The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989 Stephen Deering
    3  * Copyright (c) 1992, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * Stephen Deering of Stanford University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   34  */
   35 
   36 /*
   37  * IP multicast forwarding procedures
   38  *
   39  * Written by David Waitzman, BBN Labs, August 1988.
   40  * Modified by Steve Deering, Stanford, February 1989.
   41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   42  * Modified by Van Jacobson, LBL, January 1993
   43  * Modified by Ajit Thyagarajan, PARC, August 1993
   44  * Modified by Bill Fenner, PARC, April 1995
   45  * Modified by Ahmed Helmy, SGI, June 1996
   46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   48  * Modified by Hitoshi Asaeda, WIDE, August 2000
   49  * Modified by Pavlin Radoslavov, ICSI, October 2002
   50  *
   51  * MROUTING Revision: 3.5
   52  * and PIM-SMv2 and PIM-DM support, advanced API support,
   53  * bandwidth metering and signaling
   54  *
   55  * $FreeBSD: releng/6.0/sys/netinet/ip_mroute.c 147549 2005-06-23 18:42:58Z imp $
   56  */
   57 
   58 #include "opt_mac.h"
   59 #include "opt_mrouting.h"
   60 
   61 #ifdef PIM
   62 #define _PIM_VT 1
   63 #endif
   64 
   65 #include <sys/param.h>
   66 #include <sys/kernel.h>
   67 #include <sys/lock.h>
   68 #include <sys/mac.h>
   69 #include <sys/malloc.h>
   70 #include <sys/mbuf.h>
   71 #include <sys/module.h>
   72 #include <sys/protosw.h>
   73 #include <sys/signalvar.h>
   74 #include <sys/socket.h>
   75 #include <sys/socketvar.h>
   76 #include <sys/sockio.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/syslog.h>
   80 #include <sys/systm.h>
   81 #include <sys/time.h>
   82 #include <net/if.h>
   83 #include <net/netisr.h>
   84 #include <net/route.h>
   85 #include <netinet/in.h>
   86 #include <netinet/igmp.h>
   87 #include <netinet/in_systm.h>
   88 #include <netinet/in_var.h>
   89 #include <netinet/ip.h>
   90 #include <netinet/ip_encap.h>
   91 #include <netinet/ip_mroute.h>
   92 #include <netinet/ip_var.h>
   93 #ifdef PIM
   94 #include <netinet/pim.h>
   95 #include <netinet/pim_var.h>
   96 #endif
   97 #include <netinet/udp.h>
   98 #include <machine/in_cksum.h>
   99 
  100 /*
  101  * Control debugging code for rsvp and multicast routing code.
  102  * Can only set them with the debugger.
  103  */
  104 static u_int    rsvpdebug;              /* non-zero enables debugging   */
  105 
  106 static u_int    mrtdebug;               /* any set of the flags below   */
  107 #define         DEBUG_MFC       0x02
  108 #define         DEBUG_FORWARD   0x04
  109 #define         DEBUG_EXPIRE    0x08
  110 #define         DEBUG_XMIT      0x10
  111 #define         DEBUG_PIM       0x20
  112 
  113 #define         VIFI_INVALID    ((vifi_t) -1)
  114 
  115 #define M_HASCL(m)      ((m)->m_flags & M_EXT)
  116 
  117 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
  118 
  119 /*
  120  * Locking.  We use two locks: one for the virtual interface table and
  121  * one for the forwarding table.  These locks may be nested in which case
  122  * the VIF lock must always be taken first.  Note that each lock is used
  123  * to cover not only the specific data structure but also related data
  124  * structures.  It may be better to add more fine-grained locking later;
  125  * it's not clear how performance-critical this code is.
  126  */
  127 
  128 static struct mrtstat   mrtstat;
  129 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
  130     &mrtstat, mrtstat,
  131     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
  132 
  133 static struct mfc       *mfctable[MFCTBLSIZ];
  134 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
  135     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
  136     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
  137 
  138 static struct mtx mfc_mtx;
  139 #define MFC_LOCK()      mtx_lock(&mfc_mtx)
  140 #define MFC_UNLOCK()    mtx_unlock(&mfc_mtx)
  141 #define MFC_LOCK_ASSERT()       do {                                    \
  142         mtx_assert(&mfc_mtx, MA_OWNED);                                 \
  143         NET_ASSERT_GIANT();                                             \
  144 } while (0)
  145 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
  146 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  147 
  148 static struct vif       viftable[MAXVIFS];
  149 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  150     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
  151     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  152 
  153 static struct mtx vif_mtx;
  154 #define VIF_LOCK()      mtx_lock(&vif_mtx)
  155 #define VIF_UNLOCK()    mtx_unlock(&vif_mtx)
  156 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  157 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
  158 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  159 
  160 static u_char           nexpire[MFCTBLSIZ];
  161 
  162 static struct callout expire_upcalls_ch;
  163 
  164 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  165 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  166 
  167 /*
  168  * Define the token bucket filter structures
  169  * tbftable -> each vif has one of these for storing info
  170  */
  171 
  172 static struct tbf tbftable[MAXVIFS];
  173 #define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
  174 
  175 /*
  176  * 'Interfaces' associated with decapsulator (so we can tell
  177  * packets that went through it from ones that get reflected
  178  * by a broken gateway).  These interfaces are never linked into
  179  * the system ifnet list & no routes point to them.  I.e., packets
  180  * can't be sent this way.  They only exist as a placeholder for
  181  * multicast source verification.
  182  */
  183 static struct ifnet multicast_decap_if[MAXVIFS];
  184 
  185 #define ENCAP_TTL 64
  186 #define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
  187 
  188 /* prototype IP hdr for encapsulated packets */
  189 static struct ip multicast_encap_iphdr = {
  190 #if BYTE_ORDER == LITTLE_ENDIAN
  191         sizeof(struct ip) >> 2, IPVERSION,
  192 #else
  193         IPVERSION, sizeof(struct ip) >> 2,
  194 #endif
  195         0,                              /* tos */
  196         sizeof(struct ip),              /* total length */
  197         0,                              /* id */
  198         0,                              /* frag offset */
  199         ENCAP_TTL, ENCAP_PROTO,
  200         0,                              /* checksum */
  201 };
  202 
  203 /*
  204  * Bandwidth meter variables and constants
  205  */
  206 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  207 /*
  208  * Pending timeouts are stored in a hash table, the key being the
  209  * expiration time. Periodically, the entries are analysed and processed.
  210  */
  211 #define BW_METER_BUCKETS        1024
  212 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
  213 static struct callout bw_meter_ch;
  214 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  215 
  216 /*
  217  * Pending upcalls are stored in a vector which is flushed when
  218  * full, or periodically
  219  */
  220 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
  221 static u_int    bw_upcalls_n; /* # of pending upcalls */
  222 static struct callout bw_upcalls_ch;
  223 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  224 
  225 #ifdef PIM
  226 static struct pimstat pimstat;
  227 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  228     &pimstat, pimstat,
  229     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  230 
  231 /*
  232  * Note: the PIM Register encapsulation adds the following in front of a
  233  * data packet:
  234  *
  235  * struct pim_encap_hdr {
  236  *    struct ip ip;
  237  *    struct pim_encap_pimhdr  pim;
  238  * }
  239  *
  240  */
  241 
  242 struct pim_encap_pimhdr {
  243         struct pim pim;
  244         uint32_t   flags;
  245 };
  246 
  247 static struct ip pim_encap_iphdr = {
  248 #if BYTE_ORDER == LITTLE_ENDIAN
  249         sizeof(struct ip) >> 2,
  250         IPVERSION,
  251 #else
  252         IPVERSION,
  253         sizeof(struct ip) >> 2,
  254 #endif
  255         0,                      /* tos */
  256         sizeof(struct ip),      /* total length */
  257         0,                      /* id */
  258         0,                      /* frag offset */
  259         ENCAP_TTL,
  260         IPPROTO_PIM,
  261         0,                      /* checksum */
  262 };
  263 
  264 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  265     {
  266         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  267         0,                      /* reserved */
  268         0,                      /* checksum */
  269     },
  270     0                           /* flags */
  271 };
  272 
  273 static struct ifnet multicast_register_if;
  274 static vifi_t reg_vif_num = VIFI_INVALID;
  275 #endif /* PIM */
  276 
  277 /*
  278  * Private variables.
  279  */
  280 static vifi_t      numvifs;
  281 static const struct encaptab *encap_cookie;
  282 
  283 /*
  284  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
  285  * given a datagram's src ip address.
  286  */
  287 static u_long last_encap_src;
  288 static struct vif *last_encap_vif;
  289 
  290 /*
  291  * Callout for queue processing.
  292  */
  293 static struct callout tbf_reprocess_ch;
  294 
  295 static u_long   X_ip_mcast_src(int vifi);
  296 static int      X_ip_mforward(struct ip *ip, struct ifnet *ifp,
  297                         struct mbuf *m, struct ip_moptions *imo);
  298 static int      X_ip_mrouter_done(void);
  299 static int      X_ip_mrouter_get(struct socket *so, struct sockopt *m);
  300 static int      X_ip_mrouter_set(struct socket *so, struct sockopt *m);
  301 static int      X_legal_vif_num(int vif);
  302 static int      X_mrt_ioctl(int cmd, caddr_t data);
  303 
  304 static int get_sg_cnt(struct sioc_sg_req *);
  305 static int get_vif_cnt(struct sioc_vif_req *);
  306 static int ip_mrouter_init(struct socket *, int);
  307 static int add_vif(struct vifctl *);
  308 static int del_vif(vifi_t);
  309 static int add_mfc(struct mfcctl2 *);
  310 static int del_mfc(struct mfcctl2 *);
  311 static int set_api_config(uint32_t *); /* chose API capabilities */
  312 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
  313 static int set_assert(int);
  314 static void expire_upcalls(void *);
  315 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  316 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
  317 static void encap_send(struct ip *, struct vif *, struct mbuf *);
  318 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
  319 static void tbf_queue(struct vif *, struct mbuf *);
  320 static void tbf_process_q(struct vif *);
  321 static void tbf_reprocess_q(void *);
  322 static int tbf_dq_sel(struct vif *, struct ip *);
  323 static void tbf_send_packet(struct vif *, struct mbuf *);
  324 static void tbf_update_tokens(struct vif *);
  325 static int priority(struct vif *, struct ip *);
  326 
  327 /*
  328  * Bandwidth monitoring
  329  */
  330 static void free_bw_list(struct bw_meter *list);
  331 static int add_bw_upcall(struct bw_upcall *);
  332 static int del_bw_upcall(struct bw_upcall *);
  333 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
  334                 struct timeval *nowp);
  335 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
  336 static void bw_upcalls_send(void);
  337 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
  338 static void unschedule_bw_meter(struct bw_meter *x);
  339 static void bw_meter_process(void);
  340 static void expire_bw_upcalls_send(void *);
  341 static void expire_bw_meter_process(void *);
  342 
  343 #ifdef PIM
  344 static int pim_register_send(struct ip *, struct vif *,
  345                 struct mbuf *, struct mfc *);
  346 static int pim_register_send_rp(struct ip *, struct vif *,
  347                 struct mbuf *, struct mfc *);
  348 static int pim_register_send_upcall(struct ip *, struct vif *,
  349                 struct mbuf *, struct mfc *);
  350 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
  351 #endif
  352 
  353 /*
  354  * whether or not special PIM assert processing is enabled.
  355  */
  356 static int pim_assert;
  357 /*
  358  * Rate limit for assert notification messages, in usec
  359  */
  360 #define ASSERT_MSG_TIME         3000000
  361 
  362 /*
  363  * Kernel multicast routing API capabilities and setup.
  364  * If more API capabilities are added to the kernel, they should be
  365  * recorded in `mrt_api_support'.
  366  */
  367 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  368                                          MRT_MFC_FLAGS_BORDER_VIF |
  369                                          MRT_MFC_RP |
  370                                          MRT_MFC_BW_UPCALL);
  371 static uint32_t mrt_api_config = 0;
  372 
  373 /*
  374  * Hash function for a source, group entry
  375  */
  376 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
  377                         ((g) >> 20) ^ ((g) >> 10) ^ (g))
  378 
  379 /*
  380  * Find a route for a given origin IP address and Multicast group address
  381  * Type of service parameter to be added in the future!!!
  382  * Statistics are updated by the caller if needed
  383  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
  384  */
  385 static struct mfc *
  386 mfc_find(in_addr_t o, in_addr_t g)
  387 {
  388     struct mfc *rt;
  389 
  390     MFC_LOCK_ASSERT();
  391 
  392     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
  393         if ((rt->mfc_origin.s_addr == o) &&
  394                 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
  395             break;
  396     return rt;
  397 }
  398 
  399 /*
  400  * Macros to compute elapsed time efficiently
  401  * Borrowed from Van Jacobson's scheduling code
  402  */
  403 #define TV_DELTA(a, b, delta) {                                 \
  404         int xxs;                                                \
  405         delta = (a).tv_usec - (b).tv_usec;                      \
  406         if ((xxs = (a).tv_sec - (b).tv_sec)) {                  \
  407                 switch (xxs) {                                  \
  408                 case 2:                                         \
  409                       delta += 1000000;                         \
  410                       /* FALLTHROUGH */                         \
  411                 case 1:                                         \
  412                       delta += 1000000;                         \
  413                       break;                                    \
  414                 default:                                        \
  415                       delta += (1000000 * xxs);                 \
  416                 }                                               \
  417         }                                                       \
  418 }
  419 
  420 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
  421               (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
  422 
  423 /*
  424  * Handle MRT setsockopt commands to modify the multicast routing tables.
  425  */
  426 static int
  427 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  428 {
  429     int error, optval;
  430     vifi_t      vifi;
  431     struct      vifctl vifc;
  432     struct      mfcctl2 mfc;
  433     struct      bw_upcall bw_upcall;
  434     uint32_t    i;
  435 
  436     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
  437         return EPERM;
  438 
  439     error = 0;
  440     switch (sopt->sopt_name) {
  441     case MRT_INIT:
  442         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  443         if (error)
  444             break;
  445         error = ip_mrouter_init(so, optval);
  446         break;
  447 
  448     case MRT_DONE:
  449         error = ip_mrouter_done();
  450         break;
  451 
  452     case MRT_ADD_VIF:
  453         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  454         if (error)
  455             break;
  456         error = add_vif(&vifc);
  457         break;
  458 
  459     case MRT_DEL_VIF:
  460         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  461         if (error)
  462             break;
  463         error = del_vif(vifi);
  464         break;
  465 
  466     case MRT_ADD_MFC:
  467     case MRT_DEL_MFC:
  468         /*
  469          * select data size depending on API version.
  470          */
  471         if (sopt->sopt_name == MRT_ADD_MFC &&
  472                 mrt_api_config & MRT_API_FLAGS_ALL) {
  473             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  474                                 sizeof(struct mfcctl2));
  475         } else {
  476             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  477                                 sizeof(struct mfcctl));
  478             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  479                         sizeof(mfc) - sizeof(struct mfcctl));
  480         }
  481         if (error)
  482             break;
  483         if (sopt->sopt_name == MRT_ADD_MFC)
  484             error = add_mfc(&mfc);
  485         else
  486             error = del_mfc(&mfc);
  487         break;
  488 
  489     case MRT_ASSERT:
  490         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  491         if (error)
  492             break;
  493         set_assert(optval);
  494         break;
  495 
  496     case MRT_API_CONFIG:
  497         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  498         if (!error)
  499             error = set_api_config(&i);
  500         if (!error)
  501             error = sooptcopyout(sopt, &i, sizeof i);
  502         break;
  503 
  504     case MRT_ADD_BW_UPCALL:
  505     case MRT_DEL_BW_UPCALL:
  506         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  507                                 sizeof bw_upcall);
  508         if (error)
  509             break;
  510         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  511             error = add_bw_upcall(&bw_upcall);
  512         else
  513             error = del_bw_upcall(&bw_upcall);
  514         break;
  515 
  516     default:
  517         error = EOPNOTSUPP;
  518         break;
  519     }
  520     return error;
  521 }
  522 
  523 /*
  524  * Handle MRT getsockopt commands
  525  */
  526 static int
  527 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  528 {
  529     int error;
  530     static int version = 0x0305; /* !!! why is this here? XXX */
  531 
  532     switch (sopt->sopt_name) {
  533     case MRT_VERSION:
  534         error = sooptcopyout(sopt, &version, sizeof version);
  535         break;
  536 
  537     case MRT_ASSERT:
  538         error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
  539         break;
  540 
  541     case MRT_API_SUPPORT:
  542         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  543         break;
  544 
  545     case MRT_API_CONFIG:
  546         error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
  547         break;
  548 
  549     default:
  550         error = EOPNOTSUPP;
  551         break;
  552     }
  553     return error;
  554 }
  555 
  556 /*
  557  * Handle ioctl commands to obtain information from the cache
  558  */
  559 static int
  560 X_mrt_ioctl(int cmd, caddr_t data)
  561 {
  562     int error = 0;
  563 
  564     /*
  565      * Currently the only function calling this ioctl routine is rtioctl().
  566      * Typically, only root can create the raw socket in order to execute
  567      * this ioctl method, however the request might be coming from a prison
  568      */
  569     error = suser(curthread);
  570     if (error)
  571         return (error);
  572     switch (cmd) {
  573     case (SIOCGETVIFCNT):
  574         error = get_vif_cnt((struct sioc_vif_req *)data);
  575         break;
  576 
  577     case (SIOCGETSGCNT):
  578         error = get_sg_cnt((struct sioc_sg_req *)data);
  579         break;
  580 
  581     default:
  582         error = EINVAL;
  583         break;
  584     }
  585     return error;
  586 }
  587 
  588 /*
  589  * returns the packet, byte, rpf-failure count for the source group provided
  590  */
  591 static int
  592 get_sg_cnt(struct sioc_sg_req *req)
  593 {
  594     struct mfc *rt;
  595 
  596     MFC_LOCK();
  597     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
  598     if (rt == NULL) {
  599         MFC_UNLOCK();
  600         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  601         return EADDRNOTAVAIL;
  602     }
  603     req->pktcnt = rt->mfc_pkt_cnt;
  604     req->bytecnt = rt->mfc_byte_cnt;
  605     req->wrong_if = rt->mfc_wrong_if;
  606     MFC_UNLOCK();
  607     return 0;
  608 }
  609 
  610 /*
  611  * returns the input and output packet and byte counts on the vif provided
  612  */
  613 static int
  614 get_vif_cnt(struct sioc_vif_req *req)
  615 {
  616     vifi_t vifi = req->vifi;
  617 
  618     VIF_LOCK();
  619     if (vifi >= numvifs) {
  620         VIF_UNLOCK();
  621         return EINVAL;
  622     }
  623 
  624     req->icount = viftable[vifi].v_pkt_in;
  625     req->ocount = viftable[vifi].v_pkt_out;
  626     req->ibytes = viftable[vifi].v_bytes_in;
  627     req->obytes = viftable[vifi].v_bytes_out;
  628     VIF_UNLOCK();
  629 
  630     return 0;
  631 }
  632 
  633 static void
  634 ip_mrouter_reset(void)
  635 {
  636     bzero((caddr_t)mfctable, sizeof(mfctable));
  637     bzero((caddr_t)nexpire, sizeof(nexpire));
  638 
  639     pim_assert = 0;
  640     mrt_api_config = 0;
  641 
  642     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
  643 
  644     bw_upcalls_n = 0;
  645     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
  646     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
  647     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
  648 
  649     callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
  650 }
  651 
  652 static struct mtx mrouter_mtx;          /* used to synch init/done work */
  653 
  654 /*
  655  * Enable multicast routing
  656  */
  657 static int
  658 ip_mrouter_init(struct socket *so, int version)
  659 {
  660     if (mrtdebug)
  661         log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
  662             so->so_type, so->so_proto->pr_protocol);
  663 
  664     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  665         return EOPNOTSUPP;
  666 
  667     if (version != 1)
  668         return ENOPROTOOPT;
  669 
  670     mtx_lock(&mrouter_mtx);
  671 
  672     if (ip_mrouter != NULL) {
  673         mtx_unlock(&mrouter_mtx);
  674         return EADDRINUSE;
  675     }
  676 
  677     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
  678 
  679     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
  680         expire_bw_upcalls_send, NULL);
  681     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
  682 
  683     ip_mrouter = so;
  684 
  685     mtx_unlock(&mrouter_mtx);
  686 
  687     if (mrtdebug)
  688         log(LOG_DEBUG, "ip_mrouter_init\n");
  689 
  690     return 0;
  691 }
  692 
  693 /*
  694  * Disable multicast routing
  695  */
  696 static int
  697 X_ip_mrouter_done(void)
  698 {
  699     vifi_t vifi;
  700     int i;
  701     struct ifnet *ifp;
  702     struct ifreq ifr;
  703     struct mfc *rt;
  704     struct rtdetq *rte;
  705 
  706     mtx_lock(&mrouter_mtx);
  707 
  708     if (ip_mrouter == NULL) {
  709         mtx_unlock(&mrouter_mtx);
  710         return EINVAL;
  711     }
  712 
  713     /*
  714      * Detach/disable hooks to the reset of the system.
  715      */
  716     ip_mrouter = NULL;
  717     mrt_api_config = 0;
  718 
  719     VIF_LOCK();
  720     if (encap_cookie) {
  721         const struct encaptab *c = encap_cookie;
  722         encap_cookie = NULL;
  723         encap_detach(c);
  724     }
  725     VIF_UNLOCK();
  726 
  727     callout_stop(&tbf_reprocess_ch);
  728 
  729     VIF_LOCK();
  730     /*
  731      * For each phyint in use, disable promiscuous reception of all IP
  732      * multicasts.
  733      */
  734     for (vifi = 0; vifi < numvifs; vifi++) {
  735         if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
  736                 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  737             struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
  738 
  739             so->sin_len = sizeof(struct sockaddr_in);
  740             so->sin_family = AF_INET;
  741             so->sin_addr.s_addr = INADDR_ANY;
  742             ifp = viftable[vifi].v_ifp;
  743             if_allmulti(ifp, 0);
  744         }
  745     }
  746     bzero((caddr_t)tbftable, sizeof(tbftable));
  747     bzero((caddr_t)viftable, sizeof(viftable));
  748     numvifs = 0;
  749     pim_assert = 0;
  750     VIF_UNLOCK();
  751 
  752     /*
  753      * Free all multicast forwarding cache entries.
  754      */
  755     callout_stop(&expire_upcalls_ch);
  756     callout_stop(&bw_upcalls_ch);
  757     callout_stop(&bw_meter_ch);
  758 
  759     MFC_LOCK();
  760     for (i = 0; i < MFCTBLSIZ; i++) {
  761         for (rt = mfctable[i]; rt != NULL; ) {
  762             struct mfc *nr = rt->mfc_next;
  763 
  764             for (rte = rt->mfc_stall; rte != NULL; ) {
  765                 struct rtdetq *n = rte->next;
  766 
  767                 m_freem(rte->m);
  768                 free(rte, M_MRTABLE);
  769                 rte = n;
  770             }
  771             free_bw_list(rt->mfc_bw_meter);
  772             free(rt, M_MRTABLE);
  773             rt = nr;
  774         }
  775     }
  776     bzero((caddr_t)mfctable, sizeof(mfctable));
  777     bzero((caddr_t)nexpire, sizeof(nexpire));
  778     bw_upcalls_n = 0;
  779     bzero(bw_meter_timers, sizeof(bw_meter_timers));
  780     MFC_UNLOCK();
  781 
  782     /*
  783      * Reset de-encapsulation cache
  784      */
  785     last_encap_src = INADDR_ANY;
  786     last_encap_vif = NULL;
  787 #ifdef PIM
  788     reg_vif_num = VIFI_INVALID;
  789 #endif
  790 
  791     mtx_unlock(&mrouter_mtx);
  792 
  793     if (mrtdebug)
  794         log(LOG_DEBUG, "ip_mrouter_done\n");
  795 
  796     return 0;
  797 }
  798 
  799 /*
  800  * Set PIM assert processing global
  801  */
  802 static int
  803 set_assert(int i)
  804 {
  805     if ((i != 1) && (i != 0))
  806         return EINVAL;
  807 
  808     pim_assert = i;
  809 
  810     return 0;
  811 }
  812 
  813 /*
  814  * Configure API capabilities
  815  */
  816 int
  817 set_api_config(uint32_t *apival)
  818 {
  819     int i;
  820 
  821     /*
  822      * We can set the API capabilities only if it is the first operation
  823      * after MRT_INIT. I.e.:
  824      *  - there are no vifs installed
  825      *  - pim_assert is not enabled
  826      *  - the MFC table is empty
  827      */
  828     if (numvifs > 0) {
  829         *apival = 0;
  830         return EPERM;
  831     }
  832     if (pim_assert) {
  833         *apival = 0;
  834         return EPERM;
  835     }
  836     for (i = 0; i < MFCTBLSIZ; i++) {
  837         if (mfctable[i] != NULL) {
  838             *apival = 0;
  839             return EPERM;
  840         }
  841     }
  842 
  843     mrt_api_config = *apival & mrt_api_support;
  844     *apival = mrt_api_config;
  845 
  846     return 0;
  847 }
  848 
  849 /*
  850  * Decide if a packet is from a tunnelled peer.
  851  * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
  852  */
  853 static int
  854 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
  855 {
  856     struct ip *ip = mtod(m, struct ip *);
  857     int hlen = ip->ip_hl << 2;
  858 
  859     /*
  860      * don't claim the packet if it's not to a multicast destination or if
  861      * we don't have an encapsulating tunnel with the source.
  862      * Note:  This code assumes that the remote site IP address
  863      * uniquely identifies the tunnel (i.e., that this site has
  864      * at most one tunnel with the remote site).
  865      */
  866     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
  867         return 0;
  868     if (ip->ip_src.s_addr != last_encap_src) {
  869         struct vif *vifp = viftable;
  870         struct vif *vife = vifp + numvifs;
  871 
  872         last_encap_src = ip->ip_src.s_addr;
  873         last_encap_vif = NULL;
  874         for ( ; vifp < vife; ++vifp)
  875             if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
  876                 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
  877                     last_encap_vif = vifp;
  878                 break;
  879             }
  880     }
  881     if (last_encap_vif == NULL) {
  882         last_encap_src = INADDR_ANY;
  883         return 0;
  884     }
  885     return 64;
  886 }
  887 
  888 /*
  889  * De-encapsulate a packet and feed it back through ip input (this
  890  * routine is called whenever IP gets a packet that mroute_encap_func()
  891  * claimed).
  892  */
  893 static void
  894 mroute_encap_input(struct mbuf *m, int off)
  895 {
  896     struct ip *ip = mtod(m, struct ip *);
  897     int hlen = ip->ip_hl << 2;
  898 
  899     if (hlen > sizeof(struct ip))
  900         ip_stripoptions(m, (struct mbuf *) 0);
  901     m->m_data += sizeof(struct ip);
  902     m->m_len -= sizeof(struct ip);
  903     m->m_pkthdr.len -= sizeof(struct ip);
  904 
  905     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
  906 
  907     netisr_queue(NETISR_IP, m);         /* mbuf is free'd on failure. */
  908     /*
  909      * normally we would need a "schednetisr(NETISR_IP)"
  910      * here but we were called by ip_input and it is going
  911      * to loop back & try to dequeue the packet we just
  912      * queued as soon as we return so we avoid the
  913      * unnecessary software interrrupt.
  914      *
  915      * XXX
  916      * This no longer holds - we may have direct-dispatched the packet,
  917      * or there may be a queue processing limit.
  918      */
  919 }
  920 
  921 extern struct domain inetdomain;
  922 static struct protosw mroute_encap_protosw =
  923 { SOCK_RAW,     &inetdomain,    IPPROTO_IPV4,   PR_ATOMIC|PR_ADDR,
  924   mroute_encap_input,   0,      0,              rip_ctloutput,
  925   0,
  926   0,            0,              0,              0,
  927   &rip_usrreqs
  928 };
  929 
  930 /*
  931  * Add a vif to the vif table
  932  */
  933 static int
  934 add_vif(struct vifctl *vifcp)
  935 {
  936     struct vif *vifp = viftable + vifcp->vifc_vifi;
  937     struct sockaddr_in sin = {sizeof sin, AF_INET};
  938     struct ifaddr *ifa;
  939     struct ifnet *ifp;
  940     int error;
  941     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
  942 
  943     VIF_LOCK();
  944     if (vifcp->vifc_vifi >= MAXVIFS) {
  945         VIF_UNLOCK();
  946         return EINVAL;
  947     }
  948     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
  949         VIF_UNLOCK();
  950         return EADDRINUSE;
  951     }
  952     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
  953         VIF_UNLOCK();
  954         return EADDRNOTAVAIL;
  955     }
  956 
  957     /* Find the interface with an address in AF_INET family */
  958 #ifdef PIM
  959     if (vifcp->vifc_flags & VIFF_REGISTER) {
  960         /*
  961          * XXX: Because VIFF_REGISTER does not really need a valid
  962          * local interface (e.g. it could be 127.0.0.2), we don't
  963          * check its address.
  964          */
  965         ifp = NULL;
  966     } else
  967 #endif
  968     {
  969         sin.sin_addr = vifcp->vifc_lcl_addr;
  970         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  971         if (ifa == NULL) {
  972             VIF_UNLOCK();
  973             return EADDRNOTAVAIL;
  974         }
  975         ifp = ifa->ifa_ifp;
  976     }
  977 
  978     if (vifcp->vifc_flags & VIFF_TUNNEL) {
  979         if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
  980             /*
  981              * An encapsulating tunnel is wanted.  Tell
  982              * mroute_encap_input() to start paying attention
  983              * to encapsulated packets.
  984              */
  985             if (encap_cookie == NULL) {
  986                 int i;
  987 
  988                 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
  989                                 mroute_encapcheck,
  990                                 (struct protosw *)&mroute_encap_protosw, NULL);
  991 
  992                 if (encap_cookie == NULL) {
  993                     printf("ip_mroute: unable to attach encap\n");
  994                     VIF_UNLOCK();
  995                     return EIO; /* XXX */
  996                 }
  997                 for (i = 0; i < MAXVIFS; ++i) {
  998                     if_initname(&multicast_decap_if[i], "mdecap", i);
  999                 }
 1000             }
 1001             /*
 1002              * Set interface to fake encapsulator interface
 1003              */
 1004             ifp = &multicast_decap_if[vifcp->vifc_vifi];
 1005             /*
 1006              * Prepare cached route entry
 1007              */
 1008             bzero(&vifp->v_route, sizeof(vifp->v_route));
 1009         } else {
 1010             log(LOG_ERR, "source routed tunnels not supported\n");
 1011             VIF_UNLOCK();
 1012             return EOPNOTSUPP;
 1013         }
 1014 #ifdef PIM
 1015     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
 1016         ifp = &multicast_register_if;
 1017         if (mrtdebug)
 1018             log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
 1019                     (void *)&multicast_register_if);
 1020         if (reg_vif_num == VIFI_INVALID) {
 1021             if_initname(&multicast_register_if, "register_vif", 0);
 1022             multicast_register_if.if_flags = IFF_LOOPBACK;
 1023             bzero(&vifp->v_route, sizeof(vifp->v_route));
 1024             reg_vif_num = vifcp->vifc_vifi;
 1025         }
 1026 #endif
 1027     } else {            /* Make sure the interface supports multicast */
 1028         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
 1029             VIF_UNLOCK();
 1030             return EOPNOTSUPP;
 1031         }
 1032 
 1033         /* Enable promiscuous reception of all IP multicasts from the if */
 1034         error = if_allmulti(ifp, 1);
 1035         if (error) {
 1036             VIF_UNLOCK();
 1037             return error;
 1038         }
 1039     }
 1040 
 1041     /* define parameters for the tbf structure */
 1042     vifp->v_tbf = v_tbf;
 1043     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
 1044     vifp->v_tbf->tbf_n_tok = 0;
 1045     vifp->v_tbf->tbf_q_len = 0;
 1046     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
 1047     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
 1048 
 1049     vifp->v_flags     = vifcp->vifc_flags;
 1050     vifp->v_threshold = vifcp->vifc_threshold;
 1051     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
 1052     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
 1053     vifp->v_ifp       = ifp;
 1054     /* scaling up here allows division by 1024 in critical code */
 1055     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
 1056     vifp->v_rsvp_on   = 0;
 1057     vifp->v_rsvpd     = NULL;
 1058     /* initialize per vif pkt counters */
 1059     vifp->v_pkt_in    = 0;
 1060     vifp->v_pkt_out   = 0;
 1061     vifp->v_bytes_in  = 0;
 1062     vifp->v_bytes_out = 0;
 1063 
 1064     /* Adjust numvifs up if the vifi is higher than numvifs */
 1065     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
 1066 
 1067     VIF_UNLOCK();
 1068 
 1069     if (mrtdebug)
 1070         log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
 1071             vifcp->vifc_vifi,
 1072             (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
 1073             (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
 1074             (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
 1075             vifcp->vifc_threshold,
 1076             vifcp->vifc_rate_limit);
 1077 
 1078     return 0;
 1079 }
 1080 
 1081 /*
 1082  * Delete a vif from the vif table
 1083  */
 1084 static int
 1085 del_vif(vifi_t vifi)
 1086 {
 1087     struct vif *vifp;
 1088 
 1089     VIF_LOCK();
 1090 
 1091     if (vifi >= numvifs) {
 1092         VIF_UNLOCK();
 1093         return EINVAL;
 1094     }
 1095     vifp = &viftable[vifi];
 1096     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
 1097         VIF_UNLOCK();
 1098         return EADDRNOTAVAIL;
 1099     }
 1100 
 1101     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1102         if_allmulti(vifp->v_ifp, 0);
 1103 
 1104     if (vifp == last_encap_vif) {
 1105         last_encap_vif = NULL;
 1106         last_encap_src = INADDR_ANY;
 1107     }
 1108 
 1109     /*
 1110      * Free packets queued at the interface
 1111      */
 1112     while (vifp->v_tbf->tbf_q) {
 1113         struct mbuf *m = vifp->v_tbf->tbf_q;
 1114 
 1115         vifp->v_tbf->tbf_q = m->m_act;
 1116         m_freem(m);
 1117     }
 1118 
 1119 #ifdef PIM
 1120     if (vifp->v_flags & VIFF_REGISTER)
 1121         reg_vif_num = VIFI_INVALID;
 1122 #endif
 1123 
 1124     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
 1125     bzero((caddr_t)vifp, sizeof (*vifp));
 1126 
 1127     if (mrtdebug)
 1128         log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
 1129 
 1130     /* Adjust numvifs down */
 1131     for (vifi = numvifs; vifi > 0; vifi--)
 1132         if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
 1133             break;
 1134     numvifs = vifi;
 1135 
 1136     VIF_UNLOCK();
 1137 
 1138     return 0;
 1139 }
 1140 
 1141 /*
 1142  * update an mfc entry without resetting counters and S,G addresses.
 1143  */
 1144 static void
 1145 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1146 {
 1147     int i;
 1148 
 1149     rt->mfc_parent = mfccp->mfcc_parent;
 1150     for (i = 0; i < numvifs; i++) {
 1151         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1152         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
 1153             MRT_MFC_FLAGS_ALL;
 1154     }
 1155     /* set the RP address */
 1156     if (mrt_api_config & MRT_MFC_RP)
 1157         rt->mfc_rp = mfccp->mfcc_rp;
 1158     else
 1159         rt->mfc_rp.s_addr = INADDR_ANY;
 1160 }
 1161 
 1162 /*
 1163  * fully initialize an mfc entry from the parameter.
 1164  */
 1165 static void
 1166 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1167 {
 1168     rt->mfc_origin     = mfccp->mfcc_origin;
 1169     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1170 
 1171     update_mfc_params(rt, mfccp);
 1172 
 1173     /* initialize pkt counters per src-grp */
 1174     rt->mfc_pkt_cnt    = 0;
 1175     rt->mfc_byte_cnt   = 0;
 1176     rt->mfc_wrong_if   = 0;
 1177     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
 1178 }
 1179 
 1180 
 1181 /*
 1182  * Add an mfc entry
 1183  */
 1184 static int
 1185 add_mfc(struct mfcctl2 *mfccp)
 1186 {
 1187     struct mfc *rt;
 1188     u_long hash;
 1189     struct rtdetq *rte;
 1190     u_short nstl;
 1191 
 1192     VIF_LOCK();
 1193     MFC_LOCK();
 1194 
 1195     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1196 
 1197     /* If an entry already exists, just update the fields */
 1198     if (rt) {
 1199         if (mrtdebug & DEBUG_MFC)
 1200             log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
 1201                 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1202                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1203                 mfccp->mfcc_parent);
 1204 
 1205         update_mfc_params(rt, mfccp);
 1206         MFC_UNLOCK();
 1207         VIF_UNLOCK();
 1208         return 0;
 1209     }
 1210 
 1211     /*
 1212      * Find the entry for which the upcall was made and update
 1213      */
 1214     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1215     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
 1216 
 1217         if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1218                 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
 1219                 (rt->mfc_stall != NULL)) {
 1220 
 1221             if (nstl++)
 1222                 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
 1223                     "multiple kernel entries",
 1224                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1225                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1226                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1227 
 1228             if (mrtdebug & DEBUG_MFC)
 1229                 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
 1230                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1231                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1232                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1233 
 1234             init_mfc_params(rt, mfccp);
 1235 
 1236             rt->mfc_expire = 0; /* Don't clean this guy up */
 1237             nexpire[hash]--;
 1238 
 1239             /* free packets Qed at the end of this entry */
 1240             for (rte = rt->mfc_stall; rte != NULL; ) {
 1241                 struct rtdetq *n = rte->next;
 1242 
 1243                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1244                 m_freem(rte->m);
 1245                 free(rte, M_MRTABLE);
 1246                 rte = n;
 1247             }
 1248             rt->mfc_stall = NULL;
 1249         }
 1250     }
 1251 
 1252     /*
 1253      * It is possible that an entry is being inserted without an upcall
 1254      */
 1255     if (nstl == 0) {
 1256         if (mrtdebug & DEBUG_MFC)
 1257             log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
 1258                 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1259                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1260                 mfccp->mfcc_parent);
 1261 
 1262         for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
 1263             if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1264                     (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
 1265                 init_mfc_params(rt, mfccp);
 1266                 if (rt->mfc_expire)
 1267                     nexpire[hash]--;
 1268                 rt->mfc_expire = 0;
 1269                 break; /* XXX */
 1270             }
 1271         }
 1272         if (rt == NULL) {               /* no upcall, so make a new entry */
 1273             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1274             if (rt == NULL) {
 1275                 MFC_UNLOCK();
 1276                 VIF_UNLOCK();
 1277                 return ENOBUFS;
 1278             }
 1279 
 1280             init_mfc_params(rt, mfccp);
 1281             rt->mfc_expire     = 0;
 1282             rt->mfc_stall      = NULL;
 1283 
 1284             rt->mfc_bw_meter = NULL;
 1285             /* insert new entry at head of hash chain */
 1286             rt->mfc_next = mfctable[hash];
 1287             mfctable[hash] = rt;
 1288         }
 1289     }
 1290     MFC_UNLOCK();
 1291     VIF_UNLOCK();
 1292     return 0;
 1293 }
 1294 
 1295 /*
 1296  * Delete an mfc entry
 1297  */
 1298 static int
 1299 del_mfc(struct mfcctl2 *mfccp)
 1300 {
 1301     struct in_addr      origin;
 1302     struct in_addr      mcastgrp;
 1303     struct mfc          *rt;
 1304     struct mfc          **nptr;
 1305     u_long              hash;
 1306     struct bw_meter     *list;
 1307 
 1308     origin = mfccp->mfcc_origin;
 1309     mcastgrp = mfccp->mfcc_mcastgrp;
 1310 
 1311     if (mrtdebug & DEBUG_MFC)
 1312         log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
 1313             (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1314 
 1315     MFC_LOCK();
 1316 
 1317     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
 1318     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
 1319         if (origin.s_addr == rt->mfc_origin.s_addr &&
 1320                 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
 1321                 rt->mfc_stall == NULL)
 1322             break;
 1323     if (rt == NULL) {
 1324         MFC_UNLOCK();
 1325         return EADDRNOTAVAIL;
 1326     }
 1327 
 1328     *nptr = rt->mfc_next;
 1329 
 1330     /*
 1331      * free the bw_meter entries
 1332      */
 1333     list = rt->mfc_bw_meter;
 1334     rt->mfc_bw_meter = NULL;
 1335 
 1336     free(rt, M_MRTABLE);
 1337 
 1338     free_bw_list(list);
 1339 
 1340     MFC_UNLOCK();
 1341 
 1342     return 0;
 1343 }
 1344 
 1345 /*
 1346  * Send a message to mrouted on the multicast routing socket
 1347  */
 1348 static int
 1349 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1350 {
 1351     if (s) {
 1352         SOCKBUF_LOCK(&s->so_rcv);
 1353         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1354             NULL) != 0) {
 1355             sorwakeup_locked(s);
 1356             return 0;
 1357         }
 1358         SOCKBUF_UNLOCK(&s->so_rcv);
 1359     }
 1360     m_freem(mm);
 1361     return -1;
 1362 }
 1363 
 1364 /*
 1365  * IP multicast forwarding function. This function assumes that the packet
 1366  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1367  * pointed to by "ifp", and the packet is to be relayed to other networks
 1368  * that have members of the packet's destination IP multicast group.
 1369  *
 1370  * The packet is returned unscathed to the caller, unless it is
 1371  * erroneous, in which case a non-zero return value tells the caller to
 1372  * discard it.
 1373  */
 1374 
 1375 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1376 
 1377 static int
 1378 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1379     struct ip_moptions *imo)
 1380 {
 1381     struct mfc *rt;
 1382     int error;
 1383     vifi_t vifi;
 1384 
 1385     if (mrtdebug & DEBUG_FORWARD)
 1386         log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
 1387             (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
 1388             (void *)ifp);
 1389 
 1390     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1391                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1392         /*
 1393          * Packet arrived via a physical interface or
 1394          * an encapsulated tunnel or a register_vif.
 1395          */
 1396     } else {
 1397         /*
 1398          * Packet arrived through a source-route tunnel.
 1399          * Source-route tunnels are no longer supported.
 1400          */
 1401         static int last_log;
 1402         if (last_log != time_second) {
 1403             last_log = time_second;
 1404             log(LOG_ERR,
 1405                 "ip_mforward: received source-routed packet from %lx\n",
 1406                 (u_long)ntohl(ip->ip_src.s_addr));
 1407         }
 1408         return 1;
 1409     }
 1410 
 1411     VIF_LOCK();
 1412     MFC_LOCK();
 1413     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
 1414         if (ip->ip_ttl < 255)
 1415             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1416         if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1417             struct vif *vifp = viftable + vifi;
 1418 
 1419             printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
 1420                 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
 1421                 vifi,
 1422                 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
 1423                 vifp->v_ifp->if_xname);
 1424         }
 1425         error = ip_mdq(m, ifp, NULL, vifi);
 1426         MFC_UNLOCK();
 1427         VIF_UNLOCK();
 1428         return error;
 1429     }
 1430     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1431         printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
 1432             (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
 1433         if (!imo)
 1434             printf("In fact, no options were specified at all\n");
 1435     }
 1436 
 1437     /*
 1438      * Don't forward a packet with time-to-live of zero or one,
 1439      * or a packet destined to a local-only group.
 1440      */
 1441     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
 1442         MFC_UNLOCK();
 1443         VIF_UNLOCK();
 1444         return 0;
 1445     }
 1446 
 1447     /*
 1448      * Determine forwarding vifs from the forwarding cache table
 1449      */
 1450     ++mrtstat.mrts_mfc_lookups;
 1451     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1452 
 1453     /* Entry exists, so forward if necessary */
 1454     if (rt != NULL) {
 1455         error = ip_mdq(m, ifp, rt, -1);
 1456         MFC_UNLOCK();
 1457         VIF_UNLOCK();
 1458         return error;
 1459     } else {
 1460         /*
 1461          * If we don't have a route for packet's origin,
 1462          * Make a copy of the packet & send message to routing daemon
 1463          */
 1464 
 1465         struct mbuf *mb0;
 1466         struct rtdetq *rte;
 1467         u_long hash;
 1468         int hlen = ip->ip_hl << 2;
 1469 
 1470         ++mrtstat.mrts_mfc_misses;
 1471 
 1472         mrtstat.mrts_no_route++;
 1473         if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
 1474             log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
 1475                 (u_long)ntohl(ip->ip_src.s_addr),
 1476                 (u_long)ntohl(ip->ip_dst.s_addr));
 1477 
 1478         /*
 1479          * Allocate mbufs early so that we don't do extra work if we are
 1480          * just going to fail anyway.  Make sure to pullup the header so
 1481          * that other people can't step on it.
 1482          */
 1483         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
 1484         if (rte == NULL) {
 1485             MFC_UNLOCK();
 1486             VIF_UNLOCK();
 1487             return ENOBUFS;
 1488         }
 1489         mb0 = m_copypacket(m, M_DONTWAIT);
 1490         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1491             mb0 = m_pullup(mb0, hlen);
 1492         if (mb0 == NULL) {
 1493             free(rte, M_MRTABLE);
 1494             MFC_UNLOCK();
 1495             VIF_UNLOCK();
 1496             return ENOBUFS;
 1497         }
 1498 
 1499         /* is there an upcall waiting for this flow ? */
 1500         hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1501         for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
 1502             if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
 1503                     (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
 1504                     (rt->mfc_stall != NULL))
 1505                 break;
 1506         }
 1507 
 1508         if (rt == NULL) {
 1509             int i;
 1510             struct igmpmsg *im;
 1511             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1512             struct mbuf *mm;
 1513 
 1514             /*
 1515              * Locate the vifi for the incoming interface for this packet.
 1516              * If none found, drop packet.
 1517              */
 1518             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1519                 ;
 1520             if (vifi >= numvifs)        /* vif not found, drop packet */
 1521                 goto non_fatal;
 1522 
 1523             /* no upcall, so make a new entry */
 1524             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1525             if (rt == NULL)
 1526                 goto fail;
 1527             /* Make a copy of the header to send to the user level process */
 1528             mm = m_copy(mb0, 0, hlen);
 1529             if (mm == NULL)
 1530                 goto fail1;
 1531 
 1532             /*
 1533              * Send message to routing daemon to install
 1534              * a route into the kernel table
 1535              */
 1536 
 1537             im = mtod(mm, struct igmpmsg *);
 1538             im->im_msgtype = IGMPMSG_NOCACHE;
 1539             im->im_mbz = 0;
 1540             im->im_vif = vifi;
 1541 
 1542             mrtstat.mrts_upcalls++;
 1543 
 1544             k_igmpsrc.sin_addr = ip->ip_src;
 1545             if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1546                 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
 1547                 ++mrtstat.mrts_upq_sockfull;
 1548 fail1:
 1549                 free(rt, M_MRTABLE);
 1550 fail:
 1551                 free(rte, M_MRTABLE);
 1552                 m_freem(mb0);
 1553                 MFC_UNLOCK();
 1554                 VIF_UNLOCK();
 1555                 return ENOBUFS;
 1556             }
 1557 
 1558             /* insert new entry at head of hash chain */
 1559             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1560             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1561             rt->mfc_expire            = UPCALL_EXPIRE;
 1562             nexpire[hash]++;
 1563             for (i = 0; i < numvifs; i++) {
 1564                 rt->mfc_ttls[i] = 0;
 1565                 rt->mfc_flags[i] = 0;
 1566             }
 1567             rt->mfc_parent = -1;
 1568 
 1569             rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
 1570 
 1571             rt->mfc_bw_meter = NULL;
 1572 
 1573             /* link into table */
 1574             rt->mfc_next   = mfctable[hash];
 1575             mfctable[hash] = rt;
 1576             rt->mfc_stall = rte;
 1577 
 1578         } else {
 1579             /* determine if q has overflowed */
 1580             int npkts = 0;
 1581             struct rtdetq **p;
 1582 
 1583             /*
 1584              * XXX ouch! we need to append to the list, but we
 1585              * only have a pointer to the front, so we have to
 1586              * scan the entire list every time.
 1587              */
 1588             for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
 1589                 npkts++;
 1590 
 1591             if (npkts > MAX_UPQ) {
 1592                 mrtstat.mrts_upq_ovflw++;
 1593 non_fatal:
 1594                 free(rte, M_MRTABLE);
 1595                 m_freem(mb0);
 1596                 MFC_UNLOCK();
 1597                 VIF_UNLOCK();
 1598                 return 0;
 1599             }
 1600 
 1601             /* Add this entry to the end of the queue */
 1602             *p = rte;
 1603         }
 1604 
 1605         rte->m                  = mb0;
 1606         rte->ifp                = ifp;
 1607         rte->next               = NULL;
 1608 
 1609         MFC_UNLOCK();
 1610         VIF_UNLOCK();
 1611 
 1612         return 0;
 1613     }
 1614 }
 1615 
 1616 /*
 1617  * Clean up the cache entry if upcall is not serviced
 1618  */
 1619 static void
 1620 expire_upcalls(void *unused)
 1621 {
 1622     struct rtdetq *rte;
 1623     struct mfc *mfc, **nptr;
 1624     int i;
 1625 
 1626     MFC_LOCK();
 1627     for (i = 0; i < MFCTBLSIZ; i++) {
 1628         if (nexpire[i] == 0)
 1629             continue;
 1630         nptr = &mfctable[i];
 1631         for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
 1632             /*
 1633              * Skip real cache entries
 1634              * Make sure it wasn't marked to not expire (shouldn't happen)
 1635              * If it expires now
 1636              */
 1637             if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
 1638                     --mfc->mfc_expire == 0) {
 1639                 if (mrtdebug & DEBUG_EXPIRE)
 1640                     log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
 1641                         (u_long)ntohl(mfc->mfc_origin.s_addr),
 1642                         (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
 1643                 /*
 1644                  * drop all the packets
 1645                  * free the mbuf with the pkt, if, timing info
 1646                  */
 1647                 for (rte = mfc->mfc_stall; rte; ) {
 1648                     struct rtdetq *n = rte->next;
 1649 
 1650                     m_freem(rte->m);
 1651                     free(rte, M_MRTABLE);
 1652                     rte = n;
 1653                 }
 1654                 ++mrtstat.mrts_cache_cleanups;
 1655                 nexpire[i]--;
 1656 
 1657                 /*
 1658                  * free the bw_meter entries
 1659                  */
 1660                 while (mfc->mfc_bw_meter != NULL) {
 1661                     struct bw_meter *x = mfc->mfc_bw_meter;
 1662 
 1663                     mfc->mfc_bw_meter = x->bm_mfc_next;
 1664                     free(x, M_BWMETER);
 1665                 }
 1666 
 1667                 *nptr = mfc->mfc_next;
 1668                 free(mfc, M_MRTABLE);
 1669             } else {
 1670                 nptr = &mfc->mfc_next;
 1671             }
 1672         }
 1673     }
 1674     MFC_UNLOCK();
 1675 
 1676     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
 1677 }
 1678 
 1679 /*
 1680  * Packet forwarding routine once entry in the cache is made
 1681  */
 1682 static int
 1683 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1684 {
 1685     struct ip  *ip = mtod(m, struct ip *);
 1686     vifi_t vifi;
 1687     int plen = ip->ip_len;
 1688 
 1689     VIF_LOCK_ASSERT();
 1690 /*
 1691  * Macro to send packet on vif.  Since RSVP packets don't get counted on
 1692  * input, they shouldn't get counted on output, so statistics keeping is
 1693  * separate.
 1694  */
 1695 #define MC_SEND(ip,vifp,m) {                            \
 1696                 if ((vifp)->v_flags & VIFF_TUNNEL)      \
 1697                     encap_send((ip), (vifp), (m));      \
 1698                 else                                    \
 1699                     phyint_send((ip), (vifp), (m));     \
 1700 }
 1701 
 1702     /*
 1703      * If xmt_vif is not -1, send on only the requested vif.
 1704      *
 1705      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1706      */
 1707     if (xmt_vif < numvifs) {
 1708 #ifdef PIM
 1709         if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1710             pim_register_send(ip, viftable + xmt_vif, m, rt);
 1711         else
 1712 #endif
 1713         MC_SEND(ip, viftable + xmt_vif, m);
 1714         return 1;
 1715     }
 1716 
 1717     /*
 1718      * Don't forward if it didn't arrive from the parent vif for its origin.
 1719      */
 1720     vifi = rt->mfc_parent;
 1721     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
 1722         /* came in the wrong interface */
 1723         if (mrtdebug & DEBUG_FORWARD)
 1724             log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
 1725                 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
 1726         ++mrtstat.mrts_wrong_if;
 1727         ++rt->mfc_wrong_if;
 1728         /*
 1729          * If we are doing PIM assert processing, send a message
 1730          * to the routing daemon.
 1731          *
 1732          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1733          * can complete the SPT switch, regardless of the type
 1734          * of the iif (broadcast media, GRE tunnel, etc).
 1735          */
 1736         if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
 1737             struct timeval now;
 1738             u_long delta;
 1739 
 1740 #ifdef PIM
 1741             if (ifp == &multicast_register_if)
 1742                 pimstat.pims_rcv_registers_wrongiif++;
 1743 #endif
 1744 
 1745             /* Get vifi for the incoming packet */
 1746             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1747                 ;
 1748             if (vifi >= numvifs)
 1749                 return 0;       /* The iif is not found: ignore the packet. */
 1750 
 1751             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1752                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1753 
 1754             GET_TIME(now);
 1755 
 1756             TV_DELTA(rt->mfc_last_assert, now, delta);
 1757 
 1758             if (delta > ASSERT_MSG_TIME) {
 1759                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1760                 struct igmpmsg *im;
 1761                 int hlen = ip->ip_hl << 2;
 1762                 struct mbuf *mm = m_copy(m, 0, hlen);
 1763 
 1764                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1765                     mm = m_pullup(mm, hlen);
 1766                 if (mm == NULL)
 1767                     return ENOBUFS;
 1768 
 1769                 rt->mfc_last_assert = now;
 1770 
 1771                 im = mtod(mm, struct igmpmsg *);
 1772                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1773                 im->im_mbz              = 0;
 1774                 im->im_vif              = vifi;
 1775 
 1776                 mrtstat.mrts_upcalls++;
 1777 
 1778                 k_igmpsrc.sin_addr = im->im_src;
 1779                 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1780                     log(LOG_WARNING,
 1781                         "ip_mforward: ip_mrouter socket queue full\n");
 1782                     ++mrtstat.mrts_upq_sockfull;
 1783                     return ENOBUFS;
 1784                 }
 1785             }
 1786         }
 1787         return 0;
 1788     }
 1789 
 1790     /* If I sourced this packet, it counts as output, else it was input. */
 1791     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
 1792         viftable[vifi].v_pkt_out++;
 1793         viftable[vifi].v_bytes_out += plen;
 1794     } else {
 1795         viftable[vifi].v_pkt_in++;
 1796         viftable[vifi].v_bytes_in += plen;
 1797     }
 1798     rt->mfc_pkt_cnt++;
 1799     rt->mfc_byte_cnt += plen;
 1800 
 1801     /*
 1802      * For each vif, decide if a copy of the packet should be forwarded.
 1803      * Forward if:
 1804      *          - the ttl exceeds the vif's threshold
 1805      *          - there are group members downstream on interface
 1806      */
 1807     for (vifi = 0; vifi < numvifs; vifi++)
 1808         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1809             viftable[vifi].v_pkt_out++;
 1810             viftable[vifi].v_bytes_out += plen;
 1811 #ifdef PIM
 1812             if (viftable[vifi].v_flags & VIFF_REGISTER)
 1813                 pim_register_send(ip, viftable + vifi, m, rt);
 1814             else
 1815 #endif
 1816             MC_SEND(ip, viftable+vifi, m);
 1817         }
 1818 
 1819     /*
 1820      * Perform upcall-related bw measuring.
 1821      */
 1822     if (rt->mfc_bw_meter != NULL) {
 1823         struct bw_meter *x;
 1824         struct timeval now;
 1825 
 1826         GET_TIME(now);
 1827         MFC_LOCK_ASSERT();
 1828         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1829             bw_meter_receive_packet(x, plen, &now);
 1830     }
 1831 
 1832     return 0;
 1833 }
 1834 
 1835 /*
 1836  * check if a vif number is legal/ok. This is used by ip_output.
 1837  */
 1838 static int
 1839 X_legal_vif_num(int vif)
 1840 {
 1841     /* XXX unlocked, matter? */
 1842     return (vif >= 0 && vif < numvifs);
 1843 }
 1844 
 1845 /*
 1846  * Return the local address used by this vif
 1847  */
 1848 static u_long
 1849 X_ip_mcast_src(int vifi)
 1850 {
 1851     /* XXX unlocked, matter? */
 1852     if (vifi >= 0 && vifi < numvifs)
 1853         return viftable[vifi].v_lcl_addr.s_addr;
 1854     else
 1855         return INADDR_ANY;
 1856 }
 1857 
 1858 static void
 1859 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1860 {
 1861     struct mbuf *mb_copy;
 1862     int hlen = ip->ip_hl << 2;
 1863 
 1864     VIF_LOCK_ASSERT();
 1865 
 1866     /*
 1867      * Make a new reference to the packet; make sure that
 1868      * the IP header is actually copied, not just referenced,
 1869      * so that ip_output() only scribbles on the copy.
 1870      */
 1871     mb_copy = m_copypacket(m, M_DONTWAIT);
 1872     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1873         mb_copy = m_pullup(mb_copy, hlen);
 1874     if (mb_copy == NULL)
 1875         return;
 1876 
 1877     if (vifp->v_rate_limit == 0)
 1878         tbf_send_packet(vifp, mb_copy);
 1879     else
 1880         tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
 1881 }
 1882 
 1883 static void
 1884 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1885 {
 1886     struct mbuf *mb_copy;
 1887     struct ip *ip_copy;
 1888     int i, len = ip->ip_len;
 1889 
 1890     VIF_LOCK_ASSERT();
 1891 
 1892     /* Take care of delayed checksums */
 1893     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 1894         in_delayed_cksum(m);
 1895         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 1896     }
 1897 
 1898     /*
 1899      * copy the old packet & pullup its IP header into the
 1900      * new mbuf so we can modify it.  Try to fill the new
 1901      * mbuf since if we don't the ethernet driver will.
 1902      */
 1903     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
 1904     if (mb_copy == NULL)
 1905         return;
 1906 #ifdef MAC
 1907     mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
 1908 #endif
 1909     mb_copy->m_data += max_linkhdr;
 1910     mb_copy->m_len = sizeof(multicast_encap_iphdr);
 1911 
 1912     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
 1913         m_freem(mb_copy);
 1914         return;
 1915     }
 1916     i = MHLEN - M_LEADINGSPACE(mb_copy);
 1917     if (i > len)
 1918         i = len;
 1919     mb_copy = m_pullup(mb_copy, i);
 1920     if (mb_copy == NULL)
 1921         return;
 1922     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
 1923 
 1924     /*
 1925      * fill in the encapsulating IP header.
 1926      */
 1927     ip_copy = mtod(mb_copy, struct ip *);
 1928     *ip_copy = multicast_encap_iphdr;
 1929     ip_copy->ip_id = ip_newid();
 1930     ip_copy->ip_len += len;
 1931     ip_copy->ip_src = vifp->v_lcl_addr;
 1932     ip_copy->ip_dst = vifp->v_rmt_addr;
 1933 
 1934     /*
 1935      * turn the encapsulated IP header back into a valid one.
 1936      */
 1937     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
 1938     --ip->ip_ttl;
 1939     ip->ip_len = htons(ip->ip_len);
 1940     ip->ip_off = htons(ip->ip_off);
 1941     ip->ip_sum = 0;
 1942     mb_copy->m_data += sizeof(multicast_encap_iphdr);
 1943     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 1944     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
 1945 
 1946     if (vifp->v_rate_limit == 0)
 1947         tbf_send_packet(vifp, mb_copy);
 1948     else
 1949         tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
 1950 }
 1951 
 1952 /*
 1953  * Token bucket filter module
 1954  */
 1955 
 1956 static void
 1957 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
 1958 {
 1959     struct tbf *t = vifp->v_tbf;
 1960 
 1961     VIF_LOCK_ASSERT();
 1962 
 1963     if (p_len > MAX_BKT_SIZE) {         /* drop if packet is too large */
 1964         mrtstat.mrts_pkt2large++;
 1965         m_freem(m);
 1966         return;
 1967     }
 1968 
 1969     tbf_update_tokens(vifp);
 1970 
 1971     if (t->tbf_q_len == 0) {            /* queue empty...               */
 1972         if (p_len <= t->tbf_n_tok) {    /* send packet if enough tokens */
 1973             t->tbf_n_tok -= p_len;
 1974             tbf_send_packet(vifp, m);
 1975         } else {                        /* no, queue packet and try later */
 1976             tbf_queue(vifp, m);
 1977             callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
 1978                 tbf_reprocess_q, vifp);
 1979         }
 1980     } else if (t->tbf_q_len < t->tbf_max_q_len) {
 1981         /* finite queue length, so queue pkts and process queue */
 1982         tbf_queue(vifp, m);
 1983         tbf_process_q(vifp);
 1984     } else {
 1985         /* queue full, try to dq and queue and process */
 1986         if (!tbf_dq_sel(vifp, ip)) {
 1987             mrtstat.mrts_q_overflow++;
 1988             m_freem(m);
 1989         } else {
 1990             tbf_queue(vifp, m);
 1991             tbf_process_q(vifp);
 1992         }
 1993     }
 1994 }
 1995 
 1996 /*
 1997  * adds a packet to the queue at the interface
 1998  */
 1999 static void
 2000 tbf_queue(struct vif *vifp, struct mbuf *m)
 2001 {
 2002     struct tbf *t = vifp->v_tbf;
 2003 
 2004     VIF_LOCK_ASSERT();
 2005 
 2006     if (t->tbf_t == NULL)       /* Queue was empty */
 2007         t->tbf_q = m;
 2008     else                        /* Insert at tail */
 2009         t->tbf_t->m_act = m;
 2010 
 2011     t->tbf_t = m;               /* Set new tail pointer */
 2012 
 2013 #ifdef DIAGNOSTIC
 2014     /* Make sure we didn't get fed a bogus mbuf */
 2015     if (m->m_act)
 2016         panic("tbf_queue: m_act");
 2017 #endif
 2018     m->m_act = NULL;
 2019 
 2020     t->tbf_q_len++;
 2021 }
 2022 
 2023 /*
 2024  * processes the queue at the interface
 2025  */
 2026 static void
 2027 tbf_process_q(struct vif *vifp)
 2028 {
 2029     struct tbf *t = vifp->v_tbf;
 2030 
 2031     VIF_LOCK_ASSERT();
 2032 
 2033     /* loop through the queue at the interface and send as many packets
 2034      * as possible
 2035      */
 2036     while (t->tbf_q_len > 0) {
 2037         struct mbuf *m = t->tbf_q;
 2038         int len = mtod(m, struct ip *)->ip_len;
 2039 
 2040         /* determine if the packet can be sent */
 2041         if (len > t->tbf_n_tok) /* not enough tokens, we are done */
 2042             break;
 2043         /* ok, reduce no of tokens, dequeue and send the packet. */
 2044         t->tbf_n_tok -= len;
 2045 
 2046         t->tbf_q = m->m_act;
 2047         if (--t->tbf_q_len == 0)
 2048             t->tbf_t = NULL;
 2049 
 2050         m->m_act = NULL;
 2051         tbf_send_packet(vifp, m);
 2052     }
 2053 }
 2054 
 2055 static void
 2056 tbf_reprocess_q(void *xvifp)
 2057 {
 2058     struct vif *vifp = xvifp;
 2059 
 2060     if (ip_mrouter == NULL)
 2061         return;
 2062     VIF_LOCK();
 2063     tbf_update_tokens(vifp);
 2064     tbf_process_q(vifp);
 2065     if (vifp->v_tbf->tbf_q_len)
 2066         callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
 2067     VIF_UNLOCK();
 2068 }
 2069 
 2070 /* function that will selectively discard a member of the queue
 2071  * based on the precedence value and the priority
 2072  */
 2073 static int
 2074 tbf_dq_sel(struct vif *vifp, struct ip *ip)
 2075 {
 2076     u_int p;
 2077     struct mbuf *m, *last;
 2078     struct mbuf **np;
 2079     struct tbf *t = vifp->v_tbf;
 2080 
 2081     VIF_LOCK_ASSERT();
 2082 
 2083     p = priority(vifp, ip);
 2084 
 2085     np = &t->tbf_q;
 2086     last = NULL;
 2087     while ((m = *np) != NULL) {
 2088         if (p > priority(vifp, mtod(m, struct ip *))) {
 2089             *np = m->m_act;
 2090             /* If we're removing the last packet, fix the tail pointer */
 2091             if (m == t->tbf_t)
 2092                 t->tbf_t = last;
 2093             m_freem(m);
 2094             /* It's impossible for the queue to be empty, but check anyways. */
 2095             if (--t->tbf_q_len == 0)
 2096                 t->tbf_t = NULL;
 2097             mrtstat.mrts_drop_sel++;
 2098             return 1;
 2099         }
 2100         np = &m->m_act;
 2101         last = m;
 2102     }
 2103     return 0;
 2104 }
 2105 
 2106 static void
 2107 tbf_send_packet(struct vif *vifp, struct mbuf *m)
 2108 {
 2109     VIF_LOCK_ASSERT();
 2110 
 2111     if (vifp->v_flags & VIFF_TUNNEL)    /* If tunnel options */
 2112         ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
 2113     else {
 2114         struct ip_moptions imo;
 2115         int error;
 2116         static struct route ro; /* XXX check this */
 2117 
 2118         imo.imo_multicast_ifp  = vifp->v_ifp;
 2119         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 2120         imo.imo_multicast_loop = 1;
 2121         imo.imo_multicast_vif  = -1;
 2122 
 2123         /*
 2124          * Re-entrancy should not be a problem here, because
 2125          * the packets that we send out and are looped back at us
 2126          * should get rejected because they appear to come from
 2127          * the loopback interface, thus preventing looping.
 2128          */
 2129         error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
 2130 
 2131         if (mrtdebug & DEBUG_XMIT)
 2132             log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
 2133                 (int)(vifp - viftable), error);
 2134     }
 2135 }
 2136 
 2137 /* determine the current time and then
 2138  * the elapsed time (between the last time and time now)
 2139  * in milliseconds & update the no. of tokens in the bucket
 2140  */
 2141 static void
 2142 tbf_update_tokens(struct vif *vifp)
 2143 {
 2144     struct timeval tp;
 2145     u_long tm;
 2146     struct tbf *t = vifp->v_tbf;
 2147 
 2148     VIF_LOCK_ASSERT();
 2149 
 2150     GET_TIME(tp);
 2151 
 2152     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
 2153 
 2154     /*
 2155      * This formula is actually
 2156      * "time in seconds" * "bytes/second".
 2157      *
 2158      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
 2159      *
 2160      * The (1000/1024) was introduced in add_vif to optimize
 2161      * this divide into a shift.
 2162      */
 2163     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
 2164     t->tbf_last_pkt_t = tp;
 2165 
 2166     if (t->tbf_n_tok > MAX_BKT_SIZE)
 2167         t->tbf_n_tok = MAX_BKT_SIZE;
 2168 }
 2169 
 2170 static int
 2171 priority(struct vif *vifp, struct ip *ip)
 2172 {
 2173     int prio = 50; /* the lowest priority -- default case */
 2174 
 2175     /* temporary hack; may add general packet classifier some day */
 2176 
 2177     /*
 2178      * The UDP port space is divided up into four priority ranges:
 2179      * [0, 16384)     : unclassified - lowest priority
 2180      * [16384, 32768) : audio - highest priority
 2181      * [32768, 49152) : whiteboard - medium priority
 2182      * [49152, 65536) : video - low priority
 2183      *
 2184      * Everything else gets lowest priority.
 2185      */
 2186     if (ip->ip_p == IPPROTO_UDP) {
 2187         struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
 2188         switch (ntohs(udp->uh_dport) & 0xc000) {
 2189         case 0x4000:
 2190             prio = 70;
 2191             break;
 2192         case 0x8000:
 2193             prio = 60;
 2194             break;
 2195         case 0xc000:
 2196             prio = 55;
 2197             break;
 2198         }
 2199     }
 2200     return prio;
 2201 }
 2202 
 2203 /*
 2204  * End of token bucket filter modifications
 2205  */
 2206 
 2207 static int
 2208 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
 2209 {
 2210     int error, vifi;
 2211 
 2212     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2213         return EOPNOTSUPP;
 2214 
 2215     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
 2216     if (error)
 2217         return error;
 2218 
 2219     VIF_LOCK();
 2220 
 2221     if (vifi < 0 || vifi >= numvifs) {  /* Error if vif is invalid */
 2222         VIF_UNLOCK();
 2223         return EADDRNOTAVAIL;
 2224     }
 2225 
 2226     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
 2227         /* Check if socket is available. */
 2228         if (viftable[vifi].v_rsvpd != NULL) {
 2229             VIF_UNLOCK();
 2230             return EADDRINUSE;
 2231         }
 2232 
 2233         viftable[vifi].v_rsvpd = so;
 2234         /* This may seem silly, but we need to be sure we don't over-increment
 2235          * the RSVP counter, in case something slips up.
 2236          */
 2237         if (!viftable[vifi].v_rsvp_on) {
 2238             viftable[vifi].v_rsvp_on = 1;
 2239             rsvp_on++;
 2240         }
 2241     } else { /* must be VIF_OFF */
 2242         /*
 2243          * XXX as an additional consistency check, one could make sure
 2244          * that viftable[vifi].v_rsvpd == so, otherwise passing so as
 2245          * first parameter is pretty useless.
 2246          */
 2247         viftable[vifi].v_rsvpd = NULL;
 2248         /*
 2249          * This may seem silly, but we need to be sure we don't over-decrement
 2250          * the RSVP counter, in case something slips up.
 2251          */
 2252         if (viftable[vifi].v_rsvp_on) {
 2253             viftable[vifi].v_rsvp_on = 0;
 2254             rsvp_on--;
 2255         }
 2256     }
 2257     VIF_UNLOCK();
 2258     return 0;
 2259 }
 2260 
 2261 static void
 2262 X_ip_rsvp_force_done(struct socket *so)
 2263 {
 2264     int vifi;
 2265 
 2266     /* Don't bother if it is not the right type of socket. */
 2267     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2268         return;
 2269 
 2270     VIF_LOCK();
 2271 
 2272     /* The socket may be attached to more than one vif...this
 2273      * is perfectly legal.
 2274      */
 2275     for (vifi = 0; vifi < numvifs; vifi++) {
 2276         if (viftable[vifi].v_rsvpd == so) {
 2277             viftable[vifi].v_rsvpd = NULL;
 2278             /* This may seem silly, but we need to be sure we don't
 2279              * over-decrement the RSVP counter, in case something slips up.
 2280              */
 2281             if (viftable[vifi].v_rsvp_on) {
 2282                 viftable[vifi].v_rsvp_on = 0;
 2283                 rsvp_on--;
 2284             }
 2285         }
 2286     }
 2287 
 2288     VIF_UNLOCK();
 2289 }
 2290 
 2291 static void
 2292 X_rsvp_input(struct mbuf *m, int off)
 2293 {
 2294     int vifi;
 2295     struct ip *ip = mtod(m, struct ip *);
 2296     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
 2297     struct ifnet *ifp;
 2298 
 2299     if (rsvpdebug)
 2300         printf("rsvp_input: rsvp_on %d\n",rsvp_on);
 2301 
 2302     /* Can still get packets with rsvp_on = 0 if there is a local member
 2303      * of the group to which the RSVP packet is addressed.  But in this
 2304      * case we want to throw the packet away.
 2305      */
 2306     if (!rsvp_on) {
 2307         m_freem(m);
 2308         return;
 2309     }
 2310 
 2311     if (rsvpdebug)
 2312         printf("rsvp_input: check vifs\n");
 2313 
 2314 #ifdef DIAGNOSTIC
 2315     M_ASSERTPKTHDR(m);
 2316 #endif
 2317 
 2318     ifp = m->m_pkthdr.rcvif;
 2319 
 2320     VIF_LOCK();
 2321     /* Find which vif the packet arrived on. */
 2322     for (vifi = 0; vifi < numvifs; vifi++)
 2323         if (viftable[vifi].v_ifp == ifp)
 2324             break;
 2325 
 2326     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
 2327         /*
 2328          * Drop the lock here to avoid holding it across rip_input.
 2329          * This could make rsvpdebug printfs wrong.  If you care,
 2330          * record the state of stuff before dropping the lock.
 2331          */
 2332         VIF_UNLOCK();
 2333         /*
 2334          * If the old-style non-vif-associated socket is set,
 2335          * then use it.  Otherwise, drop packet since there
 2336          * is no specific socket for this vif.
 2337          */
 2338         if (ip_rsvpd != NULL) {
 2339             if (rsvpdebug)
 2340                 printf("rsvp_input: Sending packet up old-style socket\n");
 2341             rip_input(m, off);  /* xxx */
 2342         } else {
 2343             if (rsvpdebug && vifi == numvifs)
 2344                 printf("rsvp_input: Can't find vif for packet.\n");
 2345             else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
 2346                 printf("rsvp_input: No socket defined for vif %d\n",vifi);
 2347             m_freem(m);
 2348         }
 2349         return;
 2350     }
 2351     rsvp_src.sin_addr = ip->ip_src;
 2352 
 2353     if (rsvpdebug && m)
 2354         printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
 2355                m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
 2356 
 2357     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
 2358         if (rsvpdebug)
 2359             printf("rsvp_input: Failed to append to socket\n");
 2360     } else {
 2361         if (rsvpdebug)
 2362             printf("rsvp_input: send packet up\n");
 2363     }
 2364     VIF_UNLOCK();
 2365 }
 2366 
 2367 /*
 2368  * Code for bandwidth monitors
 2369  */
 2370 
 2371 /*
 2372  * Define common interface for timeval-related methods
 2373  */
 2374 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 2375 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 2376 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 2377 
 2378 static uint32_t
 2379 compute_bw_meter_flags(struct bw_upcall *req)
 2380 {
 2381     uint32_t flags = 0;
 2382 
 2383     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 2384         flags |= BW_METER_UNIT_PACKETS;
 2385     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 2386         flags |= BW_METER_UNIT_BYTES;
 2387     if (req->bu_flags & BW_UPCALL_GEQ)
 2388         flags |= BW_METER_GEQ;
 2389     if (req->bu_flags & BW_UPCALL_LEQ)
 2390         flags |= BW_METER_LEQ;
 2391 
 2392     return flags;
 2393 }
 2394 
 2395 /*
 2396  * Add a bw_meter entry
 2397  */
 2398 static int
 2399 add_bw_upcall(struct bw_upcall *req)
 2400 {
 2401     struct mfc *mfc;
 2402     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 2403                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 2404     struct timeval now;
 2405     struct bw_meter *x;
 2406     uint32_t flags;
 2407 
 2408     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2409         return EOPNOTSUPP;
 2410 
 2411     /* Test if the flags are valid */
 2412     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 2413         return EINVAL;
 2414     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 2415         return EINVAL;
 2416     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2417             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2418         return EINVAL;
 2419 
 2420     /* Test if the threshold time interval is valid */
 2421     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 2422         return EINVAL;
 2423 
 2424     flags = compute_bw_meter_flags(req);
 2425 
 2426     /*
 2427      * Find if we have already same bw_meter entry
 2428      */
 2429     MFC_LOCK();
 2430     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2431     if (mfc == NULL) {
 2432         MFC_UNLOCK();
 2433         return EADDRNOTAVAIL;
 2434     }
 2435     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 2436         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2437                            &req->bu_threshold.b_time, ==)) &&
 2438             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2439             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2440             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 2441             MFC_UNLOCK();
 2442             return 0;           /* XXX Already installed */
 2443         }
 2444     }
 2445 
 2446     /* Allocate the new bw_meter entry */
 2447     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 2448     if (x == NULL) {
 2449         MFC_UNLOCK();
 2450         return ENOBUFS;
 2451     }
 2452 
 2453     /* Set the new bw_meter entry */
 2454     x->bm_threshold.b_time = req->bu_threshold.b_time;
 2455     GET_TIME(now);
 2456     x->bm_start_time = now;
 2457     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 2458     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 2459     x->bm_measured.b_packets = 0;
 2460     x->bm_measured.b_bytes = 0;
 2461     x->bm_flags = flags;
 2462     x->bm_time_next = NULL;
 2463     x->bm_time_hash = BW_METER_BUCKETS;
 2464 
 2465     /* Add the new bw_meter entry to the front of entries for this MFC */
 2466     x->bm_mfc = mfc;
 2467     x->bm_mfc_next = mfc->mfc_bw_meter;
 2468     mfc->mfc_bw_meter = x;
 2469     schedule_bw_meter(x, &now);
 2470     MFC_UNLOCK();
 2471 
 2472     return 0;
 2473 }
 2474 
 2475 static void
 2476 free_bw_list(struct bw_meter *list)
 2477 {
 2478     while (list != NULL) {
 2479         struct bw_meter *x = list;
 2480 
 2481         list = list->bm_mfc_next;
 2482         unschedule_bw_meter(x);
 2483         free(x, M_BWMETER);
 2484     }
 2485 }
 2486 
 2487 /*
 2488  * Delete one or multiple bw_meter entries
 2489  */
 2490 static int
 2491 del_bw_upcall(struct bw_upcall *req)
 2492 {
 2493     struct mfc *mfc;
 2494     struct bw_meter *x;
 2495 
 2496     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2497         return EOPNOTSUPP;
 2498 
 2499     MFC_LOCK();
 2500     /* Find the corresponding MFC entry */
 2501     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2502     if (mfc == NULL) {
 2503         MFC_UNLOCK();
 2504         return EADDRNOTAVAIL;
 2505     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2506         /*
 2507          * Delete all bw_meter entries for this mfc
 2508          */
 2509         struct bw_meter *list;
 2510 
 2511         list = mfc->mfc_bw_meter;
 2512         mfc->mfc_bw_meter = NULL;
 2513         free_bw_list(list);
 2514         MFC_UNLOCK();
 2515         return 0;
 2516     } else {                    /* Delete a single bw_meter entry */
 2517         struct bw_meter *prev;
 2518         uint32_t flags = 0;
 2519 
 2520         flags = compute_bw_meter_flags(req);
 2521 
 2522         /* Find the bw_meter entry to delete */
 2523         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 2524              prev = x, x = x->bm_mfc_next) {
 2525             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2526                                &req->bu_threshold.b_time, ==)) &&
 2527                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2528                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2529                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2530                 break;
 2531         }
 2532         if (x != NULL) { /* Delete entry from the list for this MFC */
 2533             if (prev != NULL)
 2534                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2535             else
 2536                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 2537 
 2538             unschedule_bw_meter(x);
 2539             MFC_UNLOCK();
 2540             /* Free the bw_meter entry */
 2541             free(x, M_BWMETER);
 2542             return 0;
 2543         } else {
 2544             MFC_UNLOCK();
 2545             return EINVAL;
 2546         }
 2547     }
 2548     /* NOTREACHED */
 2549 }
 2550 
 2551 /*
 2552  * Perform bandwidth measurement processing that may result in an upcall
 2553  */
 2554 static void
 2555 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2556 {
 2557     struct timeval delta;
 2558 
 2559     MFC_LOCK_ASSERT();
 2560 
 2561     delta = *nowp;
 2562     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2563 
 2564     if (x->bm_flags & BW_METER_GEQ) {
 2565         /*
 2566          * Processing for ">=" type of bw_meter entry
 2567          */
 2568         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2569             /* Reset the bw_meter entry */
 2570             x->bm_start_time = *nowp;
 2571             x->bm_measured.b_packets = 0;
 2572             x->bm_measured.b_bytes = 0;
 2573             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2574         }
 2575 
 2576         /* Record that a packet is received */
 2577         x->bm_measured.b_packets++;
 2578         x->bm_measured.b_bytes += plen;
 2579 
 2580         /*
 2581          * Test if we should deliver an upcall
 2582          */
 2583         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 2584             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2585                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2586                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2587                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2588                 /* Prepare an upcall for delivery */
 2589                 bw_meter_prepare_upcall(x, nowp);
 2590                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2591             }
 2592         }
 2593     } else if (x->bm_flags & BW_METER_LEQ) {
 2594         /*
 2595          * Processing for "<=" type of bw_meter entry
 2596          */
 2597         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2598             /*
 2599              * We are behind time with the multicast forwarding table
 2600              * scanning for "<=" type of bw_meter entries, so test now
 2601              * if we should deliver an upcall.
 2602              */
 2603             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2604                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2605                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2606                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2607                 /* Prepare an upcall for delivery */
 2608                 bw_meter_prepare_upcall(x, nowp);
 2609             }
 2610             /* Reschedule the bw_meter entry */
 2611             unschedule_bw_meter(x);
 2612             schedule_bw_meter(x, nowp);
 2613         }
 2614 
 2615         /* Record that a packet is received */
 2616         x->bm_measured.b_packets++;
 2617         x->bm_measured.b_bytes += plen;
 2618 
 2619         /*
 2620          * Test if we should restart the measuring interval
 2621          */
 2622         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 2623              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 2624             (x->bm_flags & BW_METER_UNIT_BYTES &&
 2625              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 2626             /* Don't restart the measuring interval */
 2627         } else {
 2628             /* Do restart the measuring interval */
 2629             /*
 2630              * XXX: note that we don't unschedule and schedule, because this
 2631              * might be too much overhead per packet. Instead, when we process
 2632              * all entries for a given timer hash bin, we check whether it is
 2633              * really a timeout. If not, we reschedule at that time.
 2634              */
 2635             x->bm_start_time = *nowp;
 2636             x->bm_measured.b_packets = 0;
 2637             x->bm_measured.b_bytes = 0;
 2638             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2639         }
 2640     }
 2641 }
 2642 
 2643 /*
 2644  * Prepare a bandwidth-related upcall
 2645  */
 2646 static void
 2647 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2648 {
 2649     struct timeval delta;
 2650     struct bw_upcall *u;
 2651 
 2652     MFC_LOCK_ASSERT();
 2653 
 2654     /*
 2655      * Compute the measured time interval
 2656      */
 2657     delta = *nowp;
 2658     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2659 
 2660     /*
 2661      * If there are too many pending upcalls, deliver them now
 2662      */
 2663     if (bw_upcalls_n >= BW_UPCALLS_MAX)
 2664         bw_upcalls_send();
 2665 
 2666     /*
 2667      * Set the bw_upcall entry
 2668      */
 2669     u = &bw_upcalls[bw_upcalls_n++];
 2670     u->bu_src = x->bm_mfc->mfc_origin;
 2671     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2672     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2673     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2674     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2675     u->bu_measured.b_time = delta;
 2676     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2677     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2678     u->bu_flags = 0;
 2679     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2680         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2681     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2682         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2683     if (x->bm_flags & BW_METER_GEQ)
 2684         u->bu_flags |= BW_UPCALL_GEQ;
 2685     if (x->bm_flags & BW_METER_LEQ)
 2686         u->bu_flags |= BW_UPCALL_LEQ;
 2687 }
 2688 
 2689 /*
 2690  * Send the pending bandwidth-related upcalls
 2691  */
 2692 static void
 2693 bw_upcalls_send(void)
 2694 {
 2695     struct mbuf *m;
 2696     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
 2697     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2698     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2699                                       0,                /* unused2 */
 2700                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2701                                       0,                /* im_mbz  */
 2702                                       0,                /* im_vif  */
 2703                                       0,                /* unused3 */
 2704                                       { 0 },            /* im_src  */
 2705                                       { 0 } };          /* im_dst  */
 2706 
 2707     MFC_LOCK_ASSERT();
 2708 
 2709     if (bw_upcalls_n == 0)
 2710         return;                 /* No pending upcalls */
 2711 
 2712     bw_upcalls_n = 0;
 2713 
 2714     /*
 2715      * Allocate a new mbuf, initialize it with the header and
 2716      * the payload for the pending calls.
 2717      */
 2718     MGETHDR(m, M_DONTWAIT, MT_HEADER);
 2719     if (m == NULL) {
 2720         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2721         return;
 2722     }
 2723 
 2724     m->m_len = m->m_pkthdr.len = 0;
 2725     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2726     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
 2727 
 2728     /*
 2729      * Send the upcalls
 2730      * XXX do we need to set the address in k_igmpsrc ?
 2731      */
 2732     mrtstat.mrts_upcalls++;
 2733     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
 2734         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2735         ++mrtstat.mrts_upq_sockfull;
 2736     }
 2737 }
 2738 
 2739 /*
 2740  * Compute the timeout hash value for the bw_meter entries
 2741  */
 2742 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2743     do {                                                                \
 2744         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2745                                                                         \
 2746         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2747         (hash) = next_timeval.tv_sec;                                   \
 2748         if (next_timeval.tv_usec)                                       \
 2749             (hash)++; /* XXX: make sure we don't timeout early */       \
 2750         (hash) %= BW_METER_BUCKETS;                                     \
 2751     } while (0)
 2752 
 2753 /*
 2754  * Schedule a timer to process periodically bw_meter entry of type "<="
 2755  * by linking the entry in the proper hash bucket.
 2756  */
 2757 static void
 2758 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2759 {
 2760     int time_hash;
 2761 
 2762     MFC_LOCK_ASSERT();
 2763 
 2764     if (!(x->bm_flags & BW_METER_LEQ))
 2765         return;         /* XXX: we schedule timers only for "<=" entries */
 2766 
 2767     /*
 2768      * Reset the bw_meter entry
 2769      */
 2770     x->bm_start_time = *nowp;
 2771     x->bm_measured.b_packets = 0;
 2772     x->bm_measured.b_bytes = 0;
 2773     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2774 
 2775     /*
 2776      * Compute the timeout hash value and insert the entry
 2777      */
 2778     BW_METER_TIMEHASH(x, time_hash);
 2779     x->bm_time_next = bw_meter_timers[time_hash];
 2780     bw_meter_timers[time_hash] = x;
 2781     x->bm_time_hash = time_hash;
 2782 }
 2783 
 2784 /*
 2785  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2786  * by removing the entry from the proper hash bucket.
 2787  */
 2788 static void
 2789 unschedule_bw_meter(struct bw_meter *x)
 2790 {
 2791     int time_hash;
 2792     struct bw_meter *prev, *tmp;
 2793 
 2794     MFC_LOCK_ASSERT();
 2795 
 2796     if (!(x->bm_flags & BW_METER_LEQ))
 2797         return;         /* XXX: we schedule timers only for "<=" entries */
 2798 
 2799     /*
 2800      * Compute the timeout hash value and delete the entry
 2801      */
 2802     time_hash = x->bm_time_hash;
 2803     if (time_hash >= BW_METER_BUCKETS)
 2804         return;         /* Entry was not scheduled */
 2805 
 2806     for (prev = NULL, tmp = bw_meter_timers[time_hash];
 2807              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2808         if (tmp == x)
 2809             break;
 2810 
 2811     if (tmp == NULL)
 2812         panic("unschedule_bw_meter: bw_meter entry not found");
 2813 
 2814     if (prev != NULL)
 2815         prev->bm_time_next = x->bm_time_next;
 2816     else
 2817         bw_meter_timers[time_hash] = x->bm_time_next;
 2818 
 2819     x->bm_time_next = NULL;
 2820     x->bm_time_hash = BW_METER_BUCKETS;
 2821 }
 2822 
 2823 
 2824 /*
 2825  * Process all "<=" type of bw_meter that should be processed now,
 2826  * and for each entry prepare an upcall if necessary. Each processed
 2827  * entry is rescheduled again for the (periodic) processing.
 2828  *
 2829  * This is run periodically (once per second normally). On each round,
 2830  * all the potentially matching entries are in the hash slot that we are
 2831  * looking at.
 2832  */
 2833 static void
 2834 bw_meter_process()
 2835 {
 2836     static uint32_t last_tv_sec;        /* last time we processed this */
 2837 
 2838     uint32_t loops;
 2839     int i;
 2840     struct timeval now, process_endtime;
 2841 
 2842     GET_TIME(now);
 2843     if (last_tv_sec == now.tv_sec)
 2844         return;         /* nothing to do */
 2845 
 2846     loops = now.tv_sec - last_tv_sec;
 2847     last_tv_sec = now.tv_sec;
 2848     if (loops > BW_METER_BUCKETS)
 2849         loops = BW_METER_BUCKETS;
 2850 
 2851     MFC_LOCK();
 2852     /*
 2853      * Process all bins of bw_meter entries from the one after the last
 2854      * processed to the current one. On entry, i points to the last bucket
 2855      * visited, so we need to increment i at the beginning of the loop.
 2856      */
 2857     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2858         struct bw_meter *x, *tmp_list;
 2859 
 2860         if (++i >= BW_METER_BUCKETS)
 2861             i = 0;
 2862 
 2863         /* Disconnect the list of bw_meter entries from the bin */
 2864         tmp_list = bw_meter_timers[i];
 2865         bw_meter_timers[i] = NULL;
 2866 
 2867         /* Process the list of bw_meter entries */
 2868         while (tmp_list != NULL) {
 2869             x = tmp_list;
 2870             tmp_list = tmp_list->bm_time_next;
 2871 
 2872             /* Test if the time interval is over */
 2873             process_endtime = x->bm_start_time;
 2874             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2875             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2876                 /* Not yet: reschedule, but don't reset */
 2877                 int time_hash;
 2878 
 2879                 BW_METER_TIMEHASH(x, time_hash);
 2880                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2881                     /*
 2882                      * XXX: somehow the bin processing is a bit ahead of time.
 2883                      * Put the entry in the next bin.
 2884                      */
 2885                     if (++time_hash >= BW_METER_BUCKETS)
 2886                         time_hash = 0;
 2887                 }
 2888                 x->bm_time_next = bw_meter_timers[time_hash];
 2889                 bw_meter_timers[time_hash] = x;
 2890                 x->bm_time_hash = time_hash;
 2891 
 2892                 continue;
 2893             }
 2894 
 2895             /*
 2896              * Test if we should deliver an upcall
 2897              */
 2898             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2899                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2900                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2901                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2902                 /* Prepare an upcall for delivery */
 2903                 bw_meter_prepare_upcall(x, &now);
 2904             }
 2905 
 2906             /*
 2907              * Reschedule for next processing
 2908              */
 2909             schedule_bw_meter(x, &now);
 2910         }
 2911     }
 2912 
 2913     /* Send all upcalls that are pending delivery */
 2914     bw_upcalls_send();
 2915 
 2916     MFC_UNLOCK();
 2917 }
 2918 
 2919 /*
 2920  * A periodic function for sending all upcalls that are pending delivery
 2921  */
 2922 static void
 2923 expire_bw_upcalls_send(void *unused)
 2924 {
 2925     MFC_LOCK();
 2926     bw_upcalls_send();
 2927     MFC_UNLOCK();
 2928 
 2929     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
 2930         expire_bw_upcalls_send, NULL);
 2931 }
 2932 
 2933 /*
 2934  * A periodic function for periodic scanning of the multicast forwarding
 2935  * table for processing all "<=" bw_meter entries.
 2936  */
 2937 static void
 2938 expire_bw_meter_process(void *unused)
 2939 {
 2940     if (mrt_api_config & MRT_MFC_BW_UPCALL)
 2941         bw_meter_process();
 2942 
 2943     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
 2944 }
 2945 
 2946 /*
 2947  * End of bandwidth monitoring code
 2948  */
 2949 
 2950 #ifdef PIM
 2951 /*
 2952  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2953  *
 2954  */
 2955 static int
 2956 pim_register_send(struct ip *ip, struct vif *vifp,
 2957         struct mbuf *m, struct mfc *rt)
 2958 {
 2959     struct mbuf *mb_copy, *mm;
 2960 
 2961     if (mrtdebug & DEBUG_PIM)
 2962         log(LOG_DEBUG, "pim_register_send: ");
 2963 
 2964     mb_copy = pim_register_prepare(ip, m);
 2965     if (mb_copy == NULL)
 2966         return ENOBUFS;
 2967 
 2968     /*
 2969      * Send all the fragments. Note that the mbuf for each fragment
 2970      * is freed by the sending machinery.
 2971      */
 2972     for (mm = mb_copy; mm; mm = mb_copy) {
 2973         mb_copy = mm->m_nextpkt;
 2974         mm->m_nextpkt = 0;
 2975         mm = m_pullup(mm, sizeof(struct ip));
 2976         if (mm != NULL) {
 2977             ip = mtod(mm, struct ip *);
 2978             if ((mrt_api_config & MRT_MFC_RP) &&
 2979                 (rt->mfc_rp.s_addr != INADDR_ANY)) {
 2980                 pim_register_send_rp(ip, vifp, mm, rt);
 2981             } else {
 2982                 pim_register_send_upcall(ip, vifp, mm, rt);
 2983             }
 2984         }
 2985     }
 2986 
 2987     return 0;
 2988 }
 2989 
 2990 /*
 2991  * Return a copy of the data packet that is ready for PIM Register
 2992  * encapsulation.
 2993  * XXX: Note that in the returned copy the IP header is a valid one.
 2994  */
 2995 static struct mbuf *
 2996 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2997 {
 2998     struct mbuf *mb_copy = NULL;
 2999     int mtu;
 3000 
 3001     /* Take care of delayed checksums */
 3002     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 3003         in_delayed_cksum(m);
 3004         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 3005     }
 3006 
 3007     /*
 3008      * Copy the old packet & pullup its IP header into the
 3009      * new mbuf so we can modify it.
 3010      */
 3011     mb_copy = m_copypacket(m, M_DONTWAIT);
 3012     if (mb_copy == NULL)
 3013         return NULL;
 3014     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 3015     if (mb_copy == NULL)
 3016         return NULL;
 3017 
 3018     /* take care of the TTL */
 3019     ip = mtod(mb_copy, struct ip *);
 3020     --ip->ip_ttl;
 3021 
 3022     /* Compute the MTU after the PIM Register encapsulation */
 3023     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 3024 
 3025     if (ip->ip_len <= mtu) {
 3026         /* Turn the IP header into a valid one */
 3027         ip->ip_len = htons(ip->ip_len);
 3028         ip->ip_off = htons(ip->ip_off);
 3029         ip->ip_sum = 0;
 3030         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 3031     } else {
 3032         /* Fragment the packet */
 3033         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 3034             m_freem(mb_copy);
 3035             return NULL;
 3036         }
 3037     }
 3038     return mb_copy;
 3039 }
 3040 
 3041 /*
 3042  * Send an upcall with the data packet to the user-level process.
 3043  */
 3044 static int
 3045 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 3046         struct mbuf *mb_copy, struct mfc *rt)
 3047 {
 3048     struct mbuf *mb_first;
 3049     int len = ntohs(ip->ip_len);
 3050     struct igmpmsg *im;
 3051     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 3052 
 3053     VIF_LOCK_ASSERT();
 3054 
 3055     /*
 3056      * Add a new mbuf with an upcall header
 3057      */
 3058     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3059     if (mb_first == NULL) {
 3060         m_freem(mb_copy);
 3061         return ENOBUFS;
 3062     }
 3063     mb_first->m_data += max_linkhdr;
 3064     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 3065     mb_first->m_len = sizeof(struct igmpmsg);
 3066     mb_first->m_next = mb_copy;
 3067 
 3068     /* Send message to routing daemon */
 3069     im = mtod(mb_first, struct igmpmsg *);
 3070     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 3071     im->im_mbz          = 0;
 3072     im->im_vif          = vifp - viftable;
 3073     im->im_src          = ip->ip_src;
 3074     im->im_dst          = ip->ip_dst;
 3075 
 3076     k_igmpsrc.sin_addr  = ip->ip_src;
 3077 
 3078     mrtstat.mrts_upcalls++;
 3079 
 3080     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 3081         if (mrtdebug & DEBUG_PIM)
 3082             log(LOG_WARNING,
 3083                 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
 3084         ++mrtstat.mrts_upq_sockfull;
 3085         return ENOBUFS;
 3086     }
 3087 
 3088     /* Keep statistics */
 3089     pimstat.pims_snd_registers_msgs++;
 3090     pimstat.pims_snd_registers_bytes += len;
 3091 
 3092     return 0;
 3093 }
 3094 
 3095 /*
 3096  * Encapsulate the data packet in PIM Register message and send it to the RP.
 3097  */
 3098 static int
 3099 pim_register_send_rp(struct ip *ip, struct vif *vifp,
 3100         struct mbuf *mb_copy, struct mfc *rt)
 3101 {
 3102     struct mbuf *mb_first;
 3103     struct ip *ip_outer;
 3104     struct pim_encap_pimhdr *pimhdr;
 3105     int len = ntohs(ip->ip_len);
 3106     vifi_t vifi = rt->mfc_parent;
 3107 
 3108     VIF_LOCK_ASSERT();
 3109 
 3110     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
 3111         m_freem(mb_copy);
 3112         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 3113     }
 3114 
 3115     /*
 3116      * Add a new mbuf with the encapsulating header
 3117      */
 3118     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3119     if (mb_first == NULL) {
 3120         m_freem(mb_copy);
 3121         return ENOBUFS;
 3122     }
 3123     mb_first->m_data += max_linkhdr;
 3124     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3125     mb_first->m_next = mb_copy;
 3126 
 3127     mb_first->m_pkthdr.len = len + mb_first->m_len;
 3128 
 3129     /*
 3130      * Fill in the encapsulating IP and PIM header
 3131      */
 3132     ip_outer = mtod(mb_first, struct ip *);
 3133     *ip_outer = pim_encap_iphdr;
 3134     ip_outer->ip_id = ip_newid();
 3135     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3136     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
 3137     ip_outer->ip_dst = rt->mfc_rp;
 3138     /*
 3139      * Copy the inner header TOS to the outer header, and take care of the
 3140      * IP_DF bit.
 3141      */
 3142     ip_outer->ip_tos = ip->ip_tos;
 3143     if (ntohs(ip->ip_off) & IP_DF)
 3144         ip_outer->ip_off |= IP_DF;
 3145     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 3146                                          + sizeof(pim_encap_iphdr));
 3147     *pimhdr = pim_encap_pimhdr;
 3148     /* If the iif crosses a border, set the Border-bit */
 3149     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
 3150         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 3151 
 3152     mb_first->m_data += sizeof(pim_encap_iphdr);
 3153     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 3154     mb_first->m_data -= sizeof(pim_encap_iphdr);
 3155 
 3156     if (vifp->v_rate_limit == 0)
 3157         tbf_send_packet(vifp, mb_first);
 3158     else
 3159         tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
 3160 
 3161     /* Keep statistics */
 3162     pimstat.pims_snd_registers_msgs++;
 3163     pimstat.pims_snd_registers_bytes += len;
 3164 
 3165     return 0;
 3166 }
 3167 
 3168 /*
 3169  * PIM-SMv2 and PIM-DM messages processing.
 3170  * Receives and verifies the PIM control messages, and passes them
 3171  * up to the listening socket, using rip_input().
 3172  * The only message with special processing is the PIM_REGISTER message
 3173  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 3174  * is passed to if_simloop().
 3175  */
 3176 void
 3177 pim_input(struct mbuf *m, int off)
 3178 {
 3179     struct ip *ip = mtod(m, struct ip *);
 3180     struct pim *pim;
 3181     int minlen;
 3182     int datalen = ip->ip_len;
 3183     int ip_tos;
 3184     int iphlen = off;
 3185 
 3186     /* Keep statistics */
 3187     pimstat.pims_rcv_total_msgs++;
 3188     pimstat.pims_rcv_total_bytes += datalen;
 3189 
 3190     /*
 3191      * Validate lengths
 3192      */
 3193     if (datalen < PIM_MINLEN) {
 3194         pimstat.pims_rcv_tooshort++;
 3195         log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
 3196             datalen, (u_long)ip->ip_src.s_addr);
 3197         m_freem(m);
 3198         return;
 3199     }
 3200 
 3201     /*
 3202      * If the packet is at least as big as a REGISTER, go agead
 3203      * and grab the PIM REGISTER header size, to avoid another
 3204      * possible m_pullup() later.
 3205      *
 3206      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 3207      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 3208      */
 3209     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 3210     /*
 3211      * Get the IP and PIM headers in contiguous memory, and
 3212      * possibly the PIM REGISTER header.
 3213      */
 3214     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 3215         (m = m_pullup(m, minlen)) == 0) {
 3216         log(LOG_ERR, "pim_input: m_pullup failure\n");
 3217         return;
 3218     }
 3219     /* m_pullup() may have given us a new mbuf so reset ip. */
 3220     ip = mtod(m, struct ip *);
 3221     ip_tos = ip->ip_tos;
 3222 
 3223     /* adjust mbuf to point to the PIM header */
 3224     m->m_data += iphlen;
 3225     m->m_len  -= iphlen;
 3226     pim = mtod(m, struct pim *);
 3227 
 3228     /*
 3229      * Validate checksum. If PIM REGISTER, exclude the data packet.
 3230      *
 3231      * XXX: some older PIMv2 implementations don't make this distinction,
 3232      * so for compatibility reason perform the checksum over part of the
 3233      * message, and if error, then over the whole message.
 3234      */
 3235     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 3236         /* do nothing, checksum okay */
 3237     } else if (in_cksum(m, datalen)) {
 3238         pimstat.pims_rcv_badsum++;
 3239         if (mrtdebug & DEBUG_PIM)
 3240             log(LOG_DEBUG, "pim_input: invalid checksum");
 3241         m_freem(m);
 3242         return;
 3243     }
 3244 
 3245     /* PIM version check */
 3246     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 3247         pimstat.pims_rcv_badversion++;
 3248         log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
 3249             PIM_VT_V(pim->pim_vt), PIM_VERSION);
 3250         m_freem(m);
 3251         return;
 3252     }
 3253 
 3254     /* restore mbuf back to the outer IP */
 3255     m->m_data -= iphlen;
 3256     m->m_len  += iphlen;
 3257 
 3258     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 3259         /*
 3260          * Since this is a REGISTER, we'll make a copy of the register
 3261          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 3262          * routing daemon.
 3263          */
 3264         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 3265         struct mbuf *mcp;
 3266         struct ip *encap_ip;
 3267         u_int32_t *reghdr;
 3268         struct ifnet *vifp;
 3269 
 3270         VIF_LOCK();
 3271         if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
 3272             VIF_UNLOCK();
 3273             if (mrtdebug & DEBUG_PIM)
 3274                 log(LOG_DEBUG,
 3275                     "pim_input: register vif not set: %d\n", reg_vif_num);
 3276             m_freem(m);
 3277             return;
 3278         }
 3279         /* XXX need refcnt? */
 3280         vifp = viftable[reg_vif_num].v_ifp;
 3281         VIF_UNLOCK();
 3282 
 3283         /*
 3284          * Validate length
 3285          */
 3286         if (datalen < PIM_REG_MINLEN) {
 3287             pimstat.pims_rcv_tooshort++;
 3288             pimstat.pims_rcv_badregisters++;
 3289             log(LOG_ERR,
 3290                 "pim_input: register packet size too small %d from %lx\n",
 3291                 datalen, (u_long)ip->ip_src.s_addr);
 3292             m_freem(m);
 3293             return;
 3294         }
 3295 
 3296         reghdr = (u_int32_t *)(pim + 1);
 3297         encap_ip = (struct ip *)(reghdr + 1);
 3298 
 3299         if (mrtdebug & DEBUG_PIM) {
 3300             log(LOG_DEBUG,
 3301                 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
 3302                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3303                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3304                 ntohs(encap_ip->ip_len));
 3305         }
 3306 
 3307         /* verify the version number of the inner packet */
 3308         if (encap_ip->ip_v != IPVERSION) {
 3309             pimstat.pims_rcv_badregisters++;
 3310             if (mrtdebug & DEBUG_PIM) {
 3311                 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
 3312                     "of the inner packet\n", encap_ip->ip_v);
 3313             }
 3314             m_freem(m);
 3315             return;
 3316         }
 3317 
 3318         /* verify the inner packet is destined to a mcast group */
 3319         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 3320             pimstat.pims_rcv_badregisters++;
 3321             if (mrtdebug & DEBUG_PIM)
 3322                 log(LOG_DEBUG,
 3323                     "pim_input: inner packet of register is not "
 3324                     "multicast %lx\n",
 3325                     (u_long)ntohl(encap_ip->ip_dst.s_addr));
 3326             m_freem(m);
 3327             return;
 3328         }
 3329 
 3330         /* If a NULL_REGISTER, pass it to the daemon */
 3331         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 3332             goto pim_input_to_daemon;
 3333 
 3334         /*
 3335          * Copy the TOS from the outer IP header to the inner IP header.
 3336          */
 3337         if (encap_ip->ip_tos != ip_tos) {
 3338             /* Outer TOS -> inner TOS */
 3339             encap_ip->ip_tos = ip_tos;
 3340             /* Recompute the inner header checksum. Sigh... */
 3341 
 3342             /* adjust mbuf to point to the inner IP header */
 3343             m->m_data += (iphlen + PIM_MINLEN);
 3344             m->m_len  -= (iphlen + PIM_MINLEN);
 3345 
 3346             encap_ip->ip_sum = 0;
 3347             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 3348 
 3349             /* restore mbuf to point back to the outer IP header */
 3350             m->m_data -= (iphlen + PIM_MINLEN);
 3351             m->m_len  += (iphlen + PIM_MINLEN);
 3352         }
 3353 
 3354         /*
 3355          * Decapsulate the inner IP packet and loopback to forward it
 3356          * as a normal multicast packet. Also, make a copy of the
 3357          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 3358          * to pass to the daemon later, so it can take the appropriate
 3359          * actions (e.g., send back PIM_REGISTER_STOP).
 3360          * XXX: here m->m_data points to the outer IP header.
 3361          */
 3362         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 3363         if (mcp == NULL) {
 3364             log(LOG_ERR,
 3365                 "pim_input: pim register: could not copy register head\n");
 3366             m_freem(m);
 3367             return;
 3368         }
 3369 
 3370         /* Keep statistics */
 3371         /* XXX: registers_bytes include only the encap. mcast pkt */
 3372         pimstat.pims_rcv_registers_msgs++;
 3373         pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
 3374 
 3375         /*
 3376          * forward the inner ip packet; point m_data at the inner ip.
 3377          */
 3378         m_adj(m, iphlen + PIM_MINLEN);
 3379 
 3380         if (mrtdebug & DEBUG_PIM) {
 3381             log(LOG_DEBUG,
 3382                 "pim_input: forwarding decapsulated register: "
 3383                 "src %lx, dst %lx, vif %d\n",
 3384                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3385                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3386                 reg_vif_num);
 3387         }
 3388         /* NB: vifp was collected above; can it change on us? */
 3389         if_simloop(vifp, m, dst.sin_family, 0);
 3390 
 3391         /* prepare the register head to send to the mrouting daemon */
 3392         m = mcp;
 3393     }
 3394 
 3395 pim_input_to_daemon:
 3396     /*
 3397      * Pass the PIM message up to the daemon; if it is a Register message,
 3398      * pass the 'head' only up to the daemon. This includes the
 3399      * outer IP header, PIM header, PIM-Register header and the
 3400      * inner IP header.
 3401      * XXX: the outer IP header pkt size of a Register is not adjust to
 3402      * reflect the fact that the inner multicast data is truncated.
 3403      */
 3404     rip_input(m, iphlen);
 3405 
 3406     return;
 3407 }
 3408 #endif /* PIM */
 3409 
 3410 static int
 3411 ip_mroute_modevent(module_t mod, int type, void *unused)
 3412 {
 3413     switch (type) {
 3414     case MOD_LOAD:
 3415         mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
 3416         MFC_LOCK_INIT();
 3417         VIF_LOCK_INIT();
 3418         ip_mrouter_reset();
 3419         ip_mcast_src = X_ip_mcast_src;
 3420         ip_mforward = X_ip_mforward;
 3421         ip_mrouter_done = X_ip_mrouter_done;
 3422         ip_mrouter_get = X_ip_mrouter_get;
 3423         ip_mrouter_set = X_ip_mrouter_set;
 3424         ip_rsvp_force_done = X_ip_rsvp_force_done;
 3425         ip_rsvp_vif = X_ip_rsvp_vif;
 3426         legal_vif_num = X_legal_vif_num;
 3427         mrt_ioctl = X_mrt_ioctl;
 3428         rsvp_input_p = X_rsvp_input;
 3429         break;
 3430 
 3431     case MOD_UNLOAD:
 3432         /*
 3433          * Typically module unload happens after the user-level
 3434          * process has shutdown the kernel services (the check
 3435          * below insures someone can't just yank the module out
 3436          * from under a running process).  But if the module is
 3437          * just loaded and then unloaded w/o starting up a user
 3438          * process we still need to cleanup.
 3439          */
 3440         if (ip_mrouter)
 3441             return EINVAL;
 3442 
 3443         X_ip_mrouter_done();
 3444         ip_mcast_src = NULL;
 3445         ip_mforward = NULL;
 3446         ip_mrouter_done = NULL;
 3447         ip_mrouter_get = NULL;
 3448         ip_mrouter_set = NULL;
 3449         ip_rsvp_force_done = NULL;
 3450         ip_rsvp_vif = NULL;
 3451         legal_vif_num = NULL;
 3452         mrt_ioctl = NULL;
 3453         rsvp_input_p = NULL;
 3454         VIF_LOCK_DESTROY();
 3455         MFC_LOCK_DESTROY();
 3456         mtx_destroy(&mrouter_mtx);
 3457         break;
 3458     default:
 3459         return EOPNOTSUPP;
 3460     }
 3461     return 0;
 3462 }
 3463 
 3464 static moduledata_t ip_mroutemod = {
 3465     "ip_mroute",
 3466     ip_mroute_modevent,
 3467     0
 3468 };
 3469 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: bbb58439d5125fb503f69040bd995b5f


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.