The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*
    2  * IP multicast forwarding procedures
    3  *
    4  * Written by David Waitzman, BBN Labs, August 1988.
    5  * Modified by Steve Deering, Stanford, February 1989.
    6  * Modified by Mark J. Steiglitz, Stanford, May, 1991
    7  * Modified by Van Jacobson, LBL, January 1993
    8  * Modified by Ajit Thyagarajan, PARC, August 1993
    9  * Modified by Bill Fenner, PARC, April 1995
   10  * Modified by Ahmed Helmy, SGI, June 1996
   11  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   12  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   13  * Modified by Hitoshi Asaeda, WIDE, August 2000
   14  * Modified by Pavlin Radoslavov, ICSI, October 2002
   15  *
   16  * MROUTING Revision: 3.5
   17  * and PIM-SMv2 and PIM-DM support, advanced API support,
   18  * bandwidth metering and signaling
   19  *
   20  * $FreeBSD: releng/5.3/sys/netinet/ip_mroute.c 136588 2004-10-16 08:43:07Z cvs2svn $
   21  */
   22 
   23 #include "opt_mac.h"
   24 #include "opt_mrouting.h"
   25 
   26 #ifdef PIM
   27 #define _PIM_VT 1
   28 #endif
   29 
   30 #include <sys/param.h>
   31 #include <sys/kernel.h>
   32 #include <sys/lock.h>
   33 #include <sys/mac.h>
   34 #include <sys/malloc.h>
   35 #include <sys/mbuf.h>
   36 #include <sys/module.h>
   37 #include <sys/protosw.h>
   38 #include <sys/signalvar.h>
   39 #include <sys/socket.h>
   40 #include <sys/socketvar.h>
   41 #include <sys/sockio.h>
   42 #include <sys/sx.h>
   43 #include <sys/sysctl.h>
   44 #include <sys/syslog.h>
   45 #include <sys/systm.h>
   46 #include <sys/time.h>
   47 #include <net/if.h>
   48 #include <net/netisr.h>
   49 #include <net/route.h>
   50 #include <netinet/in.h>
   51 #include <netinet/igmp.h>
   52 #include <netinet/in_systm.h>
   53 #include <netinet/in_var.h>
   54 #include <netinet/ip.h>
   55 #include <netinet/ip_encap.h>
   56 #include <netinet/ip_mroute.h>
   57 #include <netinet/ip_var.h>
   58 #ifdef PIM
   59 #include <netinet/pim.h>
   60 #include <netinet/pim_var.h>
   61 #endif
   62 #include <netinet/udp.h>
   63 #include <machine/in_cksum.h>
   64 
   65 /*
   66  * Control debugging code for rsvp and multicast routing code.
   67  * Can only set them with the debugger.
   68  */
   69 static u_int    rsvpdebug;              /* non-zero enables debugging   */
   70 
   71 static u_int    mrtdebug;               /* any set of the flags below   */
   72 #define         DEBUG_MFC       0x02
   73 #define         DEBUG_FORWARD   0x04
   74 #define         DEBUG_EXPIRE    0x08
   75 #define         DEBUG_XMIT      0x10
   76 #define         DEBUG_PIM       0x20
   77 
   78 #define         VIFI_INVALID    ((vifi_t) -1)
   79 
   80 #define M_HASCL(m)      ((m)->m_flags & M_EXT)
   81 
   82 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
   83 
   84 /*
   85  * Locking.  We use two locks: one for the virtual interface table and
   86  * one for the forwarding table.  These locks may be nested in which case
   87  * the VIF lock must always be taken first.  Note that each lock is used
   88  * to cover not only the specific data structure but also related data
   89  * structures.  It may be better to add more fine-grained locking later;
   90  * it's not clear how performance-critical this code is.
   91  */
   92 
   93 static struct mrtstat   mrtstat;
   94 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
   95     &mrtstat, mrtstat,
   96     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
   97 
   98 static struct mfc       *mfctable[MFCTBLSIZ];
   99 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
  100     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
  101     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
  102 
  103 static struct mtx mfc_mtx;
  104 #define MFC_LOCK()      mtx_lock(&mfc_mtx)
  105 #define MFC_UNLOCK()    mtx_unlock(&mfc_mtx)
  106 #define MFC_LOCK_ASSERT()       do {                                    \
  107         mtx_assert(&mfc_mtx, MA_OWNED);                                 \
  108         NET_ASSERT_GIANT();                                             \
  109 } while (0)
  110 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
  111 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  112 
  113 static struct vif       viftable[MAXVIFS];
  114 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  115     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
  116     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  117 
  118 static struct mtx vif_mtx;
  119 #define VIF_LOCK()      mtx_lock(&vif_mtx)
  120 #define VIF_UNLOCK()    mtx_unlock(&vif_mtx)
  121 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  122 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
  123 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  124 
  125 static u_char           nexpire[MFCTBLSIZ];
  126 
  127 static struct callout expire_upcalls_ch;
  128 
  129 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  130 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  131 
  132 /*
  133  * Define the token bucket filter structures
  134  * tbftable -> each vif has one of these for storing info
  135  */
  136 
  137 static struct tbf tbftable[MAXVIFS];
  138 #define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
  139 
  140 /*
  141  * 'Interfaces' associated with decapsulator (so we can tell
  142  * packets that went through it from ones that get reflected
  143  * by a broken gateway).  These interfaces are never linked into
  144  * the system ifnet list & no routes point to them.  I.e., packets
  145  * can't be sent this way.  They only exist as a placeholder for
  146  * multicast source verification.
  147  */
  148 static struct ifnet multicast_decap_if[MAXVIFS];
  149 
  150 #define ENCAP_TTL 64
  151 #define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
  152 
  153 /* prototype IP hdr for encapsulated packets */
  154 static struct ip multicast_encap_iphdr = {
  155 #if BYTE_ORDER == LITTLE_ENDIAN
  156         sizeof(struct ip) >> 2, IPVERSION,
  157 #else
  158         IPVERSION, sizeof(struct ip) >> 2,
  159 #endif
  160         0,                              /* tos */
  161         sizeof(struct ip),              /* total length */
  162         0,                              /* id */
  163         0,                              /* frag offset */
  164         ENCAP_TTL, ENCAP_PROTO,
  165         0,                              /* checksum */
  166 };
  167 
  168 /*
  169  * Bandwidth meter variables and constants
  170  */
  171 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  172 /*
  173  * Pending timeouts are stored in a hash table, the key being the
  174  * expiration time. Periodically, the entries are analysed and processed.
  175  */
  176 #define BW_METER_BUCKETS        1024
  177 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
  178 static struct callout bw_meter_ch;
  179 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  180 
  181 /*
  182  * Pending upcalls are stored in a vector which is flushed when
  183  * full, or periodically
  184  */
  185 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
  186 static u_int    bw_upcalls_n; /* # of pending upcalls */
  187 static struct callout bw_upcalls_ch;
  188 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  189 
  190 #ifdef PIM
  191 static struct pimstat pimstat;
  192 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  193     &pimstat, pimstat,
  194     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  195 
  196 /*
  197  * Note: the PIM Register encapsulation adds the following in front of a
  198  * data packet:
  199  *
  200  * struct pim_encap_hdr {
  201  *    struct ip ip;
  202  *    struct pim_encap_pimhdr  pim;
  203  * }
  204  *
  205  */
  206 
  207 struct pim_encap_pimhdr {
  208         struct pim pim;
  209         uint32_t   flags;
  210 };
  211 
  212 static struct ip pim_encap_iphdr = {
  213 #if BYTE_ORDER == LITTLE_ENDIAN
  214         sizeof(struct ip) >> 2,
  215         IPVERSION,
  216 #else
  217         IPVERSION,
  218         sizeof(struct ip) >> 2,
  219 #endif
  220         0,                      /* tos */
  221         sizeof(struct ip),      /* total length */
  222         0,                      /* id */
  223         0,                      /* frag offset */
  224         ENCAP_TTL,
  225         IPPROTO_PIM,
  226         0,                      /* checksum */
  227 };
  228 
  229 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  230     {
  231         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  232         0,                      /* reserved */
  233         0,                      /* checksum */
  234     },
  235     0                           /* flags */
  236 };
  237 
  238 static struct ifnet multicast_register_if;
  239 static vifi_t reg_vif_num = VIFI_INVALID;
  240 #endif /* PIM */
  241 
  242 /*
  243  * Private variables.
  244  */
  245 static vifi_t      numvifs;
  246 static const struct encaptab *encap_cookie;
  247 
  248 /*
  249  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
  250  * given a datagram's src ip address.
  251  */
  252 static u_long last_encap_src;
  253 static struct vif *last_encap_vif;
  254 
  255 /*
  256  * Callout for queue processing.
  257  */
  258 static struct callout tbf_reprocess_ch;
  259 
  260 static u_long   X_ip_mcast_src(int vifi);
  261 static int      X_ip_mforward(struct ip *ip, struct ifnet *ifp,
  262                         struct mbuf *m, struct ip_moptions *imo);
  263 static int      X_ip_mrouter_done(void);
  264 static int      X_ip_mrouter_get(struct socket *so, struct sockopt *m);
  265 static int      X_ip_mrouter_set(struct socket *so, struct sockopt *m);
  266 static int      X_legal_vif_num(int vif);
  267 static int      X_mrt_ioctl(int cmd, caddr_t data);
  268 
  269 static int get_sg_cnt(struct sioc_sg_req *);
  270 static int get_vif_cnt(struct sioc_vif_req *);
  271 static int ip_mrouter_init(struct socket *, int);
  272 static int add_vif(struct vifctl *);
  273 static int del_vif(vifi_t);
  274 static int add_mfc(struct mfcctl2 *);
  275 static int del_mfc(struct mfcctl2 *);
  276 static int set_api_config(uint32_t *); /* chose API capabilities */
  277 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
  278 static int set_assert(int);
  279 static void expire_upcalls(void *);
  280 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  281 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
  282 static void encap_send(struct ip *, struct vif *, struct mbuf *);
  283 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
  284 static void tbf_queue(struct vif *, struct mbuf *);
  285 static void tbf_process_q(struct vif *);
  286 static void tbf_reprocess_q(void *);
  287 static int tbf_dq_sel(struct vif *, struct ip *);
  288 static void tbf_send_packet(struct vif *, struct mbuf *);
  289 static void tbf_update_tokens(struct vif *);
  290 static int priority(struct vif *, struct ip *);
  291 
  292 /*
  293  * Bandwidth monitoring
  294  */
  295 static void free_bw_list(struct bw_meter *list);
  296 static int add_bw_upcall(struct bw_upcall *);
  297 static int del_bw_upcall(struct bw_upcall *);
  298 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
  299                 struct timeval *nowp);
  300 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
  301 static void bw_upcalls_send(void);
  302 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
  303 static void unschedule_bw_meter(struct bw_meter *x);
  304 static void bw_meter_process(void);
  305 static void expire_bw_upcalls_send(void *);
  306 static void expire_bw_meter_process(void *);
  307 
  308 #ifdef PIM
  309 static int pim_register_send(struct ip *, struct vif *,
  310                 struct mbuf *, struct mfc *);
  311 static int pim_register_send_rp(struct ip *, struct vif *,
  312                 struct mbuf *, struct mfc *);
  313 static int pim_register_send_upcall(struct ip *, struct vif *,
  314                 struct mbuf *, struct mfc *);
  315 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
  316 #endif
  317 
  318 /*
  319  * whether or not special PIM assert processing is enabled.
  320  */
  321 static int pim_assert;
  322 /*
  323  * Rate limit for assert notification messages, in usec
  324  */
  325 #define ASSERT_MSG_TIME         3000000
  326 
  327 /*
  328  * Kernel multicast routing API capabilities and setup.
  329  * If more API capabilities are added to the kernel, they should be
  330  * recorded in `mrt_api_support'.
  331  */
  332 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  333                                          MRT_MFC_FLAGS_BORDER_VIF |
  334                                          MRT_MFC_RP |
  335                                          MRT_MFC_BW_UPCALL);
  336 static uint32_t mrt_api_config = 0;
  337 
  338 /*
  339  * Hash function for a source, group entry
  340  */
  341 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
  342                         ((g) >> 20) ^ ((g) >> 10) ^ (g))
  343 
  344 /*
  345  * Find a route for a given origin IP address and Multicast group address
  346  * Type of service parameter to be added in the future!!!
  347  * Statistics are updated by the caller if needed
  348  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
  349  */
  350 static struct mfc *
  351 mfc_find(in_addr_t o, in_addr_t g)
  352 {
  353     struct mfc *rt;
  354 
  355     MFC_LOCK_ASSERT();
  356 
  357     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
  358         if ((rt->mfc_origin.s_addr == o) &&
  359                 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
  360             break;
  361     return rt;
  362 }
  363 
  364 /*
  365  * Macros to compute elapsed time efficiently
  366  * Borrowed from Van Jacobson's scheduling code
  367  */
  368 #define TV_DELTA(a, b, delta) {                                 \
  369         int xxs;                                                \
  370         delta = (a).tv_usec - (b).tv_usec;                      \
  371         if ((xxs = (a).tv_sec - (b).tv_sec)) {                  \
  372                 switch (xxs) {                                  \
  373                 case 2:                                         \
  374                       delta += 1000000;                         \
  375                       /* FALLTHROUGH */                         \
  376                 case 1:                                         \
  377                       delta += 1000000;                         \
  378                       break;                                    \
  379                 default:                                        \
  380                       delta += (1000000 * xxs);                 \
  381                 }                                               \
  382         }                                                       \
  383 }
  384 
  385 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
  386               (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
  387 
  388 /*
  389  * Handle MRT setsockopt commands to modify the multicast routing tables.
  390  */
  391 static int
  392 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  393 {
  394     int error, optval;
  395     vifi_t      vifi;
  396     struct      vifctl vifc;
  397     struct      mfcctl2 mfc;
  398     struct      bw_upcall bw_upcall;
  399     uint32_t    i;
  400 
  401     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
  402         return EPERM;
  403 
  404     error = 0;
  405     switch (sopt->sopt_name) {
  406     case MRT_INIT:
  407         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  408         if (error)
  409             break;
  410         error = ip_mrouter_init(so, optval);
  411         break;
  412 
  413     case MRT_DONE:
  414         error = ip_mrouter_done();
  415         break;
  416 
  417     case MRT_ADD_VIF:
  418         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  419         if (error)
  420             break;
  421         error = add_vif(&vifc);
  422         break;
  423 
  424     case MRT_DEL_VIF:
  425         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  426         if (error)
  427             break;
  428         error = del_vif(vifi);
  429         break;
  430 
  431     case MRT_ADD_MFC:
  432     case MRT_DEL_MFC:
  433         /*
  434          * select data size depending on API version.
  435          */
  436         if (sopt->sopt_name == MRT_ADD_MFC &&
  437                 mrt_api_config & MRT_API_FLAGS_ALL) {
  438             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  439                                 sizeof(struct mfcctl2));
  440         } else {
  441             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  442                                 sizeof(struct mfcctl));
  443             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  444                         sizeof(mfc) - sizeof(struct mfcctl));
  445         }
  446         if (error)
  447             break;
  448         if (sopt->sopt_name == MRT_ADD_MFC)
  449             error = add_mfc(&mfc);
  450         else
  451             error = del_mfc(&mfc);
  452         break;
  453 
  454     case MRT_ASSERT:
  455         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  456         if (error)
  457             break;
  458         set_assert(optval);
  459         break;
  460 
  461     case MRT_API_CONFIG:
  462         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  463         if (!error)
  464             error = set_api_config(&i);
  465         if (!error)
  466             error = sooptcopyout(sopt, &i, sizeof i);
  467         break;
  468 
  469     case MRT_ADD_BW_UPCALL:
  470     case MRT_DEL_BW_UPCALL:
  471         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  472                                 sizeof bw_upcall);
  473         if (error)
  474             break;
  475         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  476             error = add_bw_upcall(&bw_upcall);
  477         else
  478             error = del_bw_upcall(&bw_upcall);
  479         break;
  480 
  481     default:
  482         error = EOPNOTSUPP;
  483         break;
  484     }
  485     return error;
  486 }
  487 
  488 /*
  489  * Handle MRT getsockopt commands
  490  */
  491 static int
  492 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  493 {
  494     int error;
  495     static int version = 0x0305; /* !!! why is this here? XXX */
  496 
  497     switch (sopt->sopt_name) {
  498     case MRT_VERSION:
  499         error = sooptcopyout(sopt, &version, sizeof version);
  500         break;
  501 
  502     case MRT_ASSERT:
  503         error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
  504         break;
  505 
  506     case MRT_API_SUPPORT:
  507         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  508         break;
  509 
  510     case MRT_API_CONFIG:
  511         error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
  512         break;
  513 
  514     default:
  515         error = EOPNOTSUPP;
  516         break;
  517     }
  518     return error;
  519 }
  520 
  521 /*
  522  * Handle ioctl commands to obtain information from the cache
  523  */
  524 static int
  525 X_mrt_ioctl(int cmd, caddr_t data)
  526 {
  527     int error = 0;
  528 
  529     /*
  530      * Currently the only function calling this ioctl routine is rtioctl().
  531      * Typically, only root can create the raw socket in order to execute
  532      * this ioctl method, however the request might be coming from a prison
  533      */
  534     error = suser(curthread);
  535     if (error)
  536         return (error);
  537     switch (cmd) {
  538     case (SIOCGETVIFCNT):
  539         error = get_vif_cnt((struct sioc_vif_req *)data);
  540         break;
  541 
  542     case (SIOCGETSGCNT):
  543         error = get_sg_cnt((struct sioc_sg_req *)data);
  544         break;
  545 
  546     default:
  547         error = EINVAL;
  548         break;
  549     }
  550     return error;
  551 }
  552 
  553 /*
  554  * returns the packet, byte, rpf-failure count for the source group provided
  555  */
  556 static int
  557 get_sg_cnt(struct sioc_sg_req *req)
  558 {
  559     struct mfc *rt;
  560 
  561     MFC_LOCK();
  562     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
  563     if (rt == NULL) {
  564         MFC_UNLOCK();
  565         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  566         return EADDRNOTAVAIL;
  567     }
  568     req->pktcnt = rt->mfc_pkt_cnt;
  569     req->bytecnt = rt->mfc_byte_cnt;
  570     req->wrong_if = rt->mfc_wrong_if;
  571     MFC_UNLOCK();
  572     return 0;
  573 }
  574 
  575 /*
  576  * returns the input and output packet and byte counts on the vif provided
  577  */
  578 static int
  579 get_vif_cnt(struct sioc_vif_req *req)
  580 {
  581     vifi_t vifi = req->vifi;
  582 
  583     VIF_LOCK();
  584     if (vifi >= numvifs) {
  585         VIF_UNLOCK();
  586         return EINVAL;
  587     }
  588 
  589     req->icount = viftable[vifi].v_pkt_in;
  590     req->ocount = viftable[vifi].v_pkt_out;
  591     req->ibytes = viftable[vifi].v_bytes_in;
  592     req->obytes = viftable[vifi].v_bytes_out;
  593     VIF_UNLOCK();
  594 
  595     return 0;
  596 }
  597 
  598 static void
  599 ip_mrouter_reset(void)
  600 {
  601     int callout_flag;
  602 
  603     bzero((caddr_t)mfctable, sizeof(mfctable));
  604     bzero((caddr_t)nexpire, sizeof(nexpire));
  605 
  606     pim_assert = 0;
  607     mrt_api_config = 0;
  608 
  609     callout_flag = debug_mpsafenet ? CALLOUT_MPSAFE : 0;
  610     callout_init(&expire_upcalls_ch, callout_flag);
  611 
  612     bw_upcalls_n = 0;
  613     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
  614     callout_init(&bw_upcalls_ch, callout_flag);
  615     callout_init(&bw_meter_ch, callout_flag);
  616 
  617     callout_init(&tbf_reprocess_ch, callout_flag);
  618 }
  619 
  620 static struct mtx mrouter_mtx;          /* used to synch init/done work */
  621 
  622 /*
  623  * Enable multicast routing
  624  */
  625 static int
  626 ip_mrouter_init(struct socket *so, int version)
  627 {
  628     if (mrtdebug)
  629         log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
  630             so->so_type, so->so_proto->pr_protocol);
  631 
  632     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  633         return EOPNOTSUPP;
  634 
  635     if (version != 1)
  636         return ENOPROTOOPT;
  637 
  638     mtx_lock(&mrouter_mtx);
  639 
  640     if (ip_mrouter != NULL) {
  641         mtx_unlock(&mrouter_mtx);
  642         return EADDRINUSE;
  643     }
  644 
  645     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
  646 
  647     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
  648         expire_bw_upcalls_send, NULL);
  649     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
  650 
  651     ip_mrouter = so;
  652 
  653     mtx_unlock(&mrouter_mtx);
  654 
  655     if (mrtdebug)
  656         log(LOG_DEBUG, "ip_mrouter_init\n");
  657 
  658     return 0;
  659 }
  660 
  661 /*
  662  * Disable multicast routing
  663  */
  664 static int
  665 X_ip_mrouter_done(void)
  666 {
  667     vifi_t vifi;
  668     int i;
  669     struct ifnet *ifp;
  670     struct ifreq ifr;
  671     struct mfc *rt;
  672     struct rtdetq *rte;
  673 
  674     mtx_lock(&mrouter_mtx);
  675 
  676     if (ip_mrouter == NULL) {
  677         mtx_unlock(&mrouter_mtx);
  678         return EINVAL;
  679     }
  680 
  681     /*
  682      * Detach/disable hooks to the reset of the system.
  683      */
  684     ip_mrouter = NULL;
  685     mrt_api_config = 0;
  686 
  687     VIF_LOCK();
  688     if (encap_cookie) {
  689         const struct encaptab *c = encap_cookie;
  690         encap_cookie = NULL;
  691         encap_detach(c);
  692     }
  693     VIF_UNLOCK();
  694 
  695     callout_stop(&tbf_reprocess_ch);
  696 
  697     VIF_LOCK();
  698     /*
  699      * For each phyint in use, disable promiscuous reception of all IP
  700      * multicasts.
  701      */
  702     for (vifi = 0; vifi < numvifs; vifi++) {
  703         if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
  704                 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  705             struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
  706 
  707             so->sin_len = sizeof(struct sockaddr_in);
  708             so->sin_family = AF_INET;
  709             so->sin_addr.s_addr = INADDR_ANY;
  710             ifp = viftable[vifi].v_ifp;
  711             if_allmulti(ifp, 0);
  712         }
  713     }
  714     bzero((caddr_t)tbftable, sizeof(tbftable));
  715     bzero((caddr_t)viftable, sizeof(viftable));
  716     numvifs = 0;
  717     pim_assert = 0;
  718     VIF_UNLOCK();
  719 
  720     /*
  721      * Free all multicast forwarding cache entries.
  722      */
  723     callout_stop(&expire_upcalls_ch);
  724     callout_stop(&bw_upcalls_ch);
  725     callout_stop(&bw_meter_ch);
  726 
  727     MFC_LOCK();
  728     for (i = 0; i < MFCTBLSIZ; i++) {
  729         for (rt = mfctable[i]; rt != NULL; ) {
  730             struct mfc *nr = rt->mfc_next;
  731 
  732             for (rte = rt->mfc_stall; rte != NULL; ) {
  733                 struct rtdetq *n = rte->next;
  734 
  735                 m_freem(rte->m);
  736                 free(rte, M_MRTABLE);
  737                 rte = n;
  738             }
  739             free_bw_list(rt->mfc_bw_meter);
  740             free(rt, M_MRTABLE);
  741             rt = nr;
  742         }
  743     }
  744     bzero((caddr_t)mfctable, sizeof(mfctable));
  745     bzero((caddr_t)nexpire, sizeof(nexpire));
  746     bw_upcalls_n = 0;
  747     bzero(bw_meter_timers, sizeof(bw_meter_timers));
  748     MFC_UNLOCK();
  749 
  750     /*
  751      * Reset de-encapsulation cache
  752      */
  753     last_encap_src = INADDR_ANY;
  754     last_encap_vif = NULL;
  755 #ifdef PIM
  756     reg_vif_num = VIFI_INVALID;
  757 #endif
  758 
  759     mtx_unlock(&mrouter_mtx);
  760 
  761     if (mrtdebug)
  762         log(LOG_DEBUG, "ip_mrouter_done\n");
  763 
  764     return 0;
  765 }
  766 
  767 /*
  768  * Set PIM assert processing global
  769  */
  770 static int
  771 set_assert(int i)
  772 {
  773     if ((i != 1) && (i != 0))
  774         return EINVAL;
  775 
  776     pim_assert = i;
  777 
  778     return 0;
  779 }
  780 
  781 /*
  782  * Configure API capabilities
  783  */
  784 int
  785 set_api_config(uint32_t *apival)
  786 {
  787     int i;
  788 
  789     /*
  790      * We can set the API capabilities only if it is the first operation
  791      * after MRT_INIT. I.e.:
  792      *  - there are no vifs installed
  793      *  - pim_assert is not enabled
  794      *  - the MFC table is empty
  795      */
  796     if (numvifs > 0) {
  797         *apival = 0;
  798         return EPERM;
  799     }
  800     if (pim_assert) {
  801         *apival = 0;
  802         return EPERM;
  803     }
  804     for (i = 0; i < MFCTBLSIZ; i++) {
  805         if (mfctable[i] != NULL) {
  806             *apival = 0;
  807             return EPERM;
  808         }
  809     }
  810 
  811     mrt_api_config = *apival & mrt_api_support;
  812     *apival = mrt_api_config;
  813 
  814     return 0;
  815 }
  816 
  817 /*
  818  * Decide if a packet is from a tunnelled peer.
  819  * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
  820  */
  821 static int
  822 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
  823 {
  824     struct ip *ip = mtod(m, struct ip *);
  825     int hlen = ip->ip_hl << 2;
  826 
  827     /*
  828      * don't claim the packet if it's not to a multicast destination or if
  829      * we don't have an encapsulating tunnel with the source.
  830      * Note:  This code assumes that the remote site IP address
  831      * uniquely identifies the tunnel (i.e., that this site has
  832      * at most one tunnel with the remote site).
  833      */
  834     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
  835         return 0;
  836     if (ip->ip_src.s_addr != last_encap_src) {
  837         struct vif *vifp = viftable;
  838         struct vif *vife = vifp + numvifs;
  839 
  840         last_encap_src = ip->ip_src.s_addr;
  841         last_encap_vif = NULL;
  842         for ( ; vifp < vife; ++vifp)
  843             if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
  844                 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
  845                     last_encap_vif = vifp;
  846                 break;
  847             }
  848     }
  849     if (last_encap_vif == NULL) {
  850         last_encap_src = INADDR_ANY;
  851         return 0;
  852     }
  853     return 64;
  854 }
  855 
  856 /*
  857  * De-encapsulate a packet and feed it back through ip input (this
  858  * routine is called whenever IP gets a packet that mroute_encap_func()
  859  * claimed).
  860  */
  861 static void
  862 mroute_encap_input(struct mbuf *m, int off)
  863 {
  864     struct ip *ip = mtod(m, struct ip *);
  865     int hlen = ip->ip_hl << 2;
  866 
  867     if (hlen > sizeof(struct ip))
  868         ip_stripoptions(m, (struct mbuf *) 0);
  869     m->m_data += sizeof(struct ip);
  870     m->m_len -= sizeof(struct ip);
  871     m->m_pkthdr.len -= sizeof(struct ip);
  872 
  873     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
  874 
  875     netisr_queue(NETISR_IP, m);         /* mbuf is free'd on failure. */
  876     /*
  877      * normally we would need a "schednetisr(NETISR_IP)"
  878      * here but we were called by ip_input and it is going
  879      * to loop back & try to dequeue the packet we just
  880      * queued as soon as we return so we avoid the
  881      * unnecessary software interrrupt.
  882      *
  883      * XXX
  884      * This no longer holds - we may have direct-dispatched the packet,
  885      * or there may be a queue processing limit.
  886      */
  887 }
  888 
  889 extern struct domain inetdomain;
  890 static struct protosw mroute_encap_protosw =
  891 { SOCK_RAW,     &inetdomain,    IPPROTO_IPV4,   PR_ATOMIC|PR_ADDR,
  892   mroute_encap_input,   0,      0,              rip_ctloutput,
  893   0,
  894   0,            0,              0,              0,
  895   &rip_usrreqs
  896 };
  897 
  898 /*
  899  * Add a vif to the vif table
  900  */
  901 static int
  902 add_vif(struct vifctl *vifcp)
  903 {
  904     struct vif *vifp = viftable + vifcp->vifc_vifi;
  905     struct sockaddr_in sin = {sizeof sin, AF_INET};
  906     struct ifaddr *ifa;
  907     struct ifnet *ifp;
  908     int error;
  909     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
  910 
  911     VIF_LOCK();
  912     if (vifcp->vifc_vifi >= MAXVIFS) {
  913         VIF_UNLOCK();
  914         return EINVAL;
  915     }
  916     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
  917         VIF_UNLOCK();
  918         return EADDRINUSE;
  919     }
  920     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
  921         VIF_UNLOCK();
  922         return EADDRNOTAVAIL;
  923     }
  924 
  925     /* Find the interface with an address in AF_INET family */
  926 #ifdef PIM
  927     if (vifcp->vifc_flags & VIFF_REGISTER) {
  928         /*
  929          * XXX: Because VIFF_REGISTER does not really need a valid
  930          * local interface (e.g. it could be 127.0.0.2), we don't
  931          * check its address.
  932          */
  933         ifp = NULL;
  934     } else
  935 #endif
  936     {
  937         sin.sin_addr = vifcp->vifc_lcl_addr;
  938         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  939         if (ifa == NULL) {
  940             VIF_UNLOCK();
  941             return EADDRNOTAVAIL;
  942         }
  943         ifp = ifa->ifa_ifp;
  944     }
  945 
  946     if (vifcp->vifc_flags & VIFF_TUNNEL) {
  947         if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
  948             /*
  949              * An encapsulating tunnel is wanted.  Tell
  950              * mroute_encap_input() to start paying attention
  951              * to encapsulated packets.
  952              */
  953             if (encap_cookie == NULL) {
  954                 int i;
  955 
  956                 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
  957                                 mroute_encapcheck,
  958                                 (struct protosw *)&mroute_encap_protosw, NULL);
  959 
  960                 if (encap_cookie == NULL) {
  961                     printf("ip_mroute: unable to attach encap\n");
  962                     VIF_UNLOCK();
  963                     return EIO; /* XXX */
  964                 }
  965                 for (i = 0; i < MAXVIFS; ++i) {
  966                     if_initname(&multicast_decap_if[i], "mdecap", i);
  967                 }
  968             }
  969             /*
  970              * Set interface to fake encapsulator interface
  971              */
  972             ifp = &multicast_decap_if[vifcp->vifc_vifi];
  973             /*
  974              * Prepare cached route entry
  975              */
  976             bzero(&vifp->v_route, sizeof(vifp->v_route));
  977         } else {
  978             log(LOG_ERR, "source routed tunnels not supported\n");
  979             VIF_UNLOCK();
  980             return EOPNOTSUPP;
  981         }
  982 #ifdef PIM
  983     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  984         ifp = &multicast_register_if;
  985         if (mrtdebug)
  986             log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
  987                     (void *)&multicast_register_if);
  988         if (reg_vif_num == VIFI_INVALID) {
  989             if_initname(&multicast_register_if, "register_vif", 0);
  990             multicast_register_if.if_flags = IFF_LOOPBACK;
  991             bzero(&vifp->v_route, sizeof(vifp->v_route));
  992             reg_vif_num = vifcp->vifc_vifi;
  993         }
  994 #endif
  995     } else {            /* Make sure the interface supports multicast */
  996         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
  997             VIF_UNLOCK();
  998             return EOPNOTSUPP;
  999         }
 1000 
 1001         /* Enable promiscuous reception of all IP multicasts from the if */
 1002         error = if_allmulti(ifp, 1);
 1003         if (error) {
 1004             VIF_UNLOCK();
 1005             return error;
 1006         }
 1007     }
 1008 
 1009     /* define parameters for the tbf structure */
 1010     vifp->v_tbf = v_tbf;
 1011     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
 1012     vifp->v_tbf->tbf_n_tok = 0;
 1013     vifp->v_tbf->tbf_q_len = 0;
 1014     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
 1015     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
 1016 
 1017     vifp->v_flags     = vifcp->vifc_flags;
 1018     vifp->v_threshold = vifcp->vifc_threshold;
 1019     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
 1020     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
 1021     vifp->v_ifp       = ifp;
 1022     /* scaling up here allows division by 1024 in critical code */
 1023     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
 1024     vifp->v_rsvp_on   = 0;
 1025     vifp->v_rsvpd     = NULL;
 1026     /* initialize per vif pkt counters */
 1027     vifp->v_pkt_in    = 0;
 1028     vifp->v_pkt_out   = 0;
 1029     vifp->v_bytes_in  = 0;
 1030     vifp->v_bytes_out = 0;
 1031 
 1032     /* Adjust numvifs up if the vifi is higher than numvifs */
 1033     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
 1034 
 1035     VIF_UNLOCK();
 1036 
 1037     if (mrtdebug)
 1038         log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
 1039             vifcp->vifc_vifi,
 1040             (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
 1041             (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
 1042             (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
 1043             vifcp->vifc_threshold,
 1044             vifcp->vifc_rate_limit);
 1045 
 1046     return 0;
 1047 }
 1048 
 1049 /*
 1050  * Delete a vif from the vif table
 1051  */
 1052 static int
 1053 del_vif(vifi_t vifi)
 1054 {
 1055     struct vif *vifp;
 1056 
 1057     VIF_LOCK();
 1058 
 1059     if (vifi >= numvifs) {
 1060         VIF_UNLOCK();
 1061         return EINVAL;
 1062     }
 1063     vifp = &viftable[vifi];
 1064     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
 1065         VIF_UNLOCK();
 1066         return EADDRNOTAVAIL;
 1067     }
 1068 
 1069     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1070         if_allmulti(vifp->v_ifp, 0);
 1071 
 1072     if (vifp == last_encap_vif) {
 1073         last_encap_vif = NULL;
 1074         last_encap_src = INADDR_ANY;
 1075     }
 1076 
 1077     /*
 1078      * Free packets queued at the interface
 1079      */
 1080     while (vifp->v_tbf->tbf_q) {
 1081         struct mbuf *m = vifp->v_tbf->tbf_q;
 1082 
 1083         vifp->v_tbf->tbf_q = m->m_act;
 1084         m_freem(m);
 1085     }
 1086 
 1087 #ifdef PIM
 1088     if (vifp->v_flags & VIFF_REGISTER)
 1089         reg_vif_num = VIFI_INVALID;
 1090 #endif
 1091 
 1092     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
 1093     bzero((caddr_t)vifp, sizeof (*vifp));
 1094 
 1095     if (mrtdebug)
 1096         log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
 1097 
 1098     /* Adjust numvifs down */
 1099     for (vifi = numvifs; vifi > 0; vifi--)
 1100         if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
 1101             break;
 1102     numvifs = vifi;
 1103 
 1104     VIF_UNLOCK();
 1105 
 1106     return 0;
 1107 }
 1108 
 1109 /*
 1110  * update an mfc entry without resetting counters and S,G addresses.
 1111  */
 1112 static void
 1113 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1114 {
 1115     int i;
 1116 
 1117     rt->mfc_parent = mfccp->mfcc_parent;
 1118     for (i = 0; i < numvifs; i++) {
 1119         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1120         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
 1121             MRT_MFC_FLAGS_ALL;
 1122     }
 1123     /* set the RP address */
 1124     if (mrt_api_config & MRT_MFC_RP)
 1125         rt->mfc_rp = mfccp->mfcc_rp;
 1126     else
 1127         rt->mfc_rp.s_addr = INADDR_ANY;
 1128 }
 1129 
 1130 /*
 1131  * fully initialize an mfc entry from the parameter.
 1132  */
 1133 static void
 1134 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1135 {
 1136     rt->mfc_origin     = mfccp->mfcc_origin;
 1137     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1138 
 1139     update_mfc_params(rt, mfccp);
 1140 
 1141     /* initialize pkt counters per src-grp */
 1142     rt->mfc_pkt_cnt    = 0;
 1143     rt->mfc_byte_cnt   = 0;
 1144     rt->mfc_wrong_if   = 0;
 1145     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
 1146 }
 1147 
 1148 
 1149 /*
 1150  * Add an mfc entry
 1151  */
 1152 static int
 1153 add_mfc(struct mfcctl2 *mfccp)
 1154 {
 1155     struct mfc *rt;
 1156     u_long hash;
 1157     struct rtdetq *rte;
 1158     u_short nstl;
 1159 
 1160     VIF_LOCK();
 1161     MFC_LOCK();
 1162 
 1163     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1164 
 1165     /* If an entry already exists, just update the fields */
 1166     if (rt) {
 1167         if (mrtdebug & DEBUG_MFC)
 1168             log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
 1169                 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1170                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1171                 mfccp->mfcc_parent);
 1172 
 1173         update_mfc_params(rt, mfccp);
 1174         MFC_UNLOCK();
 1175         VIF_UNLOCK();
 1176         return 0;
 1177     }
 1178 
 1179     /*
 1180      * Find the entry for which the upcall was made and update
 1181      */
 1182     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1183     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
 1184 
 1185         if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1186                 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
 1187                 (rt->mfc_stall != NULL)) {
 1188 
 1189             if (nstl++)
 1190                 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
 1191                     "multiple kernel entries",
 1192                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1193                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1194                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1195 
 1196             if (mrtdebug & DEBUG_MFC)
 1197                 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
 1198                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1199                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1200                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1201 
 1202             init_mfc_params(rt, mfccp);
 1203 
 1204             rt->mfc_expire = 0; /* Don't clean this guy up */
 1205             nexpire[hash]--;
 1206 
 1207             /* free packets Qed at the end of this entry */
 1208             for (rte = rt->mfc_stall; rte != NULL; ) {
 1209                 struct rtdetq *n = rte->next;
 1210 
 1211                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1212                 m_freem(rte->m);
 1213                 free(rte, M_MRTABLE);
 1214                 rte = n;
 1215             }
 1216             rt->mfc_stall = NULL;
 1217         }
 1218     }
 1219 
 1220     /*
 1221      * It is possible that an entry is being inserted without an upcall
 1222      */
 1223     if (nstl == 0) {
 1224         if (mrtdebug & DEBUG_MFC)
 1225             log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
 1226                 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1227                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1228                 mfccp->mfcc_parent);
 1229 
 1230         for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
 1231             if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1232                     (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
 1233                 init_mfc_params(rt, mfccp);
 1234                 if (rt->mfc_expire)
 1235                     nexpire[hash]--;
 1236                 rt->mfc_expire = 0;
 1237                 break; /* XXX */
 1238             }
 1239         }
 1240         if (rt == NULL) {               /* no upcall, so make a new entry */
 1241             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1242             if (rt == NULL) {
 1243                 MFC_UNLOCK();
 1244                 VIF_UNLOCK();
 1245                 return ENOBUFS;
 1246             }
 1247 
 1248             init_mfc_params(rt, mfccp);
 1249             rt->mfc_expire     = 0;
 1250             rt->mfc_stall      = NULL;
 1251 
 1252             rt->mfc_bw_meter = NULL;
 1253             /* insert new entry at head of hash chain */
 1254             rt->mfc_next = mfctable[hash];
 1255             mfctable[hash] = rt;
 1256         }
 1257     }
 1258     MFC_UNLOCK();
 1259     VIF_UNLOCK();
 1260     return 0;
 1261 }
 1262 
 1263 /*
 1264  * Delete an mfc entry
 1265  */
 1266 static int
 1267 del_mfc(struct mfcctl2 *mfccp)
 1268 {
 1269     struct in_addr      origin;
 1270     struct in_addr      mcastgrp;
 1271     struct mfc          *rt;
 1272     struct mfc          **nptr;
 1273     u_long              hash;
 1274     struct bw_meter     *list;
 1275 
 1276     origin = mfccp->mfcc_origin;
 1277     mcastgrp = mfccp->mfcc_mcastgrp;
 1278 
 1279     if (mrtdebug & DEBUG_MFC)
 1280         log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
 1281             (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1282 
 1283     MFC_LOCK();
 1284 
 1285     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
 1286     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
 1287         if (origin.s_addr == rt->mfc_origin.s_addr &&
 1288                 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
 1289                 rt->mfc_stall == NULL)
 1290             break;
 1291     if (rt == NULL) {
 1292         MFC_UNLOCK();
 1293         return EADDRNOTAVAIL;
 1294     }
 1295 
 1296     *nptr = rt->mfc_next;
 1297 
 1298     /*
 1299      * free the bw_meter entries
 1300      */
 1301     list = rt->mfc_bw_meter;
 1302     rt->mfc_bw_meter = NULL;
 1303 
 1304     free(rt, M_MRTABLE);
 1305 
 1306     free_bw_list(list);
 1307 
 1308     MFC_UNLOCK();
 1309 
 1310     return 0;
 1311 }
 1312 
 1313 /*
 1314  * Send a message to mrouted on the multicast routing socket
 1315  */
 1316 static int
 1317 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1318 {
 1319     if (s) {
 1320         SOCKBUF_LOCK(&s->so_rcv);
 1321         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1322             NULL) != 0) {
 1323             sorwakeup_locked(s);
 1324             return 0;
 1325         }
 1326         SOCKBUF_UNLOCK(&s->so_rcv);
 1327     }
 1328     m_freem(mm);
 1329     return -1;
 1330 }
 1331 
 1332 /*
 1333  * IP multicast forwarding function. This function assumes that the packet
 1334  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1335  * pointed to by "ifp", and the packet is to be relayed to other networks
 1336  * that have members of the packet's destination IP multicast group.
 1337  *
 1338  * The packet is returned unscathed to the caller, unless it is
 1339  * erroneous, in which case a non-zero return value tells the caller to
 1340  * discard it.
 1341  */
 1342 
 1343 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1344 
 1345 static int
 1346 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1347     struct ip_moptions *imo)
 1348 {
 1349     struct mfc *rt;
 1350     int error;
 1351     vifi_t vifi;
 1352 
 1353     if (mrtdebug & DEBUG_FORWARD)
 1354         log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
 1355             (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
 1356             (void *)ifp);
 1357 
 1358     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1359                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1360         /*
 1361          * Packet arrived via a physical interface or
 1362          * an encapsulated tunnel or a register_vif.
 1363          */
 1364     } else {
 1365         /*
 1366          * Packet arrived through a source-route tunnel.
 1367          * Source-route tunnels are no longer supported.
 1368          */
 1369         static int last_log;
 1370         if (last_log != time_second) {
 1371             last_log = time_second;
 1372             log(LOG_ERR,
 1373                 "ip_mforward: received source-routed packet from %lx\n",
 1374                 (u_long)ntohl(ip->ip_src.s_addr));
 1375         }
 1376         return 1;
 1377     }
 1378 
 1379     VIF_LOCK();
 1380     MFC_LOCK();
 1381     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
 1382         if (ip->ip_ttl < 255)
 1383             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1384         if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1385             struct vif *vifp = viftable + vifi;
 1386 
 1387             printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
 1388                 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
 1389                 vifi,
 1390                 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
 1391                 vifp->v_ifp->if_xname);
 1392         }
 1393         error = ip_mdq(m, ifp, NULL, vifi);
 1394         MFC_UNLOCK();
 1395         VIF_UNLOCK();
 1396         return error;
 1397     }
 1398     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1399         printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
 1400             (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
 1401         if (!imo)
 1402             printf("In fact, no options were specified at all\n");
 1403     }
 1404 
 1405     /*
 1406      * Don't forward a packet with time-to-live of zero or one,
 1407      * or a packet destined to a local-only group.
 1408      */
 1409     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
 1410         MFC_UNLOCK();
 1411         VIF_UNLOCK();
 1412         return 0;
 1413     }
 1414 
 1415     /*
 1416      * Determine forwarding vifs from the forwarding cache table
 1417      */
 1418     ++mrtstat.mrts_mfc_lookups;
 1419     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1420 
 1421     /* Entry exists, so forward if necessary */
 1422     if (rt != NULL) {
 1423         error = ip_mdq(m, ifp, rt, -1);
 1424         MFC_UNLOCK();
 1425         VIF_UNLOCK();
 1426         return error;
 1427     } else {
 1428         /*
 1429          * If we don't have a route for packet's origin,
 1430          * Make a copy of the packet & send message to routing daemon
 1431          */
 1432 
 1433         struct mbuf *mb0;
 1434         struct rtdetq *rte;
 1435         u_long hash;
 1436         int hlen = ip->ip_hl << 2;
 1437 
 1438         ++mrtstat.mrts_mfc_misses;
 1439 
 1440         mrtstat.mrts_no_route++;
 1441         if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
 1442             log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
 1443                 (u_long)ntohl(ip->ip_src.s_addr),
 1444                 (u_long)ntohl(ip->ip_dst.s_addr));
 1445 
 1446         /*
 1447          * Allocate mbufs early so that we don't do extra work if we are
 1448          * just going to fail anyway.  Make sure to pullup the header so
 1449          * that other people can't step on it.
 1450          */
 1451         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
 1452         if (rte == NULL) {
 1453             MFC_UNLOCK();
 1454             VIF_UNLOCK();
 1455             return ENOBUFS;
 1456         }
 1457         mb0 = m_copypacket(m, M_DONTWAIT);
 1458         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1459             mb0 = m_pullup(mb0, hlen);
 1460         if (mb0 == NULL) {
 1461             free(rte, M_MRTABLE);
 1462             MFC_UNLOCK();
 1463             VIF_UNLOCK();
 1464             return ENOBUFS;
 1465         }
 1466 
 1467         /* is there an upcall waiting for this flow ? */
 1468         hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1469         for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
 1470             if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
 1471                     (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
 1472                     (rt->mfc_stall != NULL))
 1473                 break;
 1474         }
 1475 
 1476         if (rt == NULL) {
 1477             int i;
 1478             struct igmpmsg *im;
 1479             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1480             struct mbuf *mm;
 1481 
 1482             /*
 1483              * Locate the vifi for the incoming interface for this packet.
 1484              * If none found, drop packet.
 1485              */
 1486             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1487                 ;
 1488             if (vifi >= numvifs)        /* vif not found, drop packet */
 1489                 goto non_fatal;
 1490 
 1491             /* no upcall, so make a new entry */
 1492             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1493             if (rt == NULL)
 1494                 goto fail;
 1495             /* Make a copy of the header to send to the user level process */
 1496             mm = m_copy(mb0, 0, hlen);
 1497             if (mm == NULL)
 1498                 goto fail1;
 1499 
 1500             /*
 1501              * Send message to routing daemon to install
 1502              * a route into the kernel table
 1503              */
 1504 
 1505             im = mtod(mm, struct igmpmsg *);
 1506             im->im_msgtype = IGMPMSG_NOCACHE;
 1507             im->im_mbz = 0;
 1508             im->im_vif = vifi;
 1509 
 1510             mrtstat.mrts_upcalls++;
 1511 
 1512             k_igmpsrc.sin_addr = ip->ip_src;
 1513             if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1514                 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
 1515                 ++mrtstat.mrts_upq_sockfull;
 1516 fail1:
 1517                 free(rt, M_MRTABLE);
 1518 fail:
 1519                 free(rte, M_MRTABLE);
 1520                 m_freem(mb0);
 1521                 MFC_UNLOCK();
 1522                 VIF_UNLOCK();
 1523                 return ENOBUFS;
 1524             }
 1525 
 1526             /* insert new entry at head of hash chain */
 1527             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1528             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1529             rt->mfc_expire            = UPCALL_EXPIRE;
 1530             nexpire[hash]++;
 1531             for (i = 0; i < numvifs; i++) {
 1532                 rt->mfc_ttls[i] = 0;
 1533                 rt->mfc_flags[i] = 0;
 1534             }
 1535             rt->mfc_parent = -1;
 1536 
 1537             rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
 1538 
 1539             rt->mfc_bw_meter = NULL;
 1540 
 1541             /* link into table */
 1542             rt->mfc_next   = mfctable[hash];
 1543             mfctable[hash] = rt;
 1544             rt->mfc_stall = rte;
 1545 
 1546         } else {
 1547             /* determine if q has overflowed */
 1548             int npkts = 0;
 1549             struct rtdetq **p;
 1550 
 1551             /*
 1552              * XXX ouch! we need to append to the list, but we
 1553              * only have a pointer to the front, so we have to
 1554              * scan the entire list every time.
 1555              */
 1556             for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
 1557                 npkts++;
 1558 
 1559             if (npkts > MAX_UPQ) {
 1560                 mrtstat.mrts_upq_ovflw++;
 1561 non_fatal:
 1562                 free(rte, M_MRTABLE);
 1563                 m_freem(mb0);
 1564                 MFC_UNLOCK();
 1565                 VIF_UNLOCK();
 1566                 return 0;
 1567             }
 1568 
 1569             /* Add this entry to the end of the queue */
 1570             *p = rte;
 1571         }
 1572 
 1573         rte->m                  = mb0;
 1574         rte->ifp                = ifp;
 1575         rte->next               = NULL;
 1576 
 1577         MFC_UNLOCK();
 1578         VIF_UNLOCK();
 1579 
 1580         return 0;
 1581     }
 1582 }
 1583 
 1584 /*
 1585  * Clean up the cache entry if upcall is not serviced
 1586  */
 1587 static void
 1588 expire_upcalls(void *unused)
 1589 {
 1590     struct rtdetq *rte;
 1591     struct mfc *mfc, **nptr;
 1592     int i;
 1593 
 1594     MFC_LOCK();
 1595     for (i = 0; i < MFCTBLSIZ; i++) {
 1596         if (nexpire[i] == 0)
 1597             continue;
 1598         nptr = &mfctable[i];
 1599         for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
 1600             /*
 1601              * Skip real cache entries
 1602              * Make sure it wasn't marked to not expire (shouldn't happen)
 1603              * If it expires now
 1604              */
 1605             if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
 1606                     --mfc->mfc_expire == 0) {
 1607                 if (mrtdebug & DEBUG_EXPIRE)
 1608                     log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
 1609                         (u_long)ntohl(mfc->mfc_origin.s_addr),
 1610                         (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
 1611                 /*
 1612                  * drop all the packets
 1613                  * free the mbuf with the pkt, if, timing info
 1614                  */
 1615                 for (rte = mfc->mfc_stall; rte; ) {
 1616                     struct rtdetq *n = rte->next;
 1617 
 1618                     m_freem(rte->m);
 1619                     free(rte, M_MRTABLE);
 1620                     rte = n;
 1621                 }
 1622                 ++mrtstat.mrts_cache_cleanups;
 1623                 nexpire[i]--;
 1624 
 1625                 /*
 1626                  * free the bw_meter entries
 1627                  */
 1628                 while (mfc->mfc_bw_meter != NULL) {
 1629                     struct bw_meter *x = mfc->mfc_bw_meter;
 1630 
 1631                     mfc->mfc_bw_meter = x->bm_mfc_next;
 1632                     free(x, M_BWMETER);
 1633                 }
 1634 
 1635                 *nptr = mfc->mfc_next;
 1636                 free(mfc, M_MRTABLE);
 1637             } else {
 1638                 nptr = &mfc->mfc_next;
 1639             }
 1640         }
 1641     }
 1642     MFC_UNLOCK();
 1643 
 1644     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
 1645 }
 1646 
 1647 /*
 1648  * Packet forwarding routine once entry in the cache is made
 1649  */
 1650 static int
 1651 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1652 {
 1653     struct ip  *ip = mtod(m, struct ip *);
 1654     vifi_t vifi;
 1655     int plen = ip->ip_len;
 1656 
 1657     VIF_LOCK_ASSERT();
 1658 /*
 1659  * Macro to send packet on vif.  Since RSVP packets don't get counted on
 1660  * input, they shouldn't get counted on output, so statistics keeping is
 1661  * separate.
 1662  */
 1663 #define MC_SEND(ip,vifp,m) {                            \
 1664                 if ((vifp)->v_flags & VIFF_TUNNEL)      \
 1665                     encap_send((ip), (vifp), (m));      \
 1666                 else                                    \
 1667                     phyint_send((ip), (vifp), (m));     \
 1668 }
 1669 
 1670     /*
 1671      * If xmt_vif is not -1, send on only the requested vif.
 1672      *
 1673      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1674      */
 1675     if (xmt_vif < numvifs) {
 1676 #ifdef PIM
 1677         if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1678             pim_register_send(ip, viftable + xmt_vif, m, rt);
 1679         else
 1680 #endif
 1681         MC_SEND(ip, viftable + xmt_vif, m);
 1682         return 1;
 1683     }
 1684 
 1685     /*
 1686      * Don't forward if it didn't arrive from the parent vif for its origin.
 1687      */
 1688     vifi = rt->mfc_parent;
 1689     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
 1690         /* came in the wrong interface */
 1691         if (mrtdebug & DEBUG_FORWARD)
 1692             log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
 1693                 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
 1694         ++mrtstat.mrts_wrong_if;
 1695         ++rt->mfc_wrong_if;
 1696         /*
 1697          * If we are doing PIM assert processing, send a message
 1698          * to the routing daemon.
 1699          *
 1700          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1701          * can complete the SPT switch, regardless of the type
 1702          * of the iif (broadcast media, GRE tunnel, etc).
 1703          */
 1704         if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
 1705             struct timeval now;
 1706             u_long delta;
 1707 
 1708 #ifdef PIM
 1709             if (ifp == &multicast_register_if)
 1710                 pimstat.pims_rcv_registers_wrongiif++;
 1711 #endif
 1712 
 1713             /* Get vifi for the incoming packet */
 1714             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1715                 ;
 1716             if (vifi >= numvifs)
 1717                 return 0;       /* The iif is not found: ignore the packet. */
 1718 
 1719             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1720                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1721 
 1722             GET_TIME(now);
 1723 
 1724             TV_DELTA(rt->mfc_last_assert, now, delta);
 1725 
 1726             if (delta > ASSERT_MSG_TIME) {
 1727                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1728                 struct igmpmsg *im;
 1729                 int hlen = ip->ip_hl << 2;
 1730                 struct mbuf *mm = m_copy(m, 0, hlen);
 1731 
 1732                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1733                     mm = m_pullup(mm, hlen);
 1734                 if (mm == NULL)
 1735                     return ENOBUFS;
 1736 
 1737                 rt->mfc_last_assert = now;
 1738 
 1739                 im = mtod(mm, struct igmpmsg *);
 1740                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1741                 im->im_mbz              = 0;
 1742                 im->im_vif              = vifi;
 1743 
 1744                 mrtstat.mrts_upcalls++;
 1745 
 1746                 k_igmpsrc.sin_addr = im->im_src;
 1747                 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1748                     log(LOG_WARNING,
 1749                         "ip_mforward: ip_mrouter socket queue full\n");
 1750                     ++mrtstat.mrts_upq_sockfull;
 1751                     return ENOBUFS;
 1752                 }
 1753             }
 1754         }
 1755         return 0;
 1756     }
 1757 
 1758     /* If I sourced this packet, it counts as output, else it was input. */
 1759     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
 1760         viftable[vifi].v_pkt_out++;
 1761         viftable[vifi].v_bytes_out += plen;
 1762     } else {
 1763         viftable[vifi].v_pkt_in++;
 1764         viftable[vifi].v_bytes_in += plen;
 1765     }
 1766     rt->mfc_pkt_cnt++;
 1767     rt->mfc_byte_cnt += plen;
 1768 
 1769     /*
 1770      * For each vif, decide if a copy of the packet should be forwarded.
 1771      * Forward if:
 1772      *          - the ttl exceeds the vif's threshold
 1773      *          - there are group members downstream on interface
 1774      */
 1775     for (vifi = 0; vifi < numvifs; vifi++)
 1776         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1777             viftable[vifi].v_pkt_out++;
 1778             viftable[vifi].v_bytes_out += plen;
 1779 #ifdef PIM
 1780             if (viftable[vifi].v_flags & VIFF_REGISTER)
 1781                 pim_register_send(ip, viftable + vifi, m, rt);
 1782             else
 1783 #endif
 1784             MC_SEND(ip, viftable+vifi, m);
 1785         }
 1786 
 1787     /*
 1788      * Perform upcall-related bw measuring.
 1789      */
 1790     if (rt->mfc_bw_meter != NULL) {
 1791         struct bw_meter *x;
 1792         struct timeval now;
 1793 
 1794         GET_TIME(now);
 1795         MFC_LOCK_ASSERT();
 1796         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1797             bw_meter_receive_packet(x, plen, &now);
 1798     }
 1799 
 1800     return 0;
 1801 }
 1802 
 1803 /*
 1804  * check if a vif number is legal/ok. This is used by ip_output.
 1805  */
 1806 static int
 1807 X_legal_vif_num(int vif)
 1808 {
 1809     /* XXX unlocked, matter? */
 1810     return (vif >= 0 && vif < numvifs);
 1811 }
 1812 
 1813 /*
 1814  * Return the local address used by this vif
 1815  */
 1816 static u_long
 1817 X_ip_mcast_src(int vifi)
 1818 {
 1819     /* XXX unlocked, matter? */
 1820     if (vifi >= 0 && vifi < numvifs)
 1821         return viftable[vifi].v_lcl_addr.s_addr;
 1822     else
 1823         return INADDR_ANY;
 1824 }
 1825 
 1826 static void
 1827 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1828 {
 1829     struct mbuf *mb_copy;
 1830     int hlen = ip->ip_hl << 2;
 1831 
 1832     VIF_LOCK_ASSERT();
 1833 
 1834     /*
 1835      * Make a new reference to the packet; make sure that
 1836      * the IP header is actually copied, not just referenced,
 1837      * so that ip_output() only scribbles on the copy.
 1838      */
 1839     mb_copy = m_copypacket(m, M_DONTWAIT);
 1840     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1841         mb_copy = m_pullup(mb_copy, hlen);
 1842     if (mb_copy == NULL)
 1843         return;
 1844 
 1845     if (vifp->v_rate_limit == 0)
 1846         tbf_send_packet(vifp, mb_copy);
 1847     else
 1848         tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
 1849 }
 1850 
 1851 static void
 1852 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1853 {
 1854     struct mbuf *mb_copy;
 1855     struct ip *ip_copy;
 1856     int i, len = ip->ip_len;
 1857 
 1858     VIF_LOCK_ASSERT();
 1859 
 1860     /* Take care of delayed checksums */
 1861     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 1862         in_delayed_cksum(m);
 1863         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 1864     }
 1865 
 1866     /*
 1867      * copy the old packet & pullup its IP header into the
 1868      * new mbuf so we can modify it.  Try to fill the new
 1869      * mbuf since if we don't the ethernet driver will.
 1870      */
 1871     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
 1872     if (mb_copy == NULL)
 1873         return;
 1874 #ifdef MAC
 1875     mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
 1876 #endif
 1877     mb_copy->m_data += max_linkhdr;
 1878     mb_copy->m_len = sizeof(multicast_encap_iphdr);
 1879 
 1880     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
 1881         m_freem(mb_copy);
 1882         return;
 1883     }
 1884     i = MHLEN - M_LEADINGSPACE(mb_copy);
 1885     if (i > len)
 1886         i = len;
 1887     mb_copy = m_pullup(mb_copy, i);
 1888     if (mb_copy == NULL)
 1889         return;
 1890     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
 1891 
 1892     /*
 1893      * fill in the encapsulating IP header.
 1894      */
 1895     ip_copy = mtod(mb_copy, struct ip *);
 1896     *ip_copy = multicast_encap_iphdr;
 1897     ip_copy->ip_id = ip_newid();
 1898     ip_copy->ip_len += len;
 1899     ip_copy->ip_src = vifp->v_lcl_addr;
 1900     ip_copy->ip_dst = vifp->v_rmt_addr;
 1901 
 1902     /*
 1903      * turn the encapsulated IP header back into a valid one.
 1904      */
 1905     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
 1906     --ip->ip_ttl;
 1907     ip->ip_len = htons(ip->ip_len);
 1908     ip->ip_off = htons(ip->ip_off);
 1909     ip->ip_sum = 0;
 1910     mb_copy->m_data += sizeof(multicast_encap_iphdr);
 1911     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 1912     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
 1913 
 1914     if (vifp->v_rate_limit == 0)
 1915         tbf_send_packet(vifp, mb_copy);
 1916     else
 1917         tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
 1918 }
 1919 
 1920 /*
 1921  * Token bucket filter module
 1922  */
 1923 
 1924 static void
 1925 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
 1926 {
 1927     struct tbf *t = vifp->v_tbf;
 1928 
 1929     VIF_LOCK_ASSERT();
 1930 
 1931     if (p_len > MAX_BKT_SIZE) {         /* drop if packet is too large */
 1932         mrtstat.mrts_pkt2large++;
 1933         m_freem(m);
 1934         return;
 1935     }
 1936 
 1937     tbf_update_tokens(vifp);
 1938 
 1939     if (t->tbf_q_len == 0) {            /* queue empty...               */
 1940         if (p_len <= t->tbf_n_tok) {    /* send packet if enough tokens */
 1941             t->tbf_n_tok -= p_len;
 1942             tbf_send_packet(vifp, m);
 1943         } else {                        /* no, queue packet and try later */
 1944             tbf_queue(vifp, m);
 1945             callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
 1946                 tbf_reprocess_q, vifp);
 1947         }
 1948     } else if (t->tbf_q_len < t->tbf_max_q_len) {
 1949         /* finite queue length, so queue pkts and process queue */
 1950         tbf_queue(vifp, m);
 1951         tbf_process_q(vifp);
 1952     } else {
 1953         /* queue full, try to dq and queue and process */
 1954         if (!tbf_dq_sel(vifp, ip)) {
 1955             mrtstat.mrts_q_overflow++;
 1956             m_freem(m);
 1957         } else {
 1958             tbf_queue(vifp, m);
 1959             tbf_process_q(vifp);
 1960         }
 1961     }
 1962 }
 1963 
 1964 /*
 1965  * adds a packet to the queue at the interface
 1966  */
 1967 static void
 1968 tbf_queue(struct vif *vifp, struct mbuf *m)
 1969 {
 1970     struct tbf *t = vifp->v_tbf;
 1971 
 1972     VIF_LOCK_ASSERT();
 1973 
 1974     if (t->tbf_t == NULL)       /* Queue was empty */
 1975         t->tbf_q = m;
 1976     else                        /* Insert at tail */
 1977         t->tbf_t->m_act = m;
 1978 
 1979     t->tbf_t = m;               /* Set new tail pointer */
 1980 
 1981 #ifdef DIAGNOSTIC
 1982     /* Make sure we didn't get fed a bogus mbuf */
 1983     if (m->m_act)
 1984         panic("tbf_queue: m_act");
 1985 #endif
 1986     m->m_act = NULL;
 1987 
 1988     t->tbf_q_len++;
 1989 }
 1990 
 1991 /*
 1992  * processes the queue at the interface
 1993  */
 1994 static void
 1995 tbf_process_q(struct vif *vifp)
 1996 {
 1997     struct tbf *t = vifp->v_tbf;
 1998 
 1999     VIF_LOCK_ASSERT();
 2000 
 2001     /* loop through the queue at the interface and send as many packets
 2002      * as possible
 2003      */
 2004     while (t->tbf_q_len > 0) {
 2005         struct mbuf *m = t->tbf_q;
 2006         int len = mtod(m, struct ip *)->ip_len;
 2007 
 2008         /* determine if the packet can be sent */
 2009         if (len > t->tbf_n_tok) /* not enough tokens, we are done */
 2010             break;
 2011         /* ok, reduce no of tokens, dequeue and send the packet. */
 2012         t->tbf_n_tok -= len;
 2013 
 2014         t->tbf_q = m->m_act;
 2015         if (--t->tbf_q_len == 0)
 2016             t->tbf_t = NULL;
 2017 
 2018         m->m_act = NULL;
 2019         tbf_send_packet(vifp, m);
 2020     }
 2021 }
 2022 
 2023 static void
 2024 tbf_reprocess_q(void *xvifp)
 2025 {
 2026     struct vif *vifp = xvifp;
 2027 
 2028     if (ip_mrouter == NULL)
 2029         return;
 2030     VIF_LOCK();
 2031     tbf_update_tokens(vifp);
 2032     tbf_process_q(vifp);
 2033     if (vifp->v_tbf->tbf_q_len)
 2034         callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
 2035     VIF_UNLOCK();
 2036 }
 2037 
 2038 /* function that will selectively discard a member of the queue
 2039  * based on the precedence value and the priority
 2040  */
 2041 static int
 2042 tbf_dq_sel(struct vif *vifp, struct ip *ip)
 2043 {
 2044     u_int p;
 2045     struct mbuf *m, *last;
 2046     struct mbuf **np;
 2047     struct tbf *t = vifp->v_tbf;
 2048 
 2049     VIF_LOCK_ASSERT();
 2050 
 2051     p = priority(vifp, ip);
 2052 
 2053     np = &t->tbf_q;
 2054     last = NULL;
 2055     while ((m = *np) != NULL) {
 2056         if (p > priority(vifp, mtod(m, struct ip *))) {
 2057             *np = m->m_act;
 2058             /* If we're removing the last packet, fix the tail pointer */
 2059             if (m == t->tbf_t)
 2060                 t->tbf_t = last;
 2061             m_freem(m);
 2062             /* It's impossible for the queue to be empty, but check anyways. */
 2063             if (--t->tbf_q_len == 0)
 2064                 t->tbf_t = NULL;
 2065             mrtstat.mrts_drop_sel++;
 2066             return 1;
 2067         }
 2068         np = &m->m_act;
 2069         last = m;
 2070     }
 2071     return 0;
 2072 }
 2073 
 2074 static void
 2075 tbf_send_packet(struct vif *vifp, struct mbuf *m)
 2076 {
 2077     VIF_LOCK_ASSERT();
 2078 
 2079     if (vifp->v_flags & VIFF_TUNNEL)    /* If tunnel options */
 2080         ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
 2081     else {
 2082         struct ip_moptions imo;
 2083         int error;
 2084         static struct route ro; /* XXX check this */
 2085 
 2086         imo.imo_multicast_ifp  = vifp->v_ifp;
 2087         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 2088         imo.imo_multicast_loop = 1;
 2089         imo.imo_multicast_vif  = -1;
 2090 
 2091         /*
 2092          * Re-entrancy should not be a problem here, because
 2093          * the packets that we send out and are looped back at us
 2094          * should get rejected because they appear to come from
 2095          * the loopback interface, thus preventing looping.
 2096          */
 2097         error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
 2098 
 2099         if (mrtdebug & DEBUG_XMIT)
 2100             log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
 2101                 (int)(vifp - viftable), error);
 2102     }
 2103 }
 2104 
 2105 /* determine the current time and then
 2106  * the elapsed time (between the last time and time now)
 2107  * in milliseconds & update the no. of tokens in the bucket
 2108  */
 2109 static void
 2110 tbf_update_tokens(struct vif *vifp)
 2111 {
 2112     struct timeval tp;
 2113     u_long tm;
 2114     struct tbf *t = vifp->v_tbf;
 2115 
 2116     VIF_LOCK_ASSERT();
 2117 
 2118     GET_TIME(tp);
 2119 
 2120     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
 2121 
 2122     /*
 2123      * This formula is actually
 2124      * "time in seconds" * "bytes/second".
 2125      *
 2126      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
 2127      *
 2128      * The (1000/1024) was introduced in add_vif to optimize
 2129      * this divide into a shift.
 2130      */
 2131     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
 2132     t->tbf_last_pkt_t = tp;
 2133 
 2134     if (t->tbf_n_tok > MAX_BKT_SIZE)
 2135         t->tbf_n_tok = MAX_BKT_SIZE;
 2136 }
 2137 
 2138 static int
 2139 priority(struct vif *vifp, struct ip *ip)
 2140 {
 2141     int prio = 50; /* the lowest priority -- default case */
 2142 
 2143     /* temporary hack; may add general packet classifier some day */
 2144 
 2145     /*
 2146      * The UDP port space is divided up into four priority ranges:
 2147      * [0, 16384)     : unclassified - lowest priority
 2148      * [16384, 32768) : audio - highest priority
 2149      * [32768, 49152) : whiteboard - medium priority
 2150      * [49152, 65536) : video - low priority
 2151      *
 2152      * Everything else gets lowest priority.
 2153      */
 2154     if (ip->ip_p == IPPROTO_UDP) {
 2155         struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
 2156         switch (ntohs(udp->uh_dport) & 0xc000) {
 2157         case 0x4000:
 2158             prio = 70;
 2159             break;
 2160         case 0x8000:
 2161             prio = 60;
 2162             break;
 2163         case 0xc000:
 2164             prio = 55;
 2165             break;
 2166         }
 2167     }
 2168     return prio;
 2169 }
 2170 
 2171 /*
 2172  * End of token bucket filter modifications
 2173  */
 2174 
 2175 static int
 2176 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
 2177 {
 2178     int error, vifi;
 2179 
 2180     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2181         return EOPNOTSUPP;
 2182 
 2183     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
 2184     if (error)
 2185         return error;
 2186 
 2187     VIF_LOCK();
 2188 
 2189     if (vifi < 0 || vifi >= numvifs) {  /* Error if vif is invalid */
 2190         VIF_UNLOCK();
 2191         return EADDRNOTAVAIL;
 2192     }
 2193 
 2194     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
 2195         /* Check if socket is available. */
 2196         if (viftable[vifi].v_rsvpd != NULL) {
 2197             VIF_UNLOCK();
 2198             return EADDRINUSE;
 2199         }
 2200 
 2201         viftable[vifi].v_rsvpd = so;
 2202         /* This may seem silly, but we need to be sure we don't over-increment
 2203          * the RSVP counter, in case something slips up.
 2204          */
 2205         if (!viftable[vifi].v_rsvp_on) {
 2206             viftable[vifi].v_rsvp_on = 1;
 2207             rsvp_on++;
 2208         }
 2209     } else { /* must be VIF_OFF */
 2210         /*
 2211          * XXX as an additional consistency check, one could make sure
 2212          * that viftable[vifi].v_rsvpd == so, otherwise passing so as
 2213          * first parameter is pretty useless.
 2214          */
 2215         viftable[vifi].v_rsvpd = NULL;
 2216         /*
 2217          * This may seem silly, but we need to be sure we don't over-decrement
 2218          * the RSVP counter, in case something slips up.
 2219          */
 2220         if (viftable[vifi].v_rsvp_on) {
 2221             viftable[vifi].v_rsvp_on = 0;
 2222             rsvp_on--;
 2223         }
 2224     }
 2225     VIF_UNLOCK();
 2226     return 0;
 2227 }
 2228 
 2229 static void
 2230 X_ip_rsvp_force_done(struct socket *so)
 2231 {
 2232     int vifi;
 2233 
 2234     /* Don't bother if it is not the right type of socket. */
 2235     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2236         return;
 2237 
 2238     VIF_LOCK();
 2239 
 2240     /* The socket may be attached to more than one vif...this
 2241      * is perfectly legal.
 2242      */
 2243     for (vifi = 0; vifi < numvifs; vifi++) {
 2244         if (viftable[vifi].v_rsvpd == so) {
 2245             viftable[vifi].v_rsvpd = NULL;
 2246             /* This may seem silly, but we need to be sure we don't
 2247              * over-decrement the RSVP counter, in case something slips up.
 2248              */
 2249             if (viftable[vifi].v_rsvp_on) {
 2250                 viftable[vifi].v_rsvp_on = 0;
 2251                 rsvp_on--;
 2252             }
 2253         }
 2254     }
 2255 
 2256     VIF_UNLOCK();
 2257 }
 2258 
 2259 static void
 2260 X_rsvp_input(struct mbuf *m, int off)
 2261 {
 2262     int vifi;
 2263     struct ip *ip = mtod(m, struct ip *);
 2264     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
 2265     struct ifnet *ifp;
 2266 
 2267     if (rsvpdebug)
 2268         printf("rsvp_input: rsvp_on %d\n",rsvp_on);
 2269 
 2270     /* Can still get packets with rsvp_on = 0 if there is a local member
 2271      * of the group to which the RSVP packet is addressed.  But in this
 2272      * case we want to throw the packet away.
 2273      */
 2274     if (!rsvp_on) {
 2275         m_freem(m);
 2276         return;
 2277     }
 2278 
 2279     if (rsvpdebug)
 2280         printf("rsvp_input: check vifs\n");
 2281 
 2282 #ifdef DIAGNOSTIC
 2283     M_ASSERTPKTHDR(m);
 2284 #endif
 2285 
 2286     ifp = m->m_pkthdr.rcvif;
 2287 
 2288     VIF_LOCK();
 2289     /* Find which vif the packet arrived on. */
 2290     for (vifi = 0; vifi < numvifs; vifi++)
 2291         if (viftable[vifi].v_ifp == ifp)
 2292             break;
 2293 
 2294     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
 2295         /*
 2296          * Drop the lock here to avoid holding it across rip_input.
 2297          * This could make rsvpdebug printfs wrong.  If you care,
 2298          * record the state of stuff before dropping the lock.
 2299          */
 2300         VIF_UNLOCK();
 2301         /*
 2302          * If the old-style non-vif-associated socket is set,
 2303          * then use it.  Otherwise, drop packet since there
 2304          * is no specific socket for this vif.
 2305          */
 2306         if (ip_rsvpd != NULL) {
 2307             if (rsvpdebug)
 2308                 printf("rsvp_input: Sending packet up old-style socket\n");
 2309             rip_input(m, off);  /* xxx */
 2310         } else {
 2311             if (rsvpdebug && vifi == numvifs)
 2312                 printf("rsvp_input: Can't find vif for packet.\n");
 2313             else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
 2314                 printf("rsvp_input: No socket defined for vif %d\n",vifi);
 2315             m_freem(m);
 2316         }
 2317         return;
 2318     }
 2319     rsvp_src.sin_addr = ip->ip_src;
 2320 
 2321     if (rsvpdebug && m)
 2322         printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
 2323                m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
 2324 
 2325     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
 2326         if (rsvpdebug)
 2327             printf("rsvp_input: Failed to append to socket\n");
 2328     } else {
 2329         if (rsvpdebug)
 2330             printf("rsvp_input: send packet up\n");
 2331     }
 2332     VIF_UNLOCK();
 2333 }
 2334 
 2335 /*
 2336  * Code for bandwidth monitors
 2337  */
 2338 
 2339 /*
 2340  * Define common interface for timeval-related methods
 2341  */
 2342 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 2343 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 2344 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 2345 
 2346 static uint32_t
 2347 compute_bw_meter_flags(struct bw_upcall *req)
 2348 {
 2349     uint32_t flags = 0;
 2350 
 2351     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 2352         flags |= BW_METER_UNIT_PACKETS;
 2353     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 2354         flags |= BW_METER_UNIT_BYTES;
 2355     if (req->bu_flags & BW_UPCALL_GEQ)
 2356         flags |= BW_METER_GEQ;
 2357     if (req->bu_flags & BW_UPCALL_LEQ)
 2358         flags |= BW_METER_LEQ;
 2359 
 2360     return flags;
 2361 }
 2362 
 2363 /*
 2364  * Add a bw_meter entry
 2365  */
 2366 static int
 2367 add_bw_upcall(struct bw_upcall *req)
 2368 {
 2369     struct mfc *mfc;
 2370     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 2371                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 2372     struct timeval now;
 2373     struct bw_meter *x;
 2374     uint32_t flags;
 2375 
 2376     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2377         return EOPNOTSUPP;
 2378 
 2379     /* Test if the flags are valid */
 2380     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 2381         return EINVAL;
 2382     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 2383         return EINVAL;
 2384     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2385             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2386         return EINVAL;
 2387 
 2388     /* Test if the threshold time interval is valid */
 2389     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 2390         return EINVAL;
 2391 
 2392     flags = compute_bw_meter_flags(req);
 2393 
 2394     /*
 2395      * Find if we have already same bw_meter entry
 2396      */
 2397     MFC_LOCK();
 2398     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2399     if (mfc == NULL) {
 2400         MFC_UNLOCK();
 2401         return EADDRNOTAVAIL;
 2402     }
 2403     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 2404         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2405                            &req->bu_threshold.b_time, ==)) &&
 2406             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2407             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2408             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 2409             MFC_UNLOCK();
 2410             return 0;           /* XXX Already installed */
 2411         }
 2412     }
 2413 
 2414     /* Allocate the new bw_meter entry */
 2415     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 2416     if (x == NULL) {
 2417         MFC_UNLOCK();
 2418         return ENOBUFS;
 2419     }
 2420 
 2421     /* Set the new bw_meter entry */
 2422     x->bm_threshold.b_time = req->bu_threshold.b_time;
 2423     GET_TIME(now);
 2424     x->bm_start_time = now;
 2425     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 2426     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 2427     x->bm_measured.b_packets = 0;
 2428     x->bm_measured.b_bytes = 0;
 2429     x->bm_flags = flags;
 2430     x->bm_time_next = NULL;
 2431     x->bm_time_hash = BW_METER_BUCKETS;
 2432 
 2433     /* Add the new bw_meter entry to the front of entries for this MFC */
 2434     x->bm_mfc = mfc;
 2435     x->bm_mfc_next = mfc->mfc_bw_meter;
 2436     mfc->mfc_bw_meter = x;
 2437     schedule_bw_meter(x, &now);
 2438     MFC_UNLOCK();
 2439 
 2440     return 0;
 2441 }
 2442 
 2443 static void
 2444 free_bw_list(struct bw_meter *list)
 2445 {
 2446     while (list != NULL) {
 2447         struct bw_meter *x = list;
 2448 
 2449         list = list->bm_mfc_next;
 2450         unschedule_bw_meter(x);
 2451         free(x, M_BWMETER);
 2452     }
 2453 }
 2454 
 2455 /*
 2456  * Delete one or multiple bw_meter entries
 2457  */
 2458 static int
 2459 del_bw_upcall(struct bw_upcall *req)
 2460 {
 2461     struct mfc *mfc;
 2462     struct bw_meter *x;
 2463 
 2464     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2465         return EOPNOTSUPP;
 2466 
 2467     MFC_LOCK();
 2468     /* Find the corresponding MFC entry */
 2469     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2470     if (mfc == NULL) {
 2471         MFC_UNLOCK();
 2472         return EADDRNOTAVAIL;
 2473     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2474         /*
 2475          * Delete all bw_meter entries for this mfc
 2476          */
 2477         struct bw_meter *list;
 2478 
 2479         list = mfc->mfc_bw_meter;
 2480         mfc->mfc_bw_meter = NULL;
 2481         free_bw_list(list);
 2482         MFC_UNLOCK();
 2483         return 0;
 2484     } else {                    /* Delete a single bw_meter entry */
 2485         struct bw_meter *prev;
 2486         uint32_t flags = 0;
 2487 
 2488         flags = compute_bw_meter_flags(req);
 2489 
 2490         /* Find the bw_meter entry to delete */
 2491         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 2492              prev = x, x = x->bm_mfc_next) {
 2493             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2494                                &req->bu_threshold.b_time, ==)) &&
 2495                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2496                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2497                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2498                 break;
 2499         }
 2500         if (x != NULL) { /* Delete entry from the list for this MFC */
 2501             if (prev != NULL)
 2502                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2503             else
 2504                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 2505 
 2506             unschedule_bw_meter(x);
 2507             MFC_UNLOCK();
 2508             /* Free the bw_meter entry */
 2509             free(x, M_BWMETER);
 2510             return 0;
 2511         } else {
 2512             MFC_UNLOCK();
 2513             return EINVAL;
 2514         }
 2515     }
 2516     /* NOTREACHED */
 2517 }
 2518 
 2519 /*
 2520  * Perform bandwidth measurement processing that may result in an upcall
 2521  */
 2522 static void
 2523 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2524 {
 2525     struct timeval delta;
 2526 
 2527     MFC_LOCK_ASSERT();
 2528 
 2529     delta = *nowp;
 2530     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2531 
 2532     if (x->bm_flags & BW_METER_GEQ) {
 2533         /*
 2534          * Processing for ">=" type of bw_meter entry
 2535          */
 2536         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2537             /* Reset the bw_meter entry */
 2538             x->bm_start_time = *nowp;
 2539             x->bm_measured.b_packets = 0;
 2540             x->bm_measured.b_bytes = 0;
 2541             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2542         }
 2543 
 2544         /* Record that a packet is received */
 2545         x->bm_measured.b_packets++;
 2546         x->bm_measured.b_bytes += plen;
 2547 
 2548         /*
 2549          * Test if we should deliver an upcall
 2550          */
 2551         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 2552             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2553                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2554                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2555                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2556                 /* Prepare an upcall for delivery */
 2557                 bw_meter_prepare_upcall(x, nowp);
 2558                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2559             }
 2560         }
 2561     } else if (x->bm_flags & BW_METER_LEQ) {
 2562         /*
 2563          * Processing for "<=" type of bw_meter entry
 2564          */
 2565         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2566             /*
 2567              * We are behind time with the multicast forwarding table
 2568              * scanning for "<=" type of bw_meter entries, so test now
 2569              * if we should deliver an upcall.
 2570              */
 2571             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2572                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2573                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2574                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2575                 /* Prepare an upcall for delivery */
 2576                 bw_meter_prepare_upcall(x, nowp);
 2577             }
 2578             /* Reschedule the bw_meter entry */
 2579             unschedule_bw_meter(x);
 2580             schedule_bw_meter(x, nowp);
 2581         }
 2582 
 2583         /* Record that a packet is received */
 2584         x->bm_measured.b_packets++;
 2585         x->bm_measured.b_bytes += plen;
 2586 
 2587         /*
 2588          * Test if we should restart the measuring interval
 2589          */
 2590         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 2591              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 2592             (x->bm_flags & BW_METER_UNIT_BYTES &&
 2593              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 2594             /* Don't restart the measuring interval */
 2595         } else {
 2596             /* Do restart the measuring interval */
 2597             /*
 2598              * XXX: note that we don't unschedule and schedule, because this
 2599              * might be too much overhead per packet. Instead, when we process
 2600              * all entries for a given timer hash bin, we check whether it is
 2601              * really a timeout. If not, we reschedule at that time.
 2602              */
 2603             x->bm_start_time = *nowp;
 2604             x->bm_measured.b_packets = 0;
 2605             x->bm_measured.b_bytes = 0;
 2606             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2607         }
 2608     }
 2609 }
 2610 
 2611 /*
 2612  * Prepare a bandwidth-related upcall
 2613  */
 2614 static void
 2615 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2616 {
 2617     struct timeval delta;
 2618     struct bw_upcall *u;
 2619 
 2620     MFC_LOCK_ASSERT();
 2621 
 2622     /*
 2623      * Compute the measured time interval
 2624      */
 2625     delta = *nowp;
 2626     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2627 
 2628     /*
 2629      * If there are too many pending upcalls, deliver them now
 2630      */
 2631     if (bw_upcalls_n >= BW_UPCALLS_MAX)
 2632         bw_upcalls_send();
 2633 
 2634     /*
 2635      * Set the bw_upcall entry
 2636      */
 2637     u = &bw_upcalls[bw_upcalls_n++];
 2638     u->bu_src = x->bm_mfc->mfc_origin;
 2639     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2640     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2641     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2642     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2643     u->bu_measured.b_time = delta;
 2644     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2645     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2646     u->bu_flags = 0;
 2647     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2648         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2649     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2650         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2651     if (x->bm_flags & BW_METER_GEQ)
 2652         u->bu_flags |= BW_UPCALL_GEQ;
 2653     if (x->bm_flags & BW_METER_LEQ)
 2654         u->bu_flags |= BW_UPCALL_LEQ;
 2655 }
 2656 
 2657 /*
 2658  * Send the pending bandwidth-related upcalls
 2659  */
 2660 static void
 2661 bw_upcalls_send(void)
 2662 {
 2663     struct mbuf *m;
 2664     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
 2665     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2666     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2667                                       0,                /* unused2 */
 2668                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2669                                       0,                /* im_mbz  */
 2670                                       0,                /* im_vif  */
 2671                                       0,                /* unused3 */
 2672                                       { 0 },            /* im_src  */
 2673                                       { 0 } };          /* im_dst  */
 2674 
 2675     MFC_LOCK_ASSERT();
 2676 
 2677     if (bw_upcalls_n == 0)
 2678         return;                 /* No pending upcalls */
 2679 
 2680     bw_upcalls_n = 0;
 2681 
 2682     /*
 2683      * Allocate a new mbuf, initialize it with the header and
 2684      * the payload for the pending calls.
 2685      */
 2686     MGETHDR(m, M_DONTWAIT, MT_HEADER);
 2687     if (m == NULL) {
 2688         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2689         return;
 2690     }
 2691 
 2692     m->m_len = m->m_pkthdr.len = 0;
 2693     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2694     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
 2695 
 2696     /*
 2697      * Send the upcalls
 2698      * XXX do we need to set the address in k_igmpsrc ?
 2699      */
 2700     mrtstat.mrts_upcalls++;
 2701     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
 2702         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2703         ++mrtstat.mrts_upq_sockfull;
 2704     }
 2705 }
 2706 
 2707 /*
 2708  * Compute the timeout hash value for the bw_meter entries
 2709  */
 2710 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2711     do {                                                                \
 2712         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2713                                                                         \
 2714         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2715         (hash) = next_timeval.tv_sec;                                   \
 2716         if (next_timeval.tv_usec)                                       \
 2717             (hash)++; /* XXX: make sure we don't timeout early */       \
 2718         (hash) %= BW_METER_BUCKETS;                                     \
 2719     } while (0)
 2720 
 2721 /*
 2722  * Schedule a timer to process periodically bw_meter entry of type "<="
 2723  * by linking the entry in the proper hash bucket.
 2724  */
 2725 static void
 2726 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2727 {
 2728     int time_hash;
 2729 
 2730     MFC_LOCK_ASSERT();
 2731 
 2732     if (!(x->bm_flags & BW_METER_LEQ))
 2733         return;         /* XXX: we schedule timers only for "<=" entries */
 2734 
 2735     /*
 2736      * Reset the bw_meter entry
 2737      */
 2738     x->bm_start_time = *nowp;
 2739     x->bm_measured.b_packets = 0;
 2740     x->bm_measured.b_bytes = 0;
 2741     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2742 
 2743     /*
 2744      * Compute the timeout hash value and insert the entry
 2745      */
 2746     BW_METER_TIMEHASH(x, time_hash);
 2747     x->bm_time_next = bw_meter_timers[time_hash];
 2748     bw_meter_timers[time_hash] = x;
 2749     x->bm_time_hash = time_hash;
 2750 }
 2751 
 2752 /*
 2753  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2754  * by removing the entry from the proper hash bucket.
 2755  */
 2756 static void
 2757 unschedule_bw_meter(struct bw_meter *x)
 2758 {
 2759     int time_hash;
 2760     struct bw_meter *prev, *tmp;
 2761 
 2762     MFC_LOCK_ASSERT();
 2763 
 2764     if (!(x->bm_flags & BW_METER_LEQ))
 2765         return;         /* XXX: we schedule timers only for "<=" entries */
 2766 
 2767     /*
 2768      * Compute the timeout hash value and delete the entry
 2769      */
 2770     time_hash = x->bm_time_hash;
 2771     if (time_hash >= BW_METER_BUCKETS)
 2772         return;         /* Entry was not scheduled */
 2773 
 2774     for (prev = NULL, tmp = bw_meter_timers[time_hash];
 2775              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2776         if (tmp == x)
 2777             break;
 2778 
 2779     if (tmp == NULL)
 2780         panic("unschedule_bw_meter: bw_meter entry not found");
 2781 
 2782     if (prev != NULL)
 2783         prev->bm_time_next = x->bm_time_next;
 2784     else
 2785         bw_meter_timers[time_hash] = x->bm_time_next;
 2786 
 2787     x->bm_time_next = NULL;
 2788     x->bm_time_hash = BW_METER_BUCKETS;
 2789 }
 2790 
 2791 
 2792 /*
 2793  * Process all "<=" type of bw_meter that should be processed now,
 2794  * and for each entry prepare an upcall if necessary. Each processed
 2795  * entry is rescheduled again for the (periodic) processing.
 2796  *
 2797  * This is run periodically (once per second normally). On each round,
 2798  * all the potentially matching entries are in the hash slot that we are
 2799  * looking at.
 2800  */
 2801 static void
 2802 bw_meter_process()
 2803 {
 2804     static uint32_t last_tv_sec;        /* last time we processed this */
 2805 
 2806     uint32_t loops;
 2807     int i;
 2808     struct timeval now, process_endtime;
 2809 
 2810     GET_TIME(now);
 2811     if (last_tv_sec == now.tv_sec)
 2812         return;         /* nothing to do */
 2813 
 2814     loops = now.tv_sec - last_tv_sec;
 2815     last_tv_sec = now.tv_sec;
 2816     if (loops > BW_METER_BUCKETS)
 2817         loops = BW_METER_BUCKETS;
 2818 
 2819     MFC_LOCK();
 2820     /*
 2821      * Process all bins of bw_meter entries from the one after the last
 2822      * processed to the current one. On entry, i points to the last bucket
 2823      * visited, so we need to increment i at the beginning of the loop.
 2824      */
 2825     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2826         struct bw_meter *x, *tmp_list;
 2827 
 2828         if (++i >= BW_METER_BUCKETS)
 2829             i = 0;
 2830 
 2831         /* Disconnect the list of bw_meter entries from the bin */
 2832         tmp_list = bw_meter_timers[i];
 2833         bw_meter_timers[i] = NULL;
 2834 
 2835         /* Process the list of bw_meter entries */
 2836         while (tmp_list != NULL) {
 2837             x = tmp_list;
 2838             tmp_list = tmp_list->bm_time_next;
 2839 
 2840             /* Test if the time interval is over */
 2841             process_endtime = x->bm_start_time;
 2842             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2843             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2844                 /* Not yet: reschedule, but don't reset */
 2845                 int time_hash;
 2846 
 2847                 BW_METER_TIMEHASH(x, time_hash);
 2848                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2849                     /*
 2850                      * XXX: somehow the bin processing is a bit ahead of time.
 2851                      * Put the entry in the next bin.
 2852                      */
 2853                     if (++time_hash >= BW_METER_BUCKETS)
 2854                         time_hash = 0;
 2855                 }
 2856                 x->bm_time_next = bw_meter_timers[time_hash];
 2857                 bw_meter_timers[time_hash] = x;
 2858                 x->bm_time_hash = time_hash;
 2859 
 2860                 continue;
 2861             }
 2862 
 2863             /*
 2864              * Test if we should deliver an upcall
 2865              */
 2866             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2867                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2868                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2869                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2870                 /* Prepare an upcall for delivery */
 2871                 bw_meter_prepare_upcall(x, &now);
 2872             }
 2873 
 2874             /*
 2875              * Reschedule for next processing
 2876              */
 2877             schedule_bw_meter(x, &now);
 2878         }
 2879     }
 2880 
 2881     /* Send all upcalls that are pending delivery */
 2882     bw_upcalls_send();
 2883 
 2884     MFC_UNLOCK();
 2885 }
 2886 
 2887 /*
 2888  * A periodic function for sending all upcalls that are pending delivery
 2889  */
 2890 static void
 2891 expire_bw_upcalls_send(void *unused)
 2892 {
 2893     MFC_LOCK();
 2894     bw_upcalls_send();
 2895     MFC_UNLOCK();
 2896 
 2897     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
 2898         expire_bw_upcalls_send, NULL);
 2899 }
 2900 
 2901 /*
 2902  * A periodic function for periodic scanning of the multicast forwarding
 2903  * table for processing all "<=" bw_meter entries.
 2904  */
 2905 static void
 2906 expire_bw_meter_process(void *unused)
 2907 {
 2908     if (mrt_api_config & MRT_MFC_BW_UPCALL)
 2909         bw_meter_process();
 2910 
 2911     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
 2912 }
 2913 
 2914 /*
 2915  * End of bandwidth monitoring code
 2916  */
 2917 
 2918 #ifdef PIM
 2919 /*
 2920  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2921  *
 2922  */
 2923 static int
 2924 pim_register_send(struct ip *ip, struct vif *vifp,
 2925         struct mbuf *m, struct mfc *rt)
 2926 {
 2927     struct mbuf *mb_copy, *mm;
 2928 
 2929     if (mrtdebug & DEBUG_PIM)
 2930         log(LOG_DEBUG, "pim_register_send: ");
 2931 
 2932     mb_copy = pim_register_prepare(ip, m);
 2933     if (mb_copy == NULL)
 2934         return ENOBUFS;
 2935 
 2936     /*
 2937      * Send all the fragments. Note that the mbuf for each fragment
 2938      * is freed by the sending machinery.
 2939      */
 2940     for (mm = mb_copy; mm; mm = mb_copy) {
 2941         mb_copy = mm->m_nextpkt;
 2942         mm->m_nextpkt = 0;
 2943         mm = m_pullup(mm, sizeof(struct ip));
 2944         if (mm != NULL) {
 2945             ip = mtod(mm, struct ip *);
 2946             if ((mrt_api_config & MRT_MFC_RP) &&
 2947                 (rt->mfc_rp.s_addr != INADDR_ANY)) {
 2948                 pim_register_send_rp(ip, vifp, mm, rt);
 2949             } else {
 2950                 pim_register_send_upcall(ip, vifp, mm, rt);
 2951             }
 2952         }
 2953     }
 2954 
 2955     return 0;
 2956 }
 2957 
 2958 /*
 2959  * Return a copy of the data packet that is ready for PIM Register
 2960  * encapsulation.
 2961  * XXX: Note that in the returned copy the IP header is a valid one.
 2962  */
 2963 static struct mbuf *
 2964 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2965 {
 2966     struct mbuf *mb_copy = NULL;
 2967     int mtu;
 2968 
 2969     /* Take care of delayed checksums */
 2970     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2971         in_delayed_cksum(m);
 2972         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2973     }
 2974 
 2975     /*
 2976      * Copy the old packet & pullup its IP header into the
 2977      * new mbuf so we can modify it.
 2978      */
 2979     mb_copy = m_copypacket(m, M_DONTWAIT);
 2980     if (mb_copy == NULL)
 2981         return NULL;
 2982     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2983     if (mb_copy == NULL)
 2984         return NULL;
 2985 
 2986     /* take care of the TTL */
 2987     ip = mtod(mb_copy, struct ip *);
 2988     --ip->ip_ttl;
 2989 
 2990     /* Compute the MTU after the PIM Register encapsulation */
 2991     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2992 
 2993     if (ip->ip_len <= mtu) {
 2994         /* Turn the IP header into a valid one */
 2995         ip->ip_len = htons(ip->ip_len);
 2996         ip->ip_off = htons(ip->ip_off);
 2997         ip->ip_sum = 0;
 2998         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2999     } else {
 3000         /* Fragment the packet */
 3001         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 3002             m_freem(mb_copy);
 3003             return NULL;
 3004         }
 3005     }
 3006     return mb_copy;
 3007 }
 3008 
 3009 /*
 3010  * Send an upcall with the data packet to the user-level process.
 3011  */
 3012 static int
 3013 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 3014         struct mbuf *mb_copy, struct mfc *rt)
 3015 {
 3016     struct mbuf *mb_first;
 3017     int len = ntohs(ip->ip_len);
 3018     struct igmpmsg *im;
 3019     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 3020 
 3021     VIF_LOCK_ASSERT();
 3022 
 3023     /*
 3024      * Add a new mbuf with an upcall header
 3025      */
 3026     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3027     if (mb_first == NULL) {
 3028         m_freem(mb_copy);
 3029         return ENOBUFS;
 3030     }
 3031     mb_first->m_data += max_linkhdr;
 3032     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 3033     mb_first->m_len = sizeof(struct igmpmsg);
 3034     mb_first->m_next = mb_copy;
 3035 
 3036     /* Send message to routing daemon */
 3037     im = mtod(mb_first, struct igmpmsg *);
 3038     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 3039     im->im_mbz          = 0;
 3040     im->im_vif          = vifp - viftable;
 3041     im->im_src          = ip->ip_src;
 3042     im->im_dst          = ip->ip_dst;
 3043 
 3044     k_igmpsrc.sin_addr  = ip->ip_src;
 3045 
 3046     mrtstat.mrts_upcalls++;
 3047 
 3048     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 3049         if (mrtdebug & DEBUG_PIM)
 3050             log(LOG_WARNING,
 3051                 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
 3052         ++mrtstat.mrts_upq_sockfull;
 3053         return ENOBUFS;
 3054     }
 3055 
 3056     /* Keep statistics */
 3057     pimstat.pims_snd_registers_msgs++;
 3058     pimstat.pims_snd_registers_bytes += len;
 3059 
 3060     return 0;
 3061 }
 3062 
 3063 /*
 3064  * Encapsulate the data packet in PIM Register message and send it to the RP.
 3065  */
 3066 static int
 3067 pim_register_send_rp(struct ip *ip, struct vif *vifp,
 3068         struct mbuf *mb_copy, struct mfc *rt)
 3069 {
 3070     struct mbuf *mb_first;
 3071     struct ip *ip_outer;
 3072     struct pim_encap_pimhdr *pimhdr;
 3073     int len = ntohs(ip->ip_len);
 3074     vifi_t vifi = rt->mfc_parent;
 3075 
 3076     VIF_LOCK_ASSERT();
 3077 
 3078     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
 3079         m_freem(mb_copy);
 3080         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 3081     }
 3082 
 3083     /*
 3084      * Add a new mbuf with the encapsulating header
 3085      */
 3086     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3087     if (mb_first == NULL) {
 3088         m_freem(mb_copy);
 3089         return ENOBUFS;
 3090     }
 3091     mb_first->m_data += max_linkhdr;
 3092     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3093     mb_first->m_next = mb_copy;
 3094 
 3095     mb_first->m_pkthdr.len = len + mb_first->m_len;
 3096 
 3097     /*
 3098      * Fill in the encapsulating IP and PIM header
 3099      */
 3100     ip_outer = mtod(mb_first, struct ip *);
 3101     *ip_outer = pim_encap_iphdr;
 3102     ip_outer->ip_id = ip_newid();
 3103     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3104     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
 3105     ip_outer->ip_dst = rt->mfc_rp;
 3106     /*
 3107      * Copy the inner header TOS to the outer header, and take care of the
 3108      * IP_DF bit.
 3109      */
 3110     ip_outer->ip_tos = ip->ip_tos;
 3111     if (ntohs(ip->ip_off) & IP_DF)
 3112         ip_outer->ip_off |= IP_DF;
 3113     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 3114                                          + sizeof(pim_encap_iphdr));
 3115     *pimhdr = pim_encap_pimhdr;
 3116     /* If the iif crosses a border, set the Border-bit */
 3117     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
 3118         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 3119 
 3120     mb_first->m_data += sizeof(pim_encap_iphdr);
 3121     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 3122     mb_first->m_data -= sizeof(pim_encap_iphdr);
 3123 
 3124     if (vifp->v_rate_limit == 0)
 3125         tbf_send_packet(vifp, mb_first);
 3126     else
 3127         tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
 3128 
 3129     /* Keep statistics */
 3130     pimstat.pims_snd_registers_msgs++;
 3131     pimstat.pims_snd_registers_bytes += len;
 3132 
 3133     return 0;
 3134 }
 3135 
 3136 /*
 3137  * PIM-SMv2 and PIM-DM messages processing.
 3138  * Receives and verifies the PIM control messages, and passes them
 3139  * up to the listening socket, using rip_input().
 3140  * The only message with special processing is the PIM_REGISTER message
 3141  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 3142  * is passed to if_simloop().
 3143  */
 3144 void
 3145 pim_input(struct mbuf *m, int off)
 3146 {
 3147     struct ip *ip = mtod(m, struct ip *);
 3148     struct pim *pim;
 3149     int minlen;
 3150     int datalen = ip->ip_len;
 3151     int ip_tos;
 3152     int iphlen = off;
 3153 
 3154     /* Keep statistics */
 3155     pimstat.pims_rcv_total_msgs++;
 3156     pimstat.pims_rcv_total_bytes += datalen;
 3157 
 3158     /*
 3159      * Validate lengths
 3160      */
 3161     if (datalen < PIM_MINLEN) {
 3162         pimstat.pims_rcv_tooshort++;
 3163         log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
 3164             datalen, (u_long)ip->ip_src.s_addr);
 3165         m_freem(m);
 3166         return;
 3167     }
 3168 
 3169     /*
 3170      * If the packet is at least as big as a REGISTER, go agead
 3171      * and grab the PIM REGISTER header size, to avoid another
 3172      * possible m_pullup() later.
 3173      *
 3174      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 3175      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 3176      */
 3177     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 3178     /*
 3179      * Get the IP and PIM headers in contiguous memory, and
 3180      * possibly the PIM REGISTER header.
 3181      */
 3182     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 3183         (m = m_pullup(m, minlen)) == 0) {
 3184         log(LOG_ERR, "pim_input: m_pullup failure\n");
 3185         return;
 3186     }
 3187     /* m_pullup() may have given us a new mbuf so reset ip. */
 3188     ip = mtod(m, struct ip *);
 3189     ip_tos = ip->ip_tos;
 3190 
 3191     /* adjust mbuf to point to the PIM header */
 3192     m->m_data += iphlen;
 3193     m->m_len  -= iphlen;
 3194     pim = mtod(m, struct pim *);
 3195 
 3196     /*
 3197      * Validate checksum. If PIM REGISTER, exclude the data packet.
 3198      *
 3199      * XXX: some older PIMv2 implementations don't make this distinction,
 3200      * so for compatibility reason perform the checksum over part of the
 3201      * message, and if error, then over the whole message.
 3202      */
 3203     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 3204         /* do nothing, checksum okay */
 3205     } else if (in_cksum(m, datalen)) {
 3206         pimstat.pims_rcv_badsum++;
 3207         if (mrtdebug & DEBUG_PIM)
 3208             log(LOG_DEBUG, "pim_input: invalid checksum");
 3209         m_freem(m);
 3210         return;
 3211     }
 3212 
 3213     /* PIM version check */
 3214     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 3215         pimstat.pims_rcv_badversion++;
 3216         log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
 3217             PIM_VT_V(pim->pim_vt), PIM_VERSION);
 3218         m_freem(m);
 3219         return;
 3220     }
 3221 
 3222     /* restore mbuf back to the outer IP */
 3223     m->m_data -= iphlen;
 3224     m->m_len  += iphlen;
 3225 
 3226     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 3227         /*
 3228          * Since this is a REGISTER, we'll make a copy of the register
 3229          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 3230          * routing daemon.
 3231          */
 3232         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 3233         struct mbuf *mcp;
 3234         struct ip *encap_ip;
 3235         u_int32_t *reghdr;
 3236         struct ifnet *vifp;
 3237 
 3238         VIF_LOCK();
 3239         if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
 3240             VIF_UNLOCK();
 3241             if (mrtdebug & DEBUG_PIM)
 3242                 log(LOG_DEBUG,
 3243                     "pim_input: register vif not set: %d\n", reg_vif_num);
 3244             m_freem(m);
 3245             return;
 3246         }
 3247         /* XXX need refcnt? */
 3248         vifp = viftable[reg_vif_num].v_ifp;
 3249         VIF_UNLOCK();
 3250 
 3251         /*
 3252          * Validate length
 3253          */
 3254         if (datalen < PIM_REG_MINLEN) {
 3255             pimstat.pims_rcv_tooshort++;
 3256             pimstat.pims_rcv_badregisters++;
 3257             log(LOG_ERR,
 3258                 "pim_input: register packet size too small %d from %lx\n",
 3259                 datalen, (u_long)ip->ip_src.s_addr);
 3260             m_freem(m);
 3261             return;
 3262         }
 3263 
 3264         reghdr = (u_int32_t *)(pim + 1);
 3265         encap_ip = (struct ip *)(reghdr + 1);
 3266 
 3267         if (mrtdebug & DEBUG_PIM) {
 3268             log(LOG_DEBUG,
 3269                 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
 3270                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3271                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3272                 ntohs(encap_ip->ip_len));
 3273         }
 3274 
 3275         /* verify the version number of the inner packet */
 3276         if (encap_ip->ip_v != IPVERSION) {
 3277             pimstat.pims_rcv_badregisters++;
 3278             if (mrtdebug & DEBUG_PIM) {
 3279                 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
 3280                     "of the inner packet\n", encap_ip->ip_v);
 3281             }
 3282             m_freem(m);
 3283             return;
 3284         }
 3285 
 3286         /* verify the inner packet is destined to a mcast group */
 3287         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 3288             pimstat.pims_rcv_badregisters++;
 3289             if (mrtdebug & DEBUG_PIM)
 3290                 log(LOG_DEBUG,
 3291                     "pim_input: inner packet of register is not "
 3292                     "multicast %lx\n",
 3293                     (u_long)ntohl(encap_ip->ip_dst.s_addr));
 3294             m_freem(m);
 3295             return;
 3296         }
 3297 
 3298         /* If a NULL_REGISTER, pass it to the daemon */
 3299         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 3300             goto pim_input_to_daemon;
 3301 
 3302         /*
 3303          * Copy the TOS from the outer IP header to the inner IP header.
 3304          */
 3305         if (encap_ip->ip_tos != ip_tos) {
 3306             /* Outer TOS -> inner TOS */
 3307             encap_ip->ip_tos = ip_tos;
 3308             /* Recompute the inner header checksum. Sigh... */
 3309 
 3310             /* adjust mbuf to point to the inner IP header */
 3311             m->m_data += (iphlen + PIM_MINLEN);
 3312             m->m_len  -= (iphlen + PIM_MINLEN);
 3313 
 3314             encap_ip->ip_sum = 0;
 3315             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 3316 
 3317             /* restore mbuf to point back to the outer IP header */
 3318             m->m_data -= (iphlen + PIM_MINLEN);
 3319             m->m_len  += (iphlen + PIM_MINLEN);
 3320         }
 3321 
 3322         /*
 3323          * Decapsulate the inner IP packet and loopback to forward it
 3324          * as a normal multicast packet. Also, make a copy of the
 3325          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 3326          * to pass to the daemon later, so it can take the appropriate
 3327          * actions (e.g., send back PIM_REGISTER_STOP).
 3328          * XXX: here m->m_data points to the outer IP header.
 3329          */
 3330         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 3331         if (mcp == NULL) {
 3332             log(LOG_ERR,
 3333                 "pim_input: pim register: could not copy register head\n");
 3334             m_freem(m);
 3335             return;
 3336         }
 3337 
 3338         /* Keep statistics */
 3339         /* XXX: registers_bytes include only the encap. mcast pkt */
 3340         pimstat.pims_rcv_registers_msgs++;
 3341         pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
 3342 
 3343         /*
 3344          * forward the inner ip packet; point m_data at the inner ip.
 3345          */
 3346         m_adj(m, iphlen + PIM_MINLEN);
 3347 
 3348         if (mrtdebug & DEBUG_PIM) {
 3349             log(LOG_DEBUG,
 3350                 "pim_input: forwarding decapsulated register: "
 3351                 "src %lx, dst %lx, vif %d\n",
 3352                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3353                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3354                 reg_vif_num);
 3355         }
 3356         /* NB: vifp was collected above; can it change on us? */
 3357         if_simloop(vifp, m, dst.sin_family, 0);
 3358 
 3359         /* prepare the register head to send to the mrouting daemon */
 3360         m = mcp;
 3361     }
 3362 
 3363 pim_input_to_daemon:
 3364     /*
 3365      * Pass the PIM message up to the daemon; if it is a Register message,
 3366      * pass the 'head' only up to the daemon. This includes the
 3367      * outer IP header, PIM header, PIM-Register header and the
 3368      * inner IP header.
 3369      * XXX: the outer IP header pkt size of a Register is not adjust to
 3370      * reflect the fact that the inner multicast data is truncated.
 3371      */
 3372     rip_input(m, iphlen);
 3373 
 3374     return;
 3375 }
 3376 #endif /* PIM */
 3377 
 3378 static int
 3379 ip_mroute_modevent(module_t mod, int type, void *unused)
 3380 {
 3381     switch (type) {
 3382     case MOD_LOAD:
 3383         mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
 3384         MFC_LOCK_INIT();
 3385         VIF_LOCK_INIT();
 3386         ip_mrouter_reset();
 3387         ip_mcast_src = X_ip_mcast_src;
 3388         ip_mforward = X_ip_mforward;
 3389         ip_mrouter_done = X_ip_mrouter_done;
 3390         ip_mrouter_get = X_ip_mrouter_get;
 3391         ip_mrouter_set = X_ip_mrouter_set;
 3392         ip_rsvp_force_done = X_ip_rsvp_force_done;
 3393         ip_rsvp_vif = X_ip_rsvp_vif;
 3394         legal_vif_num = X_legal_vif_num;
 3395         mrt_ioctl = X_mrt_ioctl;
 3396         rsvp_input_p = X_rsvp_input;
 3397         break;
 3398 
 3399     case MOD_UNLOAD:
 3400         /*
 3401          * Typically module unload happens after the user-level
 3402          * process has shutdown the kernel services (the check
 3403          * below insures someone can't just yank the module out
 3404          * from under a running process).  But if the module is
 3405          * just loaded and then unloaded w/o starting up a user
 3406          * process we still need to cleanup.
 3407          */
 3408         if (ip_mrouter)
 3409             return EINVAL;
 3410 
 3411         X_ip_mrouter_done();
 3412         ip_mcast_src = NULL;
 3413         ip_mforward = NULL;
 3414         ip_mrouter_done = NULL;
 3415         ip_mrouter_get = NULL;
 3416         ip_mrouter_set = NULL;
 3417         ip_rsvp_force_done = NULL;
 3418         ip_rsvp_vif = NULL;
 3419         legal_vif_num = NULL;
 3420         mrt_ioctl = NULL;
 3421         rsvp_input_p = NULL;
 3422         VIF_LOCK_DESTROY();
 3423         MFC_LOCK_DESTROY();
 3424         mtx_destroy(&mrouter_mtx);
 3425         break;
 3426     default:
 3427         return EOPNOTSUPP;
 3428     }
 3429     return 0;
 3430 }
 3431 
 3432 static moduledata_t ip_mroutemod = {
 3433     "ip_mroute",
 3434     ip_mroute_modevent,
 3435     0
 3436 };
 3437 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: 3e26be043cc0ccfd2c5b20983be3b8f5


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.