The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989 Stephen Deering
    3  * Copyright (c) 1992, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * Stephen Deering of Stanford University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   34  */
   35 
   36 /*
   37  * IP multicast forwarding procedures
   38  *
   39  * Written by David Waitzman, BBN Labs, August 1988.
   40  * Modified by Steve Deering, Stanford, February 1989.
   41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   42  * Modified by Van Jacobson, LBL, January 1993
   43  * Modified by Ajit Thyagarajan, PARC, August 1993
   44  * Modified by Bill Fenner, PARC, April 1995
   45  * Modified by Ahmed Helmy, SGI, June 1996
   46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   48  * Modified by Hitoshi Asaeda, WIDE, August 2000
   49  * Modified by Pavlin Radoslavov, ICSI, October 2002
   50  *
   51  * MROUTING Revision: 3.5
   52  * and PIM-SMv2 and PIM-DM support, advanced API support,
   53  * bandwidth metering and signaling
   54  *
   55  * $FreeBSD$
   56  */
   57 
   58 #include "opt_mac.h"
   59 #include "opt_mrouting.h"
   60 
   61 #ifdef PIM
   62 #define _PIM_VT 1
   63 #endif
   64 
   65 #include <sys/param.h>
   66 #include <sys/kernel.h>
   67 #include <sys/lock.h>
   68 #include <sys/mac.h>
   69 #include <sys/malloc.h>
   70 #include <sys/mbuf.h>
   71 #include <sys/module.h>
   72 #include <sys/protosw.h>
   73 #include <sys/signalvar.h>
   74 #include <sys/socket.h>
   75 #include <sys/socketvar.h>
   76 #include <sys/sockio.h>
   77 #include <sys/sx.h>
   78 #include <sys/sysctl.h>
   79 #include <sys/syslog.h>
   80 #include <sys/systm.h>
   81 #include <sys/time.h>
   82 #include <net/if.h>
   83 #include <net/netisr.h>
   84 #include <net/route.h>
   85 #include <netinet/in.h>
   86 #include <netinet/igmp.h>
   87 #include <netinet/in_systm.h>
   88 #include <netinet/in_var.h>
   89 #include <netinet/ip.h>
   90 #include <netinet/ip_encap.h>
   91 #include <netinet/ip_mroute.h>
   92 #include <netinet/ip_var.h>
   93 #ifdef PIM
   94 #include <netinet/pim.h>
   95 #include <netinet/pim_var.h>
   96 #endif
   97 #include <netinet/udp.h>
   98 #include <machine/in_cksum.h>
   99 
  100 /*
  101  * Control debugging code for rsvp and multicast routing code.
  102  * Can only set them with the debugger.
  103  */
  104 static u_int    rsvpdebug;              /* non-zero enables debugging   */
  105 
  106 static u_int    mrtdebug;               /* any set of the flags below   */
  107 #define         DEBUG_MFC       0x02
  108 #define         DEBUG_FORWARD   0x04
  109 #define         DEBUG_EXPIRE    0x08
  110 #define         DEBUG_XMIT      0x10
  111 #define         DEBUG_PIM       0x20
  112 
  113 #define         VIFI_INVALID    ((vifi_t) -1)
  114 
  115 #define M_HASCL(m)      ((m)->m_flags & M_EXT)
  116 
  117 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
  118 
  119 /*
  120  * Locking.  We use two locks: one for the virtual interface table and
  121  * one for the forwarding table.  These locks may be nested in which case
  122  * the VIF lock must always be taken first.  Note that each lock is used
  123  * to cover not only the specific data structure but also related data
  124  * structures.  It may be better to add more fine-grained locking later;
  125  * it's not clear how performance-critical this code is.
  126  *
  127  * XXX: This module could particularly benefit from being cleaned
  128  *      up to use the <sys/queue.h> macros.
  129  *
  130  */
  131 
  132 static struct mrtstat   mrtstat;
  133 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
  134     &mrtstat, mrtstat,
  135     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
  136 
  137 static struct mfc       *mfctable[MFCTBLSIZ];
  138 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
  139     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
  140     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
  141 
  142 static struct mtx mfc_mtx;
  143 #define MFC_LOCK()      mtx_lock(&mfc_mtx)
  144 #define MFC_UNLOCK()    mtx_unlock(&mfc_mtx)
  145 #define MFC_LOCK_ASSERT()       do {                                    \
  146         mtx_assert(&mfc_mtx, MA_OWNED);                                 \
  147         NET_ASSERT_GIANT();                                             \
  148 } while (0)
  149 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
  150 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  151 
  152 static struct vif       viftable[MAXVIFS];
  153 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  154     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
  155     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  156 
  157 static struct mtx vif_mtx;
  158 #define VIF_LOCK()      mtx_lock(&vif_mtx)
  159 #define VIF_UNLOCK()    mtx_unlock(&vif_mtx)
  160 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  161 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
  162 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  163 
  164 static u_char           nexpire[MFCTBLSIZ];
  165 
  166 static eventhandler_tag if_detach_event_tag = NULL;
  167 
  168 static struct callout expire_upcalls_ch;
  169 
  170 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  171 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  172 
  173 /*
  174  * Define the token bucket filter structures
  175  * tbftable -> each vif has one of these for storing info
  176  */
  177 
  178 static struct tbf tbftable[MAXVIFS];
  179 #define         TBF_REPROCESS   (hz / 100)      /* 100x / second */
  180 
  181 /*
  182  * 'Interfaces' associated with decapsulator (so we can tell
  183  * packets that went through it from ones that get reflected
  184  * by a broken gateway).  These interfaces are never linked into
  185  * the system ifnet list & no routes point to them.  I.e., packets
  186  * can't be sent this way.  They only exist as a placeholder for
  187  * multicast source verification.
  188  */
  189 static struct ifnet multicast_decap_if[MAXVIFS];
  190 
  191 #define ENCAP_TTL 64
  192 #define ENCAP_PROTO IPPROTO_IPIP        /* 4 */
  193 
  194 /* prototype IP hdr for encapsulated packets */
  195 static struct ip multicast_encap_iphdr = {
  196 #if BYTE_ORDER == LITTLE_ENDIAN
  197         sizeof(struct ip) >> 2, IPVERSION,
  198 #else
  199         IPVERSION, sizeof(struct ip) >> 2,
  200 #endif
  201         0,                              /* tos */
  202         sizeof(struct ip),              /* total length */
  203         0,                              /* id */
  204         0,                              /* frag offset */
  205         ENCAP_TTL, ENCAP_PROTO,
  206         0,                              /* checksum */
  207 };
  208 
  209 /*
  210  * Bandwidth meter variables and constants
  211  */
  212 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  213 /*
  214  * Pending timeouts are stored in a hash table, the key being the
  215  * expiration time. Periodically, the entries are analysed and processed.
  216  */
  217 #define BW_METER_BUCKETS        1024
  218 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
  219 static struct callout bw_meter_ch;
  220 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  221 
  222 /*
  223  * Pending upcalls are stored in a vector which is flushed when
  224  * full, or periodically
  225  */
  226 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
  227 static u_int    bw_upcalls_n; /* # of pending upcalls */
  228 static struct callout bw_upcalls_ch;
  229 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  230 
  231 #ifdef PIM
  232 static struct pimstat pimstat;
  233 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  234     &pimstat, pimstat,
  235     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  236 
  237 /*
  238  * Note: the PIM Register encapsulation adds the following in front of a
  239  * data packet:
  240  *
  241  * struct pim_encap_hdr {
  242  *    struct ip ip;
  243  *    struct pim_encap_pimhdr  pim;
  244  * }
  245  *
  246  */
  247 
  248 struct pim_encap_pimhdr {
  249         struct pim pim;
  250         uint32_t   flags;
  251 };
  252 
  253 static struct ip pim_encap_iphdr = {
  254 #if BYTE_ORDER == LITTLE_ENDIAN
  255         sizeof(struct ip) >> 2,
  256         IPVERSION,
  257 #else
  258         IPVERSION,
  259         sizeof(struct ip) >> 2,
  260 #endif
  261         0,                      /* tos */
  262         sizeof(struct ip),      /* total length */
  263         0,                      /* id */
  264         0,                      /* frag offset */
  265         ENCAP_TTL,
  266         IPPROTO_PIM,
  267         0,                      /* checksum */
  268 };
  269 
  270 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  271     {
  272         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  273         0,                      /* reserved */
  274         0,                      /* checksum */
  275     },
  276     0                           /* flags */
  277 };
  278 
  279 static struct ifnet multicast_register_if;
  280 static vifi_t reg_vif_num = VIFI_INVALID;
  281 #endif /* PIM */
  282 
  283 /*
  284  * Private variables.
  285  */
  286 static vifi_t      numvifs;
  287 static const struct encaptab *encap_cookie;
  288 
  289 /*
  290  * one-back cache used by mroute_encapcheck to locate a tunnel's vif
  291  * given a datagram's src ip address.
  292  */
  293 static u_long last_encap_src;
  294 static struct vif *last_encap_vif;
  295 
  296 /*
  297  * Callout for queue processing.
  298  */
  299 static struct callout tbf_reprocess_ch;
  300 
  301 static u_long   X_ip_mcast_src(int vifi);
  302 static int      X_ip_mforward(struct ip *ip, struct ifnet *ifp,
  303                         struct mbuf *m, struct ip_moptions *imo);
  304 static int      X_ip_mrouter_done(void);
  305 static int      X_ip_mrouter_get(struct socket *so, struct sockopt *m);
  306 static int      X_ip_mrouter_set(struct socket *so, struct sockopt *m);
  307 static int      X_legal_vif_num(int vif);
  308 static int      X_mrt_ioctl(int cmd, caddr_t data);
  309 
  310 static int get_sg_cnt(struct sioc_sg_req *);
  311 static int get_vif_cnt(struct sioc_vif_req *);
  312 static void if_detached_event(void *arg __unused, struct ifnet *);
  313 static int ip_mrouter_init(struct socket *, int);
  314 static int add_vif(struct vifctl *);
  315 static int del_vif_locked(vifi_t);
  316 static int del_vif(vifi_t);
  317 static int add_mfc(struct mfcctl2 *);
  318 static int del_mfc(struct mfcctl2 *);
  319 static int set_api_config(uint32_t *); /* chose API capabilities */
  320 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
  321 static int set_assert(int);
  322 static void expire_upcalls(void *);
  323 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  324 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
  325 static void encap_send(struct ip *, struct vif *, struct mbuf *);
  326 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_long);
  327 static void tbf_queue(struct vif *, struct mbuf *);
  328 static void tbf_process_q(struct vif *);
  329 static void tbf_reprocess_q(void *);
  330 static int tbf_dq_sel(struct vif *, struct ip *);
  331 static void tbf_send_packet(struct vif *, struct mbuf *);
  332 static void tbf_update_tokens(struct vif *);
  333 static int priority(struct vif *, struct ip *);
  334 
  335 /*
  336  * Bandwidth monitoring
  337  */
  338 static void free_bw_list(struct bw_meter *list);
  339 static int add_bw_upcall(struct bw_upcall *);
  340 static int del_bw_upcall(struct bw_upcall *);
  341 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
  342                 struct timeval *nowp);
  343 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
  344 static void bw_upcalls_send(void);
  345 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
  346 static void unschedule_bw_meter(struct bw_meter *x);
  347 static void bw_meter_process(void);
  348 static void expire_bw_upcalls_send(void *);
  349 static void expire_bw_meter_process(void *);
  350 
  351 #ifdef PIM
  352 static int pim_register_send(struct ip *, struct vif *,
  353                 struct mbuf *, struct mfc *);
  354 static int pim_register_send_rp(struct ip *, struct vif *,
  355                 struct mbuf *, struct mfc *);
  356 static int pim_register_send_upcall(struct ip *, struct vif *,
  357                 struct mbuf *, struct mfc *);
  358 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
  359 #endif
  360 
  361 /*
  362  * whether or not special PIM assert processing is enabled.
  363  */
  364 static int pim_assert;
  365 /*
  366  * Rate limit for assert notification messages, in usec
  367  */
  368 #define ASSERT_MSG_TIME         3000000
  369 
  370 /*
  371  * Kernel multicast routing API capabilities and setup.
  372  * If more API capabilities are added to the kernel, they should be
  373  * recorded in `mrt_api_support'.
  374  */
  375 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  376                                          MRT_MFC_FLAGS_BORDER_VIF |
  377                                          MRT_MFC_RP |
  378                                          MRT_MFC_BW_UPCALL);
  379 static uint32_t mrt_api_config = 0;
  380 
  381 /*
  382  * Hash function for a source, group entry
  383  */
  384 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
  385                         ((g) >> 20) ^ ((g) >> 10) ^ (g))
  386 
  387 /*
  388  * Find a route for a given origin IP address and Multicast group address
  389  * Type of service parameter to be added in the future!!!
  390  * Statistics are updated by the caller if needed
  391  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
  392  */
  393 static struct mfc *
  394 mfc_find(in_addr_t o, in_addr_t g)
  395 {
  396     struct mfc *rt;
  397 
  398     MFC_LOCK_ASSERT();
  399 
  400     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
  401         if ((rt->mfc_origin.s_addr == o) &&
  402                 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
  403             break;
  404     return rt;
  405 }
  406 
  407 /*
  408  * Macros to compute elapsed time efficiently
  409  * Borrowed from Van Jacobson's scheduling code
  410  */
  411 #define TV_DELTA(a, b, delta) {                                 \
  412         int xxs;                                                \
  413         delta = (a).tv_usec - (b).tv_usec;                      \
  414         if ((xxs = (a).tv_sec - (b).tv_sec)) {                  \
  415                 switch (xxs) {                                  \
  416                 case 2:                                         \
  417                       delta += 1000000;                         \
  418                       /* FALLTHROUGH */                         \
  419                 case 1:                                         \
  420                       delta += 1000000;                         \
  421                       break;                                    \
  422                 default:                                        \
  423                       delta += (1000000 * xxs);                 \
  424                 }                                               \
  425         }                                                       \
  426 }
  427 
  428 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
  429               (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
  430 
  431 /*
  432  * Handle MRT setsockopt commands to modify the multicast routing tables.
  433  */
  434 static int
  435 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  436 {
  437     int error, optval;
  438     vifi_t      vifi;
  439     struct      vifctl vifc;
  440     struct      mfcctl2 mfc;
  441     struct      bw_upcall bw_upcall;
  442     uint32_t    i;
  443 
  444     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
  445         return EPERM;
  446 
  447     error = 0;
  448     switch (sopt->sopt_name) {
  449     case MRT_INIT:
  450         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  451         if (error)
  452             break;
  453         error = ip_mrouter_init(so, optval);
  454         break;
  455 
  456     case MRT_DONE:
  457         error = ip_mrouter_done();
  458         break;
  459 
  460     case MRT_ADD_VIF:
  461         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  462         if (error)
  463             break;
  464         error = add_vif(&vifc);
  465         break;
  466 
  467     case MRT_DEL_VIF:
  468         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  469         if (error)
  470             break;
  471         error = del_vif(vifi);
  472         break;
  473 
  474     case MRT_ADD_MFC:
  475     case MRT_DEL_MFC:
  476         /*
  477          * select data size depending on API version.
  478          */
  479         if (sopt->sopt_name == MRT_ADD_MFC &&
  480                 mrt_api_config & MRT_API_FLAGS_ALL) {
  481             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  482                                 sizeof(struct mfcctl2));
  483         } else {
  484             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  485                                 sizeof(struct mfcctl));
  486             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  487                         sizeof(mfc) - sizeof(struct mfcctl));
  488         }
  489         if (error)
  490             break;
  491         if (sopt->sopt_name == MRT_ADD_MFC)
  492             error = add_mfc(&mfc);
  493         else
  494             error = del_mfc(&mfc);
  495         break;
  496 
  497     case MRT_ASSERT:
  498         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  499         if (error)
  500             break;
  501         set_assert(optval);
  502         break;
  503 
  504     case MRT_API_CONFIG:
  505         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  506         if (!error)
  507             error = set_api_config(&i);
  508         if (!error)
  509             error = sooptcopyout(sopt, &i, sizeof i);
  510         break;
  511 
  512     case MRT_ADD_BW_UPCALL:
  513     case MRT_DEL_BW_UPCALL:
  514         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  515                                 sizeof bw_upcall);
  516         if (error)
  517             break;
  518         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  519             error = add_bw_upcall(&bw_upcall);
  520         else
  521             error = del_bw_upcall(&bw_upcall);
  522         break;
  523 
  524     default:
  525         error = EOPNOTSUPP;
  526         break;
  527     }
  528     return error;
  529 }
  530 
  531 /*
  532  * Handle MRT getsockopt commands
  533  */
  534 static int
  535 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  536 {
  537     int error;
  538     static int version = 0x0305; /* !!! why is this here? XXX */
  539 
  540     switch (sopt->sopt_name) {
  541     case MRT_VERSION:
  542         error = sooptcopyout(sopt, &version, sizeof version);
  543         break;
  544 
  545     case MRT_ASSERT:
  546         error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
  547         break;
  548 
  549     case MRT_API_SUPPORT:
  550         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  551         break;
  552 
  553     case MRT_API_CONFIG:
  554         error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
  555         break;
  556 
  557     default:
  558         error = EOPNOTSUPP;
  559         break;
  560     }
  561     return error;
  562 }
  563 
  564 /*
  565  * Handle ioctl commands to obtain information from the cache
  566  */
  567 static int
  568 X_mrt_ioctl(int cmd, caddr_t data)
  569 {
  570     int error = 0;
  571 
  572     /*
  573      * Currently the only function calling this ioctl routine is rtioctl().
  574      * Typically, only root can create the raw socket in order to execute
  575      * this ioctl method, however the request might be coming from a prison
  576      */
  577     error = suser(curthread);
  578     if (error)
  579         return (error);
  580     switch (cmd) {
  581     case (SIOCGETVIFCNT):
  582         error = get_vif_cnt((struct sioc_vif_req *)data);
  583         break;
  584 
  585     case (SIOCGETSGCNT):
  586         error = get_sg_cnt((struct sioc_sg_req *)data);
  587         break;
  588 
  589     default:
  590         error = EINVAL;
  591         break;
  592     }
  593     return error;
  594 }
  595 
  596 /*
  597  * returns the packet, byte, rpf-failure count for the source group provided
  598  */
  599 static int
  600 get_sg_cnt(struct sioc_sg_req *req)
  601 {
  602     struct mfc *rt;
  603 
  604     MFC_LOCK();
  605     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
  606     if (rt == NULL) {
  607         MFC_UNLOCK();
  608         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  609         return EADDRNOTAVAIL;
  610     }
  611     req->pktcnt = rt->mfc_pkt_cnt;
  612     req->bytecnt = rt->mfc_byte_cnt;
  613     req->wrong_if = rt->mfc_wrong_if;
  614     MFC_UNLOCK();
  615     return 0;
  616 }
  617 
  618 /*
  619  * returns the input and output packet and byte counts on the vif provided
  620  */
  621 static int
  622 get_vif_cnt(struct sioc_vif_req *req)
  623 {
  624     vifi_t vifi = req->vifi;
  625 
  626     VIF_LOCK();
  627     if (vifi >= numvifs) {
  628         VIF_UNLOCK();
  629         return EINVAL;
  630     }
  631 
  632     req->icount = viftable[vifi].v_pkt_in;
  633     req->ocount = viftable[vifi].v_pkt_out;
  634     req->ibytes = viftable[vifi].v_bytes_in;
  635     req->obytes = viftable[vifi].v_bytes_out;
  636     VIF_UNLOCK();
  637 
  638     return 0;
  639 }
  640 
  641 static void
  642 ip_mrouter_reset(void)
  643 {
  644     bzero((caddr_t)mfctable, sizeof(mfctable));
  645     bzero((caddr_t)nexpire, sizeof(nexpire));
  646 
  647     pim_assert = 0;
  648     mrt_api_config = 0;
  649 
  650     callout_init(&expire_upcalls_ch, NET_CALLOUT_MPSAFE);
  651 
  652     bw_upcalls_n = 0;
  653     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
  654     callout_init(&bw_upcalls_ch, NET_CALLOUT_MPSAFE);
  655     callout_init(&bw_meter_ch, NET_CALLOUT_MPSAFE);
  656 
  657     callout_init(&tbf_reprocess_ch, NET_CALLOUT_MPSAFE);
  658 }
  659 
  660 static struct mtx mrouter_mtx;          /* used to synch init/done work */
  661 
  662 static void
  663 if_detached_event(void *arg __unused, struct ifnet *ifp)
  664 {
  665     vifi_t vifi;
  666     int i;
  667     struct mfc *mfc;
  668     struct mfc *nmfc;
  669     struct mfc **ppmfc; /* Pointer to previous node's next-pointer */
  670     struct rtdetq *pq;
  671     struct rtdetq *npq;
  672 
  673     mtx_lock(&mrouter_mtx);
  674     if (ip_mrouter == NULL) {
  675         mtx_unlock(&mrouter_mtx);
  676     }
  677 
  678     /*
  679      * Tear down multicast forwarder state associated with this ifnet.
  680      * 1. Walk the vif list, matching vifs against this ifnet.
  681      * 2. Walk the multicast forwarding cache (mfc) looking for
  682      *    inner matches with this vif's index.
  683      * 3. Free any pending mbufs for this mfc.
  684      * 4. Free the associated mfc entry and state associated with this vif.
  685      *    Be very careful about unlinking from a singly-linked list whose
  686      *    "head node" is a pointer in a simple array.
  687      * 5. Free vif state. This should disable ALLMULTI on the interface.
  688      */
  689     VIF_LOCK();
  690     MFC_LOCK();
  691     for (vifi = 0; vifi < numvifs; vifi++) {
  692         if (viftable[vifi].v_ifp != ifp)
  693                 continue;
  694         for (i = 0; i < MFCTBLSIZ; i++) {
  695             ppmfc = &mfctable[i];
  696             for (mfc = mfctable[i]; mfc != NULL; ) {
  697                 nmfc = mfc->mfc_next;
  698                 if (mfc->mfc_parent == vifi) {
  699                     for (pq = mfc->mfc_stall; pq != NULL; ) {
  700                         npq = pq->next;
  701                         m_freem(pq->m);
  702                         free(pq, M_MRTABLE);
  703                         pq = npq;
  704                     }
  705                     free_bw_list(mfc->mfc_bw_meter);
  706                     free(mfc, M_MRTABLE);
  707                     *ppmfc = nmfc;
  708                 } else {
  709                     ppmfc = &mfc->mfc_next;
  710                 }
  711                 mfc = nmfc;
  712             }
  713         }
  714         del_vif_locked(vifi);
  715     }
  716     MFC_UNLOCK();
  717     VIF_UNLOCK();
  718 
  719     mtx_unlock(&mrouter_mtx);
  720 }
  721                         
  722 /*
  723  * Enable multicast routing
  724  */
  725 static int
  726 ip_mrouter_init(struct socket *so, int version)
  727 {
  728     if (mrtdebug)
  729         log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
  730             so->so_type, so->so_proto->pr_protocol);
  731 
  732     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  733         return EOPNOTSUPP;
  734 
  735     if (version != 1)
  736         return ENOPROTOOPT;
  737 
  738     mtx_lock(&mrouter_mtx);
  739 
  740     if (ip_mrouter != NULL) {
  741         mtx_unlock(&mrouter_mtx);
  742         return EADDRINUSE;
  743     }
  744 
  745     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 
  746         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
  747     if (if_detach_event_tag == NULL) {
  748         mtx_unlock(&mrouter_mtx);
  749         return (ENOMEM);
  750     }
  751 
  752     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
  753 
  754     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
  755         expire_bw_upcalls_send, NULL);
  756     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
  757 
  758     ip_mrouter = so;
  759 
  760     mtx_unlock(&mrouter_mtx);
  761 
  762     if (mrtdebug)
  763         log(LOG_DEBUG, "ip_mrouter_init\n");
  764 
  765     return 0;
  766 }
  767 
  768 /*
  769  * Disable multicast routing
  770  */
  771 static int
  772 X_ip_mrouter_done(void)
  773 {
  774     vifi_t vifi;
  775     int i;
  776     struct ifnet *ifp;
  777     struct ifreq ifr;
  778     struct mfc *rt;
  779     struct rtdetq *rte;
  780 
  781     mtx_lock(&mrouter_mtx);
  782 
  783     if (ip_mrouter == NULL) {
  784         mtx_unlock(&mrouter_mtx);
  785         return EINVAL;
  786     }
  787 
  788     /*
  789      * Detach/disable hooks to the reset of the system.
  790      */
  791     ip_mrouter = NULL;
  792     mrt_api_config = 0;
  793 
  794     VIF_LOCK();
  795     if (encap_cookie) {
  796         const struct encaptab *c = encap_cookie;
  797         encap_cookie = NULL;
  798         encap_detach(c);
  799     }
  800     VIF_UNLOCK();
  801 
  802     callout_stop(&tbf_reprocess_ch);
  803 
  804     VIF_LOCK();
  805     /*
  806      * For each phyint in use, disable promiscuous reception of all IP
  807      * multicasts.
  808      */
  809     for (vifi = 0; vifi < numvifs; vifi++) {
  810         if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
  811                 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  812             struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
  813 
  814             so->sin_len = sizeof(struct sockaddr_in);
  815             so->sin_family = AF_INET;
  816             so->sin_addr.s_addr = INADDR_ANY;
  817             ifp = viftable[vifi].v_ifp;
  818             if_allmulti(ifp, 0);
  819         }
  820     }
  821     bzero((caddr_t)tbftable, sizeof(tbftable));
  822     bzero((caddr_t)viftable, sizeof(viftable));
  823     numvifs = 0;
  824     pim_assert = 0;
  825     VIF_UNLOCK();
  826     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
  827 
  828     /*
  829      * Free all multicast forwarding cache entries.
  830      */
  831     callout_stop(&expire_upcalls_ch);
  832     callout_stop(&bw_upcalls_ch);
  833     callout_stop(&bw_meter_ch);
  834 
  835     MFC_LOCK();
  836     for (i = 0; i < MFCTBLSIZ; i++) {
  837         for (rt = mfctable[i]; rt != NULL; ) {
  838             struct mfc *nr = rt->mfc_next;
  839 
  840             for (rte = rt->mfc_stall; rte != NULL; ) {
  841                 struct rtdetq *n = rte->next;
  842 
  843                 m_freem(rte->m);
  844                 free(rte, M_MRTABLE);
  845                 rte = n;
  846             }
  847             free_bw_list(rt->mfc_bw_meter);
  848             free(rt, M_MRTABLE);
  849             rt = nr;
  850         }
  851     }
  852     bzero((caddr_t)mfctable, sizeof(mfctable));
  853     bzero((caddr_t)nexpire, sizeof(nexpire));
  854     bw_upcalls_n = 0;
  855     bzero(bw_meter_timers, sizeof(bw_meter_timers));
  856     MFC_UNLOCK();
  857 
  858     /*
  859      * Reset de-encapsulation cache
  860      */
  861     last_encap_src = INADDR_ANY;
  862     last_encap_vif = NULL;
  863 #ifdef PIM
  864     reg_vif_num = VIFI_INVALID;
  865 #endif
  866 
  867     mtx_unlock(&mrouter_mtx);
  868 
  869     if (mrtdebug)
  870         log(LOG_DEBUG, "ip_mrouter_done\n");
  871 
  872     return 0;
  873 }
  874 
  875 /*
  876  * Set PIM assert processing global
  877  */
  878 static int
  879 set_assert(int i)
  880 {
  881     if ((i != 1) && (i != 0))
  882         return EINVAL;
  883 
  884     pim_assert = i;
  885 
  886     return 0;
  887 }
  888 
  889 /*
  890  * Configure API capabilities
  891  */
  892 int
  893 set_api_config(uint32_t *apival)
  894 {
  895     int i;
  896 
  897     /*
  898      * We can set the API capabilities only if it is the first operation
  899      * after MRT_INIT. I.e.:
  900      *  - there are no vifs installed
  901      *  - pim_assert is not enabled
  902      *  - the MFC table is empty
  903      */
  904     if (numvifs > 0) {
  905         *apival = 0;
  906         return EPERM;
  907     }
  908     if (pim_assert) {
  909         *apival = 0;
  910         return EPERM;
  911     }
  912     for (i = 0; i < MFCTBLSIZ; i++) {
  913         if (mfctable[i] != NULL) {
  914             *apival = 0;
  915             return EPERM;
  916         }
  917     }
  918 
  919     mrt_api_config = *apival & mrt_api_support;
  920     *apival = mrt_api_config;
  921 
  922     return 0;
  923 }
  924 
  925 /*
  926  * Decide if a packet is from a tunnelled peer.
  927  * Return 0 if not, 64 if so.  XXX yuck.. 64 ???
  928  */
  929 static int
  930 mroute_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
  931 {
  932     struct ip *ip = mtod(m, struct ip *);
  933     int hlen = ip->ip_hl << 2;
  934 
  935     /*
  936      * don't claim the packet if it's not to a multicast destination or if
  937      * we don't have an encapsulating tunnel with the source.
  938      * Note:  This code assumes that the remote site IP address
  939      * uniquely identifies the tunnel (i.e., that this site has
  940      * at most one tunnel with the remote site).
  941      */
  942     if (!IN_MULTICAST(ntohl(((struct ip *)((char *)ip+hlen))->ip_dst.s_addr)))
  943         return 0;
  944     if (ip->ip_src.s_addr != last_encap_src) {
  945         struct vif *vifp = viftable;
  946         struct vif *vife = vifp + numvifs;
  947 
  948         last_encap_src = ip->ip_src.s_addr;
  949         last_encap_vif = NULL;
  950         for ( ; vifp < vife; ++vifp)
  951             if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
  952                 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT)) == VIFF_TUNNEL)
  953                     last_encap_vif = vifp;
  954                 break;
  955             }
  956     }
  957     if (last_encap_vif == NULL) {
  958         last_encap_src = INADDR_ANY;
  959         return 0;
  960     }
  961     return 64;
  962 }
  963 
  964 /*
  965  * De-encapsulate a packet and feed it back through ip input (this
  966  * routine is called whenever IP gets a packet that mroute_encap_func()
  967  * claimed).
  968  */
  969 static void
  970 mroute_encap_input(struct mbuf *m, int off)
  971 {
  972     struct ip *ip = mtod(m, struct ip *);
  973     int hlen = ip->ip_hl << 2;
  974 
  975     if (hlen > sizeof(struct ip))
  976         ip_stripoptions(m, (struct mbuf *) 0);
  977     m->m_data += sizeof(struct ip);
  978     m->m_len -= sizeof(struct ip);
  979     m->m_pkthdr.len -= sizeof(struct ip);
  980 
  981     m->m_pkthdr.rcvif = last_encap_vif->v_ifp;
  982 
  983     netisr_queue(NETISR_IP, m);         /* mbuf is free'd on failure. */
  984     /*
  985      * normally we would need a "schednetisr(NETISR_IP)"
  986      * here but we were called by ip_input and it is going
  987      * to loop back & try to dequeue the packet we just
  988      * queued as soon as we return so we avoid the
  989      * unnecessary software interrrupt.
  990      *
  991      * XXX
  992      * This no longer holds - we may have direct-dispatched the packet,
  993      * or there may be a queue processing limit.
  994      */
  995 }
  996 
  997 extern struct domain inetdomain;
  998 static struct protosw mroute_encap_protosw =
  999 {
 1000         .pr_type =              SOCK_RAW,
 1001         .pr_domain =            &inetdomain,
 1002         .pr_protocol =          IPPROTO_IPV4,
 1003         .pr_flags =             PR_ATOMIC|PR_ADDR,
 1004         .pr_input =             mroute_encap_input,
 1005         .pr_ctloutput =         rip_ctloutput,
 1006         .pr_usrreqs =           &rip_usrreqs
 1007 };
 1008 
 1009 /*
 1010  * Add a vif to the vif table
 1011  */
 1012 static int
 1013 add_vif(struct vifctl *vifcp)
 1014 {
 1015     struct vif *vifp = viftable + vifcp->vifc_vifi;
 1016     struct sockaddr_in sin = {sizeof sin, AF_INET};
 1017     struct ifaddr *ifa;
 1018     struct ifnet *ifp;
 1019     int error;
 1020     struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
 1021 
 1022     VIF_LOCK();
 1023     if (vifcp->vifc_vifi >= MAXVIFS) {
 1024         VIF_UNLOCK();
 1025         return EINVAL;
 1026     }
 1027     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
 1028         VIF_UNLOCK();
 1029         return EADDRINUSE;
 1030     }
 1031     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
 1032         VIF_UNLOCK();
 1033         return EADDRNOTAVAIL;
 1034     }
 1035 
 1036     /* Find the interface with an address in AF_INET family */
 1037 #ifdef PIM
 1038     if (vifcp->vifc_flags & VIFF_REGISTER) {
 1039         /*
 1040          * XXX: Because VIFF_REGISTER does not really need a valid
 1041          * local interface (e.g. it could be 127.0.0.2), we don't
 1042          * check its address.
 1043          */
 1044         ifp = NULL;
 1045     } else
 1046 #endif
 1047     {
 1048         sin.sin_addr = vifcp->vifc_lcl_addr;
 1049         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
 1050         if (ifa == NULL) {
 1051             VIF_UNLOCK();
 1052             return EADDRNOTAVAIL;
 1053         }
 1054         ifp = ifa->ifa_ifp;
 1055     }
 1056 
 1057     if (vifcp->vifc_flags & VIFF_TUNNEL) {
 1058         if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
 1059             /*
 1060              * An encapsulating tunnel is wanted.  Tell
 1061              * mroute_encap_input() to start paying attention
 1062              * to encapsulated packets.
 1063              */
 1064             if (encap_cookie == NULL) {
 1065                 int i;
 1066 
 1067                 encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4,
 1068                                 mroute_encapcheck,
 1069                                 (struct protosw *)&mroute_encap_protosw, NULL);
 1070 
 1071                 if (encap_cookie == NULL) {
 1072                     printf("ip_mroute: unable to attach encap\n");
 1073                     VIF_UNLOCK();
 1074                     return EIO; /* XXX */
 1075                 }
 1076                 for (i = 0; i < MAXVIFS; ++i) {
 1077                     if_initname(&multicast_decap_if[i], "mdecap", i);
 1078                 }
 1079             }
 1080             /*
 1081              * Set interface to fake encapsulator interface
 1082              */
 1083             ifp = &multicast_decap_if[vifcp->vifc_vifi];
 1084             /*
 1085              * Prepare cached route entry
 1086              */
 1087             bzero(&vifp->v_route, sizeof(vifp->v_route));
 1088         } else {
 1089             log(LOG_ERR, "source routed tunnels not supported\n");
 1090             VIF_UNLOCK();
 1091             return EOPNOTSUPP;
 1092         }
 1093 #ifdef PIM
 1094     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
 1095         ifp = &multicast_register_if;
 1096         if (mrtdebug)
 1097             log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
 1098                     (void *)&multicast_register_if);
 1099         if (reg_vif_num == VIFI_INVALID) {
 1100             if_initname(&multicast_register_if, "register_vif", 0);
 1101             multicast_register_if.if_flags = IFF_LOOPBACK;
 1102             bzero(&vifp->v_route, sizeof(vifp->v_route));
 1103             reg_vif_num = vifcp->vifc_vifi;
 1104         }
 1105 #endif
 1106     } else {            /* Make sure the interface supports multicast */
 1107         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
 1108             VIF_UNLOCK();
 1109             return EOPNOTSUPP;
 1110         }
 1111 
 1112         /* Enable promiscuous reception of all IP multicasts from the if */
 1113         error = if_allmulti(ifp, 1);
 1114         if (error) {
 1115             VIF_UNLOCK();
 1116             return error;
 1117         }
 1118     }
 1119 
 1120     /* define parameters for the tbf structure */
 1121     vifp->v_tbf = v_tbf;
 1122     GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
 1123     vifp->v_tbf->tbf_n_tok = 0;
 1124     vifp->v_tbf->tbf_q_len = 0;
 1125     vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
 1126     vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
 1127 
 1128     vifp->v_flags     = vifcp->vifc_flags;
 1129     vifp->v_threshold = vifcp->vifc_threshold;
 1130     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
 1131     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
 1132     vifp->v_ifp       = ifp;
 1133     /* scaling up here allows division by 1024 in critical code */
 1134     vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
 1135     vifp->v_rsvp_on   = 0;
 1136     vifp->v_rsvpd     = NULL;
 1137     /* initialize per vif pkt counters */
 1138     vifp->v_pkt_in    = 0;
 1139     vifp->v_pkt_out   = 0;
 1140     vifp->v_bytes_in  = 0;
 1141     vifp->v_bytes_out = 0;
 1142 
 1143     /* Adjust numvifs up if the vifi is higher than numvifs */
 1144     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
 1145 
 1146     VIF_UNLOCK();
 1147 
 1148     if (mrtdebug)
 1149         log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
 1150             vifcp->vifc_vifi,
 1151             (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
 1152             (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
 1153             (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
 1154             vifcp->vifc_threshold,
 1155             vifcp->vifc_rate_limit);
 1156 
 1157     return 0;
 1158 }
 1159 
 1160 /*
 1161  * Delete a vif from the vif table
 1162  */
 1163 static int
 1164 del_vif_locked(vifi_t vifi)
 1165 {
 1166     struct vif *vifp;
 1167 
 1168     VIF_LOCK_ASSERT();
 1169 
 1170     if (vifi >= numvifs) {
 1171         return EINVAL;
 1172     }
 1173     vifp = &viftable[vifi];
 1174     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
 1175         return EADDRNOTAVAIL;
 1176     }
 1177 
 1178     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1179         if_allmulti(vifp->v_ifp, 0);
 1180 
 1181     if (vifp == last_encap_vif) {
 1182         last_encap_vif = NULL;
 1183         last_encap_src = INADDR_ANY;
 1184     }
 1185 
 1186     /*
 1187      * Free packets queued at the interface
 1188      */
 1189     while (vifp->v_tbf->tbf_q) {
 1190         struct mbuf *m = vifp->v_tbf->tbf_q;
 1191 
 1192         vifp->v_tbf->tbf_q = m->m_act;
 1193         m_freem(m);
 1194     }
 1195 
 1196 #ifdef PIM
 1197     if (vifp->v_flags & VIFF_REGISTER)
 1198         reg_vif_num = VIFI_INVALID;
 1199 #endif
 1200 
 1201     bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
 1202     bzero((caddr_t)vifp, sizeof (*vifp));
 1203 
 1204     if (mrtdebug)
 1205         log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
 1206 
 1207     /* Adjust numvifs down */
 1208     for (vifi = numvifs; vifi > 0; vifi--)
 1209         if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
 1210             break;
 1211     numvifs = vifi;
 1212 
 1213     return 0;
 1214 }
 1215 
 1216 static int
 1217 del_vif(vifi_t vifi)
 1218 {
 1219     int cc;
 1220 
 1221     VIF_LOCK();
 1222     cc = del_vif_locked(vifi);
 1223     VIF_UNLOCK();
 1224 
 1225     return cc;
 1226 }
 1227 
 1228 /*
 1229  * update an mfc entry without resetting counters and S,G addresses.
 1230  */
 1231 static void
 1232 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1233 {
 1234     int i;
 1235 
 1236     rt->mfc_parent = mfccp->mfcc_parent;
 1237     for (i = 0; i < numvifs; i++) {
 1238         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1239         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
 1240             MRT_MFC_FLAGS_ALL;
 1241     }
 1242     /* set the RP address */
 1243     if (mrt_api_config & MRT_MFC_RP)
 1244         rt->mfc_rp = mfccp->mfcc_rp;
 1245     else
 1246         rt->mfc_rp.s_addr = INADDR_ANY;
 1247 }
 1248 
 1249 /*
 1250  * fully initialize an mfc entry from the parameter.
 1251  */
 1252 static void
 1253 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1254 {
 1255     rt->mfc_origin     = mfccp->mfcc_origin;
 1256     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1257 
 1258     update_mfc_params(rt, mfccp);
 1259 
 1260     /* initialize pkt counters per src-grp */
 1261     rt->mfc_pkt_cnt    = 0;
 1262     rt->mfc_byte_cnt   = 0;
 1263     rt->mfc_wrong_if   = 0;
 1264     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
 1265 }
 1266 
 1267 
 1268 /*
 1269  * Add an mfc entry
 1270  */
 1271 static int
 1272 add_mfc(struct mfcctl2 *mfccp)
 1273 {
 1274     struct mfc *rt;
 1275     u_long hash;
 1276     struct rtdetq *rte;
 1277     u_short nstl;
 1278 
 1279     VIF_LOCK();
 1280     MFC_LOCK();
 1281 
 1282     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1283 
 1284     /* If an entry already exists, just update the fields */
 1285     if (rt) {
 1286         if (mrtdebug & DEBUG_MFC)
 1287             log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
 1288                 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1289                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1290                 mfccp->mfcc_parent);
 1291 
 1292         update_mfc_params(rt, mfccp);
 1293         MFC_UNLOCK();
 1294         VIF_UNLOCK();
 1295         return 0;
 1296     }
 1297 
 1298     /*
 1299      * Find the entry for which the upcall was made and update
 1300      */
 1301     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1302     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
 1303 
 1304         if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1305                 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
 1306                 (rt->mfc_stall != NULL)) {
 1307 
 1308             if (nstl++)
 1309                 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
 1310                     "multiple kernel entries",
 1311                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1312                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1313                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1314 
 1315             if (mrtdebug & DEBUG_MFC)
 1316                 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
 1317                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1318                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1319                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1320 
 1321             init_mfc_params(rt, mfccp);
 1322 
 1323             rt->mfc_expire = 0; /* Don't clean this guy up */
 1324             nexpire[hash]--;
 1325 
 1326             /* free packets Qed at the end of this entry */
 1327             for (rte = rt->mfc_stall; rte != NULL; ) {
 1328                 struct rtdetq *n = rte->next;
 1329 
 1330                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1331                 m_freem(rte->m);
 1332                 free(rte, M_MRTABLE);
 1333                 rte = n;
 1334             }
 1335             rt->mfc_stall = NULL;
 1336         }
 1337     }
 1338 
 1339     /*
 1340      * It is possible that an entry is being inserted without an upcall
 1341      */
 1342     if (nstl == 0) {
 1343         if (mrtdebug & DEBUG_MFC)
 1344             log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
 1345                 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1346                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1347                 mfccp->mfcc_parent);
 1348 
 1349         for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
 1350             if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1351                     (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
 1352                 init_mfc_params(rt, mfccp);
 1353                 if (rt->mfc_expire)
 1354                     nexpire[hash]--;
 1355                 rt->mfc_expire = 0;
 1356                 break; /* XXX */
 1357             }
 1358         }
 1359         if (rt == NULL) {               /* no upcall, so make a new entry */
 1360             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1361             if (rt == NULL) {
 1362                 MFC_UNLOCK();
 1363                 VIF_UNLOCK();
 1364                 return ENOBUFS;
 1365             }
 1366 
 1367             init_mfc_params(rt, mfccp);
 1368             rt->mfc_expire     = 0;
 1369             rt->mfc_stall      = NULL;
 1370 
 1371             rt->mfc_bw_meter = NULL;
 1372             /* insert new entry at head of hash chain */
 1373             rt->mfc_next = mfctable[hash];
 1374             mfctable[hash] = rt;
 1375         }
 1376     }
 1377     MFC_UNLOCK();
 1378     VIF_UNLOCK();
 1379     return 0;
 1380 }
 1381 
 1382 /*
 1383  * Delete an mfc entry
 1384  */
 1385 static int
 1386 del_mfc(struct mfcctl2 *mfccp)
 1387 {
 1388     struct in_addr      origin;
 1389     struct in_addr      mcastgrp;
 1390     struct mfc          *rt;
 1391     struct mfc          **nptr;
 1392     u_long              hash;
 1393     struct bw_meter     *list;
 1394 
 1395     origin = mfccp->mfcc_origin;
 1396     mcastgrp = mfccp->mfcc_mcastgrp;
 1397 
 1398     if (mrtdebug & DEBUG_MFC)
 1399         log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
 1400             (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1401 
 1402     MFC_LOCK();
 1403 
 1404     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
 1405     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
 1406         if (origin.s_addr == rt->mfc_origin.s_addr &&
 1407                 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
 1408                 rt->mfc_stall == NULL)
 1409             break;
 1410     if (rt == NULL) {
 1411         MFC_UNLOCK();
 1412         return EADDRNOTAVAIL;
 1413     }
 1414 
 1415     *nptr = rt->mfc_next;
 1416 
 1417     /*
 1418      * free the bw_meter entries
 1419      */
 1420     list = rt->mfc_bw_meter;
 1421     rt->mfc_bw_meter = NULL;
 1422 
 1423     free(rt, M_MRTABLE);
 1424 
 1425     free_bw_list(list);
 1426 
 1427     MFC_UNLOCK();
 1428 
 1429     return 0;
 1430 }
 1431 
 1432 /*
 1433  * Send a message to mrouted on the multicast routing socket
 1434  */
 1435 static int
 1436 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1437 {
 1438     if (s) {
 1439         SOCKBUF_LOCK(&s->so_rcv);
 1440         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1441             NULL) != 0) {
 1442             sorwakeup_locked(s);
 1443             return 0;
 1444         }
 1445         SOCKBUF_UNLOCK(&s->so_rcv);
 1446     }
 1447     m_freem(mm);
 1448     return -1;
 1449 }
 1450 
 1451 /*
 1452  * IP multicast forwarding function. This function assumes that the packet
 1453  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1454  * pointed to by "ifp", and the packet is to be relayed to other networks
 1455  * that have members of the packet's destination IP multicast group.
 1456  *
 1457  * The packet is returned unscathed to the caller, unless it is
 1458  * erroneous, in which case a non-zero return value tells the caller to
 1459  * discard it.
 1460  */
 1461 
 1462 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1463 
 1464 static int
 1465 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1466     struct ip_moptions *imo)
 1467 {
 1468     struct mfc *rt;
 1469     int error;
 1470     vifi_t vifi;
 1471 
 1472     if (mrtdebug & DEBUG_FORWARD)
 1473         log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
 1474             (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
 1475             (void *)ifp);
 1476 
 1477     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1478                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1479         /*
 1480          * Packet arrived via a physical interface or
 1481          * an encapsulated tunnel or a register_vif.
 1482          */
 1483     } else {
 1484         /*
 1485          * Packet arrived through a source-route tunnel.
 1486          * Source-route tunnels are no longer supported.
 1487          */
 1488         static int last_log;
 1489         if (last_log != time_second) {
 1490             last_log = time_second;
 1491             log(LOG_ERR,
 1492                 "ip_mforward: received source-routed packet from %lx\n",
 1493                 (u_long)ntohl(ip->ip_src.s_addr));
 1494         }
 1495         return 1;
 1496     }
 1497 
 1498     VIF_LOCK();
 1499     MFC_LOCK();
 1500     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
 1501         if (ip->ip_ttl < 255)
 1502             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1503         if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1504             struct vif *vifp = viftable + vifi;
 1505 
 1506             printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
 1507                 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
 1508                 vifi,
 1509                 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
 1510                 vifp->v_ifp->if_xname);
 1511         }
 1512         error = ip_mdq(m, ifp, NULL, vifi);
 1513         MFC_UNLOCK();
 1514         VIF_UNLOCK();
 1515         return error;
 1516     }
 1517     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1518         printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
 1519             (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
 1520         if (!imo)
 1521             printf("In fact, no options were specified at all\n");
 1522     }
 1523 
 1524     /*
 1525      * Don't forward a packet with time-to-live of zero or one,
 1526      * or a packet destined to a local-only group.
 1527      */
 1528     if (ip->ip_ttl <= 1 || ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP) {
 1529         MFC_UNLOCK();
 1530         VIF_UNLOCK();
 1531         return 0;
 1532     }
 1533 
 1534     /*
 1535      * Determine forwarding vifs from the forwarding cache table
 1536      */
 1537     ++mrtstat.mrts_mfc_lookups;
 1538     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1539 
 1540     /* Entry exists, so forward if necessary */
 1541     if (rt != NULL) {
 1542         error = ip_mdq(m, ifp, rt, -1);
 1543         MFC_UNLOCK();
 1544         VIF_UNLOCK();
 1545         return error;
 1546     } else {
 1547         /*
 1548          * If we don't have a route for packet's origin,
 1549          * Make a copy of the packet & send message to routing daemon
 1550          */
 1551 
 1552         struct mbuf *mb0;
 1553         struct rtdetq *rte;
 1554         u_long hash;
 1555         int hlen = ip->ip_hl << 2;
 1556 
 1557         ++mrtstat.mrts_mfc_misses;
 1558 
 1559         mrtstat.mrts_no_route++;
 1560         if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
 1561             log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
 1562                 (u_long)ntohl(ip->ip_src.s_addr),
 1563                 (u_long)ntohl(ip->ip_dst.s_addr));
 1564 
 1565         /*
 1566          * Allocate mbufs early so that we don't do extra work if we are
 1567          * just going to fail anyway.  Make sure to pullup the header so
 1568          * that other people can't step on it.
 1569          */
 1570         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
 1571         if (rte == NULL) {
 1572             MFC_UNLOCK();
 1573             VIF_UNLOCK();
 1574             return ENOBUFS;
 1575         }
 1576         mb0 = m_copypacket(m, M_DONTWAIT);
 1577         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1578             mb0 = m_pullup(mb0, hlen);
 1579         if (mb0 == NULL) {
 1580             free(rte, M_MRTABLE);
 1581             MFC_UNLOCK();
 1582             VIF_UNLOCK();
 1583             return ENOBUFS;
 1584         }
 1585 
 1586         /* is there an upcall waiting for this flow ? */
 1587         hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1588         for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
 1589             if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
 1590                     (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
 1591                     (rt->mfc_stall != NULL))
 1592                 break;
 1593         }
 1594 
 1595         if (rt == NULL) {
 1596             int i;
 1597             struct igmpmsg *im;
 1598             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1599             struct mbuf *mm;
 1600 
 1601             /*
 1602              * Locate the vifi for the incoming interface for this packet.
 1603              * If none found, drop packet.
 1604              */
 1605             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1606                 ;
 1607             if (vifi >= numvifs)        /* vif not found, drop packet */
 1608                 goto non_fatal;
 1609 
 1610             /* no upcall, so make a new entry */
 1611             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1612             if (rt == NULL)
 1613                 goto fail;
 1614             /* Make a copy of the header to send to the user level process */
 1615             mm = m_copy(mb0, 0, hlen);
 1616             if (mm == NULL)
 1617                 goto fail1;
 1618 
 1619             /*
 1620              * Send message to routing daemon to install
 1621              * a route into the kernel table
 1622              */
 1623 
 1624             im = mtod(mm, struct igmpmsg *);
 1625             im->im_msgtype = IGMPMSG_NOCACHE;
 1626             im->im_mbz = 0;
 1627             im->im_vif = vifi;
 1628 
 1629             mrtstat.mrts_upcalls++;
 1630 
 1631             k_igmpsrc.sin_addr = ip->ip_src;
 1632             if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1633                 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
 1634                 ++mrtstat.mrts_upq_sockfull;
 1635 fail1:
 1636                 free(rt, M_MRTABLE);
 1637 fail:
 1638                 free(rte, M_MRTABLE);
 1639                 m_freem(mb0);
 1640                 MFC_UNLOCK();
 1641                 VIF_UNLOCK();
 1642                 return ENOBUFS;
 1643             }
 1644 
 1645             /* insert new entry at head of hash chain */
 1646             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1647             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1648             rt->mfc_expire            = UPCALL_EXPIRE;
 1649             nexpire[hash]++;
 1650             for (i = 0; i < numvifs; i++) {
 1651                 rt->mfc_ttls[i] = 0;
 1652                 rt->mfc_flags[i] = 0;
 1653             }
 1654             rt->mfc_parent = -1;
 1655 
 1656             rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
 1657 
 1658             rt->mfc_bw_meter = NULL;
 1659 
 1660             /* link into table */
 1661             rt->mfc_next   = mfctable[hash];
 1662             mfctable[hash] = rt;
 1663             rt->mfc_stall = rte;
 1664 
 1665         } else {
 1666             /* determine if q has overflowed */
 1667             int npkts = 0;
 1668             struct rtdetq **p;
 1669 
 1670             /*
 1671              * XXX ouch! we need to append to the list, but we
 1672              * only have a pointer to the front, so we have to
 1673              * scan the entire list every time.
 1674              */
 1675             for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
 1676                 npkts++;
 1677 
 1678             if (npkts > MAX_UPQ) {
 1679                 mrtstat.mrts_upq_ovflw++;
 1680 non_fatal:
 1681                 free(rte, M_MRTABLE);
 1682                 m_freem(mb0);
 1683                 MFC_UNLOCK();
 1684                 VIF_UNLOCK();
 1685                 return 0;
 1686             }
 1687 
 1688             /* Add this entry to the end of the queue */
 1689             *p = rte;
 1690         }
 1691 
 1692         rte->m                  = mb0;
 1693         rte->ifp                = ifp;
 1694         rte->next               = NULL;
 1695 
 1696         MFC_UNLOCK();
 1697         VIF_UNLOCK();
 1698 
 1699         return 0;
 1700     }
 1701 }
 1702 
 1703 /*
 1704  * Clean up the cache entry if upcall is not serviced
 1705  */
 1706 static void
 1707 expire_upcalls(void *unused)
 1708 {
 1709     struct rtdetq *rte;
 1710     struct mfc *mfc, **nptr;
 1711     int i;
 1712 
 1713     MFC_LOCK();
 1714     for (i = 0; i < MFCTBLSIZ; i++) {
 1715         if (nexpire[i] == 0)
 1716             continue;
 1717         nptr = &mfctable[i];
 1718         for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
 1719             /*
 1720              * Skip real cache entries
 1721              * Make sure it wasn't marked to not expire (shouldn't happen)
 1722              * If it expires now
 1723              */
 1724             if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
 1725                     --mfc->mfc_expire == 0) {
 1726                 if (mrtdebug & DEBUG_EXPIRE)
 1727                     log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
 1728                         (u_long)ntohl(mfc->mfc_origin.s_addr),
 1729                         (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
 1730                 /*
 1731                  * drop all the packets
 1732                  * free the mbuf with the pkt, if, timing info
 1733                  */
 1734                 for (rte = mfc->mfc_stall; rte; ) {
 1735                     struct rtdetq *n = rte->next;
 1736 
 1737                     m_freem(rte->m);
 1738                     free(rte, M_MRTABLE);
 1739                     rte = n;
 1740                 }
 1741                 ++mrtstat.mrts_cache_cleanups;
 1742                 nexpire[i]--;
 1743 
 1744                 /*
 1745                  * free the bw_meter entries
 1746                  */
 1747                 while (mfc->mfc_bw_meter != NULL) {
 1748                     struct bw_meter *x = mfc->mfc_bw_meter;
 1749 
 1750                     mfc->mfc_bw_meter = x->bm_mfc_next;
 1751                     free(x, M_BWMETER);
 1752                 }
 1753 
 1754                 *nptr = mfc->mfc_next;
 1755                 free(mfc, M_MRTABLE);
 1756             } else {
 1757                 nptr = &mfc->mfc_next;
 1758             }
 1759         }
 1760     }
 1761     MFC_UNLOCK();
 1762 
 1763     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
 1764 }
 1765 
 1766 /*
 1767  * Packet forwarding routine once entry in the cache is made
 1768  */
 1769 static int
 1770 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1771 {
 1772     struct ip  *ip = mtod(m, struct ip *);
 1773     vifi_t vifi;
 1774     int plen = ip->ip_len;
 1775 
 1776     VIF_LOCK_ASSERT();
 1777 /*
 1778  * Macro to send packet on vif.  Since RSVP packets don't get counted on
 1779  * input, they shouldn't get counted on output, so statistics keeping is
 1780  * separate.
 1781  */
 1782 #define MC_SEND(ip,vifp,m) {                            \
 1783                 if ((vifp)->v_flags & VIFF_TUNNEL)      \
 1784                     encap_send((ip), (vifp), (m));      \
 1785                 else                                    \
 1786                     phyint_send((ip), (vifp), (m));     \
 1787 }
 1788 
 1789     /*
 1790      * If xmt_vif is not -1, send on only the requested vif.
 1791      *
 1792      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1793      */
 1794     if (xmt_vif < numvifs) {
 1795 #ifdef PIM
 1796         if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1797             pim_register_send(ip, viftable + xmt_vif, m, rt);
 1798         else
 1799 #endif
 1800         MC_SEND(ip, viftable + xmt_vif, m);
 1801         return 1;
 1802     }
 1803 
 1804     /*
 1805      * Don't forward if it didn't arrive from the parent vif for its origin.
 1806      */
 1807     vifi = rt->mfc_parent;
 1808     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
 1809         /* came in the wrong interface */
 1810         if (mrtdebug & DEBUG_FORWARD)
 1811             log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
 1812                 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
 1813         ++mrtstat.mrts_wrong_if;
 1814         ++rt->mfc_wrong_if;
 1815         /*
 1816          * If we are doing PIM assert processing, send a message
 1817          * to the routing daemon.
 1818          *
 1819          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1820          * can complete the SPT switch, regardless of the type
 1821          * of the iif (broadcast media, GRE tunnel, etc).
 1822          */
 1823         if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
 1824             struct timeval now;
 1825             u_long delta;
 1826 
 1827 #ifdef PIM
 1828             if (ifp == &multicast_register_if)
 1829                 pimstat.pims_rcv_registers_wrongiif++;
 1830 #endif
 1831 
 1832             /* Get vifi for the incoming packet */
 1833             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1834                 ;
 1835             if (vifi >= numvifs)
 1836                 return 0;       /* The iif is not found: ignore the packet. */
 1837 
 1838             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1839                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1840 
 1841             GET_TIME(now);
 1842 
 1843             TV_DELTA(now, rt->mfc_last_assert, delta);
 1844 
 1845             if (delta > ASSERT_MSG_TIME) {
 1846                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1847                 struct igmpmsg *im;
 1848                 int hlen = ip->ip_hl << 2;
 1849                 struct mbuf *mm = m_copy(m, 0, hlen);
 1850 
 1851                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1852                     mm = m_pullup(mm, hlen);
 1853                 if (mm == NULL)
 1854                     return ENOBUFS;
 1855 
 1856                 rt->mfc_last_assert = now;
 1857 
 1858                 im = mtod(mm, struct igmpmsg *);
 1859                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1860                 im->im_mbz              = 0;
 1861                 im->im_vif              = vifi;
 1862 
 1863                 mrtstat.mrts_upcalls++;
 1864 
 1865                 k_igmpsrc.sin_addr = im->im_src;
 1866                 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1867                     log(LOG_WARNING,
 1868                         "ip_mforward: ip_mrouter socket queue full\n");
 1869                     ++mrtstat.mrts_upq_sockfull;
 1870                     return ENOBUFS;
 1871                 }
 1872             }
 1873         }
 1874         return 0;
 1875     }
 1876 
 1877     /* If I sourced this packet, it counts as output, else it was input. */
 1878     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
 1879         viftable[vifi].v_pkt_out++;
 1880         viftable[vifi].v_bytes_out += plen;
 1881     } else {
 1882         viftable[vifi].v_pkt_in++;
 1883         viftable[vifi].v_bytes_in += plen;
 1884     }
 1885     rt->mfc_pkt_cnt++;
 1886     rt->mfc_byte_cnt += plen;
 1887 
 1888     /*
 1889      * For each vif, decide if a copy of the packet should be forwarded.
 1890      * Forward if:
 1891      *          - the ttl exceeds the vif's threshold
 1892      *          - there are group members downstream on interface
 1893      */
 1894     for (vifi = 0; vifi < numvifs; vifi++)
 1895         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1896             viftable[vifi].v_pkt_out++;
 1897             viftable[vifi].v_bytes_out += plen;
 1898 #ifdef PIM
 1899             if (viftable[vifi].v_flags & VIFF_REGISTER)
 1900                 pim_register_send(ip, viftable + vifi, m, rt);
 1901             else
 1902 #endif
 1903             MC_SEND(ip, viftable+vifi, m);
 1904         }
 1905 
 1906     /*
 1907      * Perform upcall-related bw measuring.
 1908      */
 1909     if (rt->mfc_bw_meter != NULL) {
 1910         struct bw_meter *x;
 1911         struct timeval now;
 1912 
 1913         GET_TIME(now);
 1914         MFC_LOCK_ASSERT();
 1915         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1916             bw_meter_receive_packet(x, plen, &now);
 1917     }
 1918 
 1919     return 0;
 1920 }
 1921 
 1922 /*
 1923  * check if a vif number is legal/ok. This is used by ip_output.
 1924  */
 1925 static int
 1926 X_legal_vif_num(int vif)
 1927 {
 1928     /* XXX unlocked, matter? */
 1929     return (vif >= 0 && vif < numvifs);
 1930 }
 1931 
 1932 /*
 1933  * Return the local address used by this vif
 1934  */
 1935 static u_long
 1936 X_ip_mcast_src(int vifi)
 1937 {
 1938     /* XXX unlocked, matter? */
 1939     if (vifi >= 0 && vifi < numvifs)
 1940         return viftable[vifi].v_lcl_addr.s_addr;
 1941     else
 1942         return INADDR_ANY;
 1943 }
 1944 
 1945 static void
 1946 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1947 {
 1948     struct mbuf *mb_copy;
 1949     int hlen = ip->ip_hl << 2;
 1950 
 1951     VIF_LOCK_ASSERT();
 1952 
 1953     /*
 1954      * Make a new reference to the packet; make sure that
 1955      * the IP header is actually copied, not just referenced,
 1956      * so that ip_output() only scribbles on the copy.
 1957      */
 1958     mb_copy = m_copypacket(m, M_DONTWAIT);
 1959     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1960         mb_copy = m_pullup(mb_copy, hlen);
 1961     if (mb_copy == NULL)
 1962         return;
 1963 
 1964     if (vifp->v_rate_limit == 0)
 1965         tbf_send_packet(vifp, mb_copy);
 1966     else
 1967         tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
 1968 }
 1969 
 1970 static void
 1971 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1972 {
 1973     struct mbuf *mb_copy;
 1974     struct ip *ip_copy;
 1975     int i, len = ip->ip_len;
 1976 
 1977     VIF_LOCK_ASSERT();
 1978 
 1979     /* Take care of delayed checksums */
 1980     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 1981         in_delayed_cksum(m);
 1982         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 1983     }
 1984 
 1985     /*
 1986      * copy the old packet & pullup its IP header into the
 1987      * new mbuf so we can modify it.  Try to fill the new
 1988      * mbuf since if we don't the ethernet driver will.
 1989      */
 1990     MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
 1991     if (mb_copy == NULL)
 1992         return;
 1993 #ifdef MAC
 1994     mac_create_mbuf_multicast_encap(m, vifp->v_ifp, mb_copy);
 1995 #endif
 1996     mb_copy->m_data += max_linkhdr;
 1997     mb_copy->m_len = sizeof(multicast_encap_iphdr);
 1998 
 1999     if ((mb_copy->m_next = m_copypacket(m, M_DONTWAIT)) == NULL) {
 2000         m_freem(mb_copy);
 2001         return;
 2002     }
 2003     i = MHLEN - M_LEADINGSPACE(mb_copy);
 2004     if (i > len)
 2005         i = len;
 2006     mb_copy = m_pullup(mb_copy, i);
 2007     if (mb_copy == NULL)
 2008         return;
 2009     mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
 2010 
 2011     /*
 2012      * fill in the encapsulating IP header.
 2013      */
 2014     ip_copy = mtod(mb_copy, struct ip *);
 2015     *ip_copy = multicast_encap_iphdr;
 2016     ip_copy->ip_id = ip_newid();
 2017     ip_copy->ip_len += len;
 2018     ip_copy->ip_src = vifp->v_lcl_addr;
 2019     ip_copy->ip_dst = vifp->v_rmt_addr;
 2020 
 2021     /*
 2022      * turn the encapsulated IP header back into a valid one.
 2023      */
 2024     ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
 2025     --ip->ip_ttl;
 2026     ip->ip_len = htons(ip->ip_len);
 2027     ip->ip_off = htons(ip->ip_off);
 2028     ip->ip_sum = 0;
 2029     mb_copy->m_data += sizeof(multicast_encap_iphdr);
 2030     ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2031     mb_copy->m_data -= sizeof(multicast_encap_iphdr);
 2032 
 2033     if (vifp->v_rate_limit == 0)
 2034         tbf_send_packet(vifp, mb_copy);
 2035     else
 2036         tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
 2037 }
 2038 
 2039 /*
 2040  * Token bucket filter module
 2041  */
 2042 
 2043 static void
 2044 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip, u_long p_len)
 2045 {
 2046     struct tbf *t = vifp->v_tbf;
 2047 
 2048     VIF_LOCK_ASSERT();
 2049 
 2050     if (p_len > MAX_BKT_SIZE) {         /* drop if packet is too large */
 2051         mrtstat.mrts_pkt2large++;
 2052         m_freem(m);
 2053         return;
 2054     }
 2055 
 2056     tbf_update_tokens(vifp);
 2057 
 2058     if (t->tbf_q_len == 0) {            /* queue empty...               */
 2059         if (p_len <= t->tbf_n_tok) {    /* send packet if enough tokens */
 2060             t->tbf_n_tok -= p_len;
 2061             tbf_send_packet(vifp, m);
 2062         } else {                        /* no, queue packet and try later */
 2063             tbf_queue(vifp, m);
 2064             callout_reset(&tbf_reprocess_ch, TBF_REPROCESS,
 2065                 tbf_reprocess_q, vifp);
 2066         }
 2067     } else if (t->tbf_q_len < t->tbf_max_q_len) {
 2068         /* finite queue length, so queue pkts and process queue */
 2069         tbf_queue(vifp, m);
 2070         tbf_process_q(vifp);
 2071     } else {
 2072         /* queue full, try to dq and queue and process */
 2073         if (!tbf_dq_sel(vifp, ip)) {
 2074             mrtstat.mrts_q_overflow++;
 2075             m_freem(m);
 2076         } else {
 2077             tbf_queue(vifp, m);
 2078             tbf_process_q(vifp);
 2079         }
 2080     }
 2081 }
 2082 
 2083 /*
 2084  * adds a packet to the queue at the interface
 2085  */
 2086 static void
 2087 tbf_queue(struct vif *vifp, struct mbuf *m)
 2088 {
 2089     struct tbf *t = vifp->v_tbf;
 2090 
 2091     VIF_LOCK_ASSERT();
 2092 
 2093     if (t->tbf_t == NULL)       /* Queue was empty */
 2094         t->tbf_q = m;
 2095     else                        /* Insert at tail */
 2096         t->tbf_t->m_act = m;
 2097 
 2098     t->tbf_t = m;               /* Set new tail pointer */
 2099 
 2100 #ifdef DIAGNOSTIC
 2101     /* Make sure we didn't get fed a bogus mbuf */
 2102     if (m->m_act)
 2103         panic("tbf_queue: m_act");
 2104 #endif
 2105     m->m_act = NULL;
 2106 
 2107     t->tbf_q_len++;
 2108 }
 2109 
 2110 /*
 2111  * processes the queue at the interface
 2112  */
 2113 static void
 2114 tbf_process_q(struct vif *vifp)
 2115 {
 2116     struct tbf *t = vifp->v_tbf;
 2117 
 2118     VIF_LOCK_ASSERT();
 2119 
 2120     /* loop through the queue at the interface and send as many packets
 2121      * as possible
 2122      */
 2123     while (t->tbf_q_len > 0) {
 2124         struct mbuf *m = t->tbf_q;
 2125         int len = mtod(m, struct ip *)->ip_len;
 2126 
 2127         /* determine if the packet can be sent */
 2128         if (len > t->tbf_n_tok) /* not enough tokens, we are done */
 2129             break;
 2130         /* ok, reduce no of tokens, dequeue and send the packet. */
 2131         t->tbf_n_tok -= len;
 2132 
 2133         t->tbf_q = m->m_act;
 2134         if (--t->tbf_q_len == 0)
 2135             t->tbf_t = NULL;
 2136 
 2137         m->m_act = NULL;
 2138         tbf_send_packet(vifp, m);
 2139     }
 2140 }
 2141 
 2142 static void
 2143 tbf_reprocess_q(void *xvifp)
 2144 {
 2145     struct vif *vifp = xvifp;
 2146 
 2147     if (ip_mrouter == NULL)
 2148         return;
 2149     VIF_LOCK();
 2150     tbf_update_tokens(vifp);
 2151     tbf_process_q(vifp);
 2152     if (vifp->v_tbf->tbf_q_len)
 2153         callout_reset(&tbf_reprocess_ch, TBF_REPROCESS, tbf_reprocess_q, vifp);
 2154     VIF_UNLOCK();
 2155 }
 2156 
 2157 /* function that will selectively discard a member of the queue
 2158  * based on the precedence value and the priority
 2159  */
 2160 static int
 2161 tbf_dq_sel(struct vif *vifp, struct ip *ip)
 2162 {
 2163     u_int p;
 2164     struct mbuf *m, *last;
 2165     struct mbuf **np;
 2166     struct tbf *t = vifp->v_tbf;
 2167 
 2168     VIF_LOCK_ASSERT();
 2169 
 2170     p = priority(vifp, ip);
 2171 
 2172     np = &t->tbf_q;
 2173     last = NULL;
 2174     while ((m = *np) != NULL) {
 2175         if (p > priority(vifp, mtod(m, struct ip *))) {
 2176             *np = m->m_act;
 2177             /* If we're removing the last packet, fix the tail pointer */
 2178             if (m == t->tbf_t)
 2179                 t->tbf_t = last;
 2180             m_freem(m);
 2181             /* It's impossible for the queue to be empty, but check anyways. */
 2182             if (--t->tbf_q_len == 0)
 2183                 t->tbf_t = NULL;
 2184             mrtstat.mrts_drop_sel++;
 2185             return 1;
 2186         }
 2187         np = &m->m_act;
 2188         last = m;
 2189     }
 2190     return 0;
 2191 }
 2192 
 2193 static void
 2194 tbf_send_packet(struct vif *vifp, struct mbuf *m)
 2195 {
 2196     VIF_LOCK_ASSERT();
 2197 
 2198     if (vifp->v_flags & VIFF_TUNNEL)    /* If tunnel options */
 2199         ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, NULL, NULL);
 2200     else {
 2201         struct ip_moptions imo;
 2202         int error;
 2203         static struct route ro; /* XXX check this */
 2204 
 2205         imo.imo_multicast_ifp  = vifp->v_ifp;
 2206         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 2207         imo.imo_multicast_loop = 1;
 2208         imo.imo_multicast_vif  = -1;
 2209 
 2210         /*
 2211          * Re-entrancy should not be a problem here, because
 2212          * the packets that we send out and are looped back at us
 2213          * should get rejected because they appear to come from
 2214          * the loopback interface, thus preventing looping.
 2215          */
 2216         error = ip_output(m, NULL, &ro, IP_FORWARDING, &imo, NULL);
 2217 
 2218         if (mrtdebug & DEBUG_XMIT)
 2219             log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
 2220                 (int)(vifp - viftable), error);
 2221     }
 2222 }
 2223 
 2224 /* determine the current time and then
 2225  * the elapsed time (between the last time and time now)
 2226  * in milliseconds & update the no. of tokens in the bucket
 2227  */
 2228 static void
 2229 tbf_update_tokens(struct vif *vifp)
 2230 {
 2231     struct timeval tp;
 2232     u_long tm;
 2233     struct tbf *t = vifp->v_tbf;
 2234 
 2235     VIF_LOCK_ASSERT();
 2236 
 2237     GET_TIME(tp);
 2238 
 2239     TV_DELTA(tp, t->tbf_last_pkt_t, tm);
 2240 
 2241     /*
 2242      * This formula is actually
 2243      * "time in seconds" * "bytes/second".
 2244      *
 2245      * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
 2246      *
 2247      * The (1000/1024) was introduced in add_vif to optimize
 2248      * this divide into a shift.
 2249      */
 2250     t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
 2251     t->tbf_last_pkt_t = tp;
 2252 
 2253     if (t->tbf_n_tok > MAX_BKT_SIZE)
 2254         t->tbf_n_tok = MAX_BKT_SIZE;
 2255 }
 2256 
 2257 static int
 2258 priority(struct vif *vifp, struct ip *ip)
 2259 {
 2260     int prio = 50; /* the lowest priority -- default case */
 2261 
 2262     /* temporary hack; may add general packet classifier some day */
 2263 
 2264     /*
 2265      * The UDP port space is divided up into four priority ranges:
 2266      * [0, 16384)     : unclassified - lowest priority
 2267      * [16384, 32768) : audio - highest priority
 2268      * [32768, 49152) : whiteboard - medium priority
 2269      * [49152, 65536) : video - low priority
 2270      *
 2271      * Everything else gets lowest priority.
 2272      */
 2273     if (ip->ip_p == IPPROTO_UDP) {
 2274         struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
 2275         switch (ntohs(udp->uh_dport) & 0xc000) {
 2276         case 0x4000:
 2277             prio = 70;
 2278             break;
 2279         case 0x8000:
 2280             prio = 60;
 2281             break;
 2282         case 0xc000:
 2283             prio = 55;
 2284             break;
 2285         }
 2286     }
 2287     return prio;
 2288 }
 2289 
 2290 /*
 2291  * End of token bucket filter modifications
 2292  */
 2293 
 2294 static int
 2295 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
 2296 {
 2297     int error, vifi;
 2298 
 2299     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2300         return EOPNOTSUPP;
 2301 
 2302     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
 2303     if (error)
 2304         return error;
 2305 
 2306     VIF_LOCK();
 2307 
 2308     if (vifi < 0 || vifi >= numvifs) {  /* Error if vif is invalid */
 2309         VIF_UNLOCK();
 2310         return EADDRNOTAVAIL;
 2311     }
 2312 
 2313     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
 2314         /* Check if socket is available. */
 2315         if (viftable[vifi].v_rsvpd != NULL) {
 2316             VIF_UNLOCK();
 2317             return EADDRINUSE;
 2318         }
 2319 
 2320         viftable[vifi].v_rsvpd = so;
 2321         /* This may seem silly, but we need to be sure we don't over-increment
 2322          * the RSVP counter, in case something slips up.
 2323          */
 2324         if (!viftable[vifi].v_rsvp_on) {
 2325             viftable[vifi].v_rsvp_on = 1;
 2326             rsvp_on++;
 2327         }
 2328     } else { /* must be VIF_OFF */
 2329         /*
 2330          * XXX as an additional consistency check, one could make sure
 2331          * that viftable[vifi].v_rsvpd == so, otherwise passing so as
 2332          * first parameter is pretty useless.
 2333          */
 2334         viftable[vifi].v_rsvpd = NULL;
 2335         /*
 2336          * This may seem silly, but we need to be sure we don't over-decrement
 2337          * the RSVP counter, in case something slips up.
 2338          */
 2339         if (viftable[vifi].v_rsvp_on) {
 2340             viftable[vifi].v_rsvp_on = 0;
 2341             rsvp_on--;
 2342         }
 2343     }
 2344     VIF_UNLOCK();
 2345     return 0;
 2346 }
 2347 
 2348 static void
 2349 X_ip_rsvp_force_done(struct socket *so)
 2350 {
 2351     int vifi;
 2352 
 2353     /* Don't bother if it is not the right type of socket. */
 2354     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 2355         return;
 2356 
 2357     VIF_LOCK();
 2358 
 2359     /* The socket may be attached to more than one vif...this
 2360      * is perfectly legal.
 2361      */
 2362     for (vifi = 0; vifi < numvifs; vifi++) {
 2363         if (viftable[vifi].v_rsvpd == so) {
 2364             viftable[vifi].v_rsvpd = NULL;
 2365             /* This may seem silly, but we need to be sure we don't
 2366              * over-decrement the RSVP counter, in case something slips up.
 2367              */
 2368             if (viftable[vifi].v_rsvp_on) {
 2369                 viftable[vifi].v_rsvp_on = 0;
 2370                 rsvp_on--;
 2371             }
 2372         }
 2373     }
 2374 
 2375     VIF_UNLOCK();
 2376 }
 2377 
 2378 static void
 2379 X_rsvp_input(struct mbuf *m, int off)
 2380 {
 2381     int vifi;
 2382     struct ip *ip = mtod(m, struct ip *);
 2383     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
 2384     struct ifnet *ifp;
 2385 
 2386     if (rsvpdebug)
 2387         printf("rsvp_input: rsvp_on %d\n",rsvp_on);
 2388 
 2389     /* Can still get packets with rsvp_on = 0 if there is a local member
 2390      * of the group to which the RSVP packet is addressed.  But in this
 2391      * case we want to throw the packet away.
 2392      */
 2393     if (!rsvp_on) {
 2394         m_freem(m);
 2395         return;
 2396     }
 2397 
 2398     if (rsvpdebug)
 2399         printf("rsvp_input: check vifs\n");
 2400 
 2401 #ifdef DIAGNOSTIC
 2402     M_ASSERTPKTHDR(m);
 2403 #endif
 2404 
 2405     ifp = m->m_pkthdr.rcvif;
 2406 
 2407     VIF_LOCK();
 2408     /* Find which vif the packet arrived on. */
 2409     for (vifi = 0; vifi < numvifs; vifi++)
 2410         if (viftable[vifi].v_ifp == ifp)
 2411             break;
 2412 
 2413     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
 2414         /*
 2415          * Drop the lock here to avoid holding it across rip_input.
 2416          * This could make rsvpdebug printfs wrong.  If you care,
 2417          * record the state of stuff before dropping the lock.
 2418          */
 2419         VIF_UNLOCK();
 2420         /*
 2421          * If the old-style non-vif-associated socket is set,
 2422          * then use it.  Otherwise, drop packet since there
 2423          * is no specific socket for this vif.
 2424          */
 2425         if (ip_rsvpd != NULL) {
 2426             if (rsvpdebug)
 2427                 printf("rsvp_input: Sending packet up old-style socket\n");
 2428             rip_input(m, off);  /* xxx */
 2429         } else {
 2430             if (rsvpdebug && vifi == numvifs)
 2431                 printf("rsvp_input: Can't find vif for packet.\n");
 2432             else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
 2433                 printf("rsvp_input: No socket defined for vif %d\n",vifi);
 2434             m_freem(m);
 2435         }
 2436         return;
 2437     }
 2438     rsvp_src.sin_addr = ip->ip_src;
 2439 
 2440     if (rsvpdebug && m)
 2441         printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
 2442                m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
 2443 
 2444     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
 2445         if (rsvpdebug)
 2446             printf("rsvp_input: Failed to append to socket\n");
 2447     } else {
 2448         if (rsvpdebug)
 2449             printf("rsvp_input: send packet up\n");
 2450     }
 2451     VIF_UNLOCK();
 2452 }
 2453 
 2454 /*
 2455  * Code for bandwidth monitors
 2456  */
 2457 
 2458 /*
 2459  * Define common interface for timeval-related methods
 2460  */
 2461 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 2462 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 2463 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 2464 
 2465 static uint32_t
 2466 compute_bw_meter_flags(struct bw_upcall *req)
 2467 {
 2468     uint32_t flags = 0;
 2469 
 2470     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 2471         flags |= BW_METER_UNIT_PACKETS;
 2472     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 2473         flags |= BW_METER_UNIT_BYTES;
 2474     if (req->bu_flags & BW_UPCALL_GEQ)
 2475         flags |= BW_METER_GEQ;
 2476     if (req->bu_flags & BW_UPCALL_LEQ)
 2477         flags |= BW_METER_LEQ;
 2478 
 2479     return flags;
 2480 }
 2481 
 2482 /*
 2483  * Add a bw_meter entry
 2484  */
 2485 static int
 2486 add_bw_upcall(struct bw_upcall *req)
 2487 {
 2488     struct mfc *mfc;
 2489     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 2490                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 2491     struct timeval now;
 2492     struct bw_meter *x;
 2493     uint32_t flags;
 2494 
 2495     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2496         return EOPNOTSUPP;
 2497 
 2498     /* Test if the flags are valid */
 2499     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 2500         return EINVAL;
 2501     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 2502         return EINVAL;
 2503     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2504             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2505         return EINVAL;
 2506 
 2507     /* Test if the threshold time interval is valid */
 2508     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 2509         return EINVAL;
 2510 
 2511     flags = compute_bw_meter_flags(req);
 2512 
 2513     /*
 2514      * Find if we have already same bw_meter entry
 2515      */
 2516     MFC_LOCK();
 2517     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2518     if (mfc == NULL) {
 2519         MFC_UNLOCK();
 2520         return EADDRNOTAVAIL;
 2521     }
 2522     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 2523         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2524                            &req->bu_threshold.b_time, ==)) &&
 2525             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2526             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2527             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 2528             MFC_UNLOCK();
 2529             return 0;           /* XXX Already installed */
 2530         }
 2531     }
 2532 
 2533     /* Allocate the new bw_meter entry */
 2534     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 2535     if (x == NULL) {
 2536         MFC_UNLOCK();
 2537         return ENOBUFS;
 2538     }
 2539 
 2540     /* Set the new bw_meter entry */
 2541     x->bm_threshold.b_time = req->bu_threshold.b_time;
 2542     GET_TIME(now);
 2543     x->bm_start_time = now;
 2544     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 2545     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 2546     x->bm_measured.b_packets = 0;
 2547     x->bm_measured.b_bytes = 0;
 2548     x->bm_flags = flags;
 2549     x->bm_time_next = NULL;
 2550     x->bm_time_hash = BW_METER_BUCKETS;
 2551 
 2552     /* Add the new bw_meter entry to the front of entries for this MFC */
 2553     x->bm_mfc = mfc;
 2554     x->bm_mfc_next = mfc->mfc_bw_meter;
 2555     mfc->mfc_bw_meter = x;
 2556     schedule_bw_meter(x, &now);
 2557     MFC_UNLOCK();
 2558 
 2559     return 0;
 2560 }
 2561 
 2562 static void
 2563 free_bw_list(struct bw_meter *list)
 2564 {
 2565     while (list != NULL) {
 2566         struct bw_meter *x = list;
 2567 
 2568         list = list->bm_mfc_next;
 2569         unschedule_bw_meter(x);
 2570         free(x, M_BWMETER);
 2571     }
 2572 }
 2573 
 2574 /*
 2575  * Delete one or multiple bw_meter entries
 2576  */
 2577 static int
 2578 del_bw_upcall(struct bw_upcall *req)
 2579 {
 2580     struct mfc *mfc;
 2581     struct bw_meter *x;
 2582 
 2583     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2584         return EOPNOTSUPP;
 2585 
 2586     MFC_LOCK();
 2587     /* Find the corresponding MFC entry */
 2588     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2589     if (mfc == NULL) {
 2590         MFC_UNLOCK();
 2591         return EADDRNOTAVAIL;
 2592     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2593         /*
 2594          * Delete all bw_meter entries for this mfc
 2595          */
 2596         struct bw_meter *list;
 2597 
 2598         list = mfc->mfc_bw_meter;
 2599         mfc->mfc_bw_meter = NULL;
 2600         free_bw_list(list);
 2601         MFC_UNLOCK();
 2602         return 0;
 2603     } else {                    /* Delete a single bw_meter entry */
 2604         struct bw_meter *prev;
 2605         uint32_t flags = 0;
 2606 
 2607         flags = compute_bw_meter_flags(req);
 2608 
 2609         /* Find the bw_meter entry to delete */
 2610         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 2611              prev = x, x = x->bm_mfc_next) {
 2612             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2613                                &req->bu_threshold.b_time, ==)) &&
 2614                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2615                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2616                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2617                 break;
 2618         }
 2619         if (x != NULL) { /* Delete entry from the list for this MFC */
 2620             if (prev != NULL)
 2621                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2622             else
 2623                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 2624 
 2625             unschedule_bw_meter(x);
 2626             MFC_UNLOCK();
 2627             /* Free the bw_meter entry */
 2628             free(x, M_BWMETER);
 2629             return 0;
 2630         } else {
 2631             MFC_UNLOCK();
 2632             return EINVAL;
 2633         }
 2634     }
 2635     /* NOTREACHED */
 2636 }
 2637 
 2638 /*
 2639  * Perform bandwidth measurement processing that may result in an upcall
 2640  */
 2641 static void
 2642 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2643 {
 2644     struct timeval delta;
 2645 
 2646     MFC_LOCK_ASSERT();
 2647 
 2648     delta = *nowp;
 2649     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2650 
 2651     if (x->bm_flags & BW_METER_GEQ) {
 2652         /*
 2653          * Processing for ">=" type of bw_meter entry
 2654          */
 2655         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2656             /* Reset the bw_meter entry */
 2657             x->bm_start_time = *nowp;
 2658             x->bm_measured.b_packets = 0;
 2659             x->bm_measured.b_bytes = 0;
 2660             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2661         }
 2662 
 2663         /* Record that a packet is received */
 2664         x->bm_measured.b_packets++;
 2665         x->bm_measured.b_bytes += plen;
 2666 
 2667         /*
 2668          * Test if we should deliver an upcall
 2669          */
 2670         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 2671             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2672                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2673                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2674                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2675                 /* Prepare an upcall for delivery */
 2676                 bw_meter_prepare_upcall(x, nowp);
 2677                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2678             }
 2679         }
 2680     } else if (x->bm_flags & BW_METER_LEQ) {
 2681         /*
 2682          * Processing for "<=" type of bw_meter entry
 2683          */
 2684         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2685             /*
 2686              * We are behind time with the multicast forwarding table
 2687              * scanning for "<=" type of bw_meter entries, so test now
 2688              * if we should deliver an upcall.
 2689              */
 2690             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2691                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2692                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2693                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2694                 /* Prepare an upcall for delivery */
 2695                 bw_meter_prepare_upcall(x, nowp);
 2696             }
 2697             /* Reschedule the bw_meter entry */
 2698             unschedule_bw_meter(x);
 2699             schedule_bw_meter(x, nowp);
 2700         }
 2701 
 2702         /* Record that a packet is received */
 2703         x->bm_measured.b_packets++;
 2704         x->bm_measured.b_bytes += plen;
 2705 
 2706         /*
 2707          * Test if we should restart the measuring interval
 2708          */
 2709         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 2710              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 2711             (x->bm_flags & BW_METER_UNIT_BYTES &&
 2712              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 2713             /* Don't restart the measuring interval */
 2714         } else {
 2715             /* Do restart the measuring interval */
 2716             /*
 2717              * XXX: note that we don't unschedule and schedule, because this
 2718              * might be too much overhead per packet. Instead, when we process
 2719              * all entries for a given timer hash bin, we check whether it is
 2720              * really a timeout. If not, we reschedule at that time.
 2721              */
 2722             x->bm_start_time = *nowp;
 2723             x->bm_measured.b_packets = 0;
 2724             x->bm_measured.b_bytes = 0;
 2725             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2726         }
 2727     }
 2728 }
 2729 
 2730 /*
 2731  * Prepare a bandwidth-related upcall
 2732  */
 2733 static void
 2734 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2735 {
 2736     struct timeval delta;
 2737     struct bw_upcall *u;
 2738 
 2739     MFC_LOCK_ASSERT();
 2740 
 2741     /*
 2742      * Compute the measured time interval
 2743      */
 2744     delta = *nowp;
 2745     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2746 
 2747     /*
 2748      * If there are too many pending upcalls, deliver them now
 2749      */
 2750     if (bw_upcalls_n >= BW_UPCALLS_MAX)
 2751         bw_upcalls_send();
 2752 
 2753     /*
 2754      * Set the bw_upcall entry
 2755      */
 2756     u = &bw_upcalls[bw_upcalls_n++];
 2757     u->bu_src = x->bm_mfc->mfc_origin;
 2758     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2759     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2760     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2761     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2762     u->bu_measured.b_time = delta;
 2763     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2764     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2765     u->bu_flags = 0;
 2766     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2767         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2768     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2769         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2770     if (x->bm_flags & BW_METER_GEQ)
 2771         u->bu_flags |= BW_UPCALL_GEQ;
 2772     if (x->bm_flags & BW_METER_LEQ)
 2773         u->bu_flags |= BW_UPCALL_LEQ;
 2774 }
 2775 
 2776 /*
 2777  * Send the pending bandwidth-related upcalls
 2778  */
 2779 static void
 2780 bw_upcalls_send(void)
 2781 {
 2782     struct mbuf *m;
 2783     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
 2784     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2785     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2786                                       0,                /* unused2 */
 2787                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2788                                       0,                /* im_mbz  */
 2789                                       0,                /* im_vif  */
 2790                                       0,                /* unused3 */
 2791                                       { 0 },            /* im_src  */
 2792                                       { 0 } };          /* im_dst  */
 2793 
 2794     MFC_LOCK_ASSERT();
 2795 
 2796     if (bw_upcalls_n == 0)
 2797         return;                 /* No pending upcalls */
 2798 
 2799     bw_upcalls_n = 0;
 2800 
 2801     /*
 2802      * Allocate a new mbuf, initialize it with the header and
 2803      * the payload for the pending calls.
 2804      */
 2805     MGETHDR(m, M_DONTWAIT, MT_HEADER);
 2806     if (m == NULL) {
 2807         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2808         return;
 2809     }
 2810 
 2811     m->m_len = m->m_pkthdr.len = 0;
 2812     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2813     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
 2814 
 2815     /*
 2816      * Send the upcalls
 2817      * XXX do we need to set the address in k_igmpsrc ?
 2818      */
 2819     mrtstat.mrts_upcalls++;
 2820     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
 2821         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2822         ++mrtstat.mrts_upq_sockfull;
 2823     }
 2824 }
 2825 
 2826 /*
 2827  * Compute the timeout hash value for the bw_meter entries
 2828  */
 2829 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2830     do {                                                                \
 2831         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2832                                                                         \
 2833         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2834         (hash) = next_timeval.tv_sec;                                   \
 2835         if (next_timeval.tv_usec)                                       \
 2836             (hash)++; /* XXX: make sure we don't timeout early */       \
 2837         (hash) %= BW_METER_BUCKETS;                                     \
 2838     } while (0)
 2839 
 2840 /*
 2841  * Schedule a timer to process periodically bw_meter entry of type "<="
 2842  * by linking the entry in the proper hash bucket.
 2843  */
 2844 static void
 2845 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2846 {
 2847     int time_hash;
 2848 
 2849     MFC_LOCK_ASSERT();
 2850 
 2851     if (!(x->bm_flags & BW_METER_LEQ))
 2852         return;         /* XXX: we schedule timers only for "<=" entries */
 2853 
 2854     /*
 2855      * Reset the bw_meter entry
 2856      */
 2857     x->bm_start_time = *nowp;
 2858     x->bm_measured.b_packets = 0;
 2859     x->bm_measured.b_bytes = 0;
 2860     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2861 
 2862     /*
 2863      * Compute the timeout hash value and insert the entry
 2864      */
 2865     BW_METER_TIMEHASH(x, time_hash);
 2866     x->bm_time_next = bw_meter_timers[time_hash];
 2867     bw_meter_timers[time_hash] = x;
 2868     x->bm_time_hash = time_hash;
 2869 }
 2870 
 2871 /*
 2872  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2873  * by removing the entry from the proper hash bucket.
 2874  */
 2875 static void
 2876 unschedule_bw_meter(struct bw_meter *x)
 2877 {
 2878     int time_hash;
 2879     struct bw_meter *prev, *tmp;
 2880 
 2881     MFC_LOCK_ASSERT();
 2882 
 2883     if (!(x->bm_flags & BW_METER_LEQ))
 2884         return;         /* XXX: we schedule timers only for "<=" entries */
 2885 
 2886     /*
 2887      * Compute the timeout hash value and delete the entry
 2888      */
 2889     time_hash = x->bm_time_hash;
 2890     if (time_hash >= BW_METER_BUCKETS)
 2891         return;         /* Entry was not scheduled */
 2892 
 2893     for (prev = NULL, tmp = bw_meter_timers[time_hash];
 2894              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2895         if (tmp == x)
 2896             break;
 2897 
 2898     if (tmp == NULL)
 2899         panic("unschedule_bw_meter: bw_meter entry not found");
 2900 
 2901     if (prev != NULL)
 2902         prev->bm_time_next = x->bm_time_next;
 2903     else
 2904         bw_meter_timers[time_hash] = x->bm_time_next;
 2905 
 2906     x->bm_time_next = NULL;
 2907     x->bm_time_hash = BW_METER_BUCKETS;
 2908 }
 2909 
 2910 
 2911 /*
 2912  * Process all "<=" type of bw_meter that should be processed now,
 2913  * and for each entry prepare an upcall if necessary. Each processed
 2914  * entry is rescheduled again for the (periodic) processing.
 2915  *
 2916  * This is run periodically (once per second normally). On each round,
 2917  * all the potentially matching entries are in the hash slot that we are
 2918  * looking at.
 2919  */
 2920 static void
 2921 bw_meter_process()
 2922 {
 2923     static uint32_t last_tv_sec;        /* last time we processed this */
 2924 
 2925     uint32_t loops;
 2926     int i;
 2927     struct timeval now, process_endtime;
 2928 
 2929     GET_TIME(now);
 2930     if (last_tv_sec == now.tv_sec)
 2931         return;         /* nothing to do */
 2932 
 2933     loops = now.tv_sec - last_tv_sec;
 2934     last_tv_sec = now.tv_sec;
 2935     if (loops > BW_METER_BUCKETS)
 2936         loops = BW_METER_BUCKETS;
 2937 
 2938     MFC_LOCK();
 2939     /*
 2940      * Process all bins of bw_meter entries from the one after the last
 2941      * processed to the current one. On entry, i points to the last bucket
 2942      * visited, so we need to increment i at the beginning of the loop.
 2943      */
 2944     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2945         struct bw_meter *x, *tmp_list;
 2946 
 2947         if (++i >= BW_METER_BUCKETS)
 2948             i = 0;
 2949 
 2950         /* Disconnect the list of bw_meter entries from the bin */
 2951         tmp_list = bw_meter_timers[i];
 2952         bw_meter_timers[i] = NULL;
 2953 
 2954         /* Process the list of bw_meter entries */
 2955         while (tmp_list != NULL) {
 2956             x = tmp_list;
 2957             tmp_list = tmp_list->bm_time_next;
 2958 
 2959             /* Test if the time interval is over */
 2960             process_endtime = x->bm_start_time;
 2961             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2962             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2963                 /* Not yet: reschedule, but don't reset */
 2964                 int time_hash;
 2965 
 2966                 BW_METER_TIMEHASH(x, time_hash);
 2967                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2968                     /*
 2969                      * XXX: somehow the bin processing is a bit ahead of time.
 2970                      * Put the entry in the next bin.
 2971                      */
 2972                     if (++time_hash >= BW_METER_BUCKETS)
 2973                         time_hash = 0;
 2974                 }
 2975                 x->bm_time_next = bw_meter_timers[time_hash];
 2976                 bw_meter_timers[time_hash] = x;
 2977                 x->bm_time_hash = time_hash;
 2978 
 2979                 continue;
 2980             }
 2981 
 2982             /*
 2983              * Test if we should deliver an upcall
 2984              */
 2985             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2986                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2987                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2988                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2989                 /* Prepare an upcall for delivery */
 2990                 bw_meter_prepare_upcall(x, &now);
 2991             }
 2992 
 2993             /*
 2994              * Reschedule for next processing
 2995              */
 2996             schedule_bw_meter(x, &now);
 2997         }
 2998     }
 2999 
 3000     /* Send all upcalls that are pending delivery */
 3001     bw_upcalls_send();
 3002 
 3003     MFC_UNLOCK();
 3004 }
 3005 
 3006 /*
 3007  * A periodic function for sending all upcalls that are pending delivery
 3008  */
 3009 static void
 3010 expire_bw_upcalls_send(void *unused)
 3011 {
 3012     MFC_LOCK();
 3013     bw_upcalls_send();
 3014     MFC_UNLOCK();
 3015 
 3016     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
 3017         expire_bw_upcalls_send, NULL);
 3018 }
 3019 
 3020 /*
 3021  * A periodic function for periodic scanning of the multicast forwarding
 3022  * table for processing all "<=" bw_meter entries.
 3023  */
 3024 static void
 3025 expire_bw_meter_process(void *unused)
 3026 {
 3027     if (mrt_api_config & MRT_MFC_BW_UPCALL)
 3028         bw_meter_process();
 3029 
 3030     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
 3031 }
 3032 
 3033 /*
 3034  * End of bandwidth monitoring code
 3035  */
 3036 
 3037 #ifdef PIM
 3038 /*
 3039  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 3040  *
 3041  */
 3042 static int
 3043 pim_register_send(struct ip *ip, struct vif *vifp,
 3044         struct mbuf *m, struct mfc *rt)
 3045 {
 3046     struct mbuf *mb_copy, *mm;
 3047 
 3048     if (mrtdebug & DEBUG_PIM)
 3049         log(LOG_DEBUG, "pim_register_send: ");
 3050 
 3051     mb_copy = pim_register_prepare(ip, m);
 3052     if (mb_copy == NULL)
 3053         return ENOBUFS;
 3054 
 3055     /*
 3056      * Send all the fragments. Note that the mbuf for each fragment
 3057      * is freed by the sending machinery.
 3058      */
 3059     for (mm = mb_copy; mm; mm = mb_copy) {
 3060         mb_copy = mm->m_nextpkt;
 3061         mm->m_nextpkt = 0;
 3062         mm = m_pullup(mm, sizeof(struct ip));
 3063         if (mm != NULL) {
 3064             ip = mtod(mm, struct ip *);
 3065             if ((mrt_api_config & MRT_MFC_RP) &&
 3066                 (rt->mfc_rp.s_addr != INADDR_ANY)) {
 3067                 pim_register_send_rp(ip, vifp, mm, rt);
 3068             } else {
 3069                 pim_register_send_upcall(ip, vifp, mm, rt);
 3070             }
 3071         }
 3072     }
 3073 
 3074     return 0;
 3075 }
 3076 
 3077 /*
 3078  * Return a copy of the data packet that is ready for PIM Register
 3079  * encapsulation.
 3080  * XXX: Note that in the returned copy the IP header is a valid one.
 3081  */
 3082 static struct mbuf *
 3083 pim_register_prepare(struct ip *ip, struct mbuf *m)
 3084 {
 3085     struct mbuf *mb_copy = NULL;
 3086     int mtu;
 3087 
 3088     /* Take care of delayed checksums */
 3089     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 3090         in_delayed_cksum(m);
 3091         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 3092     }
 3093 
 3094     /*
 3095      * Copy the old packet & pullup its IP header into the
 3096      * new mbuf so we can modify it.
 3097      */
 3098     mb_copy = m_copypacket(m, M_DONTWAIT);
 3099     if (mb_copy == NULL)
 3100         return NULL;
 3101     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 3102     if (mb_copy == NULL)
 3103         return NULL;
 3104 
 3105     /* take care of the TTL */
 3106     ip = mtod(mb_copy, struct ip *);
 3107     --ip->ip_ttl;
 3108 
 3109     /* Compute the MTU after the PIM Register encapsulation */
 3110     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 3111 
 3112     if (ip->ip_len <= mtu) {
 3113         /* Turn the IP header into a valid one */
 3114         ip->ip_len = htons(ip->ip_len);
 3115         ip->ip_off = htons(ip->ip_off);
 3116         ip->ip_sum = 0;
 3117         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 3118     } else {
 3119         /* Fragment the packet */
 3120         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 3121             m_freem(mb_copy);
 3122             return NULL;
 3123         }
 3124     }
 3125     return mb_copy;
 3126 }
 3127 
 3128 /*
 3129  * Send an upcall with the data packet to the user-level process.
 3130  */
 3131 static int
 3132 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 3133         struct mbuf *mb_copy, struct mfc *rt)
 3134 {
 3135     struct mbuf *mb_first;
 3136     int len = ntohs(ip->ip_len);
 3137     struct igmpmsg *im;
 3138     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 3139 
 3140     VIF_LOCK_ASSERT();
 3141 
 3142     /*
 3143      * Add a new mbuf with an upcall header
 3144      */
 3145     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3146     if (mb_first == NULL) {
 3147         m_freem(mb_copy);
 3148         return ENOBUFS;
 3149     }
 3150     mb_first->m_data += max_linkhdr;
 3151     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 3152     mb_first->m_len = sizeof(struct igmpmsg);
 3153     mb_first->m_next = mb_copy;
 3154 
 3155     /* Send message to routing daemon */
 3156     im = mtod(mb_first, struct igmpmsg *);
 3157     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 3158     im->im_mbz          = 0;
 3159     im->im_vif          = vifp - viftable;
 3160     im->im_src          = ip->ip_src;
 3161     im->im_dst          = ip->ip_dst;
 3162 
 3163     k_igmpsrc.sin_addr  = ip->ip_src;
 3164 
 3165     mrtstat.mrts_upcalls++;
 3166 
 3167     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 3168         if (mrtdebug & DEBUG_PIM)
 3169             log(LOG_WARNING,
 3170                 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
 3171         ++mrtstat.mrts_upq_sockfull;
 3172         return ENOBUFS;
 3173     }
 3174 
 3175     /* Keep statistics */
 3176     pimstat.pims_snd_registers_msgs++;
 3177     pimstat.pims_snd_registers_bytes += len;
 3178 
 3179     return 0;
 3180 }
 3181 
 3182 /*
 3183  * Encapsulate the data packet in PIM Register message and send it to the RP.
 3184  */
 3185 static int
 3186 pim_register_send_rp(struct ip *ip, struct vif *vifp,
 3187         struct mbuf *mb_copy, struct mfc *rt)
 3188 {
 3189     struct mbuf *mb_first;
 3190     struct ip *ip_outer;
 3191     struct pim_encap_pimhdr *pimhdr;
 3192     int len = ntohs(ip->ip_len);
 3193     vifi_t vifi = rt->mfc_parent;
 3194 
 3195     VIF_LOCK_ASSERT();
 3196 
 3197     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
 3198         m_freem(mb_copy);
 3199         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 3200     }
 3201 
 3202     /*
 3203      * Add a new mbuf with the encapsulating header
 3204      */
 3205     MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
 3206     if (mb_first == NULL) {
 3207         m_freem(mb_copy);
 3208         return ENOBUFS;
 3209     }
 3210     mb_first->m_data += max_linkhdr;
 3211     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3212     mb_first->m_next = mb_copy;
 3213 
 3214     mb_first->m_pkthdr.len = len + mb_first->m_len;
 3215 
 3216     /*
 3217      * Fill in the encapsulating IP and PIM header
 3218      */
 3219     ip_outer = mtod(mb_first, struct ip *);
 3220     *ip_outer = pim_encap_iphdr;
 3221     ip_outer->ip_id = ip_newid();
 3222     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 3223     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
 3224     ip_outer->ip_dst = rt->mfc_rp;
 3225     /*
 3226      * Copy the inner header TOS to the outer header, and take care of the
 3227      * IP_DF bit.
 3228      */
 3229     ip_outer->ip_tos = ip->ip_tos;
 3230     if (ntohs(ip->ip_off) & IP_DF)
 3231         ip_outer->ip_off |= IP_DF;
 3232     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 3233                                          + sizeof(pim_encap_iphdr));
 3234     *pimhdr = pim_encap_pimhdr;
 3235     /* If the iif crosses a border, set the Border-bit */
 3236     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
 3237         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 3238 
 3239     mb_first->m_data += sizeof(pim_encap_iphdr);
 3240     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 3241     mb_first->m_data -= sizeof(pim_encap_iphdr);
 3242 
 3243     if (vifp->v_rate_limit == 0)
 3244         tbf_send_packet(vifp, mb_first);
 3245     else
 3246         tbf_control(vifp, mb_first, ip, ip_outer->ip_len);
 3247 
 3248     /* Keep statistics */
 3249     pimstat.pims_snd_registers_msgs++;
 3250     pimstat.pims_snd_registers_bytes += len;
 3251 
 3252     return 0;
 3253 }
 3254 
 3255 /*
 3256  * PIM-SMv2 and PIM-DM messages processing.
 3257  * Receives and verifies the PIM control messages, and passes them
 3258  * up to the listening socket, using rip_input().
 3259  * The only message with special processing is the PIM_REGISTER message
 3260  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 3261  * is passed to if_simloop().
 3262  */
 3263 void
 3264 pim_input(struct mbuf *m, int off)
 3265 {
 3266     struct ip *ip = mtod(m, struct ip *);
 3267     struct pim *pim;
 3268     int minlen;
 3269     int datalen = ip->ip_len;
 3270     int ip_tos;
 3271     int iphlen = off;
 3272 
 3273     /* Keep statistics */
 3274     pimstat.pims_rcv_total_msgs++;
 3275     pimstat.pims_rcv_total_bytes += datalen;
 3276 
 3277     /*
 3278      * Validate lengths
 3279      */
 3280     if (datalen < PIM_MINLEN) {
 3281         pimstat.pims_rcv_tooshort++;
 3282         log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
 3283             datalen, (u_long)ip->ip_src.s_addr);
 3284         m_freem(m);
 3285         return;
 3286     }
 3287 
 3288     /*
 3289      * If the packet is at least as big as a REGISTER, go agead
 3290      * and grab the PIM REGISTER header size, to avoid another
 3291      * possible m_pullup() later.
 3292      *
 3293      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 3294      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 3295      */
 3296     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 3297     /*
 3298      * Get the IP and PIM headers in contiguous memory, and
 3299      * possibly the PIM REGISTER header.
 3300      */
 3301     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 3302         (m = m_pullup(m, minlen)) == 0) {
 3303         log(LOG_ERR, "pim_input: m_pullup failure\n");
 3304         return;
 3305     }
 3306     /* m_pullup() may have given us a new mbuf so reset ip. */
 3307     ip = mtod(m, struct ip *);
 3308     ip_tos = ip->ip_tos;
 3309 
 3310     /* adjust mbuf to point to the PIM header */
 3311     m->m_data += iphlen;
 3312     m->m_len  -= iphlen;
 3313     pim = mtod(m, struct pim *);
 3314 
 3315     /*
 3316      * Validate checksum. If PIM REGISTER, exclude the data packet.
 3317      *
 3318      * XXX: some older PIMv2 implementations don't make this distinction,
 3319      * so for compatibility reason perform the checksum over part of the
 3320      * message, and if error, then over the whole message.
 3321      */
 3322     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 3323         /* do nothing, checksum okay */
 3324     } else if (in_cksum(m, datalen)) {
 3325         pimstat.pims_rcv_badsum++;
 3326         if (mrtdebug & DEBUG_PIM)
 3327             log(LOG_DEBUG, "pim_input: invalid checksum");
 3328         m_freem(m);
 3329         return;
 3330     }
 3331 
 3332     /* PIM version check */
 3333     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 3334         pimstat.pims_rcv_badversion++;
 3335         log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
 3336             PIM_VT_V(pim->pim_vt), PIM_VERSION);
 3337         m_freem(m);
 3338         return;
 3339     }
 3340 
 3341     /* restore mbuf back to the outer IP */
 3342     m->m_data -= iphlen;
 3343     m->m_len  += iphlen;
 3344 
 3345     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 3346         /*
 3347          * Since this is a REGISTER, we'll make a copy of the register
 3348          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 3349          * routing daemon.
 3350          */
 3351         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 3352         struct mbuf *mcp;
 3353         struct ip *encap_ip;
 3354         u_int32_t *reghdr;
 3355         struct ifnet *vifp;
 3356 
 3357         VIF_LOCK();
 3358         if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
 3359             VIF_UNLOCK();
 3360             if (mrtdebug & DEBUG_PIM)
 3361                 log(LOG_DEBUG,
 3362                     "pim_input: register vif not set: %d\n", reg_vif_num);
 3363             m_freem(m);
 3364             return;
 3365         }
 3366         /* XXX need refcnt? */
 3367         vifp = viftable[reg_vif_num].v_ifp;
 3368         VIF_UNLOCK();
 3369 
 3370         /*
 3371          * Validate length
 3372          */
 3373         if (datalen < PIM_REG_MINLEN) {
 3374             pimstat.pims_rcv_tooshort++;
 3375             pimstat.pims_rcv_badregisters++;
 3376             log(LOG_ERR,
 3377                 "pim_input: register packet size too small %d from %lx\n",
 3378                 datalen, (u_long)ip->ip_src.s_addr);
 3379             m_freem(m);
 3380             return;
 3381         }
 3382 
 3383         reghdr = (u_int32_t *)(pim + 1);
 3384         encap_ip = (struct ip *)(reghdr + 1);
 3385 
 3386         if (mrtdebug & DEBUG_PIM) {
 3387             log(LOG_DEBUG,
 3388                 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
 3389                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3390                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3391                 ntohs(encap_ip->ip_len));
 3392         }
 3393 
 3394         /* verify the version number of the inner packet */
 3395         if (encap_ip->ip_v != IPVERSION) {
 3396             pimstat.pims_rcv_badregisters++;
 3397             if (mrtdebug & DEBUG_PIM) {
 3398                 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
 3399                     "of the inner packet\n", encap_ip->ip_v);
 3400             }
 3401             m_freem(m);
 3402             return;
 3403         }
 3404 
 3405         /* verify the inner packet is destined to a mcast group */
 3406         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 3407             pimstat.pims_rcv_badregisters++;
 3408             if (mrtdebug & DEBUG_PIM)
 3409                 log(LOG_DEBUG,
 3410                     "pim_input: inner packet of register is not "
 3411                     "multicast %lx\n",
 3412                     (u_long)ntohl(encap_ip->ip_dst.s_addr));
 3413             m_freem(m);
 3414             return;
 3415         }
 3416 
 3417         /* If a NULL_REGISTER, pass it to the daemon */
 3418         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 3419             goto pim_input_to_daemon;
 3420 
 3421         /*
 3422          * Copy the TOS from the outer IP header to the inner IP header.
 3423          */
 3424         if (encap_ip->ip_tos != ip_tos) {
 3425             /* Outer TOS -> inner TOS */
 3426             encap_ip->ip_tos = ip_tos;
 3427             /* Recompute the inner header checksum. Sigh... */
 3428 
 3429             /* adjust mbuf to point to the inner IP header */
 3430             m->m_data += (iphlen + PIM_MINLEN);
 3431             m->m_len  -= (iphlen + PIM_MINLEN);
 3432 
 3433             encap_ip->ip_sum = 0;
 3434             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 3435 
 3436             /* restore mbuf to point back to the outer IP header */
 3437             m->m_data -= (iphlen + PIM_MINLEN);
 3438             m->m_len  += (iphlen + PIM_MINLEN);
 3439         }
 3440 
 3441         /*
 3442          * Decapsulate the inner IP packet and loopback to forward it
 3443          * as a normal multicast packet. Also, make a copy of the
 3444          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 3445          * to pass to the daemon later, so it can take the appropriate
 3446          * actions (e.g., send back PIM_REGISTER_STOP).
 3447          * XXX: here m->m_data points to the outer IP header.
 3448          */
 3449         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 3450         if (mcp == NULL) {
 3451             log(LOG_ERR,
 3452                 "pim_input: pim register: could not copy register head\n");
 3453             m_freem(m);
 3454             return;
 3455         }
 3456 
 3457         /* Keep statistics */
 3458         /* XXX: registers_bytes include only the encap. mcast pkt */
 3459         pimstat.pims_rcv_registers_msgs++;
 3460         pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
 3461 
 3462         /*
 3463          * forward the inner ip packet; point m_data at the inner ip.
 3464          */
 3465         m_adj(m, iphlen + PIM_MINLEN);
 3466 
 3467         if (mrtdebug & DEBUG_PIM) {
 3468             log(LOG_DEBUG,
 3469                 "pim_input: forwarding decapsulated register: "
 3470                 "src %lx, dst %lx, vif %d\n",
 3471                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3472                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3473                 reg_vif_num);
 3474         }
 3475         /* NB: vifp was collected above; can it change on us? */
 3476         if_simloop(vifp, m, dst.sin_family, 0);
 3477 
 3478         /* prepare the register head to send to the mrouting daemon */
 3479         m = mcp;
 3480     }
 3481 
 3482 pim_input_to_daemon:
 3483     /*
 3484      * Pass the PIM message up to the daemon; if it is a Register message,
 3485      * pass the 'head' only up to the daemon. This includes the
 3486      * outer IP header, PIM header, PIM-Register header and the
 3487      * inner IP header.
 3488      * XXX: the outer IP header pkt size of a Register is not adjust to
 3489      * reflect the fact that the inner multicast data is truncated.
 3490      */
 3491     rip_input(m, iphlen);
 3492 
 3493     return;
 3494 }
 3495 #endif /* PIM */
 3496 
 3497 static int
 3498 ip_mroute_modevent(module_t mod, int type, void *unused)
 3499 {
 3500     switch (type) {
 3501     case MOD_LOAD:
 3502         mtx_init(&mrouter_mtx, "mrouter initialization", NULL, MTX_DEF);
 3503         MFC_LOCK_INIT();
 3504         VIF_LOCK_INIT();
 3505         ip_mrouter_reset();
 3506         ip_mcast_src = X_ip_mcast_src;
 3507         ip_mforward = X_ip_mforward;
 3508         ip_mrouter_done = X_ip_mrouter_done;
 3509         ip_mrouter_get = X_ip_mrouter_get;
 3510         ip_mrouter_set = X_ip_mrouter_set;
 3511         ip_rsvp_force_done = X_ip_rsvp_force_done;
 3512         ip_rsvp_vif = X_ip_rsvp_vif;
 3513         legal_vif_num = X_legal_vif_num;
 3514         mrt_ioctl = X_mrt_ioctl;
 3515         rsvp_input_p = X_rsvp_input;
 3516         break;
 3517 
 3518     case MOD_UNLOAD:
 3519         /*
 3520          * Typically module unload happens after the user-level
 3521          * process has shutdown the kernel services (the check
 3522          * below insures someone can't just yank the module out
 3523          * from under a running process).  But if the module is
 3524          * just loaded and then unloaded w/o starting up a user
 3525          * process we still need to cleanup.
 3526          */
 3527         if (ip_mrouter)
 3528             return EINVAL;
 3529 
 3530         X_ip_mrouter_done();
 3531         ip_mcast_src = NULL;
 3532         ip_mforward = NULL;
 3533         ip_mrouter_done = NULL;
 3534         ip_mrouter_get = NULL;
 3535         ip_mrouter_set = NULL;
 3536         ip_rsvp_force_done = NULL;
 3537         ip_rsvp_vif = NULL;
 3538         legal_vif_num = NULL;
 3539         mrt_ioctl = NULL;
 3540         rsvp_input_p = NULL;
 3541         VIF_LOCK_DESTROY();
 3542         MFC_LOCK_DESTROY();
 3543         mtx_destroy(&mrouter_mtx);
 3544         break;
 3545     default:
 3546         return EOPNOTSUPP;
 3547     }
 3548     return 0;
 3549 }
 3550 
 3551 static moduledata_t ip_mroutemod = {
 3552     "ip_mroute",
 3553     ip_mroute_modevent,
 3554     0
 3555 };
 3556 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: b0958a47728f0367a372c92b0de01f3c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.