
  296                 struct timeval *nowp);
  297 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
  298 static void bw_upcalls_send(void);
  299 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
  300 static void unschedule_bw_meter(struct bw_meter *x);
  301 static void bw_meter_process(void);
  302 static void expire_bw_upcalls_send(void *);
  303 static void expire_bw_meter_process(void *);
  304 
  305 #ifdef PIM
  306 static int pim_register_send(struct ip *, struct vif *,
  307                 struct mbuf *, struct mfc *);
  308 static int pim_register_send_rp(struct ip *, struct vif *,
  309                 struct mbuf *, struct mfc *);
  310 static int pim_register_send_upcall(struct ip *, struct vif *,
  311                 struct mbuf *, struct mfc *);
  312 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
  313 #endif
  314 
  315 /*
  316  * whether or not special PIM assert processing is enabled.
  317  */
  318 static int pim_assert;
  319 /*
  320  * Rate limit for assert notification messages, in usec
  321  */
  322 #define ASSERT_MSG_TIME         3000000
  323 
  324 /*
  325  * Kernel multicast routing API capabilities and setup.
  326  * If more API capabilities are added to the kernel, they should be
  327  * recorded in `mrt_api_support'.
  328  */
  329 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  330                                          MRT_MFC_FLAGS_BORDER_VIF |
  331                                          MRT_MFC_RP |
  332                                          MRT_MFC_BW_UPCALL);
  333 static uint32_t mrt_api_config = 0;
  334 
  335 /*
  336  * Hash function for a source, group entry
  337  */
  338 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
  339                         ((g) >> 20) ^ ((g) >> 10) ^ (g))
  340 
  341 /*
  342  * Find a route for a given origin IP address and Multicast group address
  343  * Type of service parameter to be added in the future!!!
  344  * Statistics are updated by the caller if needed
  345  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
  346  */
  347 static struct mfc *
  348 mfc_find(in_addr_t o, in_addr_t g)
  349 {
  350     struct mfc *rt;
  351 
  352     MFC_LOCK_ASSERT();
  353 
  354     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
  355         if ((rt->mfc_origin.s_addr == o) &&
  356                 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
  357             break;
  358     return rt;
  359 }
  360 
  361 /*
  362  * Macros to compute elapsed time efficiently
  363  * Borrowed from Van Jacobson's scheduling code
  364  */
  365 #define TV_DELTA(a, b, delta) {                                 \
  366         int xxs;                                                \
  367         delta = (a).tv_usec - (b).tv_usec;                      \
  368         if ((xxs = (a).tv_sec - (b).tv_sec)) {                  \
  369                 switch (xxs) {                                  \
  370                 case 2:                                         \
  371                       delta += 1000000;                         \
  372                       /* FALLTHROUGH */                         \
  373                 case 1:                                         \
  374                       delta += 1000000;                         \
  375                       break;                                    \
  376                 default:                                        \
  377                       delta += (1000000 * xxs);                 \
  378                 }                                               \
  379         }                                                       \
  380 }
  381 
  382 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
  383               (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
  384 
  385 /*
  386  * Handle MRT setsockopt commands to modify the multicast routing tables.
  387  */
  388 static int
  389 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  390 {
  391     int error, optval;
  392     vifi_t      vifi;
  393     struct      vifctl vifc;
  394     struct      mfcctl2 mfc;
  395     struct      bw_upcall bw_upcall;
  396     uint32_t    i;
  397 
  398     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
  399         return EPERM;
  400 
  401     error = 0;
  402     switch (sopt->sopt_name) {
  403     case MRT_INIT:
  404         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  405         if (error)
  406             break;
  407         error = ip_mrouter_init(so, optval);
  408         break;
  409 
  410     case MRT_DONE:
  411         error = ip_mrouter_done();
  412         break;
  413 
  414     case MRT_ADD_VIF:
  415         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  416         if (error)
  417             break;
  418         error = add_vif(&vifc);
  419         break;
  420 
  421     case MRT_DEL_VIF:
  422         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  423         if (error)
  424             break;
  425         error = del_vif(vifi);
  426         break;
  427 
  428     case MRT_ADD_MFC:
  429     case MRT_DEL_MFC:
  430         /*
  431          * select data size depending on API version.
  432          */
  433         if (sopt->sopt_name == MRT_ADD_MFC &&
  434                 mrt_api_config & MRT_API_FLAGS_ALL) {
  435             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  436                                 sizeof(struct mfcctl2));
  437         } else {
  438             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  439                                 sizeof(struct mfcctl));
  440             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  441                         sizeof(mfc) - sizeof(struct mfcctl));
  442         }
  443         if (error)
  444             break;
  445         if (sopt->sopt_name == MRT_ADD_MFC)
  446             error = add_mfc(&mfc);
  447         else
  448             error = del_mfc(&mfc);
  449         break;
  450 
  451     case MRT_ASSERT:
  452         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  453         if (error)
  454             break;
  455         set_assert(optval);
  456         break;
  457 
  458     case MRT_API_CONFIG:
  459         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  460         if (!error)
  461             error = set_api_config(&i);
  462         if (!error)
  463             error = sooptcopyout(sopt, &i, sizeof i);
  464         break;
  465 
  466     case MRT_ADD_BW_UPCALL:
  467     case MRT_DEL_BW_UPCALL:
  468         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  469                                 sizeof bw_upcall);
  470         if (error)
  471             break;
  472         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  473             error = add_bw_upcall(&bw_upcall);
  474         else
  475             error = del_bw_upcall(&bw_upcall);
  476         break;
  477 
  478     default:
  479         error = EOPNOTSUPP;
  480         break;
  481     }
  482     return error;
  483 }
  484 
  485 /*
  486  * Handle MRT getsockopt commands
  487  */
  488 static int
  489 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  490 {
  491     int error;
  492     static int version = 0x0305; /* !!! why is this here? XXX */
  493 
  494     switch (sopt->sopt_name) {
  495     case MRT_VERSION:
  496         error = sooptcopyout(sopt, &version, sizeof version);
  497         break;
  498 
  499     case MRT_ASSERT:
  500         error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
  501         break;
  502 
  503     case MRT_API_SUPPORT:
  504         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  505         break;
  506 
  507     case MRT_API_CONFIG:
  508         error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
  509         break;
  510 
  511     default:
  512         error = EOPNOTSUPP;
  513         break;
  514     }
  515     return error;
  516 }
  517 
  518 /*
  519  * Handle ioctl commands to obtain information from the cache
  520  */
  521 static int
  522 X_mrt_ioctl(int cmd, caddr_t data)
  523 {
  524     int error = 0;
  525 
  526     switch (cmd) {
  527     case (SIOCGETVIFCNT):
  528         error = get_vif_cnt((struct sioc_vif_req *)data);
  529         break;
  530 
  531     case (SIOCGETSGCNT):
  532         error = get_sg_cnt((struct sioc_sg_req *)data);
  533         break;
  534 
  535     default:
  536         error = EINVAL;
  537         break;
  538     }
  539     return error;
  540 }
  541 
  542 /*
  543  * returns the packet, byte, rpf-failure count for the source group provided
  544  */
  545 static int
  546 get_sg_cnt(struct sioc_sg_req *req)
  547 {
  548     struct mfc *rt;
  549 
  550     MFC_LOCK();
  551     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
  552     if (rt == NULL) {
  553         MFC_UNLOCK();
  554         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  555         return EADDRNOTAVAIL;
  556     }
  557     req->pktcnt = rt->mfc_pkt_cnt;
  558     req->bytecnt = rt->mfc_byte_cnt;
  559     req->wrong_if = rt->mfc_wrong_if;
  560     MFC_UNLOCK();
  561     return 0;
  562 }
  563 
  564 /*
  565  * returns the input and output packet and byte counts on the vif provided
  566  */
  567 static int
  568 get_vif_cnt(struct sioc_vif_req *req)
  569 {
  570     vifi_t vifi = req->vifi;
  571 
  572     VIF_LOCK();
  573     if (vifi >= numvifs) {
  574         VIF_UNLOCK();
  575         return EINVAL;
  576     }
  577 
  578     req->icount = viftable[vifi].v_pkt_in;
  579     req->ocount = viftable[vifi].v_pkt_out;
  580     req->ibytes = viftable[vifi].v_bytes_in;
  581     req->obytes = viftable[vifi].v_bytes_out;
  582     VIF_UNLOCK();
  583 
  584     return 0;
  585 }
  586 
  587 static void
  588 ip_mrouter_reset(void)
  589 {
  590     bzero((caddr_t)mfctable, sizeof(mfctable));
  591     bzero((caddr_t)nexpire, sizeof(nexpire));
  592 
  593     pim_assert = 0;
  594     mrt_api_config = 0;
  595 
  596     callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
  597 
  598     bw_upcalls_n = 0;
  599     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
  600     callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
  601     callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
  602 
  603     callout_init(&tbf_reprocess_ch, CALLOUT_MPSAFE);
  604 }
  605 
  606 static struct mtx mrouter_mtx;          /* used to synch init/done work */
  607 
  608 /*
  609  * Enable multicast routing
  610  */
  611 static int
  612 ip_mrouter_init(struct socket *so, int version)
  613 {
  614     if (mrtdebug)
  615         log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
  616             so->so_type, so->so_proto->pr_protocol);
  617 
  618     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  619         return EOPNOTSUPP;
  620 
  621     if (version != 1)
  622         return ENOPROTOOPT;
  623 
  624     mtx_lock(&mrouter_mtx);
  625 
  626     if (ip_mrouter != NULL) {
  627         mtx_unlock(&mrouter_mtx);
  628         return EADDRINUSE;
  629     }
  630 
  631     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
  632 
  633     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
  634         expire_bw_upcalls_send, NULL);
  635     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
  636 
  637     ip_mrouter = so;
  638 
  639     mtx_unlock(&mrouter_mtx);
  640 
  641     if (mrtdebug)
  642         log(LOG_DEBUG, "ip_mrouter_init\n");
  643 
  644     return 0;
  645 }
  646 
  647 /*
  648  * Disable multicast routing
  649  */
  650 static int
  651 X_ip_mrouter_done(void)
  652 {
  653     vifi_t vifi;
  654     int i;
  655     struct ifnet *ifp;
  656     struct ifreq ifr;
  657     struct mfc *rt;
  658     struct rtdetq *rte;
  659 
  660     mtx_lock(&mrouter_mtx);
  661 
  662     if (ip_mrouter == NULL) {
  663         mtx_unlock(&mrouter_mtx);
  664         return EINVAL;
  665     }
  666 
  667     /*
  668      * Detach/disable hooks to the reset of the system.
  669      */
  670     ip_mrouter = NULL;
  671     mrt_api_config = 0;
  672 
  673     VIF_LOCK();
  674     if (encap_cookie) {
  675         const struct encaptab *c = encap_cookie;
  676         encap_cookie = NULL;
  677         encap_detach(c);
  678     }
  679     VIF_UNLOCK();
  680 
  681     callout_stop(&tbf_reprocess_ch);
  682 
  683     VIF_LOCK();
  684     /*
  685      * For each phyint in use, disable promiscuous reception of all IP
  686      * multicasts.
  687      */
  688     for (vifi = 0; vifi < numvifs; vifi++) {
  689         if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
  690                 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  691             struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
  692 
  693             so->sin_len = sizeof(struct sockaddr_in);
  694             so->sin_family = AF_INET;
  695             so->sin_addr.s_addr = INADDR_ANY;
  696             ifp = viftable[vifi].v_ifp;
  697             if_allmulti(ifp, 0);
  698         }
  699     }
  700     bzero((caddr_t)tbftable, sizeof(tbftable));
  701     bzero((caddr_t)viftable, sizeof(viftable));
  702     numvifs = 0;
  703     pim_assert = 0;
  704     VIF_UNLOCK();
  705 
  706     /*
  707      * Free all multicast forwarding cache entries.
  708      */
  709     callout_stop(&expire_upcalls_ch);
  710     callout_stop(&bw_upcalls_ch);
  711     callout_stop(&bw_meter_ch);
  712 
  713     MFC_LOCK();
  714     for (i = 0; i < MFCTBLSIZ; i++) {
  715         for (rt = mfctable[i]; rt != NULL; ) {
  716             struct mfc *nr = rt->mfc_next;
  717 
  718             for (rte = rt->mfc_stall; rte != NULL; ) {
  719                 struct rtdetq *n = rte->next;
  720 
  721                 m_freem(rte->m);
  722                 free(rte, M_MRTABLE);
  723                 rte = n;
  724             }
  725             free_bw_list(rt->mfc_bw_meter);
  726             free(rt, M_MRTABLE);
  727             rt = nr;
  728         }
  729     }
  730     bzero((caddr_t)mfctable, sizeof(mfctable));
  731     bzero((caddr_t)nexpire, sizeof(nexpire));
  732     bw_upcalls_n = 0;
  733     bzero(bw_meter_timers, sizeof(bw_meter_timers));
  734     MFC_UNLOCK();
  735 
  736     /*
  737      * Reset de-encapsulation cache
  738      */
  739     last_encap_src = INADDR_ANY;
  740     last_encap_vif = NULL;
  741 #ifdef PIM
  742     reg_vif_num = VIFI_INVALID;
  743 #endif
  744 
  745     mtx_unlock(&mrouter_mtx);
  746 
  747     if (mrtdebug)
  748         log(LOG_DEBUG, "ip_mrouter_done\n");
  749 
  750     return 0;
  751 }
  752 
  753 /*
  754  * Set PIM assert processing global
  755  */
  756 static int
  757 set_assert(int i)
  758 {
  759     if ((i != 1) && (i != 0))
  760         return EINVAL;
  761 
  762     pim_assert = i;
  763 
  764     return 0;
  765 }
  766 
  767 /*
  768  * Configure API capabilities
  769  */
  770 int
  771 set_api_config(uint32_t *apival)
  772 {
  773     int i;
  774 
  775     /*
  776      * We can set the API capabilities only if it is the first operation
  777      * after MRT_INIT. I.e.:
  778      *  - there are no vifs installed
  779      *  - pim_assert is not enabled
  780      *  - the MFC table is empty
  781      */
  782     if (numvifs > 0) {
  783         *apival = 0;
  784         return EPERM;
  785     }
  786     if (pim_assert) {
  787         *apival = 0;
  788         return EPERM;
  789     }
  790     for (i = 0; i < MFCTBLSIZ; i++) {
  791         if (mfctable[i] != NULL) {
  792             *apival = 0;
  793             return EPERM;
  794         }
  795     }
  796 
  797     mrt_api_config = *apival & mrt_api_support;
  798     *apival = mrt_api_config;
  799 
  800     return 0;
  801 }
  802 
  803 /*
  804  * Decide if a packet is from a tunnelled peer.
  805  * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
  806  */
  807 static int
  808 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
  809 {
  810     struct ip *ip = mtod(m, struct ip *);
  811     int hlen = ip->ip_hl << 2;
  812 
  813     /*
  814      * don't claim the packet if it's not to a multicast destination or if
  815      * we don't have an encapsulating tunnel with the source.
  816      * Note:  This code assumes that the remote site IP address
  817      * uniquely identifies the tunnel (i.e., that this site has
  818      * at most one tunnel with the remote site).
  819      */
  820     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
  821         return 0;
  822     if (ip->ip_src.s_addr != last_encap_src) {
  823         struct vif *vifp = viftable;
  824         struct vif *vife = vifp + numvifs;
  825 
  826         last_encap_src = ip->ip_src.s_addr;
  827         last_encap_vif = NULL;
  828         for ( ; vifp < vife; ++vifp)
  829             if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
  830                 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
  831                     last_encap_vif = vifp;
  832                 break;
  833             }
  834     }
  835     if (last_encap_vif == NULL) {
  836         last_encap_src = INADDR_ANY;
  837         return 0;
  838     }
  839     return 64;
  840 }
  841 
  842 /*
  843  * De-encapsulate a packet and feed it back through ip input (this
  844  * routine is called whenever IP gets a packet that mroute_encap_func()
  845  * claimed).
  846  */
  847 static void
  848 mroute_encap_input(struct mbuf *m, int off)
  849 {
  850     struct ip *ip = mtod(m, struct ip *);
  851     int hlen = ip->ip_hl << 2;
  852 
  853     if (hlen > sizeof(struct ip))
  854         ip_stripoptions(m, (struct mbuf *) 0);
  855     m->m_data += sizeof(struct ip);
  856     m->m_len -= sizeof(struct ip);
  857     m->m_pkthdr.len -= sizeof(struct ip);
  858 
  859     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
  860 
  861     netisr_queue(NETISR_IP, m);
  862     /*
  863      * normally we would need a "schednetisr(NETISR_IP)"
  864      * here but we were called by ip_input and it is going
  865      * to loop back & try to dequeue the packet we just
  866      * queued as soon as we return so we avoid the
  867      * unnecessary software interrrupt.
  868      *
  869      * XXX
  870      * This no longer holds - we may have direct-dispatched the packet,
  871      * or there may be a queue processing limit.
  872      */
  873 }
  874 
  875 extern struct domain inetdomain;
  876 static struct protosw mroute_encap_protosw =
  877 { SOCK_RAW,     &inetdomain,    IPPROTO_IPV4,   PR_ATOMIC|PR_ADDR,
  878   mroute_encap_input,   0,      0,              rip_ctloutput,
  879   0,
  880   0,            0,              0,              0,
  881   &rip_usrreqs
  882 };
  883 
  884 /*
  885  * Add a vif to the vif table
  886  */
  887 static int
  888 add_vif(struct vifctl *vifcp)
  889 {
  890     struct vif *vifp = viftable + vifcp->vifc_vifi;
  891     struct sockaddr_in sin = {sizeof sin, AF_INET};
  892     struct ifaddr *ifa;
  893     struct ifnet *ifp;
  894     int error;
  895     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
  896 
  897     VIF_LOCK();
  898     if (vifcp->vifc_vifi >= MAXVIFS) {
  899         VIF_UNLOCK();
  900         return EINVAL;
  901     }
  902     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
  903         VIF_UNLOCK();
  904         return EADDRINUSE;
  905     }
  906     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
  907         VIF_UNLOCK();
  908         return EADDRNOTAVAIL;
  909     }
  910 
  911     /* Find the interface with an address in AF_INET family */
  912 #ifdef PIM
  913     if (vifcp->vifc_flags & VIFF_REGISTER) {
  914         /*
  915          * XXX: Because VIFF_REGISTER does not really need a valid
  916          * local interface (e.g. it could be 127.0.0.2), we don't
  917          * check its address.
  918          */
  919         ifp = NULL;
  920     } else
  921 #endif
  922     {
  923         sin.sin_addr = vifcp->vifc_lcl_addr;
  924         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  925         if (ifa == NULL) {
  926             VIF_UNLOCK();
  927             return EADDRNOTAVAIL;
  928         }
  929         ifp = ifa->ifa_ifp;
  930     }
  931 
  932     if (vifcp->vifc_flags & VIFF_TUNNEL) {
  933         if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
  934             /*
  935              * An encapsulating tunnel is wanted.  Tell
  936              * mroute_encap_input() to start paying attention
  937              * to encapsulated packets.
  938              */
  939             if (encap_cookie == NULL) {
  940                 int i;
  941 
  942                 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
  943                                 mroute_encapcheck,
  944                                 (struct protosw *)&mroute_encap_protosw, NULL);
  945 
  946                 if (encap_cookie == NULL) {
  947                     printf("ip_mroute: unable to attach encap\n");
  948                     VIF_UNLOCK();
  949                     return EIO; /* XXX */
  950                 }
  951                 for (i = 0; i < MAXVIFS; ++i) {
  952                     if_initname(&multicast_decap_if[i], "mdecap", i);    
  953                 }
  954             }
  955             /*
  956              * Set interface to fake encapsulator interface
  957              */
  958             ifp = &multicast_decap_if[vifcp->vifc_vifi];
  959             /*
  960              * Prepare cached route entry
  961              */
  962             bzero(&vifp->v_route, sizeof(vifp->v_route));
  963         } else {
  964             log(LOG_ERR, "source routed tunnels not supported\n");
  965             VIF_UNLOCK();
  966             return EOPNOTSUPP;
  967         }
  968 #ifdef PIM
  969     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  970         ifp = &multicast_register_if;
  971         if (mrtdebug)
  972             log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
  973                     (void *)&multicast_register_if);
  974         if (reg_vif_num == VIFI_INVALID) {
  975             if_initname(&multicast_register_if, "register_vif", 0);
  976             multicast_register_if.if_flags = IFF_LOOPBACK;
  977             bzero(&vifp->v_route, sizeof(vifp->v_route));
  978             reg_vif_num = vifcp->vifc_vifi;
  979         }
  980 #endif
  981     } else {            /* Make sure the interface supports multicast */
  982         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
  983             VIF_UNLOCK();
  984             return EOPNOTSUPP;
  985         }
  986 
  987         /* Enable promiscuous reception of all IP multicasts from the if */
  988         error = if_allmulti(ifp, 1);
  989         if (error) {
  990             VIF_UNLOCK();
  991             return error;
  992         }
  993     }
  994 
  995     /* define parameters for the tbf structure */
  996     vifp->v_tbf = v_tbf;
  997     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
  998     vifp->v_tbf->tbf_n_tok = 0;
  999     vifp->v_tbf->tbf_q_len = 0;
 1000     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
 1001     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
 1002 
 1003     vifp->v_flags     = vifcp->vifc_flags;
 1004     vifp->v_threshold = vifcp->vifc_threshold;
 1005     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
 1006     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
 1007     vifp->v_ifp       = ifp;
 1008     /* scaling up here allows division by 1024 in critical code */
 1009     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
 1010     vifp->v_rsvp_on   = 0;
 1011     vifp->v_rsvpd     = NULL;
 1012     /* initialize per vif pkt counters */
 1013     vifp->v_pkt_in    = 0;
 1014     vifp->v_pkt_out   = 0;
 1015     vifp->v_bytes_in  = 0;
 1016     vifp->v_bytes_out = 0;
 1017 
 1018     /* Adjust numvifs up if the vifi is higher than numvifs */
 1019     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
 1020 
 1021     VIF_UNLOCK();
 1022 
 1023     if (mrtdebug)
 1024         log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
 1025             vifcp->vifc_vifi, 
 1026             (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
 1027             (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
 1028             (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
 1029             vifcp->vifc_threshold,
 1030             vifcp->vifc_rate_limit);    
 1031 
 1032     return 0;
 1033 }
 1034 
 1035 /*
 1036  * Delete a vif from the vif table
 1037  */
 1038 static int
 1039 del_vif(vifi_t vifi)
 1040 {
 1041     struct vif *vifp;
 1042 
 1043     VIF_LOCK();
 1044 
 1045     if (vifi >= numvifs) {
 1046         VIF_UNLOCK();
 1047         return EINVAL;
 1048     }
 1049     vifp = &viftable[vifi];
 1050     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
 1051         VIF_UNLOCK();
 1052         return EADDRNOTAVAIL;
 1053     }
 1054 
 1055     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1056         if_allmulti(vifp->v_ifp, 0);
 1057 
 1058     if (vifp == last_encap_vif) {
 1059         last_encap_vif = NULL;
 1060         last_encap_src = INADDR_ANY;
 1061     }
 1062 
 1063     /*
 1064      * Free packets queued at the interface
 1065      */
 1066     while (vifp->v_tbf->tbf_q) {
 1067         struct mbuf *m = vifp->v_tbf->tbf_q;
 1068 
 1069         vifp->v_tbf->tbf_q = m->m_act;
 1070         m_freem(m);
 1071     }
 1072 
 1073 #ifdef PIM
 1074     if (vifp->v_flags & VIFF_REGISTER)
 1075         reg_vif_num = VIFI_INVALID;
 1076 #endif
 1077 
 1078     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
 1079     bzero((caddr_t)vifp, sizeof (*vifp));
 1080 
 1081     if (mrtdebug)
 1082         log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
 1083 
 1084     /* Adjust numvifs down */
 1085     for (vifi = numvifs; vifi > 0; vifi--)
 1086         if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
 1087             break;
 1088     numvifs = vifi;
 1089 
 1090     VIF_UNLOCK();
 1091 
 1092     return 0;
 1093 }
 1094 
 1095 /*
 1096  * update an mfc entry without resetting counters and S,G addresses.
 1097  */
 1098 static void
 1099 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1100 {
 1101     int i;
 1102 
 1103     rt->mfc_parent = mfccp->mfcc_parent;
 1104     for (i = 0; i < numvifs; i++) {
 1105         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1106         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
 1107             MRT_MFC_FLAGS_ALL;
 1108     }
 1109     /* set the RP address */
 1110     if (mrt_api_config & MRT_MFC_RP)
 1111         rt->mfc_rp = mfccp->mfcc_rp;
 1112     else
 1113         rt->mfc_rp.s_addr = INADDR_ANY;
 1114 }
 1115 
 1116 /*
 1117  * fully initialize an mfc entry from the parameter.
 1118  */
 1119 static void
 1120 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1121 {
 1122     rt->mfc_origin     = mfccp->mfcc_origin;
 1123     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1124 
 1125     update_mfc_params(rt, mfccp);
 1126 
 1127     /* initialize pkt counters per src-grp */
 1128     rt->mfc_pkt_cnt    = 0;
 1129     rt->mfc_byte_cnt   = 0;
 1130     rt->mfc_wrong_if   = 0;
 1131     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
 1132 }
 1133 
 1134 
 1135 /*
 1136  * Add an mfc entry
 1137  */
 1138 static int
 1139 add_mfc(struct mfcctl2 *mfccp)
 1140 {
 1141     struct mfc *rt;
 1142     u_long hash;
 1143     struct rtdetq *rte;
 1144     u_short nstl;
 1145 
 1146     VIF_LOCK();
 1147     MFC_LOCK();
 1148 
 1149     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1150 
 1151     /* If an entry already exists, just update the fields */
 1152     if (rt) {
 1153         if (mrtdebug & DEBUG_MFC)
 1154             log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
 1155                 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1156                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1157                 mfccp->mfcc_parent);
 1158 
 1159         update_mfc_params(rt, mfccp);
 1160         MFC_UNLOCK();
 1161         VIF_UNLOCK();
 1162         return 0;
 1163     }
 1164 
 1165     /* 
 1166      * Find the entry for which the upcall was made and update
 1167      */
 1168     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1169     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
 1170 
 1171         if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1172                 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
 1173                 (rt->mfc_stall != NULL)) {
 1174   
 1175             if (nstl++)
 1176                 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
 1177                     "multiple kernel entries",
 1178                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1179                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1180                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1181 
 1182             if (mrtdebug & DEBUG_MFC)
 1183                 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
 1184                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1185                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1186                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1187 
 1188             init_mfc_params(rt, mfccp);
 1189 
 1190             rt->mfc_expire = 0; /* Don't clean this guy up */
 1191             nexpire[hash]--;
 1192 
 1193             /* free packets Qed at the end of this entry */
 1194             for (rte = rt->mfc_stall; rte != NULL; ) {
 1195                 struct rtdetq *n = rte->next;
 1196 
 1197                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1198                 m_freem(rte->m);
 1199                 free(rte, M_MRTABLE);
 1200                 rte = n;
 1201             }
 1202             rt->mfc_stall = NULL;
 1203         }
 1204     }
 1205 
 1206     /*
 1207      * It is possible that an entry is being inserted without an upcall
 1208      */
 1209     if (nstl == 0) {
 1210         if (mrtdebug & DEBUG_MFC)
 1211             log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
 1212                 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1213                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1214                 mfccp->mfcc_parent);
 1215         
 1216         for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
 1217             if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1218                     (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
 1219                 init_mfc_params(rt, mfccp);
 1220                 if (rt->mfc_expire)
 1221                     nexpire[hash]--;
 1222                 rt->mfc_expire = 0;
 1223                 break; /* XXX */
 1224             }
 1225         }
 1226         if (rt == NULL) {               /* no upcall, so make a new entry */
 1227             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1228             if (rt == NULL) {
 1229                 MFC_UNLOCK();
 1230                 VIF_UNLOCK();
 1231                 return ENOBUFS;
 1232             }
 1233             
 1234             init_mfc_params(rt, mfccp);
 1235             rt->mfc_expire     = 0;
 1236             rt->mfc_stall      = NULL;
 1237             
 1238             rt->mfc_bw_meter = NULL;
 1239             /* insert new entry at head of hash chain */
 1240             rt->mfc_next = mfctable[hash];
 1241             mfctable[hash] = rt;
 1242         }
 1243     }
 1244     MFC_UNLOCK();
 1245     VIF_UNLOCK();
 1246     return 0;
 1247 }
 1248 
 1249 /*
 1250  * Delete an mfc entry
 1251  */
 1252 static int
 1253 del_mfc(struct mfcctl2 *mfccp)
 1254 {
 1255     struct in_addr      origin;
 1256     struct in_addr      mcastgrp;
 1257     struct mfc          *rt;
 1258     struct mfc          **nptr;
 1259     u_long              hash;
 1260     struct bw_meter     *list;
 1261 
 1262     origin = mfccp->mfcc_origin;
 1263     mcastgrp = mfccp->mfcc_mcastgrp;
 1264 
 1265     if (mrtdebug & DEBUG_MFC)
 1266         log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
 1267             (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1268 
 1269     MFC_LOCK();
 1270 
 1271     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
 1272     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
 1273         if (origin.s_addr == rt->mfc_origin.s_addr &&
 1274                 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
 1275                 rt->mfc_stall == NULL)
 1276             break;
 1277     if (rt == NULL) {
 1278         MFC_UNLOCK();
 1279         return EADDRNOTAVAIL;
 1280     }
 1281 
 1282     *nptr = rt->mfc_next;
 1283 
 1284     /*
 1285      * free the bw_meter entries
 1286      */
 1287     list = rt->mfc_bw_meter;
 1288     rt->mfc_bw_meter = NULL;
 1289 
 1290     free(rt, M_MRTABLE);
 1291 
 1292     free_bw_list(list);
 1293 
 1294     MFC_UNLOCK();
 1295 
 1296     return 0;
 1297 }
 1298 
 1299 /*
 1300  * Send a message to mrouted on the multicast routing socket
 1301  */
 1302 static int
 1303 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1304 {
 1305     if (s) {
 1306         mtx_lock(&Giant);               /* XXX until sockets are locked */
 1307         if (sbappendaddr(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) {
 1308             sorwakeup(s);
 1309             mtx_unlock(&Giant);
 1310             return 0;
 1311         }
 1312         mtx_unlock(&Giant);
 1313     }
 1314     m_freem(mm);
 1315     return -1;
 1316 }
 1317 
 1318 /*
 1319  * IP multicast forwarding function. This function assumes that the packet
 1320  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1321  * pointed to by "ifp", and the packet is to be relayed to other networks
 1322  * that have members of the packet's destination IP multicast group.
 1323  *
 1324  * The packet is returned unscathed to the caller, unless it is
 1325  * erroneous, in which case a non-zero return value tells the caller to
 1326  * discard it.
 1327  */
 1328 
 1329 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1330 
 1331 static int
 1332 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1333     struct ip_moptions *imo)
 1334 {
 1335     struct mfc *rt;
 1336     int error;
 1337     vifi_t vifi;
 1338 
 1339     if (mrtdebug & DEBUG_FORWARD)
 1340         log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
 1341             (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
 1342             (void *)ifp);
 1343 
 1344     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1345                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1346         /*
 1347          * Packet arrived via a physical interface or
 1348          * an encapsulated tunnel or a register_vif.
 1349          */
 1350     } else {
 1351         /*
 1352          * Packet arrived through a source-route tunnel.
 1353          * Source-route tunnels are no longer supported.
 1354          */
 1355         static int last_log;
 1356         if (last_log != time_second) {
 1357             last_log = time_second;
 1358             log(LOG_ERR,
 1359                 "ip_mforward: received source-routed packet from %lx\n",
 1360                 (u_long)ntohl(ip->ip_src.s_addr));
 1361         }
 1362         return 1;
 1363     }
 1364 
 1365     VIF_LOCK();
 1366     MFC_LOCK();
 1367     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
 1368         if (ip->ip_ttl < 255)
 1369             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1370         if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1371             struct vif *vifp = viftable + vifi;
 1372 
 1373             printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
 1374                 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
 1375                 vifi,
 1376                 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
 1377                 vifp->v_ifp->if_xname);
 1378         }
 1379         error = ip_mdq(m, ifp, NULL, vifi);
 1380         MFC_UNLOCK();
 1381         VIF_UNLOCK();
 1382         return error;
 1383     }
 1384     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1385         printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
 1386             (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
 1387         if (!imo)
 1388             printf("In fact, no options were specified at all\n");
 1389     }
 1390 
 1391     /*
 1392      * Don't forward a packet with time-to-live of zero or one,
 1393      * or a packet destined to a local-only group.
 1394      */
 1395     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
 1396         MFC_UNLOCK();
 1397         VIF_UNLOCK();
 1398         return 0;
 1399     }
 1400 
 1401     /*
 1402      * Determine forwarding vifs from the forwarding cache table
 1403      */
 1404     ++mrtstat.mrts_mfc_lookups;
 1405     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1406 
 1407     /* Entry exists, so forward if necessary */
 1408     if (rt != NULL) {
 1409         error = ip_mdq(m, ifp, rt, -1);
 1410         MFC_UNLOCK();
 1411         VIF_UNLOCK();
 1412         return error;
 1413     } else {
 1414         /*
 1415          * If we don't have a route for packet's origin,
 1416          * Make a copy of the packet & send message to routing daemon
 1417          */
 1418 
 1419         struct mbuf *mb0;
 1420         struct rtdetq *rte;
 1421         u_long hash;
 1422         int hlen = ip->ip_hl << 2;
 1423 
 1424         ++mrtstat.mrts_mfc_misses;
 1425 
 1426         mrtstat.mrts_no_route++;
 1427         if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
 1428             log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
 1429                 (u_long)ntohl(ip->ip_src.s_addr),
 1430                 (u_long)ntohl(ip->ip_dst.s_addr));
 1431 
 1432         /*
 1433          * Allocate mbufs early so that we don't do extra work if we are
 1434          * just going to fail anyway.  Make sure to pullup the header so
 1435          * that other people can't step on it.
 1436          */
 1437         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
 1438         if (rte == NULL) {
 1439             MFC_UNLOCK();
 1440             VIF_UNLOCK();
 1441             return ENOBUFS;
 1442         }
 1443         mb0 = m_copypacket(m, M_DONTWAIT);
 1444         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1445             mb0 = m_pullup(mb0, hlen);
 1446         if (mb0 == NULL) {
 1447             free(rte, M_MRTABLE);
 1448             MFC_UNLOCK();
 1449             VIF_UNLOCK();
 1450             return ENOBUFS;
 1451         }
 1452 
 1453         /* is there an upcall waiting for this flow ? */
 1454         hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1455         for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
 1456             if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
 1457                     (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
 1458                     (rt->mfc_stall != NULL))
 1459                 break;
 1460         }
 1461 
 1462         if (rt == NULL) {
 1463             int i;
 1464             struct igmpmsg *im;
 1465             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1466             struct mbuf *mm;
 1467 
 1468             /*
 1469              * Locate the vifi for the incoming interface for this packet.
 1470              * If none found, drop packet.
 1471              */
 1472             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1473                 ;
 1474             if (vifi >= numvifs)        /* vif not found, drop packet */
 1475                 goto non_fatal;
 1476 
 1477             /* no upcall, so make a new entry */
 1478             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1479             if (rt == NULL)
 1480                 goto fail;
 1481             /* Make a copy of the header to send to the user level process */
 1482             mm = m_copy(mb0, 0, hlen);
 1483             if (mm == NULL)
 1484                 goto fail1;
 1485 
 1486             /* 
 1487              * Send message to routing daemon to install 
 1488              * a route into the kernel table
 1489              */
 1490             
 1491             im = mtod(mm, struct igmpmsg *);
 1492             im->im_msgtype = IGMPMSG_NOCACHE;
 1493             im->im_mbz = 0;
 1494             im->im_vif = vifi;
 1495 
 1496             mrtstat.mrts_upcalls++;
 1497 
 1498             k_igmpsrc.sin_addr = ip->ip_src;
 1499             if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1500                 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
 1501                 ++mrtstat.mrts_upq_sockfull;
 1502 fail1:
 1503                 free(rt, M_MRTABLE);
 1504 fail:
 1505                 free(rte, M_MRTABLE);
 1506                 m_freem(mb0);
 1507                 MFC_UNLOCK();
 1508                 VIF_UNLOCK();
 1509                 return ENOBUFS;
 1510             }
 1511 
 1512             /* insert new entry at head of hash chain */
 1513             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1514             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1515             rt->mfc_expire            = UPCALL_EXPIRE;
 1516             nexpire[hash]++;
 1517             for (i = 0; i < numvifs; i++) {
 1518                 rt->mfc_ttls[i] = 0;
 1519                 rt->mfc_flags[i] = 0;
 1520             }
 1521             rt->mfc_parent = -1;
 1522 
 1523             rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
 1524 
 1525             rt->mfc_bw_meter = NULL;
 1526 
 1527             /* link into table */
 1528             rt->mfc_next   = mfctable[hash];
 1529             mfctable[hash] = rt;
 1530             rt->mfc_stall = rte;
 1531 
 1532         } else {
 1533             /* determine if q has overflowed */
 1534             int npkts = 0;
 1535             struct rtdetq **p;
 1536 
 1537             /*
 1538              * XXX ouch! we need to append to the list, but we
 1539              * only have a pointer to the front, so we have to
 1540              * scan the entire list every time.
 1541              */
 1542             for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
 1543                 npkts++;
 1544 
 1545             if (npkts > MAX_UPQ) {
 1546                 mrtstat.mrts_upq_ovflw++;
 1547 non_fatal:
 1548                 free(rte, M_MRTABLE);
 1549                 m_freem(mb0);
 1550                 MFC_UNLOCK();
 1551                 VIF_UNLOCK();
 1552                 return 0;
 1553             }
 1554 
 1555             /* Add this entry to the end of the queue */
 1556             *p = rte;
 1557         }
 1558 
 1559         rte->m                  = mb0;
 1560         rte->ifp                = ifp;
 1561         rte->next               = NULL;
 1562 
 1563         MFC_UNLOCK();
 1564         VIF_UNLOCK();
 1565 
 1566         return 0;
 1567     }           
 1568 }
 1569 
 1570 /*
 1571  * Clean up the cache entry if upcall is not serviced
 1572  */
 1573 static void
 1574 expire_upcalls(void *unused)
 1575 {
 1576     struct rtdetq *rte;
 1577     struct mfc *mfc, **nptr;
 1578     int i;
 1579 
 1580     MFC_LOCK();
 1581     for (i = 0; i < MFCTBLSIZ; i++) {
 1582         if (nexpire[i] == 0)
 1583             continue;
 1584         nptr = &mfctable[i];
 1585         for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
 1586             /*
 1587              * Skip real cache entries
 1588              * Make sure it wasn't marked to not expire (shouldn't happen)
 1589              * If it expires now
 1590              */
 1591             if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
 1592                     --mfc->mfc_expire == 0) {
 1593                 if (mrtdebug & DEBUG_EXPIRE)
 1594                     log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
 1595                         (u_long)ntohl(mfc->mfc_origin.s_addr),
 1596                         (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
 1597                 /*
 1598                  * drop all the packets
 1599                  * free the mbuf with the pkt, if, timing info
 1600                  */
 1601                 for (rte = mfc->mfc_stall; rte; ) {
 1602                     struct rtdetq *n = rte->next;
 1603 
 1604                     m_freem(rte->m);
 1605                     free(rte, M_MRTABLE);
 1606                     rte = n;
 1607                 }
 1608                 ++mrtstat.mrts_cache_cleanups;
 1609                 nexpire[i]--;
 1610 
 1611                 /*
 1612                  * free the bw_meter entries
 1613                  */
 1614                 while (mfc->mfc_bw_meter != NULL) {
 1615                     struct bw_meter *x = mfc->mfc_bw_meter;
 1616 
 1617                     mfc->mfc_bw_meter = x->bm_mfc_next;
 1618                     free(x, M_BWMETER);
 1619                 }
 1620 
 1621                 *nptr = mfc->mfc_next;
 1622                 free(mfc, M_MRTABLE);
 1623             } else {
 1624                 nptr = &mfc->mfc_next;
 1625             }
 1626         }
 1627     }
 1628     MFC_UNLOCK();
 1629 
 1630     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
 1631 }
 1632 
 1633 /*
 1634  * Packet forwarding routine once entry in the cache is made
 1635  */
 1636 static int
 1637 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1638 {
 1639     struct ip  *ip = mtod(m, struct ip *);
 1640     vifi_t vifi;
 1641     int plen = ip->ip_len;
 1642 
 1643     VIF_LOCK_ASSERT();
 1644 /*
 1645  * Macro to send packet on vif.  Since RSVP packets don't get counted on
 1646  * input, they shouldn't get counted on output, so statistics keeping is
 1647  * separate.
 1648  */
 1649 #define MC_SEND(ip,vifp,m) {                            \
 1650                 if ((vifp)->v_flags & VIFF_TUNNEL)      \
 1651                     encap_send((ip), (vifp), (m));      \
 1652                 else                                    \
 1653                     phyint_send((ip), (vifp), (m));     \
 1654 }
 1655 
 1656     /*
 1657      * If xmt_vif is not -1, send on only the requested vif.
 1658      *
 1659      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1660      */
 1661     if (xmt_vif < numvifs) {
 1662 #ifdef PIM
 1663         if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1664             pim_register_send(ip, viftable + xmt_vif, m, rt);
 1665         else
 1666 #endif
 1667         MC_SEND(ip, viftable + xmt_vif, m);
 1668         return 1;
 1669     }
 1670 
 1671     /*
 1672      * Don't forward if it didn't arrive from the parent vif for its origin.
 1673      */
 1674     vifi = rt->mfc_parent;
 1675     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
 1676         /* came in the wrong interface */
 1677         if (mrtdebug & DEBUG_FORWARD)
 1678             log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
 1679                 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp); 
 1680         ++mrtstat.mrts_wrong_if;
 1681         ++rt->mfc_wrong_if;
 1682         /*
 1683          * If we are doing PIM assert processing, send a message
 1684          * to the routing daemon.
 1685          *
 1686          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1687          * can complete the SPT switch, regardless of the type
 1688          * of the iif (broadcast media, GRE tunnel, etc).
 1689          */
 1690         if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
 1691             struct timeval now;
 1692             u_long delta;
 1693 
 1694 #ifdef PIM
 1695             if (ifp == &multicast_register_if)
 1696                 pimstat.pims_rcv_registers_wrongiif++;
 1697 #endif
 1698 
 1699             /* Get vifi for the incoming packet */
 1700             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1701                 ;
 1702             if (vifi >= numvifs)
 1703                 return 0;       /* The iif is not found: ignore the packet. */
 1704 
 1705             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1706                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1707 
 1708             GET_TIME(now);
 1709 
 1710             TV_DELTA(rt->mfc_last_assert, now, delta);
 1711 
 1712             if (delta > ASSERT_MSG_TIME) {
 1713                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1714                 struct igmpmsg *im;
 1715                 int hlen = ip->ip_hl << 2;
 1716                 struct mbuf *mm = m_copy(m, 0, hlen);
 1717 
 1718                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1719                     mm = m_pullup(mm, hlen);
 1720                 if (mm == NULL)
 1721                     return ENOBUFS;
 1722 
 1723                 rt->mfc_last_assert = now;
 1724 
 1725                 im = mtod(mm, struct igmpmsg *);
 1726                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1727                 im->im_mbz              = 0;
 1728                 im->im_vif              = vifi;
 1729 
 1730                 mrtstat.mrts_upcalls++;
 1731 
 1732                 k_igmpsrc.sin_addr = im->im_src;
 1733                 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1734                     log(LOG_WARNING,
 1735                         "ip_mforward: ip_mrouter socket queue full\n");
 1736                     ++mrtstat.mrts_upq_sockfull;
 1737                     return ENOBUFS;
 1738                 }
 1739             }
 1740         }
 1741         return 0;
 1742     }
 1743 
 1744     /* If I sourced this packet, it counts as output, else it was input. */
 1745     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
 1746         viftable[vifi].v_pkt_out++;
 1747         viftable[vifi].v_bytes_out += plen;
 1748     } else {
 1749         viftable[vifi].v_pkt_in++;
 1750         viftable[vifi].v_bytes_in += plen;
 1751     }
 1752     rt->mfc_pkt_cnt++;
 1753     rt->mfc_byte_cnt += plen;
 1754 
 1755     /*
 1756      * For each vif, decide if a copy of the packet should be forwarded.
 1757      * Forward if:
 1758      *          - the ttl exceeds the vif's threshold
 1759      *          - there are group members downstream on interface
 1760      */
 1761     for (vifi = 0; vifi < numvifs; vifi++)
 1762         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1763             viftable[vifi].v_pkt_out++;
 1764             viftable[vifi].v_bytes_out += plen;
 1765 #ifdef PIM
 1766             if (viftable[vifi].v_flags & VIFF_REGISTER)
 1767                 pim_register_send(ip, viftable + vifi, m, rt);
 1768             else
 1769 #endif
 1770             MC_SEND(ip, viftable+vifi, m);
 1771         }
 1772 
 1773     /*
 1774      * Perform upcall-related bw measuring.
 1775      */
 1776     if (rt->mfc_bw_meter != NULL) {
 1777         struct bw_meter *x;
 1778         struct timeval now;
 1779 
 1780         GET_TIME(now);
 1781         MFC_LOCK_ASSERT();
 1782         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1783             bw_meter_receive_packet(x, plen, &now);
 1784     }
 1785 
 1786     return 0;
 1787 }
 1788 
 1789 /*
 1790  * check if a vif number is legal/ok. This is used by ip_output.
 1791  */
 1792 static int
 1793 X_legal_vif_num(int vif)
 1794 {
 1795     /* XXX unlocked, matter? */
 1796     return (vif >= 0 && vif < numvifs);
 1797 }
 1798 
 1799 /*
 1800  * Return the local address used by this vif
 1801  */
 1802 static u_long
 1803 X_ip_mcast_src(int vifi)
 1804 {
 1805     /* XXX unlocked, matter? */
 1806     if (vifi >= 0 && vifi < numvifs)
 1807         return viftable[vifi].v_lcl_addr.s_addr;
 1808     else
 1809         return INADDR_ANY;
 1810 }
 1811 
 1812 static void
 1813 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1814 {
 1815     struct mbuf *mb_copy;
 1816     int hlen = ip->ip_hl << 2;
 1817 
 1818     VIF_LOCK_ASSERT();
 1819 
 1820     /*
 1821      * Make a new reference to the packet; make sure that
 1822      * the IP header is actually copied, not just referenced,
 1823      * so that ip_output() only scribbles on the copy.
 1824      */
 1825     mb_copy = m_copypacket(m, M_DONTWAIT);
 1826     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1827         mb_copy = m_pullup(mb_copy, hlen);
 1828     if (mb_copy == NULL)
 1829         return;
 1830 
 1831     if (vifp->v_rate_limit == 0)
 1832         tbf_send_packet(vifp, mb_copy);
 1833     else
 1834         tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
 1835 }
 1836 
 1837 static void
 1838 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1839 {
 1840     struct mbuf *mb_copy;
 1841     struct ip *ip_copy;
 1842     int i, len = ip->ip_len;
 1843 
 1844     VIF_LOCK_ASSERT();
 1845 
 1846     /* Take care of delayed checksums */
 1847     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 1848         in_delayed_cksum(m);
 1849         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 1850     }
 1851 
 1852     /*
 1853      * copy the old packet & pullup its IP header into the
 1854      * new mbuf so we can modify it.  Try to fill the new
 1855      * mbuf since if we don't the ethernet driver will.
 1856      */
 1857     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
 1858     if (mb_copy == NULL)
 1859         return;
 1860 #ifdef MAC
 1861     mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
 1862 #endif
 1863     mb_copy->m_data += max_linkhdr;
 1864     mb_copy->m_len = sizeof(multicast_encap_iphdr);
 1865 
 1866     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
 1867         m_freem(mb_copy);
 1868         return;
 1869     }
 1870     i = MHLEN - M_LEADINGSPACE(mb_copy);
 1871     if (i > len)
 1872         i = len;
 1873     mb_copy = m_pullup(mb_copy, i);
 1874     if (mb_copy == NULL)
 1875         return;
 1876     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
 1877 
 1878     /*
 1879      * fill in the encapsulating IP header.
 1880      */
 1881     ip_copy = mtod(mb_copy, struct ip *);
 1882     *ip_copy = multicast_encap_iphdr;
 1883 #ifdef RANDOM_IP_ID
 1884     ip_copy->ip_id = ip_randomid();
 1885 #else
 1886     ip_copy->ip_id = htons(ip_id++);
 1887 #endif
 1888     ip_copy->ip_len += len;
 1889     ip_copy->ip_src = vifp->v_lcl_addr;
 1890     ip_copy->ip_dst = vifp->v_rmt_addr;
 1891 
 1892     /*
 1893      * turn the encapsulated IP header back into a valid one.
 1894      */
 1895     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
 1896     --ip->ip_ttl;
 1897     ip->ip_len = htons(ip->ip_len);
 1898     ip->ip_off = htons(ip->ip_off);
 1899     ip->ip_sum = 0;
 1900     mb_copy->m_data += sizeof(multicast_encap_iphdr);
 1901     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 1902     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
 1903 
 1904     if (vifp->v_rate_limit == 0)
 1905         tbf_send_packet(vifp, mb_copy);
 1906     else
 1907         tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
 1908 }
 1909 
 1910 /*
 1911  * Token bucket filter module
 1912  */
 1913 
 1914 static void
 1915 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
 1916 {
 1917     struct tbf *t = vifp->v_tbf;
 1918 
 1919     VIF_LOCK_ASSERT();
 1920 
 1921     if (p_len > MAX_BKT_SIZE) {         /* drop if packet is too large */
 1922         mrtstat.mrts_pkt2large++;
 1923         m_freem(m);
 1924         return;
 1925     }
 1926 
 1927     tbf_update_tokens(vifp);
 1928 
 1929     if (t->tbf_q_len == 0) {            /* queue empty...               */
 1930         if (p_len <= t->tbf_n_tok) {    /* send packet if enough tokens */
 1931             t->tbf_n_tok -= p_len;
 1932             tbf_send_packet(vifp, m);
 1933         } else {                        /* no, queue packet and try later */
 1934             tbf_queue(vifp, m);
 1935             callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
 1936                 tbf_reprocess_q, vifp);
 1937         }
 1938     } else if (t->tbf_q_len < t->tbf_max_q_len) {
 1939         /* finite queue length, so queue pkts and process queue */
 1940         tbf_queue(vifp, m);
 1941         tbf_process_q(vifp);
 1942     } else {
 1943         /* queue full, try to dq and queue and process */
 1944         if (!tbf_dq_sel(vifp, ip)) {
 1945             mrtstat.mrts_q_overflow++;
 1946             m_freem(m);
 1947         } else {
 1948             tbf_queue(vifp, m);
 1949             tbf_process_q(vifp);
 1950         }
 1951     }
 1952 }
 1953 
 1954 /* 
 1955  * adds a packet to the queue at the interface
 1956  */
 1957 static void
 1958 tbf_queue(struct vif *vifp, struct mbuf *m)
 1959 {
 1960     struct tbf *t = vifp->v_tbf;
 1961 
 1962     VIF_LOCK_ASSERT();
 1963 
 1964     if (t->tbf_t == NULL)       /* Queue was empty */
 1965         t->tbf_q = m;
 1966     else                        /* Insert at tail */
 1967         t->tbf_t->m_act = m;
 1968 
 1969     t->tbf_t = m;               /* Set new tail pointer */
 1970 
 1971 #ifdef DIAGNOSTIC
 1972     /* Make sure we didn't get fed a bogus mbuf */
 1973     if (m->m_act)
 1974         panic("tbf_queue: m_act");
 1975 #endif
 1976     m->m_act = NULL;
 1977 
 1978     t->tbf_q_len++;
 1979 }
 1980 
 1981 /* 
 1982  * processes the queue at the interface
 1983  */
 1984 static void
 1985 tbf_process_q(struct vif *vifp)
 1986 {
 1987     struct tbf *t = vifp->v_tbf;
 1988 
 1989     VIF_LOCK_ASSERT();
 1990 
 1991     /* loop through the queue at the interface and send as many packets
 1992      * as possible
 1993      */
 1994     while (t->tbf_q_len > 0) {
 1995         struct mbuf *m = t->tbf_q;
 1996         int len = mtod(m, struct ip *)->ip_len;
 1997 
 1998         /* determine if the packet can be sent */
 1999         if (len > t->tbf_n_tok) /* not enough tokens, we are done */
 2000             break;
 2001         /* ok, reduce no of tokens, dequeue and send the packet. */
 2002         t->tbf_n_tok -= len;
 2003 
 2004         t->tbf_q = m->m_act;
 2005         if (--t->tbf_q_len == 0)
 2006             t->tbf_t = NULL;
 2007 
 2008         m->m_act = NULL;
 2009         tbf_send_packet(vifp, m);
 2010     }
 2011 }
 2012 
 2013 static void
 2014 tbf_reprocess_q(void *xvifp)
 2015 {
 2016     struct vif *vifp = xvifp;
 2017 
 2018     if (ip_mrouter == NULL) 
 2019         return;
 2020     VIF_LOCK();
 2021     tbf_update_tokens(vifp);
 2022     tbf_process_q(vifp);
 2023     if (vifp->v_tbf->tbf_q_len)
 2024         callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
 2025     VIF_UNLOCK();
 2026 }
 2027 
 2028 /* function that will selectively discard a member of the queue
 2029  * based on the precedence value and the priority
 2030  */
 2031 static int
 2032 tbf_dq_sel(struct vif *vifp, struct ip *ip)
 2033 {
 2034     u_int p;
 2035     struct mbuf *m, *last;
 2036     struct mbuf **np;
 2037     struct tbf *t = vifp->v_tbf;
 2038 
 2039     VIF_LOCK_ASSERT();
 2040 
 2041     p = priority(vifp, ip);
 2042 
 2043     np = &t->tbf_q;
 2044     last = NULL;
 2045     while ((m = *np) != NULL) {
 2046         if (p > priority(vifp, mtod(m, struct ip *))) {
 2047             *np = m->m_act;
 2048             /* If we're removing the last packet, fix the tail pointer */
 2049             if (m == t->tbf_t)
 2050                 t->tbf_t = last;
 2051             m_freem(m);
 2052             /* It's impossible for the queue to be empty, but check anyways. */
 2053             if (--t->tbf_q_len == 0)
 2054                 t->tbf_t = NULL;
 2055             mrtstat.mrts_drop_sel++;
 2056             return 1;
 2057         }
 2058         np = &m->m_act;
 2059         last = m;
 2060     }
 2061     return 0;
 2062 }
 2063 
 2064 static void
 2065 tbf_send_packet(struct vif *vifp, struct mbuf *m)
 2066 {
 2067     VIF_LOCK_ASSERT();
 2068 
 2069     if (vifp->v_flags & VIFF_TUNNEL)    /* If tunnel options */
 2070         ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
 2071     else {
 2072         struct ip_moptions imo;
 2073         int error;
 2074         static struct route ro; /* XXX check this */
 2075 
 2076         imo.imo_multicast_ifp  = vifp->v_ifp;
 2077         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 2078         imo.imo_multicast_loop = 1;
 2079         imo.imo_multicast_vif  = -1;
 2080 
 2081         /*
 2082          * Re-entrancy should not be a problem here, because
 2083          * the packets that we send out and are looped back at us
 2084          * should get rejected because they appear to come from
 2085          * the loopback interface, thus preventing looping.
 2086          */
 2087         error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
 2088 
 2089         if (mrtdebug & DEBUG_XMIT)
 2090             log(LOG_DEBUG, "phyint_send on vif %d err %d\n", 
 2091                 (int)(vifp - viftable), error);
 2092     }
 2093 }
 2094 
 2095 /* determine the current time and then
 2096  * the elapsed time (between the last time and time now)
 2097  * in milliseconds & update the no. of tokens in the bucket
 2098  */
 2099 static void
 2100 tbf_update_tokens(struct vif *vifp)
 2101 {
 2102     struct timeval tp;
 2103     u_long tm;
 2104     struct tbf *t = vifp->v_tbf;
 2105 
 2106     VIF_LOCK_ASSERT();
 2107 
 2108     GET_TIME(tp);
 2109 
 2110     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
 2111 
 2112     /*
 2113      * This formula is actually
 2114      * "time in seconds" * "bytes/second".
 2115      *
 2116      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
 2117      *
 2118      * The (1000/1024) was introduced in add_vif to optimize
 2119      * this divide into a shift.
 2120      */
 2121     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
 2122     t->tbf_last_pkt_t = tp;
 2123 
 2124     if (t->tbf_n_tok > MAX_BKT_SIZE)
 2125         t->tbf_n_tok = MAX_BKT_SIZE;
 2126 }
 2127 
 2128 static int
 2129 priority(struct vif *vifp, struct ip *ip)
 2130 {
 2131     int prio = 50; /* the lowest priority -- default case */
 2132 
 2133     /* temporary hack; may add general packet classifier some day */
 2134 
 2135     /*
 2136      * The UDP port space is divided up into four priority ranges:
 2137      * [0, 16384)     : unclassified - lowest priority
 2138      * [16384, 32768) : audio - highest priority
 2139      * [32768, 49152) : whiteboard - medium priority
 2140      * [49152, 65536) : video - low priority
 2141      *
 2142      * Everything else gets lowest priority.
 2143      */
 2144     if (ip->ip_p == IPPROTO_UDP) {
 2145         struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
 2146         switch (ntohs(udp->uh_dport) & 0xc000) {
 2147         case 0x4000:
 2148             prio = 70;
 2149             break;
 2150         case 0x8000:
 2151             prio = 60;
 2152             break;
 2153         case 0xc000:
 2154             prio = 55;
 2155             break;
 2156         }
 2157     }
 2158     return prio;
 2159 }
 2160 
 2161 /*
 2162  * End of token bucket filter modifications 
 2163  */
 2164 
 2165 static int
 2166 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
 2167 {
 2168     int error, vifi;
 2169 
 2170     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2171         return EOPNOTSUPP;
 2172 
 2173     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
 2174     if (error)
 2175         return error;
 2176  
 2177     VIF_LOCK();
 2178 
 2179     if (vifi < 0 || vifi >= numvifs) {  /* Error if vif is invalid */
 2180         VIF_UNLOCK();
 2181         return EADDRNOTAVAIL;
 2182     }
 2183 
 2184     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
 2185         /* Check if socket is available. */
 2186         if (viftable[vifi].v_rsvpd != NULL) {
 2187             VIF_UNLOCK();
 2188             return EADDRINUSE;
 2189         }
 2190 
 2191         viftable[vifi].v_rsvpd = so;
 2192         /* This may seem silly, but we need to be sure we don't over-increment
 2193          * the RSVP counter, in case something slips up.
 2194          */
 2195         if (!viftable[vifi].v_rsvp_on) {
 2196             viftable[vifi].v_rsvp_on = 1;
 2197             rsvp_on++;
 2198         }
 2199     } else { /* must be VIF_OFF */
 2200         /*
 2201          * XXX as an additional consistency check, one could make sure
 2202          * that viftable[vifi].v_rsvpd == so, otherwise passing so as
 2203          * first parameter is pretty useless.
 2204          */
 2205         viftable[vifi].v_rsvpd = NULL;
 2206         /*
 2207          * This may seem silly, but we need to be sure we don't over-decrement
 2208          * the RSVP counter, in case something slips up.
 2209          */
 2210         if (viftable[vifi].v_rsvp_on) {
 2211             viftable[vifi].v_rsvp_on = 0;
 2212             rsvp_on--;
 2213         }
 2214     }
 2215     VIF_UNLOCK();
 2216     return 0;
 2217 }
 2218 
 2219 static void
 2220 X_ip_rsvp_force_done(struct socket *so)
 2221 {
 2222     int vifi;
 2223 
 2224     /* Don't bother if it is not the right type of socket. */
 2225     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2226         return;
 2227 
 2228     VIF_LOCK();
 2229 
 2230     /* The socket may be attached to more than one vif...this
 2231      * is perfectly legal.
 2232      */
 2233     for (vifi = 0; vifi < numvifs; vifi++) {
 2234         if (viftable[vifi].v_rsvpd == so) {
 2235             viftable[vifi].v_rsvpd = NULL;
 2236             /* This may seem silly, but we need to be sure we don't
 2237              * over-decrement the RSVP counter, in case something slips up.
 2238              */
 2239             if (viftable[vifi].v_rsvp_on) {
 2240                 viftable[vifi].v_rsvp_on = 0;
 2241                 rsvp_on--;
 2242             }
 2243         }
 2244     }
 2245 
 2246     VIF_UNLOCK();
 2247 }
 2248 
 2249 static void
 2250 X_rsvp_input(struct mbuf *m, int off)
 2251 {
 2252     int vifi;
 2253     struct ip *ip = mtod(m, struct ip *);
 2254     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
 2255     struct ifnet *ifp;
 2256 
 2257     if (rsvpdebug)
 2258         printf("rsvp_input: rsvp_on %d\n",rsvp_on);
 2259 
 2260     /* Can still get packets with rsvp_on = 0 if there is a local member
 2261      * of the group to which the RSVP packet is addressed.  But in this
 2262      * case we want to throw the packet away.
 2263      */
 2264     if (!rsvp_on) {
 2265         m_freem(m);
 2266         return;
 2267     }
 2268 
 2269     if (rsvpdebug)
 2270         printf("rsvp_input: check vifs\n");
 2271 
 2272 #ifdef DIAGNOSTIC
 2273     M_ASSERTPKTHDR(m);
 2274 #endif
 2275 
 2276     ifp = m->m_pkthdr.rcvif;
 2277 
 2278     VIF_LOCK();
 2279     /* Find which vif the packet arrived on. */
 2280     for (vifi = 0; vifi < numvifs; vifi++)
 2281         if (viftable[vifi].v_ifp == ifp)
 2282             break;
 2283 
 2284     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
 2285         /*
 2286          * Drop the lock here to avoid holding it across rip_input.
 2287          * This could make rsvpdebug printfs wrong.  If you care,
 2288          * record the state of stuff before dropping the lock.
 2289          */
 2290         VIF_UNLOCK();
 2291         /*
 2292          * If the old-style non-vif-associated socket is set,
 2293          * then use it.  Otherwise, drop packet since there
 2294          * is no specific socket for this vif.
 2295          */
 2296         if (ip_rsvpd != NULL) {
 2297             if (rsvpdebug)
 2298                 printf("rsvp_input: Sending packet up old-style socket\n");
 2299             rip_input(m, off);  /* xxx */
 2300         } else {
 2301             if (rsvpdebug && vifi == numvifs)
 2302                 printf("rsvp_input: Can't find vif for packet.\n");
 2303             else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
 2304                 printf("rsvp_input: No socket defined for vif %d\n",vifi);
 2305             m_freem(m);
 2306         }
 2307         return;
 2308     }
 2309     rsvp_src.sin_addr = ip->ip_src;
 2310 
 2311     if (rsvpdebug && m)
 2312         printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
 2313                m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
 2314 
 2315     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
 2316         if (rsvpdebug)
 2317             printf("rsvp_input: Failed to append to socket\n");
 2318     } else {
 2319         if (rsvpdebug)
 2320             printf("rsvp_input: send packet up\n");
 2321     }
 2322     VIF_UNLOCK();
 2323 }
 2324 
 2325 /*
 2326  * Code for bandwidth monitors
 2327  */
 2328 
 2329 /*
 2330  * Define common interface for timeval-related methods
 2331  */
 2332 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 2333 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 2334 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 2335 
 2336 static uint32_t
 2337 compute_bw_meter_flags(struct bw_upcall *req)
 2338 {
 2339     uint32_t flags = 0;
 2340 
 2341     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 2342         flags |= BW_METER_UNIT_PACKETS;
 2343     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 2344         flags |= BW_METER_UNIT_BYTES;
 2345     if (req->bu_flags & BW_UPCALL_GEQ)
 2346         flags |= BW_METER_GEQ;
 2347     if (req->bu_flags & BW_UPCALL_LEQ)
 2348         flags |= BW_METER_LEQ;
 2349     
 2350     return flags;
 2351 }
 2352  
 2353 /*
 2354  * Add a bw_meter entry
 2355  */
 2356 static int
 2357 add_bw_upcall(struct bw_upcall *req)
 2358 {
 2359     struct mfc *mfc;
 2360     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 2361                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 2362     struct timeval now;
 2363     struct bw_meter *x;
 2364     uint32_t flags;
 2365     
 2366     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2367         return EOPNOTSUPP;
 2368     
 2369     /* Test if the flags are valid */
 2370     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 2371         return EINVAL;
 2372     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 2373         return EINVAL;
 2374     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2375             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2376         return EINVAL;
 2377     
 2378     /* Test if the threshold time interval is valid */
 2379     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 2380         return EINVAL;
 2381     
 2382     flags = compute_bw_meter_flags(req);
 2383 
 2384     /*
 2385      * Find if we have already same bw_meter entry
 2386      */
 2387     MFC_LOCK();
 2388     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2389     if (mfc == NULL) {
 2390         MFC_UNLOCK();
 2391         return EADDRNOTAVAIL;
 2392     }
 2393     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 2394         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2395                            &req->bu_threshold.b_time, ==)) &&
 2396             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2397             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2398             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 2399             MFC_UNLOCK();
 2400             return 0;           /* XXX Already installed */
 2401         }
 2402     }
 2403     
 2404     /* Allocate the new bw_meter entry */
 2405     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 2406     if (x == NULL) {
 2407         MFC_UNLOCK();
 2408         return ENOBUFS;
 2409     }
 2410     
 2411     /* Set the new bw_meter entry */
 2412     x->bm_threshold.b_time = req->bu_threshold.b_time;
 2413     GET_TIME(now);
 2414     x->bm_start_time = now;
 2415     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 2416     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 2417     x->bm_measured.b_packets = 0;
 2418     x->bm_measured.b_bytes = 0;
 2419     x->bm_flags = flags;
 2420     x->bm_time_next = NULL;
 2421     x->bm_time_hash = BW_METER_BUCKETS;
 2422     
 2423     /* Add the new bw_meter entry to the front of entries for this MFC */
 2424     x->bm_mfc = mfc;
 2425     x->bm_mfc_next = mfc->mfc_bw_meter;
 2426     mfc->mfc_bw_meter = x;
 2427     schedule_bw_meter(x, &now);
 2428     MFC_UNLOCK();
 2429     
 2430     return 0;
 2431 }
 2432 
 2433 static void
 2434 free_bw_list(struct bw_meter *list)
 2435 {
 2436     while (list != NULL) {
 2437         struct bw_meter *x = list;
 2438 
 2439         list = list->bm_mfc_next;
 2440         unschedule_bw_meter(x);
 2441         free(x, M_BWMETER);
 2442     }
 2443 }
 2444 
 2445 /*
 2446  * Delete one or multiple bw_meter entries
 2447  */
 2448 static int
 2449 del_bw_upcall(struct bw_upcall *req)
 2450 {
 2451     struct mfc *mfc;
 2452     struct bw_meter *x;
 2453     
 2454     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2455         return EOPNOTSUPP;
 2456     
 2457     MFC_LOCK();
 2458     /* Find the corresponding MFC entry */
 2459     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2460     if (mfc == NULL) {
 2461         MFC_UNLOCK();
 2462         return EADDRNOTAVAIL;
 2463     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2464         /*
 2465          * Delete all bw_meter entries for this mfc
 2466          */
 2467         struct bw_meter *list;
 2468         
 2469         list = mfc->mfc_bw_meter;
 2470         mfc->mfc_bw_meter = NULL;
 2471         free_bw_list(list);
 2472         MFC_UNLOCK();
 2473         return 0;
 2474     } else {                    /* Delete a single bw_meter entry */
 2475         struct bw_meter *prev;
 2476         uint32_t flags = 0;
 2477 
 2478         flags = compute_bw_meter_flags(req);
 2479 
 2480         /* Find the bw_meter entry to delete */
 2481         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 2482              x = x->bm_mfc_next) {
 2483             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2484                                &req->bu_threshold.b_time, ==)) &&
 2485                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2486                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2487                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2488                 break;
 2489         }
 2490         if (x != NULL) { /* Delete entry from the list for this MFC */
 2491             if (prev != NULL)
 2492                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2493             else
 2494                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 2495 
 2496             unschedule_bw_meter(x);
 2497             MFC_UNLOCK();
 2498             /* Free the bw_meter entry */
 2499             free(x, M_BWMETER);
 2500             return 0;
 2501         } else {
 2502             MFC_UNLOCK();
 2503             return EINVAL;
 2504         }
 2505     }
 2506     /* NOTREACHED */
 2507 }
 2508 
 2509 /*
 2510  * Perform bandwidth measurement processing that may result in an upcall
 2511  */
 2512 static void
 2513 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2514 {
 2515     struct timeval delta;
 2516     
 2517     MFC_LOCK_ASSERT();
 2518 
 2519     delta = *nowp;
 2520     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2521     
 2522     if (x->bm_flags & BW_METER_GEQ) {
 2523         /*
 2524          * Processing for ">=" type of bw_meter entry
 2525          */
 2526         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2527             /* Reset the bw_meter entry */
 2528             x->bm_start_time = *nowp;
 2529             x->bm_measured.b_packets = 0;
 2530             x->bm_measured.b_bytes = 0;
 2531             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2532         }
 2533         
 2534         /* Record that a packet is received */
 2535         x->bm_measured.b_packets++;
 2536         x->bm_measured.b_bytes += plen;
 2537         
 2538         /*
 2539          * Test if we should deliver an upcall
 2540          */
 2541         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {       
 2542             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2543                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2544                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2545                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2546                 /* Prepare an upcall for delivery */
 2547                 bw_meter_prepare_upcall(x, nowp);
 2548                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2549             }
 2550         }
 2551     } else if (x->bm_flags & BW_METER_LEQ) {
 2552         /*
 2553          * Processing for "<=" type of bw_meter entry
 2554          */
 2555         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2556             /*
 2557              * We are behind time with the multicast forwarding table
 2558              * scanning for "<=" type of bw_meter entries, so test now
 2559              * if we should deliver an upcall.
 2560              */
 2561             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2562                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2563                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2564                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2565                 /* Prepare an upcall for delivery */
 2566                 bw_meter_prepare_upcall(x, nowp);
 2567             }
 2568             /* Reschedule the bw_meter entry */
 2569             unschedule_bw_meter(x);
 2570             schedule_bw_meter(x, nowp);
 2571         }
 2572         
 2573         /* Record that a packet is received */
 2574         x->bm_measured.b_packets++;
 2575         x->bm_measured.b_bytes += plen;
 2576         
 2577         /*
 2578          * Test if we should restart the measuring interval
 2579          */
 2580         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 2581              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 2582             (x->bm_flags & BW_METER_UNIT_BYTES &&
 2583              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 2584             /* Don't restart the measuring interval */
 2585         } else {
 2586             /* Do restart the measuring interval */
 2587             /*
 2588              * XXX: note that we don't unschedule and schedule, because this
 2589              * might be too much overhead per packet. Instead, when we process
 2590              * all entries for a given timer hash bin, we check whether it is
 2591              * really a timeout. If not, we reschedule at that time.
 2592              */
 2593             x->bm_start_time = *nowp;
 2594             x->bm_measured.b_packets = 0;
 2595             x->bm_measured.b_bytes = 0;
 2596             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2597         }
 2598     }
 2599 }
 2600 
 2601 /*
 2602  * Prepare a bandwidth-related upcall
 2603  */
 2604 static void
 2605 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2606 {
 2607     struct timeval delta;
 2608     struct bw_upcall *u;
 2609     
 2610     MFC_LOCK_ASSERT();
 2611     
 2612     /*
 2613      * Compute the measured time interval 
 2614      */
 2615     delta = *nowp;
 2616     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2617     
 2618     /*
 2619      * If there are too many pending upcalls, deliver them now
 2620      */
 2621     if (bw_upcalls_n >= BW_UPCALLS_MAX)
 2622         bw_upcalls_send();
 2623     
 2624     /*
 2625      * Set the bw_upcall entry
 2626      */
 2627     u = &bw_upcalls[bw_upcalls_n++];
 2628     u->bu_src = x->bm_mfc->mfc_origin;
 2629     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2630     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2631     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2632     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2633     u->bu_measured.b_time = delta;
 2634     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2635     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2636     u->bu_flags = 0;
 2637     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2638         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2639     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2640         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2641     if (x->bm_flags & BW_METER_GEQ)
 2642         u->bu_flags |= BW_UPCALL_GEQ;
 2643     if (x->bm_flags & BW_METER_LEQ)
 2644         u->bu_flags |= BW_UPCALL_LEQ;
 2645 }
 2646 
 2647 /*
 2648  * Send the pending bandwidth-related upcalls
 2649  */
 2650 static void
 2651 bw_upcalls_send(void)
 2652 {
 2653     struct mbuf *m;
 2654     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
 2655     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2656     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2657                                       0,                /* unused2 */
 2658                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2659                                       0,                /* im_mbz  */
 2660                                       0,                /* im_vif  */
 2661                                       0,                /* unused3 */
 2662                                       { 0 },            /* im_src  */
 2663                                       { 0 } };          /* im_dst  */
 2664     
 2665     MFC_LOCK_ASSERT();
 2666 
 2667     if (bw_upcalls_n == 0)
 2668         return;                 /* No pending upcalls */
 2669 
 2670     bw_upcalls_n = 0;
 2671     
 2672     /*
 2673      * Allocate a new mbuf, initialize it with the header and
 2674      * the payload for the pending calls.
 2675      */
 2676     MGETHDR(m, M_DONTWAIT, MT_HEADER);
 2677     if (m == NULL) {
 2678         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2679         return;
 2680     }
 2681     
 2682     m->m_len = m->m_pkthdr.len = 0;
 2683     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2684     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
 2685     
 2686     /*
 2687      * Send the upcalls
 2688      * XXX do we need to set the address in k_igmpsrc ?
 2689      */
 2690     mrtstat.mrts_upcalls++;
 2691     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
 2692         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2693         ++mrtstat.mrts_upq_sockfull;
 2694     }
 2695 }
 2696 
 2697 /*
 2698  * Compute the timeout hash value for the bw_meter entries
 2699  */
 2700 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2701     do {                                                                \
 2702         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2703                                                                         \
 2704         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2705         (hash) = next_timeval.tv_sec;                                   \
 2706         if (next_timeval.tv_usec)                                       \
 2707             (hash)++; /* XXX: make sure we don't timeout early */       \
 2708         (hash) %= BW_METER_BUCKETS;                                     \
 2709     } while (0)
 2710 
 2711 /*
 2712  * Schedule a timer to process periodically bw_meter entry of type "<="
 2713  * by linking the entry in the proper hash bucket.
 2714  */
 2715 static void
 2716 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2717 {
 2718     int time_hash;
 2719     
 2720     MFC_LOCK_ASSERT();
 2721 
 2722     if (!(x->bm_flags & BW_METER_LEQ))
 2723         return;         /* XXX: we schedule timers only for "<=" entries */
 2724     
 2725     /*
 2726      * Reset the bw_meter entry
 2727      */
 2728     x->bm_start_time = *nowp;
 2729     x->bm_measured.b_packets = 0;
 2730     x->bm_measured.b_bytes = 0;
 2731     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2732     
 2733     /*
 2734      * Compute the timeout hash value and insert the entry
 2735      */
 2736     BW_METER_TIMEHASH(x, time_hash);
 2737     x->bm_time_next = bw_meter_timers[time_hash];
 2738     bw_meter_timers[time_hash] = x;
 2739     x->bm_time_hash = time_hash;
 2740 }
 2741 
 2742 /*
 2743  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2744  * by removing the entry from the proper hash bucket.
 2745  */
 2746 static void
 2747 unschedule_bw_meter(struct bw_meter *x)
 2748 {
 2749     int time_hash;
 2750     struct bw_meter *prev, *tmp;
 2751     
 2752     MFC_LOCK_ASSERT();
 2753 
 2754     if (!(x->bm_flags & BW_METER_LEQ))
 2755         return;         /* XXX: we schedule timers only for "<=" entries */
 2756     
 2757     /*
 2758      * Compute the timeout hash value and delete the entry
 2759      */
 2760     time_hash = x->bm_time_hash;
 2761     if (time_hash >= BW_METER_BUCKETS)
 2762         return;         /* Entry was not scheduled */
 2763     
 2764     for (prev = NULL, tmp = bw_meter_timers[time_hash];
 2765              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2766         if (tmp == x)
 2767             break;
 2768     
 2769     if (tmp == NULL)
 2770         panic("unschedule_bw_meter: bw_meter entry not found");
 2771     
 2772     if (prev != NULL)
 2773         prev->bm_time_next = x->bm_time_next;
 2774     else
 2775         bw_meter_timers[time_hash] = x->bm_time_next;
 2776     
 2777     x->bm_time_next = NULL;
 2778     x->bm_time_hash = BW_METER_BUCKETS;
 2779 }
 2780 
 2781 
 2782 /*
 2783  * Process all "<=" type of bw_meter that should be processed now,
 2784  * and for each entry prepare an upcall if necessary. Each processed
 2785  * entry is rescheduled again for the (periodic) processing.
 2786  *
 2787  * This is run periodically (once per second normally). On each round,
 2788  * all the potentially matching entries are in the hash slot that we are
 2789  * looking at.
 2790  */
 2791 static void
 2792 bw_meter_process()
 2793 {
 2794     static uint32_t last_tv_sec;        /* last time we processed this */
 2795 
 2796     uint32_t loops;
 2797     int i;
 2798     struct timeval now, process_endtime;
 2799     
 2800     GET_TIME(now);
 2801     if (last_tv_sec == now.tv_sec)
 2802         return;         /* nothing to do */
 2803 
 2804     loops = now.tv_sec - last_tv_sec;
 2805     last_tv_sec = now.tv_sec;
 2806     if (loops > BW_METER_BUCKETS)
 2807         loops = BW_METER_BUCKETS;
 2808 
 2809     MFC_LOCK();
 2810     /*
 2811      * Process all bins of bw_meter entries from the one after the last
 2812      * processed to the current one. On entry, i points to the last bucket
 2813      * visited, so we need to increment i at the beginning of the loop.
 2814      */
 2815     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2816         struct bw_meter *x, *tmp_list;
 2817         
 2818         if (++i >= BW_METER_BUCKETS)
 2819             i = 0;
 2820         
 2821         /* Disconnect the list of bw_meter entries from the bin */
 2822         tmp_list = bw_meter_timers[i];
 2823         bw_meter_timers[i] = NULL;
 2824         
 2825         /* Process the list of bw_meter entries */
 2826         while (tmp_list != NULL) {
 2827             x = tmp_list;
 2828             tmp_list = tmp_list->bm_time_next;
 2829             
 2830             /* Test if the time interval is over */
 2831             process_endtime = x->bm_start_time;
 2832             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2833             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2834                 /* Not yet: reschedule, but don't reset */
 2835                 int time_hash;
 2836                 
 2837                 BW_METER_TIMEHASH(x, time_hash);
 2838                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2839                     /*
 2840                      * XXX: somehow the bin processing is a bit ahead of time.
 2841                      * Put the entry in the next bin.
 2842                      */
 2843                     if (++time_hash >= BW_METER_BUCKETS)
 2844                         time_hash = 0;
 2845                 }
 2846                 x->bm_time_next = bw_meter_timers[time_hash];
 2847                 bw_meter_timers[time_hash] = x;
 2848                 x->bm_time_hash = time_hash;
 2849                 
 2850                 continue;
 2851             }
 2852             
 2853             /*
 2854              * Test if we should deliver an upcall
 2855              */
 2856             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2857                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2858                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2859                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2860                 /* Prepare an upcall for delivery */
 2861                 bw_meter_prepare_upcall(x, &now);
 2862             }
 2863             
 2864             /*
 2865              * Reschedule for next processing
 2866              */
 2867             schedule_bw_meter(x, &now);
 2868         }
 2869     }
 2870     
 2871     /* Send all upcalls that are pending delivery */
 2872     bw_upcalls_send();
 2873 
 2874     MFC_UNLOCK();
 2875 }
 2876 
 2877 /*
 2878  * A periodic function for sending all upcalls that are pending delivery
 2879  */
 2880 static void
 2881 expire_bw_upcalls_send(void *unused)
 2882 {
 2883     MFC_LOCK();
 2884     bw_upcalls_send();
 2885     MFC_UNLOCK();
 2886     
 2887     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
 2888         expire_bw_upcalls_send, NULL);
 2889 }
 2890 
 2891 /*
 2892  * A periodic function for periodic scanning of the multicast forwarding
 2893  * table for processing all "<=" bw_meter entries.
 2894  */
 2895 static void
 2896 expire_bw_meter_process(void *unused)
 2897 {
 2898     if (mrt_api_config & MRT_MFC_BW_UPCALL)
 2899         bw_meter_process();
 2900     
 2901     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
 2902 }
 2903 
 2904 /*
 2905  * End of bandwidth monitoring code
 2906  */
 2907 
 2908 #ifdef PIM
 2909 /*
 2910  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2911  *
 2912  */
 2913 static int
 2914 pim_register_send(struct ip *ip, struct vif *vifp,
 2915         struct mbuf *m, struct mfc *rt)
 2916 {
 2917     struct mbuf *mb_copy, *mm;
 2918     
 2919     if (mrtdebug & DEBUG_PIM)
 2920         log(LOG_DEBUG, "pim_register_send: ");
 2921     
 2922     mb_copy = pim_register_prepare(ip, m);
 2923     if (mb_copy == NULL)
 2924         return ENOBUFS;
 2925     
 2926     /*
 2927      * Send all the fragments. Note that the mbuf for each fragment
 2928      * is freed by the sending machinery.
 2929      */
 2930     for (mm = mb_copy; mm; mm = mb_copy) {
 2931         mb_copy = mm->m_nextpkt;
 2932         mm->m_nextpkt = 0;
 2933         mm = m_pullup(mm, sizeof(struct ip));
 2934         if (mm != NULL) {
 2935             ip = mtod(mm, struct ip *);
 2936             if ((mrt_api_config & MRT_MFC_RP) &&
 2937                 (rt->mfc_rp.s_addr != INADDR_ANY)) {
 2938                 pim_register_send_rp(ip, vifp, mm, rt);
 2939             } else {
 2940                 pim_register_send_upcall(ip, vifp, mm, rt);
 2941             }
 2942         }
 2943     }
 2944     
 2945     return 0;
 2946 }
 2947 
 2948 /*
 2949  * Return a copy of the data packet that is ready for PIM Register
 2950  * encapsulation.
 2951  * XXX: Note that in the returned copy the IP header is a valid one.
 2952  */
 2953 static struct mbuf *
 2954 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2955 {
 2956     struct mbuf *mb_copy = NULL;
 2957     int mtu;
 2958     
 2959     /* Take care of delayed checksums */
 2960     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2961         in_delayed_cksum(m);
 2962         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2963     }
 2964 
 2965     /*
 2966      * Copy the old packet & pullup its IP header into the
 2967      * new mbuf so we can modify it.
 2968      */
 2969     mb_copy = m_copypacket(m, M_DONTWAIT);
 2970     if (mb_copy == NULL)
 2971         return NULL;
 2972     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2973     if (mb_copy == NULL)
 2974         return NULL;
 2975     
 2976     /* take care of the TTL */
 2977     ip = mtod(mb_copy, struct ip *);
 2978     --ip->ip_ttl;
 2979     
 2980     /* Compute the MTU after the PIM Register encapsulation */
 2981     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2982     
 2983     if (ip->ip_len <= mtu) {
 2984         /* Turn the IP header into a valid one */
 2985         ip->ip_len = htons(ip->ip_len);
 2986         ip->ip_off = htons(ip->ip_off);
 2987         ip->ip_sum = 0;
 2988         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2989     } else {
 2990         /* Fragment the packet */
 2991         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 2992             m_freem(mb_copy);
 2993             return NULL;
 2994         }
 2995     }
 2996     return mb_copy;
 2997 }
 2998 
 2999 /*
 3000  * Send an upcall with the data packet to the user-level process.
 3001  */
 3002 static int
 3003 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 3004         struct mbuf *mb_copy, struct mfc *rt)
 3005 {
 3006     struct mbuf *mb_first;
 3007     int len = ntohs(ip->ip_len);
 3008     struct igmpmsg *im;
 3009     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 3010     
 3011     VIF_LOCK_ASSERT();
 3012 
 3013     /*
 3014      * Add a new mbuf with an upcall header
 3015      */
 3016     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3017     if (mb_first == NULL) {
 3018         m_freem(mb_copy);
 3019         return ENOBUFS;
 3020     }
 3021     mb_first->m_data += max_linkhdr;
 3022     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 3023     mb_first->m_len = sizeof(struct igmpmsg);
 3024     mb_first->m_next = mb_copy;
 3025     
 3026     /* Send message to routing daemon */
 3027     im = mtod(mb_first, struct igmpmsg *);
 3028     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 3029     im->im_mbz          = 0;
 3030     im->im_vif          = vifp - viftable;
 3031     im->im_src          = ip->ip_src;
 3032     im->im_dst          = ip->ip_dst;
 3033     
 3034     k_igmpsrc.sin_addr  = ip->ip_src;
 3035     
 3036     mrtstat.mrts_upcalls++;
 3037     
 3038     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 3039         if (mrtdebug & DEBUG_PIM)
 3040             log(LOG_WARNING,
 3041                 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
 3042         ++mrtstat.mrts_upq_sockfull;
 3043         return ENOBUFS;
 3044     }
 3045     
 3046     /* Keep statistics */
 3047     pimstat.pims_snd_registers_msgs++;
 3048     pimstat.pims_snd_registers_bytes += len;
 3049     
 3050     return 0;
 3051 }
 3052 
 3053 /*
 3054  * Encapsulate the data packet in PIM Register message and send it to the RP.
 3055  */
 3056 static int
 3057 pim_register_send_rp(struct ip *ip, struct vif *vifp,
 3058         struct mbuf *mb_copy, struct mfc *rt)
 3059 {
 3060     struct mbuf *mb_first;
 3061     struct ip *ip_outer;
 3062     struct pim_encap_pimhdr *pimhdr;
 3063     int len = ntohs(ip->ip_len);
 3064     vifi_t vifi = rt->mfc_parent;
 3065     
 3066     VIF_LOCK_ASSERT();
 3067     
 3068     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
 3069         m_freem(mb_copy);
 3070         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 3071     }
 3072     
 3073     /*
 3074      * Add a new mbuf with the encapsulating header
 3075      */
 3076     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3077     if (mb_first == NULL) {
 3078         m_freem(mb_copy);
 3079         return ENOBUFS;
 3080     }
 3081     mb_first->m_data += max_linkhdr;
 3082     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3083     mb_first->m_next = mb_copy;
 3084 
 3085     mb_first->m_pkthdr.len = len + mb_first->m_len;
 3086     
 3087     /*
 3088      * Fill in the encapsulating IP and PIM header
 3089      */
 3090     ip_outer = mtod(mb_first, struct ip *);
 3091     *ip_outer = pim_encap_iphdr;
 3092 #ifdef RANDOM_IP_ID
 3093     ip_outer->ip_id = ip_randomid();
 3094 #else
 3095     ip_outer->ip_id = htons(ip_id++);
 3096 #endif
 3097     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3098     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
 3099     ip_outer->ip_dst = rt->mfc_rp;
 3100     /*
 3101      * Copy the inner header TOS to the outer header, and take care of the
 3102      * IP_DF bit.
 3103      */
 3104     ip_outer->ip_tos = ip->ip_tos;
 3105     if (ntohs(ip->ip_off) & IP_DF)
 3106         ip_outer->ip_off |= IP_DF;
 3107     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 3108                                          + sizeof(pim_encap_iphdr));
 3109     *pimhdr = pim_encap_pimhdr;
 3110     /* If the iif crosses a border, set the Border-bit */
 3111     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
 3112         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 3113     
 3114     mb_first->m_data += sizeof(pim_encap_iphdr);
 3115     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 3116     mb_first->m_data -= sizeof(pim_encap_iphdr);
 3117     
 3118     if (vifp->v_rate_limit == 0)
 3119         tbf_send_packet(vifp, mb_first);
 3120     else
 3121         tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
 3122     
 3123     /* Keep statistics */
 3124     pimstat.pims_snd_registers_msgs++;
 3125     pimstat.pims_snd_registers_bytes += len;
 3126     
 3127     return 0;
 3128 }
 3129 
 3130 /*
 3131  * PIM-SMv2 and PIM-DM messages processing.
 3132  * Receives and verifies the PIM control messages, and passes them
 3133  * up to the listening socket, using rip_input().
 3134  * The only message with special processing is the PIM_REGISTER message
 3135  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 3136  * is passed to if_simloop().
 3137  */
 3138 void
 3139 pim_input(struct mbuf *m, int off)
 3140 {
 3141     struct ip *ip = mtod(m, struct ip *);
 3142     struct pim *pim;
 3143     int minlen;
 3144     int datalen = ip->ip_len;
 3145     int ip_tos;
 3146     int iphlen = off;
 3147     
 3148     /* Keep statistics */
 3149     pimstat.pims_rcv_total_msgs++;
 3150     pimstat.pims_rcv_total_bytes += datalen;
 3151     
 3152     /*
 3153      * Validate lengths
 3154      */
 3155     if (datalen < PIM_MINLEN) {
 3156         pimstat.pims_rcv_tooshort++;
 3157         log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
 3158             datalen, (u_long)ip->ip_src.s_addr);
 3159         m_freem(m);
 3160         return;
 3161     }
 3162     
 3163     /*
 3164      * If the packet is at least as big as a REGISTER, go agead
 3165      * and grab the PIM REGISTER header size, to avoid another
 3166      * possible m_pullup() later.
 3167      * 
 3168      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 3169      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 3170      */
 3171     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 3172     /*
 3173      * Get the IP and PIM headers in contiguous memory, and
 3174      * possibly the PIM REGISTER header.
 3175      */
 3176     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 3177         (m = m_pullup(m, minlen)) == 0) {
 3178         log(LOG_ERR, "pim_input: m_pullup failure\n");
 3179         return;
 3180     }
 3181     /* m_pullup() may have given us a new mbuf so reset ip. */
 3182     ip = mtod(m, struct ip *);
 3183     ip_tos = ip->ip_tos;
 3184     
 3185     /* adjust mbuf to point to the PIM header */
 3186     m->m_data += iphlen;
 3187     m->m_len  -= iphlen;
 3188     pim = mtod(m, struct pim *);
 3189     
 3190     /*
 3191      * Validate checksum. If PIM REGISTER, exclude the data packet.
 3192      *
 3193      * XXX: some older PIMv2 implementations don't make this distinction,
 3194      * so for compatibility reason perform the checksum over part of the
 3195      * message, and if error, then over the whole message.
 3196      */
 3197     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 3198         /* do nothing, checksum okay */
 3199     } else if (in_cksum(m, datalen)) {
 3200         pimstat.pims_rcv_badsum++;
 3201         if (mrtdebug & DEBUG_PIM)
 3202             log(LOG_DEBUG, "pim_input: invalid checksum");
 3203         m_freem(m);
 3204         return;
 3205     }
 3206 
 3207     /* PIM version check */
 3208     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 3209         pimstat.pims_rcv_badversion++;
 3210         log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
 3211             PIM_VT_V(pim->pim_vt), PIM_VERSION);
 3212         m_freem(m);
 3213         return;
 3214     }
 3215     
 3216     /* restore mbuf back to the outer IP */
 3217     m->m_data -= iphlen;
 3218     m->m_len  += iphlen;
 3219     
 3220     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 3221         /*
 3222          * Since this is a REGISTER, we'll make a copy of the register
 3223          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 3224          * routing daemon.
 3225          */
 3226         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 3227         struct mbuf *mcp;
 3228         struct ip *encap_ip;
 3229         u_int32_t *reghdr;
 3230         struct ifnet *vifp;
 3231         
 3232         VIF_LOCK();
 3233         if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
 3234             VIF_UNLOCK();
 3235             if (mrtdebug & DEBUG_PIM)
 3236                 log(LOG_DEBUG,
 3237                     "pim_input: register vif not set: %d\n", reg_vif_num);
 3238             m_freem(m);
 3239             return;
 3240         }
 3241         /* XXX need refcnt? */
 3242         vifp = viftable[reg_vif_num].v_ifp;
 3243         VIF_UNLOCK();
 3244         
 3245         /*
 3246          * Validate length
 3247          */
 3248         if (datalen < PIM_REG_MINLEN) {
 3249             pimstat.pims_rcv_tooshort++;
 3250             pimstat.pims_rcv_badregisters++;
 3251             log(LOG_ERR,
 3252                 "pim_input: register packet size too small %d from %lx\n",
 3253                 datalen, (u_long)ip->ip_src.s_addr);
 3254             m_freem(m);
 3255             return;
 3256         }
 3257         
 3258         reghdr = (u_int32_t *)(pim + 1);
 3259         encap_ip = (struct ip *)(reghdr + 1);
 3260         
 3261         if (mrtdebug & DEBUG_PIM) {
 3262             log(LOG_DEBUG,
 3263                 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
 3264                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3265                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3266                 ntohs(encap_ip->ip_len));
 3267         }
 3268         
 3269         /* verify the version number of the inner packet */
 3270         if (encap_ip->ip_v != IPVERSION) {
 3271             pimstat.pims_rcv_badregisters++;
 3272             if (mrtdebug & DEBUG_PIM) {
 3273                 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
 3274                     "of the inner packet\n", encap_ip->ip_v);
 3275             }
 3276             m_freem(m);
 3277             return;
 3278         }
 3279         
 3280         /* verify the inner packet is destined to a mcast group */
 3281         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 3282             pimstat.pims_rcv_badregisters++;
 3283             if (mrtdebug & DEBUG_PIM)
 3284                 log(LOG_DEBUG,
 3285                     "pim_input: inner packet of register is not "
 3286                     "multicast %lx\n",
 3287                     (u_long)ntohl(encap_ip->ip_dst.s_addr));
 3288             m_freem(m);
 3289             return;
 3290         }
 3291         
 3292         /*
 3293          * Copy the TOS from the outer IP header to the inner IP header.
 3294          */
 3295         if (encap_ip->ip_tos != ip_tos) {
 3296             /* Outer TOS -> inner TOS */
 3297             encap_ip->ip_tos = ip_tos;
 3298             /* Recompute the inner header checksum. Sigh... */
 3299             
 3300             /* adjust mbuf to point to the inner IP header */
 3301             m->m_data += (iphlen + PIM_MINLEN);
 3302             m->m_len  -= (iphlen + PIM_MINLEN);
 3303             
 3304             encap_ip->ip_sum = 0;
 3305             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 3306             
 3307             /* restore mbuf to point back to the outer IP header */
 3308             m->m_data -= (iphlen + PIM_MINLEN);
 3309             m->m_len  += (iphlen + PIM_MINLEN);
 3310         }
 3311         
 3312         /* If a NULL_REGISTER, pass it to the daemon */
 3313         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 3314             goto pim_input_to_daemon;
 3315         
 3316         /*
 3317          * Decapsulate the inner IP packet and loopback to forward it
 3318          * as a normal multicast packet. Also, make a copy of the 
 3319          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 3320          * to pass to the daemon later, so it can take the appropriate
 3321          * actions (e.g., send back PIM_REGISTER_STOP).
 3322          * XXX: here m->m_data points to the outer IP header.
 3323          */
 3324         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 3325         if (mcp == NULL) {
 3326             log(LOG_ERR,
 3327                 "pim_input: pim register: could not copy register head\n");
 3328             m_freem(m);
 3329             return;
 3330         }
 3331         
 3332         /* Keep statistics */
 3333         /* XXX: registers_bytes include only the encap. mcast pkt */
 3334         pimstat.pims_rcv_registers_msgs++;
 3335         pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
 3336         
 3337         /*
 3338          * forward the inner ip packet; point m_data at the inner ip.
 3339          */
 3340         m_adj(m, iphlen + PIM_MINLEN);
 3341         
 3342         if (mrtdebug & DEBUG_PIM) {
 3343             log(LOG_DEBUG,
 3344                 "pim_input: forwarding decapsulated register: "
 3345                 "src %lx, dst %lx, vif %d\n",
 3346                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3347                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3348                 reg_vif_num);
 3349         }
 3350         /* NB: vifp was collected above; can it change on us? */
 3351         if_simloop(vifp, m, dst.sin_family, 0);
 3352         
 3353         /* prepare the register head to send to the mrouting daemon */
 3354         m = mcp;
 3355     }
 3356 
 3357 pim_input_to_daemon:    
 3358     /*
 3359      * Pass the PIM message up to the daemon; if it is a Register message,
 3360      * pass the 'head' only up to the daemon. This includes the
 3361      * outer IP header, PIM header, PIM-Register header and the
 3362      * inner IP header.
 3363      * XXX: the outer IP header pkt size of a Register is not adjust to
 3364      * reflect the fact that the inner multicast data is truncated.
 3365      */
 3366     rip_input(m, iphlen);
 3367 
 3368     return;
 3369 }
 3370 #endif /* PIM */
 3371 
 3372 static int
 3373 ip_mroute_modevent(module_t mod, int type, void *unused)
 3374 {
 3375     switch (type) {
 3376     case MOD_LOAD:
 3377         mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
 3378         MFC_LOCK_INIT();
 3379         VIF_LOCK_INIT();
 3380         ip_mrouter_reset();
 3381         ip_mcast_src = X_ip_mcast_src;
 3382         ip_mforward = X_ip_mforward;
 3383         ip_mrouter_done = X_ip_mrouter_done;
 3384         ip_mrouter_get = X_ip_mrouter_get;
 3385         ip_mrouter_set = X_ip_mrouter_set;
 3386         ip_rsvp_force_done = X_ip_rsvp_force_done;
 3387         ip_rsvp_vif = X_ip_rsvp_vif;
 3388         legal_vif_num = X_legal_vif_num;
 3389         mrt_ioctl = X_mrt_ioctl;
 3390         rsvp_input_p = X_rsvp_input;
 3391         break;
 3392 
 3393     case MOD_UNLOAD:
 3394         /*
 3395          * Typically module unload happens after the user-level
 3396          * process has shutdown the kernel services (the check
 3397          * below insures someone can't just yank the module out
 3398          * from under a running process).  But if the module is
 3399          * just loaded and then unloaded w/o starting up a user
 3400          * process we still need to cleanup.
 3401          */
 3402         if (ip_mrouter)
 3403             return EINVAL;
 3404 
 3405         X_ip_mrouter_done();
 3406         ip_mcast_src = NULL;
 3407         ip_mforward = NULL;
 3408         ip_mrouter_done = NULL;
 3409         ip_mrouter_get = NULL;
 3410         ip_mrouter_set = NULL;
 3411         ip_rsvp_force_done = NULL;
 3412         ip_rsvp_vif = NULL;
 3413         legal_vif_num = NULL;
 3414         mrt_ioctl = NULL;
 3415         rsvp_input_p = NULL;
 3416         VIF_LOCK_DESTROY();
 3417         MFC_LOCK_DESTROY();
 3418         mtx_destroy(&mrouter_mtx);
 3419         break;
 3420     }
 3421     return 0;
 3422 }
 3423 
 3424 static moduledata_t ip_mroutemod = {
 3425     "ip_mroute",
 3426     ip_mroute_modevent,
 3427     0
 3428 };
 3429 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: 51b815d977539485a469f097514e0898


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.