The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989 Stephen Deering
    3  * Copyright (c) 1992, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * Stephen Deering of Stanford University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   34  */
   35 
   36 /*
   37  * IP multicast forwarding procedures
   38  *
   39  * Written by David Waitzman, BBN Labs, August 1988.
   40  * Modified by Steve Deering, Stanford, February 1989.
   41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   42  * Modified by Van Jacobson, LBL, January 1993
   43  * Modified by Ajit Thyagarajan, PARC, August 1993
   44  * Modified by Bill Fenner, PARC, April 1995
   45  * Modified by Ahmed Helmy, SGI, June 1996
   46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   48  * Modified by Hitoshi Asaeda, WIDE, August 2000
   49  * Modified by Pavlin Radoslavov, ICSI, October 2002
   50  *
   51  * MROUTING Revision: 3.5
   52  * and PIM-SMv2 and PIM-DM support, advanced API support,
   53  * bandwidth metering and signaling
   54  *
   55  * $FreeBSD: releng/6.2/sys/netinet/ip_mroute.c 163072 2006-10-07 10:45:05Z bms $
   56  */
   57 
   58 #include "opt_mac.h"
   59 #include "opt_mrouting.h"
   60 
   61 #ifdef PIM
   62 #define _PIM_VT 1
   63 #endif
   64 
   65 #include <sys/param.h>
   66 #include <sys/kernel.h>
   67 #include <sys/lock.h>
   68 #include <sys/mac.h>
   69 #include <sys/malloc.h>
   70 #include <sys/mbuf.h>
   71 #include <sys/module.h>
   72 #include <sys/protosw.h>
   73 #include <sys/signalvar.h>
   74 #include <sys/socket.h>
   75 #include <sys/socketvar.h>
   76 #include <sys/sockio.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/syslog.h>
   80 #include <sys/systm.h>
   81 #include <sys/time.h>
   82 #include <net/if.h>
   83 #include <net/netisr.h>
   84 #include <net/route.h>
   85 #include <netinet/in.h>
   86 #include <netinet/igmp.h>
   87 #include <netinet/in_systm.h>
   88 #include <netinet/in_var.h>
   89 #include <netinet/ip.h>
   90 #include <netinet/ip_encap.h>
   91 #include <netinet/ip_mroute.h>
   92 #include <netinet/ip_var.h>
   93 #ifdef PIM
   94 #include <netinet/pim.h>
   95 #include <netinet/pim_var.h>
   96 #endif
   97 #include <netinet/udp.h>
   98 #include <machine/in_cksum.h>
   99 
  100 /*
  101  * Control debugging code for rsvp and multicast routing code.
  102  * Can only set them with the debugger.
  103  */
  104 static u_int    rsvpdebug;              /* non-zero enables debugging   */
  105 
  106 static u_int    mrtdebug;               /* any set of the flags below   */
  107 #define         DEBUG_MFC       0x02
  108 #define         DEBUG_FORWARD   0x04
  109 #define         DEBUG_EXPIRE    0x08
  110 #define         DEBUG_XMIT      0x10
  111 #define         DEBUG_PIM       0x20
  112 
  113 #define         VIFI_INVALID    ((vifi_t) -1)
  114 
  115 #define M_HASCL(m)      ((m)->m_flags & M_EXT)
  116 
  117 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
  118 
  119 /*
  120  * Locking.  We use two locks: one for the virtual interface table and
  121  * one for the forwarding table.  These locks may be nested in which case
  122  * the VIF lock must always be taken first.  Note that each lock is used
  123  * to cover not only the specific data structure but also related data
  124  * structures.  It may be better to add more fine-grained locking later;
  125  * it's not clear how performance-critical this code is.
  126  *
  127  * XXX: This module could particularly benefit from being cleaned
  128  *      up to use the <sys/queue.h> macros.
  129  *
  130  */
  131 
  132 static struct mrtstat   mrtstat;
  133 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
  134     &mrtstat, mrtstat,
  135     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
  136 
  137 static struct mfc       *mfctable[MFCTBLSIZ];
  138 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
  139     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
  140     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
  141 
  142 static struct mtx mfc_mtx;
  143 #define MFC_LOCK()      mtx_lock(&mfc_mtx)
  144 #define MFC_UNLOCK()    mtx_unlock(&mfc_mtx)
  145 #define MFC_LOCK_ASSERT()       do {                                    \
  146         mtx_assert(&mfc_mtx, MA_OWNED);                                 \
  147         NET_ASSERT_GIANT();                                             \
  148 } while (0)
  149 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
  150 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  151 
  152 static struct vif       viftable[MAXVIFS];
  153 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  154     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
  155     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  156 
  157 static struct mtx vif_mtx;
  158 #define VIF_LOCK()      mtx_lock(&vif_mtx)
  159 #define VIF_UNLOCK()    mtx_unlock(&vif_mtx)
  160 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  161 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
  162 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  163 
  164 static u_char           nexpire[MFCTBLSIZ];
  165 
  166 static eventhandler_tag if_detach_event_tag = NULL;
  167 
  168 static struct callout expire_upcalls_ch;
  169 
  170 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  171 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  172 
  173 /*
  174  * Define the token bucket filter structures
  175  * tbftable -> each vif has one of these for storing info
  176  */
  177 
  178 static struct tbf tbftable[MAXVIFS];
  179 #define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
  180 
  181 /*
  182  * 'Interfaces' associated with decapsulator (so we can tell
  183  * packets that went through it from ones that get reflected
  184  * by a broken gateway).  These interfaces are never linked into
  185  * the system ifnet list & no routes point to them.  I.e., packets
  186  * can't be sent this way.  They only exist as a placeholder for
  187  * multicast source verification.
  188  */
  189 static struct ifnet multicast_decap_if[MAXVIFS];
  190 
  191 #define ENCAP_TTL 64
  192 #define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
  193 
  194 /* prototype IP hdr for encapsulated packets */
  195 static struct ip multicast_encap_iphdr = {
  196 #if BYTE_ORDER == LITTLE_ENDIAN
  197         sizeof(struct ip) >> 2, IPVERSION,
  198 #else
  199         IPVERSION, sizeof(struct ip) >> 2,
  200 #endif
  201         0,                              /* tos */
  202         sizeof(struct ip),              /* total length */
  203         0,                              /* id */
  204         0,                              /* frag offset */
  205         ENCAP_TTL, ENCAP_PROTO,
  206         0,                              /* checksum */
  207 };
  208 
  209 /*
  210  * Bandwidth meter variables and constants
  211  */
  212 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  213 /*
  214  * Pending timeouts are stored in a hash table, the key being the
  215  * expiration time. Periodically, the entries are analysed and processed.
  216  */
  217 #define BW_METER_BUCKETS        1024
  218 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
  219 static struct callout bw_meter_ch;
  220 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  221 
  222 /*
  223  * Pending upcalls are stored in a vector which is flushed when
  224  * full, or periodically
  225  */
  226 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
  227 static u_int    bw_upcalls_n; /* # of pending upcalls */
  228 static struct callout bw_upcalls_ch;
  229 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  230 
  231 #ifdef PIM
  232 static struct pimstat pimstat;
  233 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  234     &pimstat, pimstat,
  235     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  236 
  237 /*
  238  * Note: the PIM Register encapsulation adds the following in front of a
  239  * data packet:
  240  *
  241  * struct pim_encap_hdr {
  242  *    struct ip ip;
  243  *    struct pim_encap_pimhdr  pim;
  244  * }
  245  *
  246  */
  247 
  248 struct pim_encap_pimhdr {
  249         struct pim pim;
  250         uint32_t   flags;
  251 };
  252 
  253 static struct ip pim_encap_iphdr = {
  254 #if BYTE_ORDER == LITTLE_ENDIAN
  255         sizeof(struct ip) >> 2,
  256         IPVERSION,
  257 #else
  258         IPVERSION,
  259         sizeof(struct ip) >> 2,
  260 #endif
  261         0,                      /* tos */
  262         sizeof(struct ip),      /* total length */
  263         0,                      /* id */
  264         0,                      /* frag offset */
  265         ENCAP_TTL,
  266         IPPROTO_PIM,
  267         0,                      /* checksum */
  268 };
  269 
  270 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  271     {
  272         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  273         0,                      /* reserved */
  274         0,                      /* checksum */
  275     },
  276     0                           /* flags */
  277 };
  278 
  279 static struct ifnet multicast_register_if;
  280 static vifi_t reg_vif_num = VIFI_INVALID;
  281 #endif /* PIM */
  282 
  283 /*
  284  * Private variables.
  285  */
  286 static vifi_t      numvifs;
  287 static const struct encaptab *encap_cookie;
  288 
  289 /*
  290  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
  291  * given a datagram's src ip address.
  292  */
  293 static u_long last_encap_src;
  294 static struct vif *last_encap_vif;
  295 
  296 /*
  297  * Callout for queue processing.
  298  */
  299 static struct callout tbf_reprocess_ch;
  300 
  301 static u_long   X_ip_mcast_src(int vifi);
  302 static int      X_ip_mforward(struct ip *ip, struct ifnet *ifp,
  303                         struct mbuf *m, struct ip_moptions *imo);
  304 static int      X_ip_mrouter_done(void);
  305 static int      X_ip_mrouter_get(struct socket *so, struct sockopt *m);
  306 static int      X_ip_mrouter_set(struct socket *so, struct sockopt *m);
  307 static int      X_legal_vif_num(int vif);
  308 static int      X_mrt_ioctl(int cmd, caddr_t data);
  309 
  310 static int get_sg_cnt(struct sioc_sg_req *);
  311 static int get_vif_cnt(struct sioc_vif_req *);
  312 static void if_detached_event(void *arg __unused, struct ifnet *);
  313 static int ip_mrouter_init(struct socket *, int);
  314 static int add_vif(struct vifctl *);
  315 static int del_vif_locked(vifi_t);
  316 static int del_vif(vifi_t);
  317 static int add_mfc(struct mfcctl2 *);
  318 static int del_mfc(struct mfcctl2 *);
  319 static int set_api_config(uint32_t *); /* chose API capabilities */
  320 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
  321 static int set_assert(int);
  322 static void expire_upcalls(void *);
  323 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  324 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
  325 static void encap_send(struct ip *, struct vif *, struct mbuf *);
  326 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
  327 static void tbf_queue(struct vif *, struct mbuf *);
  328 static void tbf_process_q(struct vif *);
  329 static void tbf_reprocess_q(void *);
  330 static int tbf_dq_sel(struct vif *, struct ip *);
  331 static void tbf_send_packet(struct vif *, struct mbuf *);
  332 static void tbf_update_tokens(struct vif *);
  333 static int priority(struct vif *, struct ip *);
  334 
  335 /*
  336  * Bandwidth monitoring
  337  */
  338 static void free_bw_list(struct bw_meter *list);
  339 static int add_bw_upcall(struct bw_upcall *);
  340 static int del_bw_upcall(struct bw_upcall *);
  341 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
  342                 struct timeval *nowp);
  343 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
  344 static void bw_upcalls_send(void);
  345 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
  346 static void unschedule_bw_meter(struct bw_meter *x);
  347 static void bw_meter_process(void);
  348 static void expire_bw_upcalls_send(void *);
  349 static void expire_bw_meter_process(void *);
  350 
  351 #ifdef PIM
  352 static int pim_register_send(struct ip *, struct vif *,
  353                 struct mbuf *, struct mfc *);
  354 static int pim_register_send_rp(struct ip *, struct vif *,
  355                 struct mbuf *, struct mfc *);
  356 static int pim_register_send_upcall(struct ip *, struct vif *,
  357                 struct mbuf *, struct mfc *);
  358 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
  359 #endif
  360 
  361 /*
  362  * whether or not special PIM assert processing is enabled.
  363  */
  364 static int pim_assert;
  365 /*
  366  * Rate limit for assert notification messages, in usec
  367  */
  368 #define ASSERT_MSG_TIME         3000000
  369 
  370 /*
  371  * Kernel multicast routing API capabilities and setup.
  372  * If more API capabilities are added to the kernel, they should be
  373  * recorded in `mrt_api_support'.
  374  */
  375 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  376                                          MRT_MFC_FLAGS_BORDER_VIF |
  377                                          MRT_MFC_RP |
  378                                          MRT_MFC_BW_UPCALL);
  379 static uint32_t mrt_api_config = 0;
  380 
  381 /*
  382  * Hash function for a source, group entry
  383  */
  384 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
  385                         ((g) >> 20) ^ ((g) >> 10) ^ (g))
  386 
  387 /*
  388  * Find a route for a given origin IP address and Multicast group address
  389  * Type of service parameter to be added in the future!!!
  390  * Statistics are updated by the caller if needed
  391  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
  392  */
  393 static struct mfc *
  394 mfc_find(in_addr_t o, in_addr_t g)
  395 {
  396     struct mfc *rt;
  397 
  398     MFC_LOCK_ASSERT();
  399 
  400     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
  401         if ((rt->mfc_origin.s_addr == o) &&
  402                 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
  403             break;
  404     return rt;
  405 }
  406 
  407 /*
  408  * Macros to compute elapsed time efficiently
  409  * Borrowed from Van Jacobson's scheduling code
  410  */
  411 #define TV_DELTA(a, b, delta) {                                 \
  412         int xxs;                                                \
  413         delta = (a).tv_usec - (b).tv_usec;                      \
  414         if ((xxs = (a).tv_sec - (b).tv_sec)) {                  \
  415                 switch (xxs) {                                  \
  416                 case 2:                                         \
  417                       delta += 1000000;                         \
  418                       /* FALLTHROUGH */                         \
  419                 case 1:                                         \
  420                       delta += 1000000;                         \
  421                       break;                                    \
  422                 default:                                        \
  423                       delta += (1000000 * xxs);                 \
  424                 }                                               \
  425         }                                                       \
  426 }
  427 
  428 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
  429               (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
  430 
  431 /*
  432  * Handle MRT setsockopt commands to modify the multicast routing tables.
  433  */
  434 static int
  435 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  436 {
  437     int error, optval;
  438     vifi_t      vifi;
  439     struct      vifctl vifc;
  440     struct      mfcctl2 mfc;
  441     struct      bw_upcall bw_upcall;
  442     uint32_t    i;
  443 
  444     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
  445         return EPERM;
  446 
  447     error = 0;
  448     switch (sopt->sopt_name) {
  449     case MRT_INIT:
  450         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  451         if (error)
  452             break;
  453         error = ip_mrouter_init(so, optval);
  454         break;
  455 
  456     case MRT_DONE:
  457         error = ip_mrouter_done();
  458         break;
  459 
  460     case MRT_ADD_VIF:
  461         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  462         if (error)
  463             break;
  464         error = add_vif(&vifc);
  465         break;
  466 
  467     case MRT_DEL_VIF:
  468         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  469         if (error)
  470             break;
  471         error = del_vif(vifi);
  472         break;
  473 
  474     case MRT_ADD_MFC:
  475     case MRT_DEL_MFC:
  476         /*
  477          * select data size depending on API version.
  478          */
  479         if (sopt->sopt_name == MRT_ADD_MFC &&
  480                 mrt_api_config & MRT_API_FLAGS_ALL) {
  481             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  482                                 sizeof(struct mfcctl2));
  483         } else {
  484             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  485                                 sizeof(struct mfcctl));
  486             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  487                         sizeof(mfc) - sizeof(struct mfcctl));
  488         }
  489         if (error)
  490             break;
  491         if (sopt->sopt_name == MRT_ADD_MFC)
  492             error = add_mfc(&mfc);
  493         else
  494             error = del_mfc(&mfc);
  495         break;
  496 
  497     case MRT_ASSERT:
  498         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  499         if (error)
  500             break;
  501         set_assert(optval);
  502         break;
  503 
  504     case MRT_API_CONFIG:
  505         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  506         if (!error)
  507             error = set_api_config(&i);
  508         if (!error)
  509             error = sooptcopyout(sopt, &i, sizeof i);
  510         break;
  511 
  512     case MRT_ADD_BW_UPCALL:
  513     case MRT_DEL_BW_UPCALL:
  514         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  515                                 sizeof bw_upcall);
  516         if (error)
  517             break;
  518         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  519             error = add_bw_upcall(&bw_upcall);
  520         else
  521             error = del_bw_upcall(&bw_upcall);
  522         break;
  523 
  524     default:
  525         error = EOPNOTSUPP;
  526         break;
  527     }
  528     return error;
  529 }
  530 
  531 /*
  532  * Handle MRT getsockopt commands
  533  */
  534 static int
  535 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  536 {
  537     int error;
  538     static int version = 0x0305; /* !!! why is this here? XXX */
  539 
  540     switch (sopt->sopt_name) {
  541     case MRT_VERSION:
  542         error = sooptcopyout(sopt, &version, sizeof version);
  543         break;
  544 
  545     case MRT_ASSERT:
  546         error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
  547         break;
  548 
  549     case MRT_API_SUPPORT:
  550         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  551         break;
  552 
  553     case MRT_API_CONFIG:
  554         error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
  555         break;
  556 
  557     default:
  558         error = EOPNOTSUPP;
  559         break;
  560     }
  561     return error;
  562 }
  563 
  564 /*
  565  * Handle ioctl commands to obtain information from the cache
  566  */
  567 static int
  568 X_mrt_ioctl(int cmd, caddr_t data)
  569 {
  570     int error = 0;
  571 
  572     /*
  573      * Currently the only function calling this ioctl routine is rtioctl().
  574      * Typically, only root can create the raw socket in order to execute
  575      * this ioctl method, however the request might be coming from a prison
  576      */
  577     error = suser(curthread);
  578     if (error)
  579         return (error);
  580     switch (cmd) {
  581     case (SIOCGETVIFCNT):
  582         error = get_vif_cnt((struct sioc_vif_req *)data);
  583         break;
  584 
  585     case (SIOCGETSGCNT):
  586         error = get_sg_cnt((struct sioc_sg_req *)data);
  587         break;
  588 
  589     default:
  590         error = EINVAL;
  591         break;
  592     }
  593     return error;
  594 }
  595 
  596 /*
  597  * returns the packet, byte, rpf-failure count for the source group provided
  598  */
  599 static int
  600 get_sg_cnt(struct sioc_sg_req *req)
  601 {
  602     struct mfc *rt;
  603 
  604     MFC_LOCK();
  605     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
  606     if (rt == NULL) {
  607         MFC_UNLOCK();
  608         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  609         return EADDRNOTAVAIL;
  610     }
  611     req->pktcnt = rt->mfc_pkt_cnt;
  612     req->bytecnt = rt->mfc_byte_cnt;
  613     req->wrong_if = rt->mfc_wrong_if;
  614     MFC_UNLOCK();
  615     return 0;
  616 }
  617 
  618 /*
  619  * returns the input and output packet and byte counts on the vif provided
  620  */
  621 static int
  622 get_vif_cnt(struct sioc_vif_req *req)
  623 {
  624     vifi_t vifi = req->vifi;
  625 
  626     VIF_LOCK();
  627     if (vifi >= numvifs) {
  628         VIF_UNLOCK();
  629         return EINVAL;
  630     }
  631 
  632     req->icount = viftable[vifi].v_pkt_in;
  633     req->ocount = viftable[vifi].v_pkt_out;
  634     req->ibytes = viftable[vifi].v_bytes_in;
  635     req->obytes = viftable[vifi].v_bytes_out;
  636     VIF_UNLOCK();
  637 
  638     return 0;
  639 }
  640 
  641 static void
  642 ip_mrouter_reset(void)
  643 {
  644     bzero((caddr_t)mfctable, sizeof(mfctable));
  645     bzero((caddr_t)nexpire, sizeof(nexpire));
  646 
  647     pim_assert = 0;
  648     mrt_api_config = 0;
  649 
  650     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
  651 
  652     bw_upcalls_n = 0;
  653     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
  654     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
  655     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
  656 
  657     callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
  658 }
  659 
  660 static struct mtx mrouter_mtx;          /* used to synch init/done work */
  661 
  662 static void
  663 if_detached_event(void *arg __unused, struct ifnet *ifp)
  664 {
  665     vifi_t vifi;
  666     int i;
  667     struct mfc *mfc;
  668     struct mfc *nmfc;
  669     struct mfc **ppmfc; /* Pointer to previous node's next-pointer */
  670     struct rtdetq *pq;
  671     struct rtdetq *npq;
  672 
  673     mtx_lock(&mrouter_mtx);
  674     if (ip_mrouter == NULL) {
  675         mtx_unlock(&mrouter_mtx);
  676     }
  677 
  678     /*
  679      * Tear down multicast forwarder state associated with this ifnet.
  680      * 1. Walk the vif list, matching vifs against this ifnet.
  681      * 2. Walk the multicast forwarding cache (mfc) looking for
  682      *    inner matches with this vif's index.
  683      * 3. Free any pending mbufs for this mfc.
  684      * 4. Free the associated mfc entry and state associated with this vif.
  685      *    Be very careful about unlinking from a singly-linked list whose
  686      *    "head node" is a pointer in a simple array.
  687      * 5. Free vif state. This should disable ALLMULTI on the interface.
  688      */
  689     VIF_LOCK();
  690     MFC_LOCK();
  691     for (vifi = 0; vifi < numvifs; vifi++) {
  692         if (viftable[vifi].v_ifp != ifp)
  693                 continue;
  694         for (i = 0; i < MFCTBLSIZ; i++) {
  695             ppmfc = &mfctable[i];
  696             for (mfc = mfctable[i]; mfc != NULL; ) {
  697                 nmfc = mfc->mfc_next;
  698                 if (mfc->mfc_parent == vifi) {
  699                     for (pq = mfc->mfc_stall; pq != NULL; ) {
  700                         npq = pq->next;
  701                         m_freem(pq->m);
  702                         free(pq, M_MRTABLE);
  703                         pq = npq;
  704                     }
  705                     free_bw_list(mfc->mfc_bw_meter);
  706                     free(mfc, M_MRTABLE);
  707                     *ppmfc = nmfc;
  708                 } else {
  709                     ppmfc = &mfc->mfc_next;
  710                 }
  711                 mfc = nmfc;
  712             }
  713         }
  714         del_vif_locked(vifi);
  715     }
  716     MFC_UNLOCK();
  717     VIF_UNLOCK();
  718 
  719     mtx_unlock(&mrouter_mtx);
  720 }
  721                         
  722 /*
  723  * Enable multicast routing
  724  */
  725 static int
  726 ip_mrouter_init(struct socket *so, int version)
  727 {
  728     if (mrtdebug)
  729         log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
  730             so->so_type, so->so_proto->pr_protocol);
  731 
  732     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  733         return EOPNOTSUPP;
  734 
  735     if (version != 1)
  736         return ENOPROTOOPT;
  737 
  738     mtx_lock(&mrouter_mtx);
  739 
  740     if (ip_mrouter != NULL) {
  741         mtx_unlock(&mrouter_mtx);
  742         return EADDRINUSE;
  743     }
  744 
  745     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 
  746         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
  747     if (if_detach_event_tag == NULL)
  748         return (ENOMEM);
  749 
  750     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
  751 
  752     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
  753         expire_bw_upcalls_send, NULL);
  754     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
  755 
  756     ip_mrouter = so;
  757 
  758     mtx_unlock(&mrouter_mtx);
  759 
  760     if (mrtdebug)
  761         log(LOG_DEBUG, "ip_mrouter_init\n");
  762 
  763     return 0;
  764 }
  765 
  766 /*
  767  * Disable multicast routing
  768  */
  769 static int
  770 X_ip_mrouter_done(void)
  771 {
  772     vifi_t vifi;
  773     int i;
  774     struct ifnet *ifp;
  775     struct ifreq ifr;
  776     struct mfc *rt;
  777     struct rtdetq *rte;
  778 
  779     mtx_lock(&mrouter_mtx);
  780 
  781     if (ip_mrouter == NULL) {
  782         mtx_unlock(&mrouter_mtx);
  783         return EINVAL;
  784     }
  785 
  786     /*
  787      * Detach/disable hooks to the reset of the system.
  788      */
  789     ip_mrouter = NULL;
  790     mrt_api_config = 0;
  791 
  792     VIF_LOCK();
  793     if (encap_cookie) {
  794         const struct encaptab *c = encap_cookie;
  795         encap_cookie = NULL;
  796         encap_detach(c);
  797     }
  798     VIF_UNLOCK();
  799 
  800     callout_stop(&tbf_reprocess_ch);
  801 
  802     VIF_LOCK();
  803     /*
  804      * For each phyint in use, disable promiscuous reception of all IP
  805      * multicasts.
  806      */
  807     for (vifi = 0; vifi < numvifs; vifi++) {
  808         if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
  809                 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  810             struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
  811 
  812             so->sin_len = sizeof(struct sockaddr_in);
  813             so->sin_family = AF_INET;
  814             so->sin_addr.s_addr = INADDR_ANY;
  815             ifp = viftable[vifi].v_ifp;
  816             if_allmulti(ifp, 0);
  817         }
  818     }
  819     bzero((caddr_t)tbftable, sizeof(tbftable));
  820     bzero((caddr_t)viftable, sizeof(viftable));
  821     numvifs = 0;
  822     pim_assert = 0;
  823     VIF_UNLOCK();
  824     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
  825 
  826     /*
  827      * Free all multicast forwarding cache entries.
  828      */
  829     callout_stop(&expire_upcalls_ch);
  830     callout_stop(&bw_upcalls_ch);
  831     callout_stop(&bw_meter_ch);
  832 
  833     MFC_LOCK();
  834     for (i = 0; i < MFCTBLSIZ; i++) {
  835         for (rt = mfctable[i]; rt != NULL; ) {
  836             struct mfc *nr = rt->mfc_next;
  837 
  838             for (rte = rt->mfc_stall; rte != NULL; ) {
  839                 struct rtdetq *n = rte->next;
  840 
  841                 m_freem(rte->m);
  842                 free(rte, M_MRTABLE);
  843                 rte = n;
  844             }
  845             free_bw_list(rt->mfc_bw_meter);
  846             free(rt, M_MRTABLE);
  847             rt = nr;
  848         }
  849     }
  850     bzero((caddr_t)mfctable, sizeof(mfctable));
  851     bzero((caddr_t)nexpire, sizeof(nexpire));
  852     bw_upcalls_n = 0;
  853     bzero(bw_meter_timers, sizeof(bw_meter_timers));
  854     MFC_UNLOCK();
  855 
  856     /*
  857      * Reset de-encapsulation cache
  858      */
  859     last_encap_src = INADDR_ANY;
  860     last_encap_vif = NULL;
  861 #ifdef PIM
  862     reg_vif_num = VIFI_INVALID;
  863 #endif
  864 
  865     mtx_unlock(&mrouter_mtx);
  866 
  867     if (mrtdebug)
  868         log(LOG_DEBUG, "ip_mrouter_done\n");
  869 
  870     return 0;
  871 }
  872 
  873 /*
  874  * Set PIM assert processing global
  875  */
  876 static int
  877 set_assert(int i)
  878 {
  879     if ((i != 1) && (i != 0))
  880         return EINVAL;
  881 
  882     pim_assert = i;
  883 
  884     return 0;
  885 }
  886 
  887 /*
  888  * Configure API capabilities
  889  */
  890 int
  891 set_api_config(uint32_t *apival)
  892 {
  893     int i;
  894 
  895     /*
  896      * We can set the API capabilities only if it is the first operation
  897      * after MRT_INIT. I.e.:
  898      *  - there are no vifs installed
  899      *  - pim_assert is not enabled
  900      *  - the MFC table is empty
  901      */
  902     if (numvifs > 0) {
  903         *apival = 0;
  904         return EPERM;
  905     }
  906     if (pim_assert) {
  907         *apival = 0;
  908         return EPERM;
  909     }
  910     for (i = 0; i < MFCTBLSIZ; i++) {
  911         if (mfctable[i] != NULL) {
  912             *apival = 0;
  913             return EPERM;
  914         }
  915     }
  916 
  917     mrt_api_config = *apival & mrt_api_support;
  918     *apival = mrt_api_config;
  919 
  920     return 0;
  921 }
  922 
  923 /*
  924  * Decide if a packet is from a tunnelled peer.
  925  * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
  926  */
  927 static int
  928 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
  929 {
  930     struct ip *ip = mtod(m, struct ip *);
  931     int hlen = ip->ip_hl << 2;
  932 
  933     /*
  934      * don't claim the packet if it's not to a multicast destination or if
  935      * we don't have an encapsulating tunnel with the source.
  936      * Note:  This code assumes that the remote site IP address
  937      * uniquely identifies the tunnel (i.e., that this site has
  938      * at most one tunnel with the remote site).
  939      */
  940     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
  941         return 0;
  942     if (ip->ip_src.s_addr != last_encap_src) {
  943         struct vif *vifp = viftable;
  944         struct vif *vife = vifp + numvifs;
  945 
  946         last_encap_src = ip->ip_src.s_addr;
  947         last_encap_vif = NULL;
  948         for ( ; vifp < vife; ++vifp)
  949             if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
  950                 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
  951                     last_encap_vif = vifp;
  952                 break;
  953             }
  954     }
  955     if (last_encap_vif == NULL) {
  956         last_encap_src = INADDR_ANY;
  957         return 0;
  958     }
  959     return 64;
  960 }
  961 
  962 /*
  963  * De-encapsulate a packet and feed it back through ip input (this
  964  * routine is called whenever IP gets a packet that mroute_encap_func()
  965  * claimed).
  966  */
  967 static void
  968 mroute_encap_input(struct mbuf *m, int off)
  969 {
  970     struct ip *ip = mtod(m, struct ip *);
  971     int hlen = ip->ip_hl << 2;
  972 
  973     if (hlen > sizeof(struct ip))
  974         ip_stripoptions(m, (struct mbuf *) 0);
  975     m->m_data += sizeof(struct ip);
  976     m->m_len -= sizeof(struct ip);
  977     m->m_pkthdr.len -= sizeof(struct ip);
  978 
  979     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
  980 
  981     netisr_queue(NETISR_IP, m);         /* mbuf is free'd on failure. */
  982     /*
  983      * normally we would need a "schednetisr(NETISR_IP)"
  984      * here but we were called by ip_input and it is going
  985      * to loop back & try to dequeue the packet we just
  986      * queued as soon as we return so we avoid the
  987      * unnecessary software interrrupt.
  988      *
  989      * XXX
  990      * This no longer holds - we may have direct-dispatched the packet,
  991      * or there may be a queue processing limit.
  992      */
  993 }
  994 
  995 extern struct domain inetdomain;
  996 static struct protosw mroute_encap_protosw =
  997 {
  998         .pr_type =              SOCK_RAW,
  999         .pr_domain =            &inetdomain,
 1000         .pr_protocol =          IPPROTO_IPV4,
 1001         .pr_flags =             PR_ATOMIC|PR_ADDR,
 1002         .pr_input =             mroute_encap_input,
 1003         .pr_ctloutput =         rip_ctloutput,
 1004         .pr_usrreqs =           &rip_usrreqs
 1005 };
 1006 
 1007 /*
 1008  * Add a vif to the vif table
 1009  */
 1010 static int
 1011 add_vif(struct vifctl *vifcp)
 1012 {
 1013     struct vif *vifp = viftable + vifcp->vifc_vifi;
 1014     struct sockaddr_in sin = {sizeof sin, AF_INET};
 1015     struct ifaddr *ifa;
 1016     struct ifnet *ifp;
 1017     int error;
 1018     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
 1019 
 1020     VIF_LOCK();
 1021     if (vifcp->vifc_vifi >= MAXVIFS) {
 1022         VIF_UNLOCK();
 1023         return EINVAL;
 1024     }
 1025     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
 1026         VIF_UNLOCK();
 1027         return EADDRINUSE;
 1028     }
 1029     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
 1030         VIF_UNLOCK();
 1031         return EADDRNOTAVAIL;
 1032     }
 1033 
 1034     /* Find the interface with an address in AF_INET family */
 1035 #ifdef PIM
 1036     if (vifcp->vifc_flags & VIFF_REGISTER) {
 1037         /*
 1038          * XXX: Because VIFF_REGISTER does not really need a valid
 1039          * local interface (e.g. it could be 127.0.0.2), we don't
 1040          * check its address.
 1041          */
 1042         ifp = NULL;
 1043     } else
 1044 #endif
 1045     {
 1046         sin.sin_addr = vifcp->vifc_lcl_addr;
 1047         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
 1048         if (ifa == NULL) {
 1049             VIF_UNLOCK();
 1050             return EADDRNOTAVAIL;
 1051         }
 1052         ifp = ifa->ifa_ifp;
 1053     }
 1054 
 1055     if (vifcp->vifc_flags & VIFF_TUNNEL) {
 1056         if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
 1057             /*
 1058              * An encapsulating tunnel is wanted.  Tell
 1059              * mroute_encap_input() to start paying attention
 1060              * to encapsulated packets.
 1061              */
 1062             if (encap_cookie == NULL) {
 1063                 int i;
 1064 
 1065                 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
 1066                                 mroute_encapcheck,
 1067                                 (struct protosw *)&mroute_encap_protosw, NULL);
 1068 
 1069                 if (encap_cookie == NULL) {
 1070                     printf("ip_mroute: unable to attach encap\n");
 1071                     VIF_UNLOCK();
 1072                     return EIO; /* XXX */
 1073                 }
 1074                 for (i = 0; i < MAXVIFS; ++i) {
 1075                     if_initname(&multicast_decap_if[i], "mdecap", i);
 1076                 }
 1077             }
 1078             /*
 1079              * Set interface to fake encapsulator interface
 1080              */
 1081             ifp = &multicast_decap_if[vifcp->vifc_vifi];
 1082             /*
 1083              * Prepare cached route entry
 1084              */
 1085             bzero(&vifp->v_route, sizeof(vifp->v_route));
 1086         } else {
 1087             log(LOG_ERR, "source routed tunnels not supported\n");
 1088             VIF_UNLOCK();
 1089             return EOPNOTSUPP;
 1090         }
 1091 #ifdef PIM
 1092     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
 1093         ifp = &multicast_register_if;
 1094         if (mrtdebug)
 1095             log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
 1096                     (void *)&multicast_register_if);
 1097         if (reg_vif_num == VIFI_INVALID) {
 1098             if_initname(&multicast_register_if, "register_vif", 0);
 1099             multicast_register_if.if_flags = IFF_LOOPBACK;
 1100             bzero(&vifp->v_route, sizeof(vifp->v_route));
 1101             reg_vif_num = vifcp->vifc_vifi;
 1102         }
 1103 #endif
 1104     } else {            /* Make sure the interface supports multicast */
 1105         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
 1106             VIF_UNLOCK();
 1107             return EOPNOTSUPP;
 1108         }
 1109 
 1110         /* Enable promiscuous reception of all IP multicasts from the if */
 1111         error = if_allmulti(ifp, 1);
 1112         if (error) {
 1113             VIF_UNLOCK();
 1114             return error;
 1115         }
 1116     }
 1117 
 1118     /* define parameters for the tbf structure */
 1119     vifp->v_tbf = v_tbf;
 1120     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
 1121     vifp->v_tbf->tbf_n_tok = 0;
 1122     vifp->v_tbf->tbf_q_len = 0;
 1123     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
 1124     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
 1125 
 1126     vifp->v_flags     = vifcp->vifc_flags;
 1127     vifp->v_threshold = vifcp->vifc_threshold;
 1128     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
 1129     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
 1130     vifp->v_ifp       = ifp;
 1131     /* scaling up here allows division by 1024 in critical code */
 1132     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
 1133     vifp->v_rsvp_on   = 0;
 1134     vifp->v_rsvpd     = NULL;
 1135     /* initialize per vif pkt counters */
 1136     vifp->v_pkt_in    = 0;
 1137     vifp->v_pkt_out   = 0;
 1138     vifp->v_bytes_in  = 0;
 1139     vifp->v_bytes_out = 0;
 1140 
 1141     /* Adjust numvifs up if the vifi is higher than numvifs */
 1142     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
 1143 
 1144     VIF_UNLOCK();
 1145 
 1146     if (mrtdebug)
 1147         log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
 1148             vifcp->vifc_vifi,
 1149             (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
 1150             (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
 1151             (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
 1152             vifcp->vifc_threshold,
 1153             vifcp->vifc_rate_limit);
 1154 
 1155     return 0;
 1156 }
 1157 
 1158 /*
 1159  * Delete a vif from the vif table
 1160  */
 1161 static int
 1162 del_vif_locked(vifi_t vifi)
 1163 {
 1164     struct vif *vifp;
 1165 
 1166     VIF_LOCK_ASSERT();
 1167 
 1168     if (vifi >= numvifs) {
 1169         return EINVAL;
 1170     }
 1171     vifp = &viftable[vifi];
 1172     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
 1173         return EADDRNOTAVAIL;
 1174     }
 1175 
 1176     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1177         if_allmulti(vifp->v_ifp, 0);
 1178 
 1179     if (vifp == last_encap_vif) {
 1180         last_encap_vif = NULL;
 1181         last_encap_src = INADDR_ANY;
 1182     }
 1183 
 1184     /*
 1185      * Free packets queued at the interface
 1186      */
 1187     while (vifp->v_tbf->tbf_q) {
 1188         struct mbuf *m = vifp->v_tbf->tbf_q;
 1189 
 1190         vifp->v_tbf->tbf_q = m->m_act;
 1191         m_freem(m);
 1192     }
 1193 
 1194 #ifdef PIM
 1195     if (vifp->v_flags & VIFF_REGISTER)
 1196         reg_vif_num = VIFI_INVALID;
 1197 #endif
 1198 
 1199     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
 1200     bzero((caddr_t)vifp, sizeof (*vifp));
 1201 
 1202     if (mrtdebug)
 1203         log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
 1204 
 1205     /* Adjust numvifs down */
 1206     for (vifi = numvifs; vifi > 0; vifi--)
 1207         if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
 1208             break;
 1209     numvifs = vifi;
 1210 
 1211     return 0;
 1212 }
 1213 
 1214 static int
 1215 del_vif(vifi_t vifi)
 1216 {
 1217     int cc;
 1218 
 1219     VIF_LOCK();
 1220     cc = del_vif_locked(vifi);
 1221     VIF_UNLOCK();
 1222 
 1223     return cc;
 1224 }
 1225 
 1226 /*
 1227  * update an mfc entry without resetting counters and S,G addresses.
 1228  */
 1229 static void
 1230 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1231 {
 1232     int i;
 1233 
 1234     rt->mfc_parent = mfccp->mfcc_parent;
 1235     for (i = 0; i < numvifs; i++) {
 1236         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1237         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
 1238             MRT_MFC_FLAGS_ALL;
 1239     }
 1240     /* set the RP address */
 1241     if (mrt_api_config & MRT_MFC_RP)
 1242         rt->mfc_rp = mfccp->mfcc_rp;
 1243     else
 1244         rt->mfc_rp.s_addr = INADDR_ANY;
 1245 }
 1246 
 1247 /*
 1248  * fully initialize an mfc entry from the parameter.
 1249  */
 1250 static void
 1251 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1252 {
 1253     rt->mfc_origin     = mfccp->mfcc_origin;
 1254     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1255 
 1256     update_mfc_params(rt, mfccp);
 1257 
 1258     /* initialize pkt counters per src-grp */
 1259     rt->mfc_pkt_cnt    = 0;
 1260     rt->mfc_byte_cnt   = 0;
 1261     rt->mfc_wrong_if   = 0;
 1262     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
 1263 }
 1264 
 1265 
 1266 /*
 1267  * Add an mfc entry
 1268  */
 1269 static int
 1270 add_mfc(struct mfcctl2 *mfccp)
 1271 {
 1272     struct mfc *rt;
 1273     u_long hash;
 1274     struct rtdetq *rte;
 1275     u_short nstl;
 1276 
 1277     VIF_LOCK();
 1278     MFC_LOCK();
 1279 
 1280     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1281 
 1282     /* If an entry already exists, just update the fields */
 1283     if (rt) {
 1284         if (mrtdebug & DEBUG_MFC)
 1285             log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
 1286                 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1287                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1288                 mfccp->mfcc_parent);
 1289 
 1290         update_mfc_params(rt, mfccp);
 1291         MFC_UNLOCK();
 1292         VIF_UNLOCK();
 1293         return 0;
 1294     }
 1295 
 1296     /*
 1297      * Find the entry for which the upcall was made and update
 1298      */
 1299     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1300     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
 1301 
 1302         if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1303                 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
 1304                 (rt->mfc_stall != NULL)) {
 1305 
 1306             if (nstl++)
 1307                 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
 1308                     "multiple kernel entries",
 1309                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1310                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1311                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1312 
 1313             if (mrtdebug & DEBUG_MFC)
 1314                 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
 1315                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1316                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1317                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1318 
 1319             init_mfc_params(rt, mfccp);
 1320 
 1321             rt->mfc_expire = 0; /* Don't clean this guy up */
 1322             nexpire[hash]--;
 1323 
 1324             /* free packets Qed at the end of this entry */
 1325             for (rte = rt->mfc_stall; rte != NULL; ) {
 1326                 struct rtdetq *n = rte->next;
 1327 
 1328                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1329                 m_freem(rte->m);
 1330                 free(rte, M_MRTABLE);
 1331                 rte = n;
 1332             }
 1333             rt->mfc_stall = NULL;
 1334         }
 1335     }
 1336 
 1337     /*
 1338      * It is possible that an entry is being inserted without an upcall
 1339      */
 1340     if (nstl == 0) {
 1341         if (mrtdebug & DEBUG_MFC)
 1342             log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
 1343                 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1344                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1345                 mfccp->mfcc_parent);
 1346 
 1347         for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
 1348             if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1349                     (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
 1350                 init_mfc_params(rt, mfccp);
 1351                 if (rt->mfc_expire)
 1352                     nexpire[hash]--;
 1353                 rt->mfc_expire = 0;
 1354                 break; /* XXX */
 1355             }
 1356         }
 1357         if (rt == NULL) {               /* no upcall, so make a new entry */
 1358             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1359             if (rt == NULL) {
 1360                 MFC_UNLOCK();
 1361                 VIF_UNLOCK();
 1362                 return ENOBUFS;
 1363             }
 1364 
 1365             init_mfc_params(rt, mfccp);
 1366             rt->mfc_expire     = 0;
 1367             rt->mfc_stall      = NULL;
 1368 
 1369             rt->mfc_bw_meter = NULL;
 1370             /* insert new entry at head of hash chain */
 1371             rt->mfc_next = mfctable[hash];
 1372             mfctable[hash] = rt;
 1373         }
 1374     }
 1375     MFC_UNLOCK();
 1376     VIF_UNLOCK();
 1377     return 0;
 1378 }
 1379 
 1380 /*
 1381  * Delete an mfc entry
 1382  */
 1383 static int
 1384 del_mfc(struct mfcctl2 *mfccp)
 1385 {
 1386     struct in_addr      origin;
 1387     struct in_addr      mcastgrp;
 1388     struct mfc          *rt;
 1389     struct mfc          **nptr;
 1390     u_long              hash;
 1391     struct bw_meter     *list;
 1392 
 1393     origin = mfccp->mfcc_origin;
 1394     mcastgrp = mfccp->mfcc_mcastgrp;
 1395 
 1396     if (mrtdebug & DEBUG_MFC)
 1397         log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
 1398             (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1399 
 1400     MFC_LOCK();
 1401 
 1402     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
 1403     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
 1404         if (origin.s_addr == rt->mfc_origin.s_addr &&
 1405                 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
 1406                 rt->mfc_stall == NULL)
 1407             break;
 1408     if (rt == NULL) {
 1409         MFC_UNLOCK();
 1410         return EADDRNOTAVAIL;
 1411     }
 1412 
 1413     *nptr = rt->mfc_next;
 1414 
 1415     /*
 1416      * free the bw_meter entries
 1417      */
 1418     list = rt->mfc_bw_meter;
 1419     rt->mfc_bw_meter = NULL;
 1420 
 1421     free(rt, M_MRTABLE);
 1422 
 1423     free_bw_list(list);
 1424 
 1425     MFC_UNLOCK();
 1426 
 1427     return 0;
 1428 }
 1429 
 1430 /*
 1431  * Send a message to mrouted on the multicast routing socket
 1432  */
 1433 static int
 1434 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1435 {
 1436     if (s) {
 1437         SOCKBUF_LOCK(&s->so_rcv);
 1438         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1439             NULL) != 0) {
 1440             sorwakeup_locked(s);
 1441             return 0;
 1442         }
 1443         SOCKBUF_UNLOCK(&s->so_rcv);
 1444     }
 1445     m_freem(mm);
 1446     return -1;
 1447 }
 1448 
 1449 /*
 1450  * IP multicast forwarding function. This function assumes that the packet
 1451  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1452  * pointed to by "ifp", and the packet is to be relayed to other networks
 1453  * that have members of the packet's destination IP multicast group.
 1454  *
 1455  * The packet is returned unscathed to the caller, unless it is
 1456  * erroneous, in which case a non-zero return value tells the caller to
 1457  * discard it.
 1458  */
 1459 
 1460 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1461 
 1462 static int
 1463 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1464     struct ip_moptions *imo)
 1465 {
 1466     struct mfc *rt;
 1467     int error;
 1468     vifi_t vifi;
 1469 
 1470     if (mrtdebug & DEBUG_FORWARD)
 1471         log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
 1472             (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
 1473             (void *)ifp);
 1474 
 1475     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1476                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1477         /*
 1478          * Packet arrived via a physical interface or
 1479          * an encapsulated tunnel or a register_vif.
 1480          */
 1481     } else {
 1482         /*
 1483          * Packet arrived through a source-route tunnel.
 1484          * Source-route tunnels are no longer supported.
 1485          */
 1486         static int last_log;
 1487         if (last_log != time_second) {
 1488             last_log = time_second;
 1489             log(LOG_ERR,
 1490                 "ip_mforward: received source-routed packet from %lx\n",
 1491                 (u_long)ntohl(ip->ip_src.s_addr));
 1492         }
 1493         return 1;
 1494     }
 1495 
 1496     VIF_LOCK();
 1497     MFC_LOCK();
 1498     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
 1499         if (ip->ip_ttl < 255)
 1500             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1501         if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1502             struct vif *vifp = viftable + vifi;
 1503 
 1504             printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
 1505                 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
 1506                 vifi,
 1507                 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
 1508                 vifp->v_ifp->if_xname);
 1509         }
 1510         error = ip_mdq(m, ifp, NULL, vifi);
 1511         MFC_UNLOCK();
 1512         VIF_UNLOCK();
 1513         return error;
 1514     }
 1515     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1516         printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
 1517             (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
 1518         if (!imo)
 1519             printf("In fact, no options were specified at all\n");
 1520     }
 1521 
 1522     /*
 1523      * Don't forward a packet with time-to-live of zero or one,
 1524      * or a packet destined to a local-only group.
 1525      */
 1526     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
 1527         MFC_UNLOCK();
 1528         VIF_UNLOCK();
 1529         return 0;
 1530     }
 1531 
 1532     /*
 1533      * Determine forwarding vifs from the forwarding cache table
 1534      */
 1535     ++mrtstat.mrts_mfc_lookups;
 1536     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1537 
 1538     /* Entry exists, so forward if necessary */
 1539     if (rt != NULL) {
 1540         error = ip_mdq(m, ifp, rt, -1);
 1541         MFC_UNLOCK();
 1542         VIF_UNLOCK();
 1543         return error;
 1544     } else {
 1545         /*
 1546          * If we don't have a route for packet's origin,
 1547          * Make a copy of the packet & send message to routing daemon
 1548          */
 1549 
 1550         struct mbuf *mb0;
 1551         struct rtdetq *rte;
 1552         u_long hash;
 1553         int hlen = ip->ip_hl << 2;
 1554 
 1555         ++mrtstat.mrts_mfc_misses;
 1556 
 1557         mrtstat.mrts_no_route++;
 1558         if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
 1559             log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
 1560                 (u_long)ntohl(ip->ip_src.s_addr),
 1561                 (u_long)ntohl(ip->ip_dst.s_addr));
 1562 
 1563         /*
 1564          * Allocate mbufs early so that we don't do extra work if we are
 1565          * just going to fail anyway.  Make sure to pullup the header so
 1566          * that other people can't step on it.
 1567          */
 1568         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
 1569         if (rte == NULL) {
 1570             MFC_UNLOCK();
 1571             VIF_UNLOCK();
 1572             return ENOBUFS;
 1573         }
 1574         mb0 = m_copypacket(m, M_DONTWAIT);
 1575         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1576             mb0 = m_pullup(mb0, hlen);
 1577         if (mb0 == NULL) {
 1578             free(rte, M_MRTABLE);
 1579             MFC_UNLOCK();
 1580             VIF_UNLOCK();
 1581             return ENOBUFS;
 1582         }
 1583 
 1584         /* is there an upcall waiting for this flow ? */
 1585         hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1586         for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
 1587             if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
 1588                     (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
 1589                     (rt->mfc_stall != NULL))
 1590                 break;
 1591         }
 1592 
 1593         if (rt == NULL) {
 1594             int i;
 1595             struct igmpmsg *im;
 1596             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1597             struct mbuf *mm;
 1598 
 1599             /*
 1600              * Locate the vifi for the incoming interface for this packet.
 1601              * If none found, drop packet.
 1602              */
 1603             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1604                 ;
 1605             if (vifi >= numvifs)        /* vif not found, drop packet */
 1606                 goto non_fatal;
 1607 
 1608             /* no upcall, so make a new entry */
 1609             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1610             if (rt == NULL)
 1611                 goto fail;
 1612             /* Make a copy of the header to send to the user level process */
 1613             mm = m_copy(mb0, 0, hlen);
 1614             if (mm == NULL)
 1615                 goto fail1;
 1616 
 1617             /*
 1618              * Send message to routing daemon to install
 1619              * a route into the kernel table
 1620              */
 1621 
 1622             im = mtod(mm, struct igmpmsg *);
 1623             im->im_msgtype = IGMPMSG_NOCACHE;
 1624             im->im_mbz = 0;
 1625             im->im_vif = vifi;
 1626 
 1627             mrtstat.mrts_upcalls++;
 1628 
 1629             k_igmpsrc.sin_addr = ip->ip_src;
 1630             if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1631                 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
 1632                 ++mrtstat.mrts_upq_sockfull;
 1633 fail1:
 1634                 free(rt, M_MRTABLE);
 1635 fail:
 1636                 free(rte, M_MRTABLE);
 1637                 m_freem(mb0);
 1638                 MFC_UNLOCK();
 1639                 VIF_UNLOCK();
 1640                 return ENOBUFS;
 1641             }
 1642 
 1643             /* insert new entry at head of hash chain */
 1644             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1645             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1646             rt->mfc_expire            = UPCALL_EXPIRE;
 1647             nexpire[hash]++;
 1648             for (i = 0; i < numvifs; i++) {
 1649                 rt->mfc_ttls[i] = 0;
 1650                 rt->mfc_flags[i] = 0;
 1651             }
 1652             rt->mfc_parent = -1;
 1653 
 1654             rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
 1655 
 1656             rt->mfc_bw_meter = NULL;
 1657 
 1658             /* link into table */
 1659             rt->mfc_next   = mfctable[hash];
 1660             mfctable[hash] = rt;
 1661             rt->mfc_stall = rte;
 1662 
 1663         } else {
 1664             /* determine if q has overflowed */
 1665             int npkts = 0;
 1666             struct rtdetq **p;
 1667 
 1668             /*
 1669              * XXX ouch! we need to append to the list, but we
 1670              * only have a pointer to the front, so we have to
 1671              * scan the entire list every time.
 1672              */
 1673             for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
 1674                 npkts++;
 1675 
 1676             if (npkts > MAX_UPQ) {
 1677                 mrtstat.mrts_upq_ovflw++;
 1678 non_fatal:
 1679                 free(rte, M_MRTABLE);
 1680                 m_freem(mb0);
 1681                 MFC_UNLOCK();
 1682                 VIF_UNLOCK();
 1683                 return 0;
 1684             }
 1685 
 1686             /* Add this entry to the end of the queue */
 1687             *p = rte;
 1688         }
 1689 
 1690         rte->m                  = mb0;
 1691         rte->ifp                = ifp;
 1692         rte->next               = NULL;
 1693 
 1694         MFC_UNLOCK();
 1695         VIF_UNLOCK();
 1696 
 1697         return 0;
 1698     }
 1699 }
 1700 
 1701 /*
 1702  * Clean up the cache entry if upcall is not serviced
 1703  */
 1704 static void
 1705 expire_upcalls(void *unused)
 1706 {
 1707     struct rtdetq *rte;
 1708     struct mfc *mfc, **nptr;
 1709     int i;
 1710 
 1711     MFC_LOCK();
 1712     for (i = 0; i < MFCTBLSIZ; i++) {
 1713         if (nexpire[i] == 0)
 1714             continue;
 1715         nptr = &mfctable[i];
 1716         for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
 1717             /*
 1718              * Skip real cache entries
 1719              * Make sure it wasn't marked to not expire (shouldn't happen)
 1720              * If it expires now
 1721              */
 1722             if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
 1723                     --mfc->mfc_expire == 0) {
 1724                 if (mrtdebug & DEBUG_EXPIRE)
 1725                     log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
 1726                         (u_long)ntohl(mfc->mfc_origin.s_addr),
 1727                         (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
 1728                 /*
 1729                  * drop all the packets
 1730                  * free the mbuf with the pkt, if, timing info
 1731                  */
 1732                 for (rte = mfc->mfc_stall; rte; ) {
 1733                     struct rtdetq *n = rte->next;
 1734 
 1735                     m_freem(rte->m);
 1736                     free(rte, M_MRTABLE);
 1737                     rte = n;
 1738                 }
 1739                 ++mrtstat.mrts_cache_cleanups;
 1740                 nexpire[i]--;
 1741 
 1742                 /*
 1743                  * free the bw_meter entries
 1744                  */
 1745                 while (mfc->mfc_bw_meter != NULL) {
 1746                     struct bw_meter *x = mfc->mfc_bw_meter;
 1747 
 1748                     mfc->mfc_bw_meter = x->bm_mfc_next;
 1749                     free(x, M_BWMETER);
 1750                 }
 1751 
 1752                 *nptr = mfc->mfc_next;
 1753                 free(mfc, M_MRTABLE);
 1754             } else {
 1755                 nptr = &mfc->mfc_next;
 1756             }
 1757         }
 1758     }
 1759     MFC_UNLOCK();
 1760 
 1761     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
 1762 }
 1763 
 1764 /*
 1765  * Packet forwarding routine once entry in the cache is made
 1766  */
 1767 static int
 1768 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1769 {
 1770     struct ip  *ip = mtod(m, struct ip *);
 1771     vifi_t vifi;
 1772     int plen = ip->ip_len;
 1773 
 1774     VIF_LOCK_ASSERT();
 1775 /*
 1776  * Macro to send packet on vif.  Since RSVP packets don't get counted on
 1777  * input, they shouldn't get counted on output, so statistics keeping is
 1778  * separate.
 1779  */
 1780 #define MC_SEND(ip,vifp,m) {                            \
 1781                 if ((vifp)->v_flags & VIFF_TUNNEL)      \
 1782                     encap_send((ip), (vifp), (m));      \
 1783                 else                                    \
 1784                     phyint_send((ip), (vifp), (m));     \
 1785 }
 1786 
 1787     /*
 1788      * If xmt_vif is not -1, send on only the requested vif.
 1789      *
 1790      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1791      */
 1792     if (xmt_vif < numvifs) {
 1793 #ifdef PIM
 1794         if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1795             pim_register_send(ip, viftable + xmt_vif, m, rt);
 1796         else
 1797 #endif
 1798         MC_SEND(ip, viftable + xmt_vif, m);
 1799         return 1;
 1800     }
 1801 
 1802     /*
 1803      * Don't forward if it didn't arrive from the parent vif for its origin.
 1804      */
 1805     vifi = rt->mfc_parent;
 1806     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
 1807         /* came in the wrong interface */
 1808         if (mrtdebug & DEBUG_FORWARD)
 1809             log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
 1810                 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
 1811         ++mrtstat.mrts_wrong_if;
 1812         ++rt->mfc_wrong_if;
 1813         /*
 1814          * If we are doing PIM assert processing, send a message
 1815          * to the routing daemon.
 1816          *
 1817          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1818          * can complete the SPT switch, regardless of the type
 1819          * of the iif (broadcast media, GRE tunnel, etc).
 1820          */
 1821         if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
 1822             struct timeval now;
 1823             u_long delta;
 1824 
 1825 #ifdef PIM
 1826             if (ifp == &multicast_register_if)
 1827                 pimstat.pims_rcv_registers_wrongiif++;
 1828 #endif
 1829 
 1830             /* Get vifi for the incoming packet */
 1831             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1832                 ;
 1833             if (vifi >= numvifs)
 1834                 return 0;       /* The iif is not found: ignore the packet. */
 1835 
 1836             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1837                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1838 
 1839             GET_TIME(now);
 1840 
 1841             TV_DELTA(now, rt->mfc_last_assert, delta);
 1842 
 1843             if (delta > ASSERT_MSG_TIME) {
 1844                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1845                 struct igmpmsg *im;
 1846                 int hlen = ip->ip_hl << 2;
 1847                 struct mbuf *mm = m_copy(m, 0, hlen);
 1848 
 1849                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1850                     mm = m_pullup(mm, hlen);
 1851                 if (mm == NULL)
 1852                     return ENOBUFS;
 1853 
 1854                 rt->mfc_last_assert = now;
 1855 
 1856                 im = mtod(mm, struct igmpmsg *);
 1857                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1858                 im->im_mbz              = 0;
 1859                 im->im_vif              = vifi;
 1860 
 1861                 mrtstat.mrts_upcalls++;
 1862 
 1863                 k_igmpsrc.sin_addr = im->im_src;
 1864                 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1865                     log(LOG_WARNING,
 1866                         "ip_mforward: ip_mrouter socket queue full\n");
 1867                     ++mrtstat.mrts_upq_sockfull;
 1868                     return ENOBUFS;
 1869                 }
 1870             }
 1871         }
 1872         return 0;
 1873     }
 1874 
 1875     /* If I sourced this packet, it counts as output, else it was input. */
 1876     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
 1877         viftable[vifi].v_pkt_out++;
 1878         viftable[vifi].v_bytes_out += plen;
 1879     } else {
 1880         viftable[vifi].v_pkt_in++;
 1881         viftable[vifi].v_bytes_in += plen;
 1882     }
 1883     rt->mfc_pkt_cnt++;
 1884     rt->mfc_byte_cnt += plen;
 1885 
 1886     /*
 1887      * For each vif, decide if a copy of the packet should be forwarded.
 1888      * Forward if:
 1889      *          - the ttl exceeds the vif's threshold
 1890      *          - there are group members downstream on interface
 1891      */
 1892     for (vifi = 0; vifi < numvifs; vifi++)
 1893         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1894             viftable[vifi].v_pkt_out++;
 1895             viftable[vifi].v_bytes_out += plen;
 1896 #ifdef PIM
 1897             if (viftable[vifi].v_flags & VIFF_REGISTER)
 1898                 pim_register_send(ip, viftable + vifi, m, rt);
 1899             else
 1900 #endif
 1901             MC_SEND(ip, viftable+vifi, m);
 1902         }
 1903 
 1904     /*
 1905      * Perform upcall-related bw measuring.
 1906      */
 1907     if (rt->mfc_bw_meter != NULL) {
 1908         struct bw_meter *x;
 1909         struct timeval now;
 1910 
 1911         GET_TIME(now);
 1912         MFC_LOCK_ASSERT();
 1913         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1914             bw_meter_receive_packet(x, plen, &now);
 1915     }
 1916 
 1917     return 0;
 1918 }
 1919 
 1920 /*
 1921  * check if a vif number is legal/ok. This is used by ip_output.
 1922  */
 1923 static int
 1924 X_legal_vif_num(int vif)
 1925 {
 1926     /* XXX unlocked, matter? */
 1927     return (vif >= 0 && vif < numvifs);
 1928 }
 1929 
 1930 /*
 1931  * Return the local address used by this vif
 1932  */
 1933 static u_long
 1934 X_ip_mcast_src(int vifi)
 1935 {
 1936     /* XXX unlocked, matter? */
 1937     if (vifi >= 0 && vifi < numvifs)
 1938         return viftable[vifi].v_lcl_addr.s_addr;
 1939     else
 1940         return INADDR_ANY;
 1941 }
 1942 
 1943 static void
 1944 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1945 {
 1946     struct mbuf *mb_copy;
 1947     int hlen = ip->ip_hl << 2;
 1948 
 1949     VIF_LOCK_ASSERT();
 1950 
 1951     /*
 1952      * Make a new reference to the packet; make sure that
 1953      * the IP header is actually copied, not just referenced,
 1954      * so that ip_output() only scribbles on the copy.
 1955      */
 1956     mb_copy = m_copypacket(m, M_DONTWAIT);
 1957     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1958         mb_copy = m_pullup(mb_copy, hlen);
 1959     if (mb_copy == NULL)
 1960         return;
 1961 
 1962     if (vifp->v_rate_limit == 0)
 1963         tbf_send_packet(vifp, mb_copy);
 1964     else
 1965         tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
 1966 }
 1967 
 1968 static void
 1969 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1970 {
 1971     struct mbuf *mb_copy;
 1972     struct ip *ip_copy;
 1973     int i, len = ip->ip_len;
 1974 
 1975     VIF_LOCK_ASSERT();
 1976 
 1977     /* Take care of delayed checksums */
 1978     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 1979         in_delayed_cksum(m);
 1980         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 1981     }
 1982 
 1983     /*
 1984      * copy the old packet & pullup its IP header into the
 1985      * new mbuf so we can modify it.  Try to fill the new
 1986      * mbuf since if we don't the ethernet driver will.
 1987      */
 1988     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
 1989     if (mb_copy == NULL)
 1990         return;
 1991 #ifdef MAC
 1992     mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
 1993 #endif
 1994     mb_copy->m_data += max_linkhdr;
 1995     mb_copy->m_len = sizeof(multicast_encap_iphdr);
 1996 
 1997     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
 1998         m_freem(mb_copy);
 1999         return;
 2000     }
 2001     i = MHLEN - M_LEADINGSPACE(mb_copy);
 2002     if (i > len)
 2003         i = len;
 2004     mb_copy = m_pullup(mb_copy, i);
 2005     if (mb_copy == NULL)
 2006         return;
 2007     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
 2008 
 2009     /*
 2010      * fill in the encapsulating IP header.
 2011      */
 2012     ip_copy = mtod(mb_copy, struct ip *);
 2013     *ip_copy = multicast_encap_iphdr;
 2014     ip_copy->ip_id = ip_newid();
 2015     ip_copy->ip_len += len;
 2016     ip_copy->ip_src = vifp->v_lcl_addr;
 2017     ip_copy->ip_dst = vifp->v_rmt_addr;
 2018 
 2019     /*
 2020      * turn the encapsulated IP header back into a valid one.
 2021      */
 2022     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
 2023     --ip->ip_ttl;
 2024     ip->ip_len = htons(ip->ip_len);
 2025     ip->ip_off = htons(ip->ip_off);
 2026     ip->ip_sum = 0;
 2027     mb_copy->m_data += sizeof(multicast_encap_iphdr);
 2028     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2029     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
 2030 
 2031     if (vifp->v_rate_limit == 0)
 2032         tbf_send_packet(vifp, mb_copy);
 2033     else
 2034         tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
 2035 }
 2036 
 2037 /*
 2038  * Token bucket filter module
 2039  */
 2040 
 2041 static void
 2042 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
 2043 {
 2044     struct tbf *t = vifp->v_tbf;
 2045 
 2046     VIF_LOCK_ASSERT();
 2047 
 2048     if (p_len > MAX_BKT_SIZE) {         /* drop if packet is too large */
 2049         mrtstat.mrts_pkt2large++;
 2050         m_freem(m);
 2051         return;
 2052     }
 2053 
 2054     tbf_update_tokens(vifp);
 2055 
 2056     if (t->tbf_q_len == 0) {            /* queue empty...               */
 2057         if (p_len <= t->tbf_n_tok) {    /* send packet if enough tokens */
 2058             t->tbf_n_tok -= p_len;
 2059             tbf_send_packet(vifp, m);
 2060         } else {                        /* no, queue packet and try later */
 2061             tbf_queue(vifp, m);
 2062             callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
 2063                 tbf_reprocess_q, vifp);
 2064         }
 2065     } else if (t->tbf_q_len < t->tbf_max_q_len) {
 2066         /* finite queue length, so queue pkts and process queue */
 2067         tbf_queue(vifp, m);
 2068         tbf_process_q(vifp);
 2069     } else {
 2070         /* queue full, try to dq and queue and process */
 2071         if (!tbf_dq_sel(vifp, ip)) {
 2072             mrtstat.mrts_q_overflow++;
 2073             m_freem(m);
 2074         } else {
 2075             tbf_queue(vifp, m);
 2076             tbf_process_q(vifp);
 2077         }
 2078     }
 2079 }
 2080 
 2081 /*
 2082  * adds a packet to the queue at the interface
 2083  */
 2084 static void
 2085 tbf_queue(struct vif *vifp, struct mbuf *m)
 2086 {
 2087     struct tbf *t = vifp->v_tbf;
 2088 
 2089     VIF_LOCK_ASSERT();
 2090 
 2091     if (t->tbf_t == NULL)       /* Queue was empty */
 2092         t->tbf_q = m;
 2093     else                        /* Insert at tail */
 2094         t->tbf_t->m_act = m;
 2095 
 2096     t->tbf_t = m;               /* Set new tail pointer */
 2097 
 2098 #ifdef DIAGNOSTIC
 2099     /* Make sure we didn't get fed a bogus mbuf */
 2100     if (m->m_act)
 2101         panic("tbf_queue: m_act");
 2102 #endif
 2103     m->m_act = NULL;
 2104 
 2105     t->tbf_q_len++;
 2106 }
 2107 
 2108 /*
 2109  * processes the queue at the interface
 2110  */
 2111 static void
 2112 tbf_process_q(struct vif *vifp)
 2113 {
 2114     struct tbf *t = vifp->v_tbf;
 2115 
 2116     VIF_LOCK_ASSERT();
 2117 
 2118     /* loop through the queue at the interface and send as many packets
 2119      * as possible
 2120      */
 2121     while (t->tbf_q_len > 0) {
 2122         struct mbuf *m = t->tbf_q;
 2123         int len = mtod(m, struct ip *)->ip_len;
 2124 
 2125         /* determine if the packet can be sent */
 2126         if (len > t->tbf_n_tok) /* not enough tokens, we are done */
 2127             break;
 2128         /* ok, reduce no of tokens, dequeue and send the packet. */
 2129         t->tbf_n_tok -= len;
 2130 
 2131         t->tbf_q = m->m_act;
 2132         if (--t->tbf_q_len == 0)
 2133             t->tbf_t = NULL;
 2134 
 2135         m->m_act = NULL;
 2136         tbf_send_packet(vifp, m);
 2137     }
 2138 }
 2139 
 2140 static void
 2141 tbf_reprocess_q(void *xvifp)
 2142 {
 2143     struct vif *vifp = xvifp;
 2144 
 2145     if (ip_mrouter == NULL)
 2146         return;
 2147     VIF_LOCK();
 2148     tbf_update_tokens(vifp);
 2149     tbf_process_q(vifp);
 2150     if (vifp->v_tbf->tbf_q_len)
 2151         callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
 2152     VIF_UNLOCK();
 2153 }
 2154 
 2155 /* function that will selectively discard a member of the queue
 2156  * based on the precedence value and the priority
 2157  */
 2158 static int
 2159 tbf_dq_sel(struct vif *vifp, struct ip *ip)
 2160 {
 2161     u_int p;
 2162     struct mbuf *m, *last;
 2163     struct mbuf **np;
 2164     struct tbf *t = vifp->v_tbf;
 2165 
 2166     VIF_LOCK_ASSERT();
 2167 
 2168     p = priority(vifp, ip);
 2169 
 2170     np = &t->tbf_q;
 2171     last = NULL;
 2172     while ((m = *np) != NULL) {
 2173         if (p > priority(vifp, mtod(m, struct ip *))) {
 2174             *np = m->m_act;
 2175             /* If we're removing the last packet, fix the tail pointer */
 2176             if (m == t->tbf_t)
 2177                 t->tbf_t = last;
 2178             m_freem(m);
 2179             /* It's impossible for the queue to be empty, but check anyways. */
 2180             if (--t->tbf_q_len == 0)
 2181                 t->tbf_t = NULL;
 2182             mrtstat.mrts_drop_sel++;
 2183             return 1;
 2184         }
 2185         np = &m->m_act;
 2186         last = m;
 2187     }
 2188     return 0;
 2189 }
 2190 
 2191 static void
 2192 tbf_send_packet(struct vif *vifp, struct mbuf *m)
 2193 {
 2194     VIF_LOCK_ASSERT();
 2195 
 2196     if (vifp->v_flags & VIFF_TUNNEL)    /* If tunnel options */
 2197         ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
 2198     else {
 2199         struct ip_moptions imo;
 2200         int error;
 2201         static struct route ro; /* XXX check this */
 2202 
 2203         imo.imo_multicast_ifp  = vifp->v_ifp;
 2204         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 2205         imo.imo_multicast_loop = 1;
 2206         imo.imo_multicast_vif  = -1;
 2207 
 2208         /*
 2209          * Re-entrancy should not be a problem here, because
 2210          * the packets that we send out and are looped back at us
 2211          * should get rejected because they appear to come from
 2212          * the loopback interface, thus preventing looping.
 2213          */
 2214         error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
 2215 
 2216         if (mrtdebug & DEBUG_XMIT)
 2217             log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
 2218                 (int)(vifp - viftable), error);
 2219     }
 2220 }
 2221 
 2222 /* determine the current time and then
 2223  * the elapsed time (between the last time and time now)
 2224  * in milliseconds & update the no. of tokens in the bucket
 2225  */
 2226 static void
 2227 tbf_update_tokens(struct vif *vifp)
 2228 {
 2229     struct timeval tp;
 2230     u_long tm;
 2231     struct tbf *t = vifp->v_tbf;
 2232 
 2233     VIF_LOCK_ASSERT();
 2234 
 2235     GET_TIME(tp);
 2236 
 2237     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
 2238 
 2239     /*
 2240      * This formula is actually
 2241      * "time in seconds" * "bytes/second".
 2242      *
 2243      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
 2244      *
 2245      * The (1000/1024) was introduced in add_vif to optimize
 2246      * this divide into a shift.
 2247      */
 2248     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
 2249     t->tbf_last_pkt_t = tp;
 2250 
 2251     if (t->tbf_n_tok > MAX_BKT_SIZE)
 2252         t->tbf_n_tok = MAX_BKT_SIZE;
 2253 }
 2254 
 2255 static int
 2256 priority(struct vif *vifp, struct ip *ip)
 2257 {
 2258     int prio = 50; /* the lowest priority -- default case */
 2259 
 2260     /* temporary hack; may add general packet classifier some day */
 2261 
 2262     /*
 2263      * The UDP port space is divided up into four priority ranges:
 2264      * [0, 16384)     : unclassified - lowest priority
 2265      * [16384, 32768) : audio - highest priority
 2266      * [32768, 49152) : whiteboard - medium priority
 2267      * [49152, 65536) : video - low priority
 2268      *
 2269      * Everything else gets lowest priority.
 2270      */
 2271     if (ip->ip_p == IPPROTO_UDP) {
 2272         struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
 2273         switch (ntohs(udp->uh_dport) & 0xc000) {
 2274         case 0x4000:
 2275             prio = 70;
 2276             break;
 2277         case 0x8000:
 2278             prio = 60;
 2279             break;
 2280         case 0xc000:
 2281             prio = 55;
 2282             break;
 2283         }
 2284     }
 2285     return prio;
 2286 }
 2287 
 2288 /*
 2289  * End of token bucket filter modifications
 2290  */
 2291 
 2292 static int
 2293 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
 2294 {
 2295     int error, vifi;
 2296 
 2297     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2298         return EOPNOTSUPP;
 2299 
 2300     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
 2301     if (error)
 2302         return error;
 2303 
 2304     VIF_LOCK();
 2305 
 2306     if (vifi < 0 || vifi >= numvifs) {  /* Error if vif is invalid */
 2307         VIF_UNLOCK();
 2308         return EADDRNOTAVAIL;
 2309     }
 2310 
 2311     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
 2312         /* Check if socket is available. */
 2313         if (viftable[vifi].v_rsvpd != NULL) {
 2314             VIF_UNLOCK();
 2315             return EADDRINUSE;
 2316         }
 2317 
 2318         viftable[vifi].v_rsvpd = so;
 2319         /* This may seem silly, but we need to be sure we don't over-increment
 2320          * the RSVP counter, in case something slips up.
 2321          */
 2322         if (!viftable[vifi].v_rsvp_on) {
 2323             viftable[vifi].v_rsvp_on = 1;
 2324             rsvp_on++;
 2325         }
 2326     } else { /* must be VIF_OFF */
 2327         /*
 2328          * XXX as an additional consistency check, one could make sure
 2329          * that viftable[vifi].v_rsvpd == so, otherwise passing so as
 2330          * first parameter is pretty useless.
 2331          */
 2332         viftable[vifi].v_rsvpd = NULL;
 2333         /*
 2334          * This may seem silly, but we need to be sure we don't over-decrement
 2335          * the RSVP counter, in case something slips up.
 2336          */
 2337         if (viftable[vifi].v_rsvp_on) {
 2338             viftable[vifi].v_rsvp_on = 0;
 2339             rsvp_on--;
 2340         }
 2341     }
 2342     VIF_UNLOCK();
 2343     return 0;
 2344 }
 2345 
 2346 static void
 2347 X_ip_rsvp_force_done(struct socket *so)
 2348 {
 2349     int vifi;
 2350 
 2351     /* Don't bother if it is not the right type of socket. */
 2352     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2353         return;
 2354 
 2355     VIF_LOCK();
 2356 
 2357     /* The socket may be attached to more than one vif...this
 2358      * is perfectly legal.
 2359      */
 2360     for (vifi = 0; vifi < numvifs; vifi++) {
 2361         if (viftable[vifi].v_rsvpd == so) {
 2362             viftable[vifi].v_rsvpd = NULL;
 2363             /* This may seem silly, but we need to be sure we don't
 2364              * over-decrement the RSVP counter, in case something slips up.
 2365              */
 2366             if (viftable[vifi].v_rsvp_on) {
 2367                 viftable[vifi].v_rsvp_on = 0;
 2368                 rsvp_on--;
 2369             }
 2370         }
 2371     }
 2372 
 2373     VIF_UNLOCK();
 2374 }
 2375 
 2376 static void
 2377 X_rsvp_input(struct mbuf *m, int off)
 2378 {
 2379     int vifi;
 2380     struct ip *ip = mtod(m, struct ip *);
 2381     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
 2382     struct ifnet *ifp;
 2383 
 2384     if (rsvpdebug)
 2385         printf("rsvp_input: rsvp_on %d\n",rsvp_on);
 2386 
 2387     /* Can still get packets with rsvp_on = 0 if there is a local member
 2388      * of the group to which the RSVP packet is addressed.  But in this
 2389      * case we want to throw the packet away.
 2390      */
 2391     if (!rsvp_on) {
 2392         m_freem(m);
 2393         return;
 2394     }
 2395 
 2396     if (rsvpdebug)
 2397         printf("rsvp_input: check vifs\n");
 2398 
 2399 #ifdef DIAGNOSTIC
 2400     M_ASSERTPKTHDR(m);
 2401 #endif
 2402 
 2403     ifp = m->m_pkthdr.rcvif;
 2404 
 2405     VIF_LOCK();
 2406     /* Find which vif the packet arrived on. */
 2407     for (vifi = 0; vifi < numvifs; vifi++)
 2408         if (viftable[vifi].v_ifp == ifp)
 2409             break;
 2410 
 2411     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
 2412         /*
 2413          * Drop the lock here to avoid holding it across rip_input.
 2414          * This could make rsvpdebug printfs wrong.  If you care,
 2415          * record the state of stuff before dropping the lock.
 2416          */
 2417         VIF_UNLOCK();
 2418         /*
 2419          * If the old-style non-vif-associated socket is set,
 2420          * then use it.  Otherwise, drop packet since there
 2421          * is no specific socket for this vif.
 2422          */
 2423         if (ip_rsvpd != NULL) {
 2424             if (rsvpdebug)
 2425                 printf("rsvp_input: Sending packet up old-style socket\n");
 2426             rip_input(m, off);  /* xxx */
 2427         } else {
 2428             if (rsvpdebug && vifi == numvifs)
 2429                 printf("rsvp_input: Can't find vif for packet.\n");
 2430             else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
 2431                 printf("rsvp_input: No socket defined for vif %d\n",vifi);
 2432             m_freem(m);
 2433         }
 2434         return;
 2435     }
 2436     rsvp_src.sin_addr = ip->ip_src;
 2437 
 2438     if (rsvpdebug && m)
 2439         printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
 2440                m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
 2441 
 2442     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
 2443         if (rsvpdebug)
 2444             printf("rsvp_input: Failed to append to socket\n");
 2445     } else {
 2446         if (rsvpdebug)
 2447             printf("rsvp_input: send packet up\n");
 2448     }
 2449     VIF_UNLOCK();
 2450 }
 2451 
 2452 /*
 2453  * Code for bandwidth monitors
 2454  */
 2455 
 2456 /*
 2457  * Define common interface for timeval-related methods
 2458  */
 2459 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 2460 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 2461 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 2462 
 2463 static uint32_t
 2464 compute_bw_meter_flags(struct bw_upcall *req)
 2465 {
 2466     uint32_t flags = 0;
 2467 
 2468     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 2469         flags |= BW_METER_UNIT_PACKETS;
 2470     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 2471         flags |= BW_METER_UNIT_BYTES;
 2472     if (req->bu_flags & BW_UPCALL_GEQ)
 2473         flags |= BW_METER_GEQ;
 2474     if (req->bu_flags & BW_UPCALL_LEQ)
 2475         flags |= BW_METER_LEQ;
 2476 
 2477     return flags;
 2478 }
 2479 
 2480 /*
 2481  * Add a bw_meter entry
 2482  */
 2483 static int
 2484 add_bw_upcall(struct bw_upcall *req)
 2485 {
 2486     struct mfc *mfc;
 2487     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 2488                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 2489     struct timeval now;
 2490     struct bw_meter *x;
 2491     uint32_t flags;
 2492 
 2493     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2494         return EOPNOTSUPP;
 2495 
 2496     /* Test if the flags are valid */
 2497     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 2498         return EINVAL;
 2499     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 2500         return EINVAL;
 2501     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2502             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2503         return EINVAL;
 2504 
 2505     /* Test if the threshold time interval is valid */
 2506     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 2507         return EINVAL;
 2508 
 2509     flags = compute_bw_meter_flags(req);
 2510 
 2511     /*
 2512      * Find if we have already same bw_meter entry
 2513      */
 2514     MFC_LOCK();
 2515     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2516     if (mfc == NULL) {
 2517         MFC_UNLOCK();
 2518         return EADDRNOTAVAIL;
 2519     }
 2520     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 2521         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2522                            &req->bu_threshold.b_time, ==)) &&
 2523             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2524             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2525             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 2526             MFC_UNLOCK();
 2527             return 0;           /* XXX Already installed */
 2528         }
 2529     }
 2530 
 2531     /* Allocate the new bw_meter entry */
 2532     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 2533     if (x == NULL) {
 2534         MFC_UNLOCK();
 2535         return ENOBUFS;
 2536     }
 2537 
 2538     /* Set the new bw_meter entry */
 2539     x->bm_threshold.b_time = req->bu_threshold.b_time;
 2540     GET_TIME(now);
 2541     x->bm_start_time = now;
 2542     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 2543     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 2544     x->bm_measured.b_packets = 0;
 2545     x->bm_measured.b_bytes = 0;
 2546     x->bm_flags = flags;
 2547     x->bm_time_next = NULL;
 2548     x->bm_time_hash = BW_METER_BUCKETS;
 2549 
 2550     /* Add the new bw_meter entry to the front of entries for this MFC */
 2551     x->bm_mfc = mfc;
 2552     x->bm_mfc_next = mfc->mfc_bw_meter;
 2553     mfc->mfc_bw_meter = x;
 2554     schedule_bw_meter(x, &now);
 2555     MFC_UNLOCK();
 2556 
 2557     return 0;
 2558 }
 2559 
 2560 static void
 2561 free_bw_list(struct bw_meter *list)
 2562 {
 2563     while (list != NULL) {
 2564         struct bw_meter *x = list;
 2565 
 2566         list = list->bm_mfc_next;
 2567         unschedule_bw_meter(x);
 2568         free(x, M_BWMETER);
 2569     }
 2570 }
 2571 
 2572 /*
 2573  * Delete one or multiple bw_meter entries
 2574  */
 2575 static int
 2576 del_bw_upcall(struct bw_upcall *req)
 2577 {
 2578     struct mfc *mfc;
 2579     struct bw_meter *x;
 2580 
 2581     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2582         return EOPNOTSUPP;
 2583 
 2584     MFC_LOCK();
 2585     /* Find the corresponding MFC entry */
 2586     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2587     if (mfc == NULL) {
 2588         MFC_UNLOCK();
 2589         return EADDRNOTAVAIL;
 2590     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2591         /*
 2592          * Delete all bw_meter entries for this mfc
 2593          */
 2594         struct bw_meter *list;
 2595 
 2596         list = mfc->mfc_bw_meter;
 2597         mfc->mfc_bw_meter = NULL;
 2598         free_bw_list(list);
 2599         MFC_UNLOCK();
 2600         return 0;
 2601     } else {                    /* Delete a single bw_meter entry */
 2602         struct bw_meter *prev;
 2603         uint32_t flags = 0;
 2604 
 2605         flags = compute_bw_meter_flags(req);
 2606 
 2607         /* Find the bw_meter entry to delete */
 2608         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 2609              prev = x, x = x->bm_mfc_next) {
 2610             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2611                                &req->bu_threshold.b_time, ==)) &&
 2612                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2613                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2614                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2615                 break;
 2616         }
 2617         if (x != NULL) { /* Delete entry from the list for this MFC */
 2618             if (prev != NULL)
 2619                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2620             else
 2621                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 2622 
 2623             unschedule_bw_meter(x);
 2624             MFC_UNLOCK();
 2625             /* Free the bw_meter entry */
 2626             free(x, M_BWMETER);
 2627             return 0;
 2628         } else {
 2629             MFC_UNLOCK();
 2630             return EINVAL;
 2631         }
 2632     }
 2633     /* NOTREACHED */
 2634 }
 2635 
 2636 /*
 2637  * Perform bandwidth measurement processing that may result in an upcall
 2638  */
 2639 static void
 2640 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2641 {
 2642     struct timeval delta;
 2643 
 2644     MFC_LOCK_ASSERT();
 2645 
 2646     delta = *nowp;
 2647     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2648 
 2649     if (x->bm_flags & BW_METER_GEQ) {
 2650         /*
 2651          * Processing for ">=" type of bw_meter entry
 2652          */
 2653         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2654             /* Reset the bw_meter entry */
 2655             x->bm_start_time = *nowp;
 2656             x->bm_measured.b_packets = 0;
 2657             x->bm_measured.b_bytes = 0;
 2658             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2659         }
 2660 
 2661         /* Record that a packet is received */
 2662         x->bm_measured.b_packets++;
 2663         x->bm_measured.b_bytes += plen;
 2664 
 2665         /*
 2666          * Test if we should deliver an upcall
 2667          */
 2668         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 2669             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2670                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2671                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2672                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2673                 /* Prepare an upcall for delivery */
 2674                 bw_meter_prepare_upcall(x, nowp);
 2675                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2676             }
 2677         }
 2678     } else if (x->bm_flags & BW_METER_LEQ) {
 2679         /*
 2680          * Processing for "<=" type of bw_meter entry
 2681          */
 2682         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2683             /*
 2684              * We are behind time with the multicast forwarding table
 2685              * scanning for "<=" type of bw_meter entries, so test now
 2686              * if we should deliver an upcall.
 2687              */
 2688             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2689                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2690                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2691                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2692                 /* Prepare an upcall for delivery */
 2693                 bw_meter_prepare_upcall(x, nowp);
 2694             }
 2695             /* Reschedule the bw_meter entry */
 2696             unschedule_bw_meter(x);
 2697             schedule_bw_meter(x, nowp);
 2698         }
 2699 
 2700         /* Record that a packet is received */
 2701         x->bm_measured.b_packets++;
 2702         x->bm_measured.b_bytes += plen;
 2703 
 2704         /*
 2705          * Test if we should restart the measuring interval
 2706          */
 2707         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 2708              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 2709             (x->bm_flags & BW_METER_UNIT_BYTES &&
 2710              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 2711             /* Don't restart the measuring interval */
 2712         } else {
 2713             /* Do restart the measuring interval */
 2714             /*
 2715              * XXX: note that we don't unschedule and schedule, because this
 2716              * might be too much overhead per packet. Instead, when we process
 2717              * all entries for a given timer hash bin, we check whether it is
 2718              * really a timeout. If not, we reschedule at that time.
 2719              */
 2720             x->bm_start_time = *nowp;
 2721             x->bm_measured.b_packets = 0;
 2722             x->bm_measured.b_bytes = 0;
 2723             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2724         }
 2725     }
 2726 }
 2727 
 2728 /*
 2729  * Prepare a bandwidth-related upcall
 2730  */
 2731 static void
 2732 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2733 {
 2734     struct timeval delta;
 2735     struct bw_upcall *u;
 2736 
 2737     MFC_LOCK_ASSERT();
 2738 
 2739     /*
 2740      * Compute the measured time interval
 2741      */
 2742     delta = *nowp;
 2743     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2744 
 2745     /*
 2746      * If there are too many pending upcalls, deliver them now
 2747      */
 2748     if (bw_upcalls_n >= BW_UPCALLS_MAX)
 2749         bw_upcalls_send();
 2750 
 2751     /*
 2752      * Set the bw_upcall entry
 2753      */
 2754     u = &bw_upcalls[bw_upcalls_n++];
 2755     u->bu_src = x->bm_mfc->mfc_origin;
 2756     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2757     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2758     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2759     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2760     u->bu_measured.b_time = delta;
 2761     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2762     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2763     u->bu_flags = 0;
 2764     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2765         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2766     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2767         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2768     if (x->bm_flags & BW_METER_GEQ)
 2769         u->bu_flags |= BW_UPCALL_GEQ;
 2770     if (x->bm_flags & BW_METER_LEQ)
 2771         u->bu_flags |= BW_UPCALL_LEQ;
 2772 }
 2773 
 2774 /*
 2775  * Send the pending bandwidth-related upcalls
 2776  */
 2777 static void
 2778 bw_upcalls_send(void)
 2779 {
 2780     struct mbuf *m;
 2781     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
 2782     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2783     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2784                                       0,                /* unused2 */
 2785                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2786                                       0,                /* im_mbz  */
 2787                                       0,                /* im_vif  */
 2788                                       0,                /* unused3 */
 2789                                       { 0 },            /* im_src  */
 2790                                       { 0 } };          /* im_dst  */
 2791 
 2792     MFC_LOCK_ASSERT();
 2793 
 2794     if (bw_upcalls_n == 0)
 2795         return;                 /* No pending upcalls */
 2796 
 2797     bw_upcalls_n = 0;
 2798 
 2799     /*
 2800      * Allocate a new mbuf, initialize it with the header and
 2801      * the payload for the pending calls.
 2802      */
 2803     MGETHDR(m, M_DONTWAIT, MT_HEADER);
 2804     if (m == NULL) {
 2805         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2806         return;
 2807     }
 2808 
 2809     m->m_len = m->m_pkthdr.len = 0;
 2810     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2811     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
 2812 
 2813     /*
 2814      * Send the upcalls
 2815      * XXX do we need to set the address in k_igmpsrc ?
 2816      */
 2817     mrtstat.mrts_upcalls++;
 2818     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
 2819         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2820         ++mrtstat.mrts_upq_sockfull;
 2821     }
 2822 }
 2823 
 2824 /*
 2825  * Compute the timeout hash value for the bw_meter entries
 2826  */
 2827 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2828     do {                                                                \
 2829         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2830                                                                         \
 2831         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2832         (hash) = next_timeval.tv_sec;                                   \
 2833         if (next_timeval.tv_usec)                                       \
 2834             (hash)++; /* XXX: make sure we don't timeout early */       \
 2835         (hash) %= BW_METER_BUCKETS;                                     \
 2836     } while (0)
 2837 
 2838 /*
 2839  * Schedule a timer to process periodically bw_meter entry of type "<="
 2840  * by linking the entry in the proper hash bucket.
 2841  */
 2842 static void
 2843 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2844 {
 2845     int time_hash;
 2846 
 2847     MFC_LOCK_ASSERT();
 2848 
 2849     if (!(x->bm_flags & BW_METER_LEQ))
 2850         return;         /* XXX: we schedule timers only for "<=" entries */
 2851 
 2852     /*
 2853      * Reset the bw_meter entry
 2854      */
 2855     x->bm_start_time = *nowp;
 2856     x->bm_measured.b_packets = 0;
 2857     x->bm_measured.b_bytes = 0;
 2858     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2859 
 2860     /*
 2861      * Compute the timeout hash value and insert the entry
 2862      */
 2863     BW_METER_TIMEHASH(x, time_hash);
 2864     x->bm_time_next = bw_meter_timers[time_hash];
 2865     bw_meter_timers[time_hash] = x;
 2866     x->bm_time_hash = time_hash;
 2867 }
 2868 
 2869 /*
 2870  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2871  * by removing the entry from the proper hash bucket.
 2872  */
 2873 static void
 2874 unschedule_bw_meter(struct bw_meter *x)
 2875 {
 2876     int time_hash;
 2877     struct bw_meter *prev, *tmp;
 2878 
 2879     MFC_LOCK_ASSERT();
 2880 
 2881     if (!(x->bm_flags & BW_METER_LEQ))
 2882         return;         /* XXX: we schedule timers only for "<=" entries */
 2883 
 2884     /*
 2885      * Compute the timeout hash value and delete the entry
 2886      */
 2887     time_hash = x->bm_time_hash;
 2888     if (time_hash >= BW_METER_BUCKETS)
 2889         return;         /* Entry was not scheduled */
 2890 
 2891     for (prev = NULL, tmp = bw_meter_timers[time_hash];
 2892              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2893         if (tmp == x)
 2894             break;
 2895 
 2896     if (tmp == NULL)
 2897         panic("unschedule_bw_meter: bw_meter entry not found");
 2898 
 2899     if (prev != NULL)
 2900         prev->bm_time_next = x->bm_time_next;
 2901     else
 2902         bw_meter_timers[time_hash] = x->bm_time_next;
 2903 
 2904     x->bm_time_next = NULL;
 2905     x->bm_time_hash = BW_METER_BUCKETS;
 2906 }
 2907 
 2908 
 2909 /*
 2910  * Process all "<=" type of bw_meter that should be processed now,
 2911  * and for each entry prepare an upcall if necessary. Each processed
 2912  * entry is rescheduled again for the (periodic) processing.
 2913  *
 2914  * This is run periodically (once per second normally). On each round,
 2915  * all the potentially matching entries are in the hash slot that we are
 2916  * looking at.
 2917  */
 2918 static void
 2919 bw_meter_process()
 2920 {
 2921     static uint32_t last_tv_sec;        /* last time we processed this */
 2922 
 2923     uint32_t loops;
 2924     int i;
 2925     struct timeval now, process_endtime;
 2926 
 2927     GET_TIME(now);
 2928     if (last_tv_sec == now.tv_sec)
 2929         return;         /* nothing to do */
 2930 
 2931     loops = now.tv_sec - last_tv_sec;
 2932     last_tv_sec = now.tv_sec;
 2933     if (loops > BW_METER_BUCKETS)
 2934         loops = BW_METER_BUCKETS;
 2935 
 2936     MFC_LOCK();
 2937     /*
 2938      * Process all bins of bw_meter entries from the one after the last
 2939      * processed to the current one. On entry, i points to the last bucket
 2940      * visited, so we need to increment i at the beginning of the loop.
 2941      */
 2942     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2943         struct bw_meter *x, *tmp_list;
 2944 
 2945         if (++i >= BW_METER_BUCKETS)
 2946             i = 0;
 2947 
 2948         /* Disconnect the list of bw_meter entries from the bin */
 2949         tmp_list = bw_meter_timers[i];
 2950         bw_meter_timers[i] = NULL;
 2951 
 2952         /* Process the list of bw_meter entries */
 2953         while (tmp_list != NULL) {
 2954             x = tmp_list;
 2955             tmp_list = tmp_list->bm_time_next;
 2956 
 2957             /* Test if the time interval is over */
 2958             process_endtime = x->bm_start_time;
 2959             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2960             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2961                 /* Not yet: reschedule, but don't reset */
 2962                 int time_hash;
 2963 
 2964                 BW_METER_TIMEHASH(x, time_hash);
 2965                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2966                     /*
 2967                      * XXX: somehow the bin processing is a bit ahead of time.
 2968                      * Put the entry in the next bin.
 2969                      */
 2970                     if (++time_hash >= BW_METER_BUCKETS)
 2971                         time_hash = 0;
 2972                 }
 2973                 x->bm_time_next = bw_meter_timers[time_hash];
 2974                 bw_meter_timers[time_hash] = x;
 2975                 x->bm_time_hash = time_hash;
 2976 
 2977                 continue;
 2978             }
 2979 
 2980             /*
 2981              * Test if we should deliver an upcall
 2982              */
 2983             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2984                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2985                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2986                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2987                 /* Prepare an upcall for delivery */
 2988                 bw_meter_prepare_upcall(x, &now);
 2989             }
 2990 
 2991             /*
 2992              * Reschedule for next processing
 2993              */
 2994             schedule_bw_meter(x, &now);
 2995         }
 2996     }
 2997 
 2998     /* Send all upcalls that are pending delivery */
 2999     bw_upcalls_send();
 3000 
 3001     MFC_UNLOCK();
 3002 }
 3003 
 3004 /*
 3005  * A periodic function for sending all upcalls that are pending delivery
 3006  */
 3007 static void
 3008 expire_bw_upcalls_send(void *unused)
 3009 {
 3010     MFC_LOCK();
 3011     bw_upcalls_send();
 3012     MFC_UNLOCK();
 3013 
 3014     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
 3015         expire_bw_upcalls_send, NULL);
 3016 }
 3017 
 3018 /*
 3019  * A periodic function for periodic scanning of the multicast forwarding
 3020  * table for processing all "<=" bw_meter entries.
 3021  */
 3022 static void
 3023 expire_bw_meter_process(void *unused)
 3024 {
 3025     if (mrt_api_config & MRT_MFC_BW_UPCALL)
 3026         bw_meter_process();
 3027 
 3028     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
 3029 }
 3030 
 3031 /*
 3032  * End of bandwidth monitoring code
 3033  */
 3034 
 3035 #ifdef PIM
 3036 /*
 3037  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 3038  *
 3039  */
 3040 static int
 3041 pim_register_send(struct ip *ip, struct vif *vifp,
 3042         struct mbuf *m, struct mfc *rt)
 3043 {
 3044     struct mbuf *mb_copy, *mm;
 3045 
 3046     if (mrtdebug & DEBUG_PIM)
 3047         log(LOG_DEBUG, "pim_register_send: ");
 3048 
 3049     mb_copy = pim_register_prepare(ip, m);
 3050     if (mb_copy == NULL)
 3051         return ENOBUFS;
 3052 
 3053     /*
 3054      * Send all the fragments. Note that the mbuf for each fragment
 3055      * is freed by the sending machinery.
 3056      */
 3057     for (mm = mb_copy; mm; mm = mb_copy) {
 3058         mb_copy = mm->m_nextpkt;
 3059         mm->m_nextpkt = 0;
 3060         mm = m_pullup(mm, sizeof(struct ip));
 3061         if (mm != NULL) {
 3062             ip = mtod(mm, struct ip *);
 3063             if ((mrt_api_config & MRT_MFC_RP) &&
 3064                 (rt->mfc_rp.s_addr != INADDR_ANY)) {
 3065                 pim_register_send_rp(ip, vifp, mm, rt);
 3066             } else {
 3067                 pim_register_send_upcall(ip, vifp, mm, rt);
 3068             }
 3069         }
 3070     }
 3071 
 3072     return 0;
 3073 }
 3074 
 3075 /*
 3076  * Return a copy of the data packet that is ready for PIM Register
 3077  * encapsulation.
 3078  * XXX: Note that in the returned copy the IP header is a valid one.
 3079  */
 3080 static struct mbuf *
 3081 pim_register_prepare(struct ip *ip, struct mbuf *m)
 3082 {
 3083     struct mbuf *mb_copy = NULL;
 3084     int mtu;
 3085 
 3086     /* Take care of delayed checksums */
 3087     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 3088         in_delayed_cksum(m);
 3089         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 3090     }
 3091 
 3092     /*
 3093      * Copy the old packet & pullup its IP header into the
 3094      * new mbuf so we can modify it.
 3095      */
 3096     mb_copy = m_copypacket(m, M_DONTWAIT);
 3097     if (mb_copy == NULL)
 3098         return NULL;
 3099     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 3100     if (mb_copy == NULL)
 3101         return NULL;
 3102 
 3103     /* take care of the TTL */
 3104     ip = mtod(mb_copy, struct ip *);
 3105     --ip->ip_ttl;
 3106 
 3107     /* Compute the MTU after the PIM Register encapsulation */
 3108     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 3109 
 3110     if (ip->ip_len <= mtu) {
 3111         /* Turn the IP header into a valid one */
 3112         ip->ip_len = htons(ip->ip_len);
 3113         ip->ip_off = htons(ip->ip_off);
 3114         ip->ip_sum = 0;
 3115         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 3116     } else {
 3117         /* Fragment the packet */
 3118         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 3119             m_freem(mb_copy);
 3120             return NULL;
 3121         }
 3122     }
 3123     return mb_copy;
 3124 }
 3125 
 3126 /*
 3127  * Send an upcall with the data packet to the user-level process.
 3128  */
 3129 static int
 3130 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 3131         struct mbuf *mb_copy, struct mfc *rt)
 3132 {
 3133     struct mbuf *mb_first;
 3134     int len = ntohs(ip->ip_len);
 3135     struct igmpmsg *im;
 3136     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 3137 
 3138     VIF_LOCK_ASSERT();
 3139 
 3140     /*
 3141      * Add a new mbuf with an upcall header
 3142      */
 3143     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3144     if (mb_first == NULL) {
 3145         m_freem(mb_copy);
 3146         return ENOBUFS;
 3147     }
 3148     mb_first->m_data += max_linkhdr;
 3149     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 3150     mb_first->m_len = sizeof(struct igmpmsg);
 3151     mb_first->m_next = mb_copy;
 3152 
 3153     /* Send message to routing daemon */
 3154     im = mtod(mb_first, struct igmpmsg *);
 3155     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 3156     im->im_mbz          = 0;
 3157     im->im_vif          = vifp - viftable;
 3158     im->im_src          = ip->ip_src;
 3159     im->im_dst          = ip->ip_dst;
 3160 
 3161     k_igmpsrc.sin_addr  = ip->ip_src;
 3162 
 3163     mrtstat.mrts_upcalls++;
 3164 
 3165     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 3166         if (mrtdebug & DEBUG_PIM)
 3167             log(LOG_WARNING,
 3168                 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
 3169         ++mrtstat.mrts_upq_sockfull;
 3170         return ENOBUFS;
 3171     }
 3172 
 3173     /* Keep statistics */
 3174     pimstat.pims_snd_registers_msgs++;
 3175     pimstat.pims_snd_registers_bytes += len;
 3176 
 3177     return 0;
 3178 }
 3179 
 3180 /*
 3181  * Encapsulate the data packet in PIM Register message and send it to the RP.
 3182  */
 3183 static int
 3184 pim_register_send_rp(struct ip *ip, struct vif *vifp,
 3185         struct mbuf *mb_copy, struct mfc *rt)
 3186 {
 3187     struct mbuf *mb_first;
 3188     struct ip *ip_outer;
 3189     struct pim_encap_pimhdr *pimhdr;
 3190     int len = ntohs(ip->ip_len);
 3191     vifi_t vifi = rt->mfc_parent;
 3192 
 3193     VIF_LOCK_ASSERT();
 3194 
 3195     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
 3196         m_freem(mb_copy);
 3197         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 3198     }
 3199 
 3200     /*
 3201      * Add a new mbuf with the encapsulating header
 3202      */
 3203     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3204     if (mb_first == NULL) {
 3205         m_freem(mb_copy);
 3206         return ENOBUFS;
 3207     }
 3208     mb_first->m_data += max_linkhdr;
 3209     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3210     mb_first->m_next = mb_copy;
 3211 
 3212     mb_first->m_pkthdr.len = len + mb_first->m_len;
 3213 
 3214     /*
 3215      * Fill in the encapsulating IP and PIM header
 3216      */
 3217     ip_outer = mtod(mb_first, struct ip *);
 3218     *ip_outer = pim_encap_iphdr;
 3219     ip_outer->ip_id = ip_newid();
 3220     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3221     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
 3222     ip_outer->ip_dst = rt->mfc_rp;
 3223     /*
 3224      * Copy the inner header TOS to the outer header, and take care of the
 3225      * IP_DF bit.
 3226      */
 3227     ip_outer->ip_tos = ip->ip_tos;
 3228     if (ntohs(ip->ip_off) & IP_DF)
 3229         ip_outer->ip_off |= IP_DF;
 3230     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 3231                                          + sizeof(pim_encap_iphdr));
 3232     *pimhdr = pim_encap_pimhdr;
 3233     /* If the iif crosses a border, set the Border-bit */
 3234     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
 3235         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 3236 
 3237     mb_first->m_data += sizeof(pim_encap_iphdr);
 3238     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 3239     mb_first->m_data -= sizeof(pim_encap_iphdr);
 3240 
 3241     if (vifp->v_rate_limit == 0)
 3242         tbf_send_packet(vifp, mb_first);
 3243     else
 3244         tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
 3245 
 3246     /* Keep statistics */
 3247     pimstat.pims_snd_registers_msgs++;
 3248     pimstat.pims_snd_registers_bytes += len;
 3249 
 3250     return 0;
 3251 }
 3252 
 3253 /*
 3254  * PIM-SMv2 and PIM-DM messages processing.
 3255  * Receives and verifies the PIM control messages, and passes them
 3256  * up to the listening socket, using rip_input().
 3257  * The only message with special processing is the PIM_REGISTER message
 3258  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 3259  * is passed to if_simloop().
 3260  */
 3261 void
 3262 pim_input(struct mbuf *m, int off)
 3263 {
 3264     struct ip *ip = mtod(m, struct ip *);
 3265     struct pim *pim;
 3266     int minlen;
 3267     int datalen = ip->ip_len;
 3268     int ip_tos;
 3269     int iphlen = off;
 3270 
 3271     /* Keep statistics */
 3272     pimstat.pims_rcv_total_msgs++;
 3273     pimstat.pims_rcv_total_bytes += datalen;
 3274 
 3275     /*
 3276      * Validate lengths
 3277      */
 3278     if (datalen < PIM_MINLEN) {
 3279         pimstat.pims_rcv_tooshort++;
 3280         log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
 3281             datalen, (u_long)ip->ip_src.s_addr);
 3282         m_freem(m);
 3283         return;
 3284     }
 3285 
 3286     /*
 3287      * If the packet is at least as big as a REGISTER, go agead
 3288      * and grab the PIM REGISTER header size, to avoid another
 3289      * possible m_pullup() later.
 3290      *
 3291      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 3292      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 3293      */
 3294     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 3295     /*
 3296      * Get the IP and PIM headers in contiguous memory, and
 3297      * possibly the PIM REGISTER header.
 3298      */
 3299     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 3300         (m = m_pullup(m, minlen)) == 0) {
 3301         log(LOG_ERR, "pim_input: m_pullup failure\n");
 3302         return;
 3303     }
 3304     /* m_pullup() may have given us a new mbuf so reset ip. */
 3305     ip = mtod(m, struct ip *);
 3306     ip_tos = ip->ip_tos;
 3307 
 3308     /* adjust mbuf to point to the PIM header */
 3309     m->m_data += iphlen;
 3310     m->m_len  -= iphlen;
 3311     pim = mtod(m, struct pim *);
 3312 
 3313     /*
 3314      * Validate checksum. If PIM REGISTER, exclude the data packet.
 3315      *
 3316      * XXX: some older PIMv2 implementations don't make this distinction,
 3317      * so for compatibility reason perform the checksum over part of the
 3318      * message, and if error, then over the whole message.
 3319      */
 3320     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 3321         /* do nothing, checksum okay */
 3322     } else if (in_cksum(m, datalen)) {
 3323         pimstat.pims_rcv_badsum++;
 3324         if (mrtdebug & DEBUG_PIM)
 3325             log(LOG_DEBUG, "pim_input: invalid checksum");
 3326         m_freem(m);
 3327         return;
 3328     }
 3329 
 3330     /* PIM version check */
 3331     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 3332         pimstat.pims_rcv_badversion++;
 3333         log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
 3334             PIM_VT_V(pim->pim_vt), PIM_VERSION);
 3335         m_freem(m);
 3336         return;
 3337     }
 3338 
 3339     /* restore mbuf back to the outer IP */
 3340     m->m_data -= iphlen;
 3341     m->m_len  += iphlen;
 3342 
 3343     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 3344         /*
 3345          * Since this is a REGISTER, we'll make a copy of the register
 3346          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 3347          * routing daemon.
 3348          */
 3349         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 3350         struct mbuf *mcp;
 3351         struct ip *encap_ip;
 3352         u_int32_t *reghdr;
 3353         struct ifnet *vifp;
 3354 
 3355         VIF_LOCK();
 3356         if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
 3357             VIF_UNLOCK();
 3358             if (mrtdebug & DEBUG_PIM)
 3359                 log(LOG_DEBUG,
 3360                     "pim_input: register vif not set: %d\n", reg_vif_num);
 3361             m_freem(m);
 3362             return;
 3363         }
 3364         /* XXX need refcnt? */
 3365         vifp = viftable[reg_vif_num].v_ifp;
 3366         VIF_UNLOCK();
 3367 
 3368         /*
 3369          * Validate length
 3370          */
 3371         if (datalen < PIM_REG_MINLEN) {
 3372             pimstat.pims_rcv_tooshort++;
 3373             pimstat.pims_rcv_badregisters++;
 3374             log(LOG_ERR,
 3375                 "pim_input: register packet size too small %d from %lx\n",
 3376                 datalen, (u_long)ip->ip_src.s_addr);
 3377             m_freem(m);
 3378             return;
 3379         }
 3380 
 3381         reghdr = (u_int32_t *)(pim + 1);
 3382         encap_ip = (struct ip *)(reghdr + 1);
 3383 
 3384         if (mrtdebug & DEBUG_PIM) {
 3385             log(LOG_DEBUG,
 3386                 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
 3387                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3388                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3389                 ntohs(encap_ip->ip_len));
 3390         }
 3391 
 3392         /* verify the version number of the inner packet */
 3393         if (encap_ip->ip_v != IPVERSION) {
 3394             pimstat.pims_rcv_badregisters++;
 3395             if (mrtdebug & DEBUG_PIM) {
 3396                 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
 3397                     "of the inner packet\n", encap_ip->ip_v);
 3398             }
 3399             m_freem(m);
 3400             return;
 3401         }
 3402 
 3403         /* verify the inner packet is destined to a mcast group */
 3404         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 3405             pimstat.pims_rcv_badregisters++;
 3406             if (mrtdebug & DEBUG_PIM)
 3407                 log(LOG_DEBUG,
 3408                     "pim_input: inner packet of register is not "
 3409                     "multicast %lx\n",
 3410                     (u_long)ntohl(encap_ip->ip_dst.s_addr));
 3411             m_freem(m);
 3412             return;
 3413         }
 3414 
 3415         /* If a NULL_REGISTER, pass it to the daemon */
 3416         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 3417             goto pim_input_to_daemon;
 3418 
 3419         /*
 3420          * Copy the TOS from the outer IP header to the inner IP header.
 3421          */
 3422         if (encap_ip->ip_tos != ip_tos) {
 3423             /* Outer TOS -> inner TOS */
 3424             encap_ip->ip_tos = ip_tos;
 3425             /* Recompute the inner header checksum. Sigh... */
 3426 
 3427             /* adjust mbuf to point to the inner IP header */
 3428             m->m_data += (iphlen + PIM_MINLEN);
 3429             m->m_len  -= (iphlen + PIM_MINLEN);
 3430 
 3431             encap_ip->ip_sum = 0;
 3432             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 3433 
 3434             /* restore mbuf to point back to the outer IP header */
 3435             m->m_data -= (iphlen + PIM_MINLEN);
 3436             m->m_len  += (iphlen + PIM_MINLEN);
 3437         }
 3438 
 3439         /*
 3440          * Decapsulate the inner IP packet and loopback to forward it
 3441          * as a normal multicast packet. Also, make a copy of the
 3442          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 3443          * to pass to the daemon later, so it can take the appropriate
 3444          * actions (e.g., send back PIM_REGISTER_STOP).
 3445          * XXX: here m->m_data points to the outer IP header.
 3446          */
 3447         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 3448         if (mcp == NULL) {
 3449             log(LOG_ERR,
 3450                 "pim_input: pim register: could not copy register head\n");
 3451             m_freem(m);
 3452             return;
 3453         }
 3454 
 3455         /* Keep statistics */
 3456         /* XXX: registers_bytes include only the encap. mcast pkt */
 3457         pimstat.pims_rcv_registers_msgs++;
 3458         pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
 3459 
 3460         /*
 3461          * forward the inner ip packet; point m_data at the inner ip.
 3462          */
 3463         m_adj(m, iphlen + PIM_MINLEN);
 3464 
 3465         if (mrtdebug & DEBUG_PIM) {
 3466             log(LOG_DEBUG,
 3467                 "pim_input: forwarding decapsulated register: "
 3468                 "src %lx, dst %lx, vif %d\n",
 3469                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3470                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3471                 reg_vif_num);
 3472         }
 3473         /* NB: vifp was collected above; can it change on us? */
 3474         if_simloop(vifp, m, dst.sin_family, 0);
 3475 
 3476         /* prepare the register head to send to the mrouting daemon */
 3477         m = mcp;
 3478     }
 3479 
 3480 pim_input_to_daemon:
 3481     /*
 3482      * Pass the PIM message up to the daemon; if it is a Register message,
 3483      * pass the 'head' only up to the daemon. This includes the
 3484      * outer IP header, PIM header, PIM-Register header and the
 3485      * inner IP header.
 3486      * XXX: the outer IP header pkt size of a Register is not adjust to
 3487      * reflect the fact that the inner multicast data is truncated.
 3488      */
 3489     rip_input(m, iphlen);
 3490 
 3491     return;
 3492 }
 3493 #endif /* PIM */
 3494 
 3495 static int
 3496 ip_mroute_modevent(module_t mod, int type, void *unused)
 3497 {
 3498     switch (type) {
 3499     case MOD_LOAD:
 3500         mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
 3501         MFC_LOCK_INIT();
 3502         VIF_LOCK_INIT();
 3503         ip_mrouter_reset();
 3504         ip_mcast_src = X_ip_mcast_src;
 3505         ip_mforward = X_ip_mforward;
 3506         ip_mrouter_done = X_ip_mrouter_done;
 3507         ip_mrouter_get = X_ip_mrouter_get;
 3508         ip_mrouter_set = X_ip_mrouter_set;
 3509         ip_rsvp_force_done = X_ip_rsvp_force_done;
 3510         ip_rsvp_vif = X_ip_rsvp_vif;
 3511         legal_vif_num = X_legal_vif_num;
 3512         mrt_ioctl = X_mrt_ioctl;
 3513         rsvp_input_p = X_rsvp_input;
 3514         break;
 3515 
 3516     case MOD_UNLOAD:
 3517         /*
 3518          * Typically module unload happens after the user-level
 3519          * process has shutdown the kernel services (the check
 3520          * below insures someone can't just yank the module out
 3521          * from under a running process).  But if the module is
 3522          * just loaded and then unloaded w/o starting up a user
 3523          * process we still need to cleanup.
 3524          */
 3525         if (ip_mrouter)
 3526             return EINVAL;
 3527 
 3528         X_ip_mrouter_done();
 3529         ip_mcast_src = NULL;
 3530         ip_mforward = NULL;
 3531         ip_mrouter_done = NULL;
 3532         ip_mrouter_get = NULL;
 3533         ip_mrouter_set = NULL;
 3534         ip_rsvp_force_done = NULL;
 3535         ip_rsvp_vif = NULL;
 3536         legal_vif_num = NULL;
 3537         mrt_ioctl = NULL;
 3538         rsvp_input_p = NULL;
 3539         VIF_LOCK_DESTROY();
 3540         MFC_LOCK_DESTROY();
 3541         mtx_destroy(&mrouter_mtx);
 3542         break;
 3543     default:
 3544         return EOPNOTSUPP;
 3545     }
 3546     return 0;
 3547 }
 3548 
 3549 static moduledata_t ip_mroutemod = {
 3550     "ip_mroute",
 3551     ip_mroute_modevent,
 3552     0
 3553 };
 3554 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: 4704b7ca1dd98039f06d12fd6c058bd1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.