The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989 Stephen Deering
    3  * Copyright (c) 1992, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * Stephen Deering of Stanford University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   34  */
   35 
   36 /*
   37  * IP multicast forwarding procedures
   38  *
   39  * Written by David Waitzman, BBN Labs, August 1988.
   40  * Modified by Steve Deering, Stanford, February 1989.
   41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   42  * Modified by Van Jacobson, LBL, January 1993
   43  * Modified by Ajit Thyagarajan, PARC, August 1993
   44  * Modified by Bill Fenner, PARC, April 1995
   45  * Modified by Ahmed Helmy, SGI, June 1996
   46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   48  * Modified by Hitoshi Asaeda, WIDE, August 2000
   49  * Modified by Pavlin Radoslavov, ICSI, October 2002
   50  *
   51  * MROUTING Revision: 3.5
   52  * and PIM-SMv2 and PIM-DM support, advanced API support,
   53  * bandwidth metering and signaling
   54  */
   55 
   56 #include <sys/cdefs.h>
   57 __FBSDID("$FreeBSD: releng/7.4/sys/netinet/ip_mroute.c 180774 2008-07-24 01:13:22Z julian $");
   58 
   59 #include "opt_inet.h"
   60 #include "opt_inet6.h"
   61 #include "opt_mac.h"
   62 #include "opt_mrouting.h"
   63 
   64 #define _PIM_VT 1
   65 
   66 #include <sys/param.h>
   67 #include <sys/kernel.h>
   68 #include <sys/lock.h>
   69 #include <sys/malloc.h>
   70 #include <sys/mbuf.h>
   71 #include <sys/module.h>
   72 #include <sys/priv.h>
   73 #include <sys/protosw.h>
   74 #include <sys/signalvar.h>
   75 #include <sys/socket.h>
   76 #include <sys/socketvar.h>
   77 #include <sys/sockio.h>
   78 #include <sys/sx.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/syslog.h>
   81 #include <sys/systm.h>
   82 #include <sys/time.h>
   83 #include <net/if.h>
   84 #include <net/netisr.h>
   85 #include <net/route.h>
   86 #include <netinet/in.h>
   87 #include <netinet/igmp.h>
   88 #include <netinet/in_systm.h>
   89 #include <netinet/in_var.h>
   90 #include <netinet/ip.h>
   91 #include <netinet/ip_encap.h>
   92 #include <netinet/ip_mroute.h>
   93 #include <netinet/ip_var.h>
   94 #include <netinet/ip_options.h>
   95 #include <netinet/pim.h>
   96 #include <netinet/pim_var.h>
   97 #include <netinet/udp.h>
   98 #ifdef INET6
   99 #include <netinet/ip6.h>
  100 #include <netinet6/in6_var.h>
  101 #include <netinet6/ip6_mroute.h>
  102 #include <netinet6/ip6_var.h>
  103 #endif
  104 #include <machine/in_cksum.h>
  105 
  106 #include <security/mac/mac_framework.h>
  107 
  108 /*
  109  * Control debugging code for rsvp and multicast routing code.
  110  * Can only set them with the debugger.
  111  */
  112 static u_int    rsvpdebug;              /* non-zero enables debugging   */
  113 
  114 static u_int    mrtdebug;               /* any set of the flags below   */
  115 #define         DEBUG_MFC       0x02
  116 #define         DEBUG_FORWARD   0x04
  117 #define         DEBUG_EXPIRE    0x08
  118 #define         DEBUG_XMIT      0x10
  119 #define         DEBUG_PIM       0x20
  120 
  121 #define         VIFI_INVALID    ((vifi_t) -1)
  122 
  123 #define M_HASCL(m)      ((m)->m_flags & M_EXT)
  124 
  125 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast routing tables");
  126 
  127 /*
  128  * Locking.  We use two locks: one for the virtual interface table and
  129  * one for the forwarding table.  These locks may be nested in which case
  130  * the VIF lock must always be taken first.  Note that each lock is used
  131  * to cover not only the specific data structure but also related data
  132  * structures.  It may be better to add more fine-grained locking later;
  133  * it's not clear how performance-critical this code is.
  134  *
  135  * XXX: This module could particularly benefit from being cleaned
  136  *      up to use the <sys/queue.h> macros.
  137  *
  138  */
  139 
  140 static struct mrtstat   mrtstat;
  141 SYSCTL_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
  142     &mrtstat, mrtstat,
  143     "Multicast Routing Statistics (struct mrtstat, netinet/ip_mroute.h)");
  144 
  145 static struct mfc       *mfctable[MFCTBLSIZ];
  146 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD,
  147     &mfctable, sizeof(mfctable), "S,*mfc[MFCTBLSIZ]",
  148     "Multicast Forwarding Table (struct *mfc[MFCTBLSIZ], netinet/ip_mroute.h)");
  149 
  150 static struct mtx mrouter_mtx;
  151 #define MROUTER_LOCK()          mtx_lock(&mrouter_mtx)
  152 #define MROUTER_UNLOCK()        mtx_unlock(&mrouter_mtx)
  153 #define MROUTER_LOCK_ASSERT()   mtx_assert(&mrouter_mtx, MA_OWNED)
  154 #define MROUTER_LOCK_INIT()     \
  155         mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
  156 #define MROUTER_LOCK_DESTROY()  mtx_destroy(&mrouter_mtx)
  157 
  158 static struct mtx mfc_mtx;
  159 #define MFC_LOCK()      mtx_lock(&mfc_mtx)
  160 #define MFC_UNLOCK()    mtx_unlock(&mfc_mtx)
  161 #define MFC_LOCK_ASSERT()       mtx_assert(&mfc_mtx, MA_OWNED)
  162 #define MFC_LOCK_INIT() mtx_init(&mfc_mtx, "mroute mfc table", NULL, MTX_DEF)
  163 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  164 
  165 static struct vif       viftable[MAXVIFS];
  166 SYSCTL_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  167     &viftable, sizeof(viftable), "S,vif[MAXVIFS]",
  168     "Multicast Virtual Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  169 
  170 static struct mtx vif_mtx;
  171 #define VIF_LOCK()      mtx_lock(&vif_mtx)
  172 #define VIF_UNLOCK()    mtx_unlock(&vif_mtx)
  173 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  174 #define VIF_LOCK_INIT() mtx_init(&vif_mtx, "mroute vif table", NULL, MTX_DEF)
  175 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  176 
  177 static u_char           nexpire[MFCTBLSIZ];
  178 
  179 static eventhandler_tag if_detach_event_tag = NULL;
  180 
  181 static struct callout expire_upcalls_ch;
  182 
  183 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  184 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  185 
  186 #define ENCAP_TTL 64
  187 
  188 /*
  189  * Bandwidth meter variables and constants
  190  */
  191 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  192 /*
  193  * Pending timeouts are stored in a hash table, the key being the
  194  * expiration time. Periodically, the entries are analysed and processed.
  195  */
  196 #define BW_METER_BUCKETS        1024
  197 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
  198 static struct callout bw_meter_ch;
  199 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  200 
  201 /*
  202  * Pending upcalls are stored in a vector which is flushed when
  203  * full, or periodically
  204  */
  205 static struct bw_upcall bw_upcalls[BW_UPCALLS_MAX];
  206 static u_int    bw_upcalls_n; /* # of pending upcalls */
  207 static struct callout bw_upcalls_ch;
  208 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  209 
  210 static struct pimstat pimstat;
  211 
  212 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
  213 SYSCTL_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  214     &pimstat, pimstat,
  215     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  216 
  217 static u_long   pim_squelch_wholepkt = 0;
  218 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
  219     &pim_squelch_wholepkt, 0,
  220     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
  221 
  222 extern  struct domain inetdomain;
  223 struct protosw in_pim_protosw = {
  224         .pr_type =              SOCK_RAW,
  225         .pr_domain =            &inetdomain,
  226         .pr_protocol =          IPPROTO_PIM,
  227         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_LASTHDR,
  228         .pr_input =             pim_input,
  229         .pr_output =            (pr_output_t*)rip_output,
  230         .pr_ctloutput =         rip_ctloutput,
  231         .pr_usrreqs =           &rip_usrreqs
  232 };
  233 static const struct encaptab *pim_encap_cookie;
  234 
  235 #ifdef INET6
  236 /* ip6_mroute.c glue */
  237 extern struct in6_protosw in6_pim_protosw;
  238 static const struct encaptab *pim6_encap_cookie;
  239 
  240 extern int X_ip6_mrouter_set(struct socket *, struct sockopt *);
  241 extern int X_ip6_mrouter_get(struct socket *, struct sockopt *);
  242 extern int X_ip6_mrouter_done(void);
  243 extern int X_ip6_mforward(struct ip6_hdr *, struct ifnet *, struct mbuf *);
  244 extern int X_mrt6_ioctl(int, caddr_t);
  245 #endif
  246 
  247 static int pim_encapcheck(const struct mbuf *, int, int, void *);
  248 
  249 /*
  250  * Note: the PIM Register encapsulation adds the following in front of a
  251  * data packet:
  252  *
  253  * struct pim_encap_hdr {
  254  *    struct ip ip;
  255  *    struct pim_encap_pimhdr  pim;
  256  * }
  257  *
  258  */
  259 
  260 struct pim_encap_pimhdr {
  261         struct pim pim;
  262         uint32_t   flags;
  263 };
  264 
  265 static struct ip pim_encap_iphdr = {
  266 #if BYTE_ORDER == LITTLE_ENDIAN
  267         sizeof(struct ip) >> 2,
  268         IPVERSION,
  269 #else
  270         IPVERSION,
  271         sizeof(struct ip) >> 2,
  272 #endif
  273         0,                      /* tos */
  274         sizeof(struct ip),      /* total length */
  275         0,                      /* id */
  276         0,                      /* frag offset */
  277         ENCAP_TTL,
  278         IPPROTO_PIM,
  279         0,                      /* checksum */
  280 };
  281 
  282 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  283     {
  284         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  285         0,                      /* reserved */
  286         0,                      /* checksum */
  287     },
  288     0                           /* flags */
  289 };
  290 
  291 static struct ifnet multicast_register_if;
  292 static vifi_t reg_vif_num = VIFI_INVALID;
  293 
  294 /*
  295  * Private variables.
  296  */
  297 static vifi_t      numvifs;
  298 
  299 static u_long   X_ip_mcast_src(int vifi);
  300 static int      X_ip_mforward(struct ip *ip, struct ifnet *ifp,
  301                         struct mbuf *m, struct ip_moptions *imo);
  302 static int      X_ip_mrouter_done(void);
  303 static int      X_ip_mrouter_get(struct socket *so, struct sockopt *m);
  304 static int      X_ip_mrouter_set(struct socket *so, struct sockopt *m);
  305 static int      X_legal_vif_num(int vif);
  306 static int      X_mrt_ioctl(int cmd, caddr_t data, int fibnum);
  307 
  308 static int get_sg_cnt(struct sioc_sg_req *);
  309 static int get_vif_cnt(struct sioc_vif_req *);
  310 static void if_detached_event(void *arg __unused, struct ifnet *);
  311 static int ip_mrouter_init(struct socket *, int);
  312 static int add_vif(struct vifctl *);
  313 static int del_vif_locked(vifi_t);
  314 static int del_vif(vifi_t);
  315 static int add_mfc(struct mfcctl2 *);
  316 static int del_mfc(struct mfcctl2 *);
  317 static int set_api_config(uint32_t *); /* chose API capabilities */
  318 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
  319 static int set_assert(int);
  320 static void expire_upcalls(void *);
  321 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  322 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
  323 static void send_packet(struct vif *, struct mbuf *);
  324 
  325 /*
  326  * Bandwidth monitoring
  327  */
  328 static void free_bw_list(struct bw_meter *list);
  329 static int add_bw_upcall(struct bw_upcall *);
  330 static int del_bw_upcall(struct bw_upcall *);
  331 static void bw_meter_receive_packet(struct bw_meter *x, int plen,
  332                 struct timeval *nowp);
  333 static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp);
  334 static void bw_upcalls_send(void);
  335 static void schedule_bw_meter(struct bw_meter *x, struct timeval *nowp);
  336 static void unschedule_bw_meter(struct bw_meter *x);
  337 static void bw_meter_process(void);
  338 static void expire_bw_upcalls_send(void *);
  339 static void expire_bw_meter_process(void *);
  340 
  341 static int pim_register_send(struct ip *, struct vif *,
  342                 struct mbuf *, struct mfc *);
  343 static int pim_register_send_rp(struct ip *, struct vif *,
  344                 struct mbuf *, struct mfc *);
  345 static int pim_register_send_upcall(struct ip *, struct vif *,
  346                 struct mbuf *, struct mfc *);
  347 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
  348 
  349 /*
  350  * whether or not special PIM assert processing is enabled.
  351  */
  352 static int pim_assert;
  353 /*
  354  * Rate limit for assert notification messages, in usec
  355  */
  356 #define ASSERT_MSG_TIME         3000000
  357 
  358 /*
  359  * Kernel multicast routing API capabilities and setup.
  360  * If more API capabilities are added to the kernel, they should be
  361  * recorded in `mrt_api_support'.
  362  */
  363 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  364                                          MRT_MFC_FLAGS_BORDER_VIF |
  365                                          MRT_MFC_RP |
  366                                          MRT_MFC_BW_UPCALL);
  367 static uint32_t mrt_api_config = 0;
  368 
  369 /*
  370  * Hash function for a source, group entry
  371  */
  372 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
  373                         ((g) >> 20) ^ ((g) >> 10) ^ (g))
  374 
  375 /*
  376  * Find a route for a given origin IP address and Multicast group address
  377  * Statistics are updated by the caller if needed
  378  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
  379  */
  380 static struct mfc *
  381 mfc_find(in_addr_t o, in_addr_t g)
  382 {
  383     struct mfc *rt;
  384 
  385     MFC_LOCK_ASSERT();
  386 
  387     for (rt = mfctable[MFCHASH(o,g)]; rt; rt = rt->mfc_next)
  388         if ((rt->mfc_origin.s_addr == o) &&
  389                 (rt->mfc_mcastgrp.s_addr == g) && (rt->mfc_stall == NULL))
  390             break;
  391     return rt;
  392 }
  393 
  394 /*
  395  * Macros to compute elapsed time efficiently
  396  * Borrowed from Van Jacobson's scheduling code
  397  */
  398 #define TV_DELTA(a, b, delta) {                                 \
  399         int xxs;                                                \
  400         delta = (a).tv_usec - (b).tv_usec;                      \
  401         if ((xxs = (a).tv_sec - (b).tv_sec)) {                  \
  402                 switch (xxs) {                                  \
  403                 case 2:                                         \
  404                       delta += 1000000;                         \
  405                       /* FALLTHROUGH */                         \
  406                 case 1:                                         \
  407                       delta += 1000000;                         \
  408                       break;                                    \
  409                 default:                                        \
  410                       delta += (1000000 * xxs);                 \
  411                 }                                               \
  412         }                                                       \
  413 }
  414 
  415 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
  416               (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
  417 
  418 /*
  419  * Handle MRT setsockopt commands to modify the multicast routing tables.
  420  */
  421 static int
  422 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  423 {
  424     int error, optval;
  425     vifi_t      vifi;
  426     struct      vifctl vifc;
  427     struct      mfcctl2 mfc;
  428     struct      bw_upcall bw_upcall;
  429     uint32_t    i;
  430 
  431     if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
  432         return EPERM;
  433 
  434     error = 0;
  435     switch (sopt->sopt_name) {
  436     case MRT_INIT:
  437         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  438         if (error)
  439             break;
  440         error = ip_mrouter_init(so, optval);
  441         break;
  442 
  443     case MRT_DONE:
  444         error = ip_mrouter_done();
  445         break;
  446 
  447     case MRT_ADD_VIF:
  448         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  449         if (error)
  450             break;
  451         error = add_vif(&vifc);
  452         break;
  453 
  454     case MRT_DEL_VIF:
  455         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  456         if (error)
  457             break;
  458         error = del_vif(vifi);
  459         break;
  460 
  461     case MRT_ADD_MFC:
  462     case MRT_DEL_MFC:
  463         /*
  464          * select data size depending on API version.
  465          */
  466         if (sopt->sopt_name == MRT_ADD_MFC &&
  467                 mrt_api_config & MRT_API_FLAGS_ALL) {
  468             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  469                                 sizeof(struct mfcctl2));
  470         } else {
  471             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  472                                 sizeof(struct mfcctl));
  473             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  474                         sizeof(mfc) - sizeof(struct mfcctl));
  475         }
  476         if (error)
  477             break;
  478         if (sopt->sopt_name == MRT_ADD_MFC)
  479             error = add_mfc(&mfc);
  480         else
  481             error = del_mfc(&mfc);
  482         break;
  483 
  484     case MRT_ASSERT:
  485         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  486         if (error)
  487             break;
  488         set_assert(optval);
  489         break;
  490 
  491     case MRT_API_CONFIG:
  492         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  493         if (!error)
  494             error = set_api_config(&i);
  495         if (!error)
  496             error = sooptcopyout(sopt, &i, sizeof i);
  497         break;
  498 
  499     case MRT_ADD_BW_UPCALL:
  500     case MRT_DEL_BW_UPCALL:
  501         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  502                                 sizeof bw_upcall);
  503         if (error)
  504             break;
  505         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  506             error = add_bw_upcall(&bw_upcall);
  507         else
  508             error = del_bw_upcall(&bw_upcall);
  509         break;
  510 
  511     default:
  512         error = EOPNOTSUPP;
  513         break;
  514     }
  515     return error;
  516 }
  517 
  518 /*
  519  * Handle MRT getsockopt commands
  520  */
  521 static int
  522 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  523 {
  524     int error;
  525     static int version = 0x0305; /* !!! why is this here? XXX */
  526 
  527     switch (sopt->sopt_name) {
  528     case MRT_VERSION:
  529         error = sooptcopyout(sopt, &version, sizeof version);
  530         break;
  531 
  532     case MRT_ASSERT:
  533         error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
  534         break;
  535 
  536     case MRT_API_SUPPORT:
  537         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  538         break;
  539 
  540     case MRT_API_CONFIG:
  541         error = sooptcopyout(sopt, &mrt_api_config, sizeof mrt_api_config);
  542         break;
  543 
  544     default:
  545         error = EOPNOTSUPP;
  546         break;
  547     }
  548     return error;
  549 }
  550 
  551 /*
  552  * Handle ioctl commands to obtain information from the cache
  553  */
  554 static int
  555 X_mrt_ioctl(int cmd, caddr_t data, int fibnum)
  556 {
  557     int error = 0;
  558 
  559     /*
  560      * Currently the only function calling this ioctl routine is rtioctl().
  561      * Typically, only root can create the raw socket in order to execute
  562      * this ioctl method, however the request might be coming from a prison
  563      */
  564     error = priv_check(curthread, PRIV_NETINET_MROUTE);
  565     if (error)
  566         return (error);
  567     switch (cmd) {
  568     case (SIOCGETVIFCNT):
  569         error = get_vif_cnt((struct sioc_vif_req *)data);
  570         break;
  571 
  572     case (SIOCGETSGCNT):
  573         error = get_sg_cnt((struct sioc_sg_req *)data);
  574         break;
  575 
  576     default:
  577         error = EINVAL;
  578         break;
  579     }
  580     return error;
  581 }
  582 
  583 /*
  584  * returns the packet, byte, rpf-failure count for the source group provided
  585  */
  586 static int
  587 get_sg_cnt(struct sioc_sg_req *req)
  588 {
  589     struct mfc *rt;
  590 
  591     MFC_LOCK();
  592     rt = mfc_find(req->src.s_addr, req->grp.s_addr);
  593     if (rt == NULL) {
  594         MFC_UNLOCK();
  595         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  596         return EADDRNOTAVAIL;
  597     }
  598     req->pktcnt = rt->mfc_pkt_cnt;
  599     req->bytecnt = rt->mfc_byte_cnt;
  600     req->wrong_if = rt->mfc_wrong_if;
  601     MFC_UNLOCK();
  602     return 0;
  603 }
  604 
  605 /*
  606  * returns the input and output packet and byte counts on the vif provided
  607  */
  608 static int
  609 get_vif_cnt(struct sioc_vif_req *req)
  610 {
  611     vifi_t vifi = req->vifi;
  612 
  613     VIF_LOCK();
  614     if (vifi >= numvifs) {
  615         VIF_UNLOCK();
  616         return EINVAL;
  617     }
  618 
  619     req->icount = viftable[vifi].v_pkt_in;
  620     req->ocount = viftable[vifi].v_pkt_out;
  621     req->ibytes = viftable[vifi].v_bytes_in;
  622     req->obytes = viftable[vifi].v_bytes_out;
  623     VIF_UNLOCK();
  624 
  625     return 0;
  626 }
  627 
  628 static void
  629 ip_mrouter_reset(void)
  630 {
  631     bzero((caddr_t)mfctable, sizeof(mfctable));
  632     bzero((caddr_t)nexpire, sizeof(nexpire));
  633 
  634     pim_assert = 0;
  635     mrt_api_config = 0;
  636 
  637     callout_init(&expire_upcalls_ch, CALLOUT_MPSAFE);
  638 
  639     bw_upcalls_n = 0;
  640     bzero((caddr_t)bw_meter_timers, sizeof(bw_meter_timers));
  641     callout_init(&bw_upcalls_ch, CALLOUT_MPSAFE);
  642     callout_init(&bw_meter_ch, CALLOUT_MPSAFE);
  643 }
  644 
  645 static void
  646 if_detached_event(void *arg __unused, struct ifnet *ifp)
  647 {
  648     vifi_t vifi;
  649     int i;
  650     struct mfc *mfc;
  651     struct mfc *nmfc;
  652     struct mfc **ppmfc; /* Pointer to previous node's next-pointer */
  653     struct rtdetq *pq;
  654     struct rtdetq *npq;
  655 
  656     MROUTER_LOCK();
  657     if (ip_mrouter == NULL) {
  658         MROUTER_UNLOCK();
  659     }
  660 
  661     /*
  662      * Tear down multicast forwarder state associated with this ifnet.
  663      * 1. Walk the vif list, matching vifs against this ifnet.
  664      * 2. Walk the multicast forwarding cache (mfc) looking for
  665      *    inner matches with this vif's index.
  666      * 3. Free any pending mbufs for this mfc.
  667      * 4. Free the associated mfc entry and state associated with this vif.
  668      *    Be very careful about unlinking from a singly-linked list whose
  669      *    "head node" is a pointer in a simple array.
  670      * 5. Free vif state. This should disable ALLMULTI on the interface.
  671      */
  672     VIF_LOCK();
  673     MFC_LOCK();
  674     for (vifi = 0; vifi < numvifs; vifi++) {
  675         if (viftable[vifi].v_ifp != ifp)
  676                 continue;
  677         for (i = 0; i < MFCTBLSIZ; i++) {
  678             ppmfc = &mfctable[i];
  679             for (mfc = mfctable[i]; mfc != NULL; ) {
  680                 nmfc = mfc->mfc_next;
  681                 if (mfc->mfc_parent == vifi) {
  682                     for (pq = mfc->mfc_stall; pq != NULL; ) {
  683                         npq = pq->next;
  684                         m_freem(pq->m);
  685                         free(pq, M_MRTABLE);
  686                         pq = npq;
  687                     }
  688                     free_bw_list(mfc->mfc_bw_meter);
  689                     free(mfc, M_MRTABLE);
  690                     *ppmfc = nmfc;
  691                 } else {
  692                     ppmfc = &mfc->mfc_next;
  693                 }
  694                 mfc = nmfc;
  695             }
  696         }
  697         del_vif_locked(vifi);
  698     }
  699     MFC_UNLOCK();
  700     VIF_UNLOCK();
  701 
  702     MROUTER_UNLOCK();
  703 }
  704                         
  705 /*
  706  * Enable multicast routing
  707  */
  708 static int
  709 ip_mrouter_init(struct socket *so, int version)
  710 {
  711     if (mrtdebug)
  712         log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
  713             so->so_type, so->so_proto->pr_protocol);
  714 
  715     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  716         return EOPNOTSUPP;
  717 
  718     if (version != 1)
  719         return ENOPROTOOPT;
  720 
  721     MROUTER_LOCK();
  722 
  723     if (ip_mrouter != NULL) {
  724         MROUTER_UNLOCK();
  725         return EADDRINUSE;
  726     }
  727 
  728     if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 
  729         if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
  730     if (if_detach_event_tag == NULL) {
  731         MROUTER_UNLOCK();
  732         return (ENOMEM);
  733     }
  734 
  735     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
  736 
  737     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
  738         expire_bw_upcalls_send, NULL);
  739     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
  740 
  741     ip_mrouter = so;
  742 
  743     MROUTER_UNLOCK();
  744 
  745     if (mrtdebug)
  746         log(LOG_DEBUG, "ip_mrouter_init\n");
  747 
  748     return 0;
  749 }
  750 
  751 /*
  752  * Disable multicast routing
  753  */
  754 static int
  755 X_ip_mrouter_done(void)
  756 {
  757     vifi_t vifi;
  758     int i;
  759     struct ifnet *ifp;
  760     struct ifreq ifr;
  761     struct mfc *rt;
  762     struct rtdetq *rte;
  763 
  764     MROUTER_LOCK();
  765 
  766     if (ip_mrouter == NULL) {
  767         MROUTER_UNLOCK();
  768         return EINVAL;
  769     }
  770 
  771     /*
  772      * Detach/disable hooks to the reset of the system.
  773      */
  774     ip_mrouter = NULL;
  775     mrt_api_config = 0;
  776 
  777     VIF_LOCK();
  778     /*
  779      * For each phyint in use, disable promiscuous reception of all IP
  780      * multicasts.
  781      */
  782     for (vifi = 0; vifi < numvifs; vifi++) {
  783         if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
  784                 !(viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  785             struct sockaddr_in *so = (struct sockaddr_in *)&(ifr.ifr_addr);
  786 
  787             so->sin_len = sizeof(struct sockaddr_in);
  788             so->sin_family = AF_INET;
  789             so->sin_addr.s_addr = INADDR_ANY;
  790             ifp = viftable[vifi].v_ifp;
  791             if_allmulti(ifp, 0);
  792         }
  793     }
  794     bzero((caddr_t)viftable, sizeof(viftable));
  795     numvifs = 0;
  796     pim_assert = 0;
  797     VIF_UNLOCK();
  798     EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
  799 
  800     /*
  801      * Free all multicast forwarding cache entries.
  802      */
  803     callout_stop(&expire_upcalls_ch);
  804     callout_stop(&bw_upcalls_ch);
  805     callout_stop(&bw_meter_ch);
  806 
  807     MFC_LOCK();
  808     for (i = 0; i < MFCTBLSIZ; i++) {
  809         for (rt = mfctable[i]; rt != NULL; ) {
  810             struct mfc *nr = rt->mfc_next;
  811 
  812             for (rte = rt->mfc_stall; rte != NULL; ) {
  813                 struct rtdetq *n = rte->next;
  814 
  815                 m_freem(rte->m);
  816                 free(rte, M_MRTABLE);
  817                 rte = n;
  818             }
  819             free_bw_list(rt->mfc_bw_meter);
  820             free(rt, M_MRTABLE);
  821             rt = nr;
  822         }
  823     }
  824     bzero((caddr_t)mfctable, sizeof(mfctable));
  825     bzero((caddr_t)nexpire, sizeof(nexpire));
  826     bw_upcalls_n = 0;
  827     bzero(bw_meter_timers, sizeof(bw_meter_timers));
  828     MFC_UNLOCK();
  829 
  830     reg_vif_num = VIFI_INVALID;
  831 
  832     MROUTER_UNLOCK();
  833 
  834     if (mrtdebug)
  835         log(LOG_DEBUG, "ip_mrouter_done\n");
  836 
  837     return 0;
  838 }
  839 
  840 /*
  841  * Set PIM assert processing global
  842  */
  843 static int
  844 set_assert(int i)
  845 {
  846     if ((i != 1) && (i != 0))
  847         return EINVAL;
  848 
  849     pim_assert = i;
  850 
  851     return 0;
  852 }
  853 
  854 /*
  855  * Configure API capabilities
  856  */
  857 int
  858 set_api_config(uint32_t *apival)
  859 {
  860     int i;
  861 
  862     /*
  863      * We can set the API capabilities only if it is the first operation
  864      * after MRT_INIT. I.e.:
  865      *  - there are no vifs installed
  866      *  - pim_assert is not enabled
  867      *  - the MFC table is empty
  868      */
  869     if (numvifs > 0) {
  870         *apival = 0;
  871         return EPERM;
  872     }
  873     if (pim_assert) {
  874         *apival = 0;
  875         return EPERM;
  876     }
  877     for (i = 0; i < MFCTBLSIZ; i++) {
  878         if (mfctable[i] != NULL) {
  879             *apival = 0;
  880             return EPERM;
  881         }
  882     }
  883 
  884     mrt_api_config = *apival & mrt_api_support;
  885     *apival = mrt_api_config;
  886 
  887     return 0;
  888 }
  889 
  890 /*
  891  * Add a vif to the vif table
  892  */
  893 static int
  894 add_vif(struct vifctl *vifcp)
  895 {
  896     struct vif *vifp = viftable + vifcp->vifc_vifi;
  897     struct sockaddr_in sin = {sizeof sin, AF_INET};
  898     struct ifaddr *ifa;
  899     struct ifnet *ifp;
  900     int error;
  901 
  902     VIF_LOCK();
  903     if (vifcp->vifc_vifi >= MAXVIFS) {
  904         VIF_UNLOCK();
  905         return EINVAL;
  906     }
  907     /* rate limiting is no longer supported by this code */
  908     if (vifcp->vifc_rate_limit != 0) {
  909         log(LOG_ERR, "rate limiting is no longer supported\n");
  910         VIF_UNLOCK();
  911         return EINVAL;
  912     }
  913     if (vifp->v_lcl_addr.s_addr != INADDR_ANY) {
  914         VIF_UNLOCK();
  915         return EADDRINUSE;
  916     }
  917     if (vifcp->vifc_lcl_addr.s_addr == INADDR_ANY) {
  918         VIF_UNLOCK();
  919         return EADDRNOTAVAIL;
  920     }
  921 
  922     /* Find the interface with an address in AF_INET family */
  923     if (vifcp->vifc_flags & VIFF_REGISTER) {
  924         /*
  925          * XXX: Because VIFF_REGISTER does not really need a valid
  926          * local interface (e.g. it could be 127.0.0.2), we don't
  927          * check its address.
  928          */
  929         ifp = NULL;
  930     } else {
  931         sin.sin_addr = vifcp->vifc_lcl_addr;
  932         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  933         if (ifa == NULL) {
  934             VIF_UNLOCK();
  935             return EADDRNOTAVAIL;
  936         }
  937         ifp = ifa->ifa_ifp;
  938     }
  939 
  940     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
  941         log(LOG_ERR, "tunnels are no longer supported\n");
  942         VIF_UNLOCK();
  943         return EOPNOTSUPP;
  944     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  945         ifp = &multicast_register_if;
  946         if (mrtdebug)
  947             log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
  948                     (void *)&multicast_register_if);
  949         if (reg_vif_num == VIFI_INVALID) {
  950             if_initname(&multicast_register_if, "register_vif", 0);
  951             multicast_register_if.if_flags = IFF_LOOPBACK;
  952             reg_vif_num = vifcp->vifc_vifi;
  953         }
  954     } else {            /* Make sure the interface supports multicast */
  955         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
  956             VIF_UNLOCK();
  957             return EOPNOTSUPP;
  958         }
  959 
  960         /* Enable promiscuous reception of all IP multicasts from the if */
  961         error = if_allmulti(ifp, 1);
  962         if (error) {
  963             VIF_UNLOCK();
  964             return error;
  965         }
  966     }
  967 
  968     vifp->v_flags     = vifcp->vifc_flags;
  969     vifp->v_threshold = vifcp->vifc_threshold;
  970     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
  971     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
  972     vifp->v_ifp       = ifp;
  973     vifp->v_rsvp_on   = 0;
  974     vifp->v_rsvpd     = NULL;
  975     /* initialize per vif pkt counters */
  976     vifp->v_pkt_in    = 0;
  977     vifp->v_pkt_out   = 0;
  978     vifp->v_bytes_in  = 0;
  979     vifp->v_bytes_out = 0;
  980     bzero(&vifp->v_route, sizeof(vifp->v_route));
  981 
  982     /* Adjust numvifs up if the vifi is higher than numvifs */
  983     if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
  984 
  985     VIF_UNLOCK();
  986 
  987     if (mrtdebug)
  988         log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x\n",
  989             vifcp->vifc_vifi,
  990             (u_long)ntohl(vifcp->vifc_lcl_addr.s_addr),
  991             (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
  992             (u_long)ntohl(vifcp->vifc_rmt_addr.s_addr),
  993             vifcp->vifc_threshold);
  994 
  995     return 0;
  996 }
  997 
  998 /*
  999  * Delete a vif from the vif table
 1000  */
 1001 static int
 1002 del_vif_locked(vifi_t vifi)
 1003 {
 1004     struct vif *vifp;
 1005 
 1006     VIF_LOCK_ASSERT();
 1007 
 1008     if (vifi >= numvifs) {
 1009         return EINVAL;
 1010     }
 1011     vifp = &viftable[vifi];
 1012     if (vifp->v_lcl_addr.s_addr == INADDR_ANY) {
 1013         return EADDRNOTAVAIL;
 1014     }
 1015 
 1016     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
 1017         if_allmulti(vifp->v_ifp, 0);
 1018 
 1019     if (vifp->v_flags & VIFF_REGISTER)
 1020         reg_vif_num = VIFI_INVALID;
 1021 
 1022     bzero((caddr_t)vifp, sizeof (*vifp));
 1023 
 1024     if (mrtdebug)
 1025         log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
 1026 
 1027     /* Adjust numvifs down */
 1028     for (vifi = numvifs; vifi > 0; vifi--)
 1029         if (viftable[vifi-1].v_lcl_addr.s_addr != INADDR_ANY)
 1030             break;
 1031     numvifs = vifi;
 1032 
 1033     return 0;
 1034 }
 1035 
 1036 static int
 1037 del_vif(vifi_t vifi)
 1038 {
 1039     int cc;
 1040 
 1041     VIF_LOCK();
 1042     cc = del_vif_locked(vifi);
 1043     VIF_UNLOCK();
 1044 
 1045     return cc;
 1046 }
 1047 
 1048 /*
 1049  * update an mfc entry without resetting counters and S,G addresses.
 1050  */
 1051 static void
 1052 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1053 {
 1054     int i;
 1055 
 1056     rt->mfc_parent = mfccp->mfcc_parent;
 1057     for (i = 0; i < numvifs; i++) {
 1058         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
 1059         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
 1060             MRT_MFC_FLAGS_ALL;
 1061     }
 1062     /* set the RP address */
 1063     if (mrt_api_config & MRT_MFC_RP)
 1064         rt->mfc_rp = mfccp->mfcc_rp;
 1065     else
 1066         rt->mfc_rp.s_addr = INADDR_ANY;
 1067 }
 1068 
 1069 /*
 1070  * fully initialize an mfc entry from the parameter.
 1071  */
 1072 static void
 1073 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1074 {
 1075     rt->mfc_origin     = mfccp->mfcc_origin;
 1076     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1077 
 1078     update_mfc_params(rt, mfccp);
 1079 
 1080     /* initialize pkt counters per src-grp */
 1081     rt->mfc_pkt_cnt    = 0;
 1082     rt->mfc_byte_cnt   = 0;
 1083     rt->mfc_wrong_if   = 0;
 1084     rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
 1085 }
 1086 
 1087 
 1088 /*
 1089  * Add an mfc entry
 1090  */
 1091 static int
 1092 add_mfc(struct mfcctl2 *mfccp)
 1093 {
 1094     struct mfc *rt;
 1095     u_long hash;
 1096     struct rtdetq *rte;
 1097     u_short nstl;
 1098 
 1099     VIF_LOCK();
 1100     MFC_LOCK();
 1101 
 1102     rt = mfc_find(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1103 
 1104     /* If an entry already exists, just update the fields */
 1105     if (rt) {
 1106         if (mrtdebug & DEBUG_MFC)
 1107             log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
 1108                 (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1109                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1110                 mfccp->mfcc_parent);
 1111 
 1112         update_mfc_params(rt, mfccp);
 1113         MFC_UNLOCK();
 1114         VIF_UNLOCK();
 1115         return 0;
 1116     }
 1117 
 1118     /*
 1119      * Find the entry for which the upcall was made and update
 1120      */
 1121     hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
 1122     for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
 1123 
 1124         if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1125                 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
 1126                 (rt->mfc_stall != NULL)) {
 1127 
 1128             if (nstl++)
 1129                 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
 1130                     "multiple kernel entries",
 1131                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1132                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1133                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1134 
 1135             if (mrtdebug & DEBUG_MFC)
 1136                 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
 1137                     (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1138                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1139                     mfccp->mfcc_parent, (void *)rt->mfc_stall);
 1140 
 1141             init_mfc_params(rt, mfccp);
 1142 
 1143             rt->mfc_expire = 0; /* Don't clean this guy up */
 1144             nexpire[hash]--;
 1145 
 1146             /* free packets Qed at the end of this entry */
 1147             for (rte = rt->mfc_stall; rte != NULL; ) {
 1148                 struct rtdetq *n = rte->next;
 1149 
 1150                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1151                 m_freem(rte->m);
 1152                 free(rte, M_MRTABLE);
 1153                 rte = n;
 1154             }
 1155             rt->mfc_stall = NULL;
 1156         }
 1157     }
 1158 
 1159     /*
 1160      * It is possible that an entry is being inserted without an upcall
 1161      */
 1162     if (nstl == 0) {
 1163         if (mrtdebug & DEBUG_MFC)
 1164             log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
 1165                 hash, (u_long)ntohl(mfccp->mfcc_origin.s_addr),
 1166                 (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1167                 mfccp->mfcc_parent);
 1168 
 1169         for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
 1170             if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
 1171                     (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
 1172                 init_mfc_params(rt, mfccp);
 1173                 if (rt->mfc_expire)
 1174                     nexpire[hash]--;
 1175                 rt->mfc_expire = 0;
 1176                 break; /* XXX */
 1177             }
 1178         }
 1179         if (rt == NULL) {               /* no upcall, so make a new entry */
 1180             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1181             if (rt == NULL) {
 1182                 MFC_UNLOCK();
 1183                 VIF_UNLOCK();
 1184                 return ENOBUFS;
 1185             }
 1186 
 1187             init_mfc_params(rt, mfccp);
 1188             rt->mfc_expire     = 0;
 1189             rt->mfc_stall      = NULL;
 1190 
 1191             rt->mfc_bw_meter = NULL;
 1192             /* insert new entry at head of hash chain */
 1193             rt->mfc_next = mfctable[hash];
 1194             mfctable[hash] = rt;
 1195         }
 1196     }
 1197     MFC_UNLOCK();
 1198     VIF_UNLOCK();
 1199     return 0;
 1200 }
 1201 
 1202 /*
 1203  * Delete an mfc entry
 1204  */
 1205 static int
 1206 del_mfc(struct mfcctl2 *mfccp)
 1207 {
 1208     struct in_addr      origin;
 1209     struct in_addr      mcastgrp;
 1210     struct mfc          *rt;
 1211     struct mfc          **nptr;
 1212     u_long              hash;
 1213     struct bw_meter     *list;
 1214 
 1215     origin = mfccp->mfcc_origin;
 1216     mcastgrp = mfccp->mfcc_mcastgrp;
 1217 
 1218     if (mrtdebug & DEBUG_MFC)
 1219         log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
 1220             (u_long)ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr));
 1221 
 1222     MFC_LOCK();
 1223 
 1224     hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
 1225     for (nptr = &mfctable[hash]; (rt = *nptr) != NULL; nptr = &rt->mfc_next)
 1226         if (origin.s_addr == rt->mfc_origin.s_addr &&
 1227                 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
 1228                 rt->mfc_stall == NULL)
 1229             break;
 1230     if (rt == NULL) {
 1231         MFC_UNLOCK();
 1232         return EADDRNOTAVAIL;
 1233     }
 1234 
 1235     *nptr = rt->mfc_next;
 1236 
 1237     /*
 1238      * free the bw_meter entries
 1239      */
 1240     list = rt->mfc_bw_meter;
 1241     rt->mfc_bw_meter = NULL;
 1242 
 1243     free(rt, M_MRTABLE);
 1244 
 1245     free_bw_list(list);
 1246 
 1247     MFC_UNLOCK();
 1248 
 1249     return 0;
 1250 }
 1251 
 1252 /*
 1253  * Send a message to the routing daemon on the multicast routing socket
 1254  */
 1255 static int
 1256 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1257 {
 1258     if (s) {
 1259         SOCKBUF_LOCK(&s->so_rcv);
 1260         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1261             NULL) != 0) {
 1262             sorwakeup_locked(s);
 1263             return 0;
 1264         }
 1265         SOCKBUF_UNLOCK(&s->so_rcv);
 1266     }
 1267     m_freem(mm);
 1268     return -1;
 1269 }
 1270 
 1271 /*
 1272  * IP multicast forwarding function. This function assumes that the packet
 1273  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1274  * pointed to by "ifp", and the packet is to be relayed to other networks
 1275  * that have members of the packet's destination IP multicast group.
 1276  *
 1277  * The packet is returned unscathed to the caller, unless it is
 1278  * erroneous, in which case a non-zero return value tells the caller to
 1279  * discard it.
 1280  */
 1281 
 1282 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1283 
 1284 static int
 1285 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1286     struct ip_moptions *imo)
 1287 {
 1288     struct mfc *rt;
 1289     int error;
 1290     vifi_t vifi;
 1291 
 1292     if (mrtdebug & DEBUG_FORWARD)
 1293         log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
 1294             (u_long)ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr),
 1295             (void *)ifp);
 1296 
 1297     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1298                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1299         /*
 1300          * Packet arrived via a physical interface or
 1301          * an encapsulated tunnel or a register_vif.
 1302          */
 1303     } else {
 1304         /*
 1305          * Packet arrived through a source-route tunnel.
 1306          * Source-route tunnels are no longer supported.
 1307          */
 1308         static int last_log;
 1309         if (last_log != time_uptime) {
 1310             last_log = time_uptime;
 1311             log(LOG_ERR,
 1312                 "ip_mforward: received source-routed packet from %lx\n",
 1313                 (u_long)ntohl(ip->ip_src.s_addr));
 1314         }
 1315         return 1;
 1316     }
 1317 
 1318     VIF_LOCK();
 1319     MFC_LOCK();
 1320     if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
 1321         if (ip->ip_ttl < MAXTTL)
 1322             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1323         if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1324             struct vif *vifp = viftable + vifi;
 1325 
 1326             printf("Sending IPPROTO_RSVP from %lx to %lx on vif %d (%s%s)\n",
 1327                 (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr),
 1328                 vifi,
 1329                 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
 1330                 vifp->v_ifp->if_xname);
 1331         }
 1332         error = ip_mdq(m, ifp, NULL, vifi);
 1333         MFC_UNLOCK();
 1334         VIF_UNLOCK();
 1335         return error;
 1336     }
 1337     if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
 1338         printf("Warning: IPPROTO_RSVP from %lx to %lx without vif option\n",
 1339             (long)ntohl(ip->ip_src.s_addr), (long)ntohl(ip->ip_dst.s_addr));
 1340         if (!imo)
 1341             printf("In fact, no options were specified at all\n");
 1342     }
 1343 
 1344     /*
 1345      * Don't forward a packet with time-to-live of zero or one,
 1346      * or a packet destined to a local-only group.
 1347      */
 1348     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
 1349         MFC_UNLOCK();
 1350         VIF_UNLOCK();
 1351         return 0;
 1352     }
 1353 
 1354     /*
 1355      * Determine forwarding vifs from the forwarding cache table
 1356      */
 1357     ++mrtstat.mrts_mfc_lookups;
 1358     rt = mfc_find(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1359 
 1360     /* Entry exists, so forward if necessary */
 1361     if (rt != NULL) {
 1362         error = ip_mdq(m, ifp, rt, -1);
 1363         MFC_UNLOCK();
 1364         VIF_UNLOCK();
 1365         return error;
 1366     } else {
 1367         /*
 1368          * If we don't have a route for packet's origin,
 1369          * Make a copy of the packet & send message to routing daemon
 1370          */
 1371 
 1372         struct mbuf *mb0;
 1373         struct rtdetq *rte;
 1374         u_long hash;
 1375         int hlen = ip->ip_hl << 2;
 1376 
 1377         ++mrtstat.mrts_mfc_misses;
 1378 
 1379         mrtstat.mrts_no_route++;
 1380         if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
 1381             log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
 1382                 (u_long)ntohl(ip->ip_src.s_addr),
 1383                 (u_long)ntohl(ip->ip_dst.s_addr));
 1384 
 1385         /*
 1386          * Allocate mbufs early so that we don't do extra work if we are
 1387          * just going to fail anyway.  Make sure to pullup the header so
 1388          * that other people can't step on it.
 1389          */
 1390         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE, M_NOWAIT);
 1391         if (rte == NULL) {
 1392             MFC_UNLOCK();
 1393             VIF_UNLOCK();
 1394             return ENOBUFS;
 1395         }
 1396         mb0 = m_copypacket(m, M_DONTWAIT);
 1397         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1398             mb0 = m_pullup(mb0, hlen);
 1399         if (mb0 == NULL) {
 1400             free(rte, M_MRTABLE);
 1401             MFC_UNLOCK();
 1402             VIF_UNLOCK();
 1403             return ENOBUFS;
 1404         }
 1405 
 1406         /* is there an upcall waiting for this flow ? */
 1407         hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
 1408         for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
 1409             if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
 1410                     (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
 1411                     (rt->mfc_stall != NULL))
 1412                 break;
 1413         }
 1414 
 1415         if (rt == NULL) {
 1416             int i;
 1417             struct igmpmsg *im;
 1418             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1419             struct mbuf *mm;
 1420 
 1421             /*
 1422              * Locate the vifi for the incoming interface for this packet.
 1423              * If none found, drop packet.
 1424              */
 1425             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1426                 ;
 1427             if (vifi >= numvifs)        /* vif not found, drop packet */
 1428                 goto non_fatal;
 1429 
 1430             /* no upcall, so make a new entry */
 1431             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1432             if (rt == NULL)
 1433                 goto fail;
 1434             /* Make a copy of the header to send to the user level process */
 1435             mm = m_copy(mb0, 0, hlen);
 1436             if (mm == NULL)
 1437                 goto fail1;
 1438 
 1439             /*
 1440              * Send message to routing daemon to install
 1441              * a route into the kernel table
 1442              */
 1443 
 1444             im = mtod(mm, struct igmpmsg *);
 1445             im->im_msgtype = IGMPMSG_NOCACHE;
 1446             im->im_mbz = 0;
 1447             im->im_vif = vifi;
 1448 
 1449             mrtstat.mrts_upcalls++;
 1450 
 1451             k_igmpsrc.sin_addr = ip->ip_src;
 1452             if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1453                 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
 1454                 ++mrtstat.mrts_upq_sockfull;
 1455 fail1:
 1456                 free(rt, M_MRTABLE);
 1457 fail:
 1458                 free(rte, M_MRTABLE);
 1459                 m_freem(mb0);
 1460                 MFC_UNLOCK();
 1461                 VIF_UNLOCK();
 1462                 return ENOBUFS;
 1463             }
 1464 
 1465             /* insert new entry at head of hash chain */
 1466             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1467             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1468             rt->mfc_expire            = UPCALL_EXPIRE;
 1469             nexpire[hash]++;
 1470             for (i = 0; i < numvifs; i++) {
 1471                 rt->mfc_ttls[i] = 0;
 1472                 rt->mfc_flags[i] = 0;
 1473             }
 1474             rt->mfc_parent = -1;
 1475 
 1476             rt->mfc_rp.s_addr = INADDR_ANY; /* clear the RP address */
 1477 
 1478             rt->mfc_bw_meter = NULL;
 1479 
 1480             /* link into table */
 1481             rt->mfc_next   = mfctable[hash];
 1482             mfctable[hash] = rt;
 1483             rt->mfc_stall = rte;
 1484 
 1485         } else {
 1486             /* determine if q has overflowed */
 1487             int npkts = 0;
 1488             struct rtdetq **p;
 1489 
 1490             /*
 1491              * XXX ouch! we need to append to the list, but we
 1492              * only have a pointer to the front, so we have to
 1493              * scan the entire list every time.
 1494              */
 1495             for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
 1496                 npkts++;
 1497 
 1498             if (npkts > MAX_UPQ) {
 1499                 mrtstat.mrts_upq_ovflw++;
 1500 non_fatal:
 1501                 free(rte, M_MRTABLE);
 1502                 m_freem(mb0);
 1503                 MFC_UNLOCK();
 1504                 VIF_UNLOCK();
 1505                 return 0;
 1506             }
 1507 
 1508             /* Add this entry to the end of the queue */
 1509             *p = rte;
 1510         }
 1511 
 1512         rte->m                  = mb0;
 1513         rte->ifp                = ifp;
 1514         rte->next               = NULL;
 1515 
 1516         MFC_UNLOCK();
 1517         VIF_UNLOCK();
 1518 
 1519         return 0;
 1520     }
 1521 }
 1522 
 1523 /*
 1524  * Clean up the cache entry if upcall is not serviced
 1525  */
 1526 static void
 1527 expire_upcalls(void *unused)
 1528 {
 1529     struct rtdetq *rte;
 1530     struct mfc *mfc, **nptr;
 1531     int i;
 1532 
 1533     MFC_LOCK();
 1534     for (i = 0; i < MFCTBLSIZ; i++) {
 1535         if (nexpire[i] == 0)
 1536             continue;
 1537         nptr = &mfctable[i];
 1538         for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
 1539             /*
 1540              * Skip real cache entries
 1541              * Make sure it wasn't marked to not expire (shouldn't happen)
 1542              * If it expires now
 1543              */
 1544             if (mfc->mfc_stall != NULL && mfc->mfc_expire != 0 &&
 1545                     --mfc->mfc_expire == 0) {
 1546                 if (mrtdebug & DEBUG_EXPIRE)
 1547                     log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
 1548                         (u_long)ntohl(mfc->mfc_origin.s_addr),
 1549                         (u_long)ntohl(mfc->mfc_mcastgrp.s_addr));
 1550                 /*
 1551                  * drop all the packets
 1552                  * free the mbuf with the pkt, if, timing info
 1553                  */
 1554                 for (rte = mfc->mfc_stall; rte; ) {
 1555                     struct rtdetq *n = rte->next;
 1556 
 1557                     m_freem(rte->m);
 1558                     free(rte, M_MRTABLE);
 1559                     rte = n;
 1560                 }
 1561                 ++mrtstat.mrts_cache_cleanups;
 1562                 nexpire[i]--;
 1563 
 1564                 /*
 1565                  * free the bw_meter entries
 1566                  */
 1567                 while (mfc->mfc_bw_meter != NULL) {
 1568                     struct bw_meter *x = mfc->mfc_bw_meter;
 1569 
 1570                     mfc->mfc_bw_meter = x->bm_mfc_next;
 1571                     free(x, M_BWMETER);
 1572                 }
 1573 
 1574                 *nptr = mfc->mfc_next;
 1575                 free(mfc, M_MRTABLE);
 1576             } else {
 1577                 nptr = &mfc->mfc_next;
 1578             }
 1579         }
 1580     }
 1581     MFC_UNLOCK();
 1582 
 1583     callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL);
 1584 }
 1585 
 1586 /*
 1587  * Packet forwarding routine once entry in the cache is made
 1588  */
 1589 static int
 1590 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1591 {
 1592     struct ip  *ip = mtod(m, struct ip *);
 1593     vifi_t vifi;
 1594     int plen = ip->ip_len;
 1595 
 1596     VIF_LOCK_ASSERT();
 1597 
 1598     /*
 1599      * If xmt_vif is not -1, send on only the requested vif.
 1600      *
 1601      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1602      */
 1603     if (xmt_vif < numvifs) {
 1604         if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1605                 pim_register_send(ip, viftable + xmt_vif, m, rt);
 1606         else
 1607                 phyint_send(ip, viftable + xmt_vif, m);
 1608         return 1;
 1609     }
 1610 
 1611     /*
 1612      * Don't forward if it didn't arrive from the parent vif for its origin.
 1613      */
 1614     vifi = rt->mfc_parent;
 1615     if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
 1616         /* came in the wrong interface */
 1617         if (mrtdebug & DEBUG_FORWARD)
 1618             log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
 1619                 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
 1620         ++mrtstat.mrts_wrong_if;
 1621         ++rt->mfc_wrong_if;
 1622         /*
 1623          * If we are doing PIM assert processing, send a message
 1624          * to the routing daemon.
 1625          *
 1626          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1627          * can complete the SPT switch, regardless of the type
 1628          * of the iif (broadcast media, GRE tunnel, etc).
 1629          */
 1630         if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
 1631             struct timeval now;
 1632             u_long delta;
 1633 
 1634             if (ifp == &multicast_register_if)
 1635                 pimstat.pims_rcv_registers_wrongiif++;
 1636 
 1637             /* Get vifi for the incoming packet */
 1638             for (vifi=0; vifi < numvifs && viftable[vifi].v_ifp != ifp; vifi++)
 1639                 ;
 1640             if (vifi >= numvifs)
 1641                 return 0;       /* The iif is not found: ignore the packet. */
 1642 
 1643             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1644                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1645 
 1646             GET_TIME(now);
 1647 
 1648             TV_DELTA(now, rt->mfc_last_assert, delta);
 1649 
 1650             if (delta > ASSERT_MSG_TIME) {
 1651                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1652                 struct igmpmsg *im;
 1653                 int hlen = ip->ip_hl << 2;
 1654                 struct mbuf *mm = m_copy(m, 0, hlen);
 1655 
 1656                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1657                     mm = m_pullup(mm, hlen);
 1658                 if (mm == NULL)
 1659                     return ENOBUFS;
 1660 
 1661                 rt->mfc_last_assert = now;
 1662 
 1663                 im = mtod(mm, struct igmpmsg *);
 1664                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1665                 im->im_mbz              = 0;
 1666                 im->im_vif              = vifi;
 1667 
 1668                 mrtstat.mrts_upcalls++;
 1669 
 1670                 k_igmpsrc.sin_addr = im->im_src;
 1671                 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
 1672                     log(LOG_WARNING,
 1673                         "ip_mforward: ip_mrouter socket queue full\n");
 1674                     ++mrtstat.mrts_upq_sockfull;
 1675                     return ENOBUFS;
 1676                 }
 1677             }
 1678         }
 1679         return 0;
 1680     }
 1681 
 1682     /* If I sourced this packet, it counts as output, else it was input. */
 1683     if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
 1684         viftable[vifi].v_pkt_out++;
 1685         viftable[vifi].v_bytes_out += plen;
 1686     } else {
 1687         viftable[vifi].v_pkt_in++;
 1688         viftable[vifi].v_bytes_in += plen;
 1689     }
 1690     rt->mfc_pkt_cnt++;
 1691     rt->mfc_byte_cnt += plen;
 1692 
 1693     /*
 1694      * For each vif, decide if a copy of the packet should be forwarded.
 1695      * Forward if:
 1696      *          - the ttl exceeds the vif's threshold
 1697      *          - there are group members downstream on interface
 1698      */
 1699     for (vifi = 0; vifi < numvifs; vifi++)
 1700         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1701             viftable[vifi].v_pkt_out++;
 1702             viftable[vifi].v_bytes_out += plen;
 1703             if (viftable[vifi].v_flags & VIFF_REGISTER)
 1704                 pim_register_send(ip, viftable + vifi, m, rt);
 1705             else
 1706                 phyint_send(ip, viftable + vifi, m);
 1707         }
 1708 
 1709     /*
 1710      * Perform upcall-related bw measuring.
 1711      */
 1712     if (rt->mfc_bw_meter != NULL) {
 1713         struct bw_meter *x;
 1714         struct timeval now;
 1715 
 1716         GET_TIME(now);
 1717         MFC_LOCK_ASSERT();
 1718         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1719             bw_meter_receive_packet(x, plen, &now);
 1720     }
 1721 
 1722     return 0;
 1723 }
 1724 
 1725 /*
 1726  * check if a vif number is legal/ok. This is used by ip_output.
 1727  */
 1728 static int
 1729 X_legal_vif_num(int vif)
 1730 {
 1731     /* XXX unlocked, matter? */
 1732     return (vif >= 0 && vif < numvifs);
 1733 }
 1734 
 1735 /*
 1736  * Return the local address used by this vif
 1737  */
 1738 static u_long
 1739 X_ip_mcast_src(int vifi)
 1740 {
 1741     /* XXX unlocked, matter? */
 1742     if (vifi >= 0 && vifi < numvifs)
 1743         return viftable[vifi].v_lcl_addr.s_addr;
 1744     else
 1745         return INADDR_ANY;
 1746 }
 1747 
 1748 static void
 1749 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1750 {
 1751     struct mbuf *mb_copy;
 1752     int hlen = ip->ip_hl << 2;
 1753 
 1754     VIF_LOCK_ASSERT();
 1755 
 1756     /*
 1757      * Make a new reference to the packet; make sure that
 1758      * the IP header is actually copied, not just referenced,
 1759      * so that ip_output() only scribbles on the copy.
 1760      */
 1761     mb_copy = m_copypacket(m, M_DONTWAIT);
 1762     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1763         mb_copy = m_pullup(mb_copy, hlen);
 1764     if (mb_copy == NULL)
 1765         return;
 1766 
 1767     send_packet(vifp, mb_copy);
 1768 }
 1769 
 1770 static void
 1771 send_packet(struct vif *vifp, struct mbuf *m)
 1772 {
 1773         struct ip_moptions imo;
 1774         struct in_multi *imm[2];
 1775         int error;
 1776 
 1777         VIF_LOCK_ASSERT();
 1778 
 1779         imo.imo_multicast_ifp  = vifp->v_ifp;
 1780         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 1781         imo.imo_multicast_loop = 1;
 1782         imo.imo_multicast_vif  = -1;
 1783         imo.imo_num_memberships = 0;
 1784         imo.imo_max_memberships = 2;
 1785         imo.imo_membership  = &imm[0];
 1786 
 1787         /*
 1788          * Re-entrancy should not be a problem here, because
 1789          * the packets that we send out and are looped back at us
 1790          * should get rejected because they appear to come from
 1791          * the loopback interface, thus preventing looping.
 1792          */
 1793         error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
 1794         if (mrtdebug & DEBUG_XMIT) {
 1795             log(LOG_DEBUG, "phyint_send on vif %td err %d\n",
 1796                 vifp - viftable, error);
 1797         }
 1798 }
 1799 
 1800 static int
 1801 X_ip_rsvp_vif(struct socket *so, struct sockopt *sopt)
 1802 {
 1803     int error, vifi;
 1804 
 1805     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 1806         return EOPNOTSUPP;
 1807 
 1808     error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
 1809     if (error)
 1810         return error;
 1811 
 1812     VIF_LOCK();
 1813 
 1814     if (vifi < 0 || vifi >= numvifs) {  /* Error if vif is invalid */
 1815         VIF_UNLOCK();
 1816         return EADDRNOTAVAIL;
 1817     }
 1818 
 1819     if (sopt->sopt_name == IP_RSVP_VIF_ON) {
 1820         /* Check if socket is available. */
 1821         if (viftable[vifi].v_rsvpd != NULL) {
 1822             VIF_UNLOCK();
 1823             return EADDRINUSE;
 1824         }
 1825 
 1826         viftable[vifi].v_rsvpd = so;
 1827         /* This may seem silly, but we need to be sure we don't over-increment
 1828          * the RSVP counter, in case something slips up.
 1829          */
 1830         if (!viftable[vifi].v_rsvp_on) {
 1831             viftable[vifi].v_rsvp_on = 1;
 1832             rsvp_on++;
 1833         }
 1834     } else { /* must be VIF_OFF */
 1835         /*
 1836          * XXX as an additional consistency check, one could make sure
 1837          * that viftable[vifi].v_rsvpd == so, otherwise passing so as
 1838          * first parameter is pretty useless.
 1839          */
 1840         viftable[vifi].v_rsvpd = NULL;
 1841         /*
 1842          * This may seem silly, but we need to be sure we don't over-decrement
 1843          * the RSVP counter, in case something slips up.
 1844          */
 1845         if (viftable[vifi].v_rsvp_on) {
 1846             viftable[vifi].v_rsvp_on = 0;
 1847             rsvp_on--;
 1848         }
 1849     }
 1850     VIF_UNLOCK();
 1851     return 0;
 1852 }
 1853 
 1854 static void
 1855 X_ip_rsvp_force_done(struct socket *so)
 1856 {
 1857     int vifi;
 1858 
 1859     /* Don't bother if it is not the right type of socket. */
 1860     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
 1861         return;
 1862 
 1863     VIF_LOCK();
 1864 
 1865     /* The socket may be attached to more than one vif...this
 1866      * is perfectly legal.
 1867      */
 1868     for (vifi = 0; vifi < numvifs; vifi++) {
 1869         if (viftable[vifi].v_rsvpd == so) {
 1870             viftable[vifi].v_rsvpd = NULL;
 1871             /* This may seem silly, but we need to be sure we don't
 1872              * over-decrement the RSVP counter, in case something slips up.
 1873              */
 1874             if (viftable[vifi].v_rsvp_on) {
 1875                 viftable[vifi].v_rsvp_on = 0;
 1876                 rsvp_on--;
 1877             }
 1878         }
 1879     }
 1880 
 1881     VIF_UNLOCK();
 1882 }
 1883 
 1884 static void
 1885 X_rsvp_input(struct mbuf *m, int off)
 1886 {
 1887     int vifi;
 1888     struct ip *ip = mtod(m, struct ip *);
 1889     struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET };
 1890     struct ifnet *ifp;
 1891 
 1892     if (rsvpdebug)
 1893         printf("rsvp_input: rsvp_on %d\n",rsvp_on);
 1894 
 1895     /* Can still get packets with rsvp_on = 0 if there is a local member
 1896      * of the group to which the RSVP packet is addressed.  But in this
 1897      * case we want to throw the packet away.
 1898      */
 1899     if (!rsvp_on) {
 1900         m_freem(m);
 1901         return;
 1902     }
 1903 
 1904     if (rsvpdebug)
 1905         printf("rsvp_input: check vifs\n");
 1906 
 1907 #ifdef DIAGNOSTIC
 1908     M_ASSERTPKTHDR(m);
 1909 #endif
 1910 
 1911     ifp = m->m_pkthdr.rcvif;
 1912 
 1913     VIF_LOCK();
 1914     /* Find which vif the packet arrived on. */
 1915     for (vifi = 0; vifi < numvifs; vifi++)
 1916         if (viftable[vifi].v_ifp == ifp)
 1917             break;
 1918 
 1919     if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
 1920         /*
 1921          * Drop the lock here to avoid holding it across rip_input.
 1922          * This could make rsvpdebug printfs wrong.  If you care,
 1923          * record the state of stuff before dropping the lock.
 1924          */
 1925         VIF_UNLOCK();
 1926         /*
 1927          * If the old-style non-vif-associated socket is set,
 1928          * then use it.  Otherwise, drop packet since there
 1929          * is no specific socket for this vif.
 1930          */
 1931         if (ip_rsvpd != NULL) {
 1932             if (rsvpdebug)
 1933                 printf("rsvp_input: Sending packet up old-style socket\n");
 1934             rip_input(m, off);  /* xxx */
 1935         } else {
 1936             if (rsvpdebug && vifi == numvifs)
 1937                 printf("rsvp_input: Can't find vif for packet.\n");
 1938             else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
 1939                 printf("rsvp_input: No socket defined for vif %d\n",vifi);
 1940             m_freem(m);
 1941         }
 1942         return;
 1943     }
 1944     rsvp_src.sin_addr = ip->ip_src;
 1945 
 1946     if (rsvpdebug && m)
 1947         printf("rsvp_input: m->m_len = %d, sbspace() = %ld\n",
 1948                m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
 1949 
 1950     if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
 1951         if (rsvpdebug)
 1952             printf("rsvp_input: Failed to append to socket\n");
 1953     } else {
 1954         if (rsvpdebug)
 1955             printf("rsvp_input: send packet up\n");
 1956     }
 1957     VIF_UNLOCK();
 1958 }
 1959 
 1960 /*
 1961  * Code for bandwidth monitors
 1962  */
 1963 
 1964 /*
 1965  * Define common interface for timeval-related methods
 1966  */
 1967 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 1968 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 1969 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 1970 
 1971 static uint32_t
 1972 compute_bw_meter_flags(struct bw_upcall *req)
 1973 {
 1974     uint32_t flags = 0;
 1975 
 1976     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 1977         flags |= BW_METER_UNIT_PACKETS;
 1978     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 1979         flags |= BW_METER_UNIT_BYTES;
 1980     if (req->bu_flags & BW_UPCALL_GEQ)
 1981         flags |= BW_METER_GEQ;
 1982     if (req->bu_flags & BW_UPCALL_LEQ)
 1983         flags |= BW_METER_LEQ;
 1984 
 1985     return flags;
 1986 }
 1987 
 1988 /*
 1989  * Add a bw_meter entry
 1990  */
 1991 static int
 1992 add_bw_upcall(struct bw_upcall *req)
 1993 {
 1994     struct mfc *mfc;
 1995     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 1996                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 1997     struct timeval now;
 1998     struct bw_meter *x;
 1999     uint32_t flags;
 2000 
 2001     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2002         return EOPNOTSUPP;
 2003 
 2004     /* Test if the flags are valid */
 2005     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 2006         return EINVAL;
 2007     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 2008         return EINVAL;
 2009     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2010             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 2011         return EINVAL;
 2012 
 2013     /* Test if the threshold time interval is valid */
 2014     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 2015         return EINVAL;
 2016 
 2017     flags = compute_bw_meter_flags(req);
 2018 
 2019     /*
 2020      * Find if we have already same bw_meter entry
 2021      */
 2022     MFC_LOCK();
 2023     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2024     if (mfc == NULL) {
 2025         MFC_UNLOCK();
 2026         return EADDRNOTAVAIL;
 2027     }
 2028     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 2029         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2030                            &req->bu_threshold.b_time, ==)) &&
 2031             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2032             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2033             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 2034             MFC_UNLOCK();
 2035             return 0;           /* XXX Already installed */
 2036         }
 2037     }
 2038 
 2039     /* Allocate the new bw_meter entry */
 2040     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 2041     if (x == NULL) {
 2042         MFC_UNLOCK();
 2043         return ENOBUFS;
 2044     }
 2045 
 2046     /* Set the new bw_meter entry */
 2047     x->bm_threshold.b_time = req->bu_threshold.b_time;
 2048     GET_TIME(now);
 2049     x->bm_start_time = now;
 2050     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 2051     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 2052     x->bm_measured.b_packets = 0;
 2053     x->bm_measured.b_bytes = 0;
 2054     x->bm_flags = flags;
 2055     x->bm_time_next = NULL;
 2056     x->bm_time_hash = BW_METER_BUCKETS;
 2057 
 2058     /* Add the new bw_meter entry to the front of entries for this MFC */
 2059     x->bm_mfc = mfc;
 2060     x->bm_mfc_next = mfc->mfc_bw_meter;
 2061     mfc->mfc_bw_meter = x;
 2062     schedule_bw_meter(x, &now);
 2063     MFC_UNLOCK();
 2064 
 2065     return 0;
 2066 }
 2067 
 2068 static void
 2069 free_bw_list(struct bw_meter *list)
 2070 {
 2071     while (list != NULL) {
 2072         struct bw_meter *x = list;
 2073 
 2074         list = list->bm_mfc_next;
 2075         unschedule_bw_meter(x);
 2076         free(x, M_BWMETER);
 2077     }
 2078 }
 2079 
 2080 /*
 2081  * Delete one or multiple bw_meter entries
 2082  */
 2083 static int
 2084 del_bw_upcall(struct bw_upcall *req)
 2085 {
 2086     struct mfc *mfc;
 2087     struct bw_meter *x;
 2088 
 2089     if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
 2090         return EOPNOTSUPP;
 2091 
 2092     MFC_LOCK();
 2093     /* Find the corresponding MFC entry */
 2094     mfc = mfc_find(req->bu_src.s_addr, req->bu_dst.s_addr);
 2095     if (mfc == NULL) {
 2096         MFC_UNLOCK();
 2097         return EADDRNOTAVAIL;
 2098     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 2099         /*
 2100          * Delete all bw_meter entries for this mfc
 2101          */
 2102         struct bw_meter *list;
 2103 
 2104         list = mfc->mfc_bw_meter;
 2105         mfc->mfc_bw_meter = NULL;
 2106         free_bw_list(list);
 2107         MFC_UNLOCK();
 2108         return 0;
 2109     } else {                    /* Delete a single bw_meter entry */
 2110         struct bw_meter *prev;
 2111         uint32_t flags = 0;
 2112 
 2113         flags = compute_bw_meter_flags(req);
 2114 
 2115         /* Find the bw_meter entry to delete */
 2116         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 2117              prev = x, x = x->bm_mfc_next) {
 2118             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 2119                                &req->bu_threshold.b_time, ==)) &&
 2120                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 2121                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 2122                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 2123                 break;
 2124         }
 2125         if (x != NULL) { /* Delete entry from the list for this MFC */
 2126             if (prev != NULL)
 2127                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 2128             else
 2129                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 2130 
 2131             unschedule_bw_meter(x);
 2132             MFC_UNLOCK();
 2133             /* Free the bw_meter entry */
 2134             free(x, M_BWMETER);
 2135             return 0;
 2136         } else {
 2137             MFC_UNLOCK();
 2138             return EINVAL;
 2139         }
 2140     }
 2141     /* NOTREACHED */
 2142 }
 2143 
 2144 /*
 2145  * Perform bandwidth measurement processing that may result in an upcall
 2146  */
 2147 static void
 2148 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 2149 {
 2150     struct timeval delta;
 2151 
 2152     MFC_LOCK_ASSERT();
 2153 
 2154     delta = *nowp;
 2155     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2156 
 2157     if (x->bm_flags & BW_METER_GEQ) {
 2158         /*
 2159          * Processing for ">=" type of bw_meter entry
 2160          */
 2161         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2162             /* Reset the bw_meter entry */
 2163             x->bm_start_time = *nowp;
 2164             x->bm_measured.b_packets = 0;
 2165             x->bm_measured.b_bytes = 0;
 2166             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2167         }
 2168 
 2169         /* Record that a packet is received */
 2170         x->bm_measured.b_packets++;
 2171         x->bm_measured.b_bytes += plen;
 2172 
 2173         /*
 2174          * Test if we should deliver an upcall
 2175          */
 2176         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 2177             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2178                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 2179                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2180                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 2181                 /* Prepare an upcall for delivery */
 2182                 bw_meter_prepare_upcall(x, nowp);
 2183                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 2184             }
 2185         }
 2186     } else if (x->bm_flags & BW_METER_LEQ) {
 2187         /*
 2188          * Processing for "<=" type of bw_meter entry
 2189          */
 2190         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 2191             /*
 2192              * We are behind time with the multicast forwarding table
 2193              * scanning for "<=" type of bw_meter entries, so test now
 2194              * if we should deliver an upcall.
 2195              */
 2196             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2197                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2198                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2199                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2200                 /* Prepare an upcall for delivery */
 2201                 bw_meter_prepare_upcall(x, nowp);
 2202             }
 2203             /* Reschedule the bw_meter entry */
 2204             unschedule_bw_meter(x);
 2205             schedule_bw_meter(x, nowp);
 2206         }
 2207 
 2208         /* Record that a packet is received */
 2209         x->bm_measured.b_packets++;
 2210         x->bm_measured.b_bytes += plen;
 2211 
 2212         /*
 2213          * Test if we should restart the measuring interval
 2214          */
 2215         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 2216              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 2217             (x->bm_flags & BW_METER_UNIT_BYTES &&
 2218              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 2219             /* Don't restart the measuring interval */
 2220         } else {
 2221             /* Do restart the measuring interval */
 2222             /*
 2223              * XXX: note that we don't unschedule and schedule, because this
 2224              * might be too much overhead per packet. Instead, when we process
 2225              * all entries for a given timer hash bin, we check whether it is
 2226              * really a timeout. If not, we reschedule at that time.
 2227              */
 2228             x->bm_start_time = *nowp;
 2229             x->bm_measured.b_packets = 0;
 2230             x->bm_measured.b_bytes = 0;
 2231             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2232         }
 2233     }
 2234 }
 2235 
 2236 /*
 2237  * Prepare a bandwidth-related upcall
 2238  */
 2239 static void
 2240 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2241 {
 2242     struct timeval delta;
 2243     struct bw_upcall *u;
 2244 
 2245     MFC_LOCK_ASSERT();
 2246 
 2247     /*
 2248      * Compute the measured time interval
 2249      */
 2250     delta = *nowp;
 2251     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2252 
 2253     /*
 2254      * If there are too many pending upcalls, deliver them now
 2255      */
 2256     if (bw_upcalls_n >= BW_UPCALLS_MAX)
 2257         bw_upcalls_send();
 2258 
 2259     /*
 2260      * Set the bw_upcall entry
 2261      */
 2262     u = &bw_upcalls[bw_upcalls_n++];
 2263     u->bu_src = x->bm_mfc->mfc_origin;
 2264     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2265     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2266     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2267     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2268     u->bu_measured.b_time = delta;
 2269     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2270     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2271     u->bu_flags = 0;
 2272     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2273         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2274     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2275         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2276     if (x->bm_flags & BW_METER_GEQ)
 2277         u->bu_flags |= BW_UPCALL_GEQ;
 2278     if (x->bm_flags & BW_METER_LEQ)
 2279         u->bu_flags |= BW_UPCALL_LEQ;
 2280 }
 2281 
 2282 /*
 2283  * Send the pending bandwidth-related upcalls
 2284  */
 2285 static void
 2286 bw_upcalls_send(void)
 2287 {
 2288     struct mbuf *m;
 2289     int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
 2290     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2291     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2292                                       0,                /* unused2 */
 2293                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2294                                       0,                /* im_mbz  */
 2295                                       0,                /* im_vif  */
 2296                                       0,                /* unused3 */
 2297                                       { 0 },            /* im_src  */
 2298                                       { 0 } };          /* im_dst  */
 2299 
 2300     MFC_LOCK_ASSERT();
 2301 
 2302     if (bw_upcalls_n == 0)
 2303         return;                 /* No pending upcalls */
 2304 
 2305     bw_upcalls_n = 0;
 2306 
 2307     /*
 2308      * Allocate a new mbuf, initialize it with the header and
 2309      * the payload for the pending calls.
 2310      */
 2311     MGETHDR(m, M_DONTWAIT, MT_DATA);
 2312     if (m == NULL) {
 2313         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2314         return;
 2315     }
 2316 
 2317     m->m_len = m->m_pkthdr.len = 0;
 2318     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2319     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0]);
 2320 
 2321     /*
 2322      * Send the upcalls
 2323      * XXX do we need to set the address in k_igmpsrc ?
 2324      */
 2325     mrtstat.mrts_upcalls++;
 2326     if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
 2327         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2328         ++mrtstat.mrts_upq_sockfull;
 2329     }
 2330 }
 2331 
 2332 /*
 2333  * Compute the timeout hash value for the bw_meter entries
 2334  */
 2335 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2336     do {                                                                \
 2337         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2338                                                                         \
 2339         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2340         (hash) = next_timeval.tv_sec;                                   \
 2341         if (next_timeval.tv_usec)                                       \
 2342             (hash)++; /* XXX: make sure we don't timeout early */       \
 2343         (hash) %= BW_METER_BUCKETS;                                     \
 2344     } while (0)
 2345 
 2346 /*
 2347  * Schedule a timer to process periodically bw_meter entry of type "<="
 2348  * by linking the entry in the proper hash bucket.
 2349  */
 2350 static void
 2351 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2352 {
 2353     int time_hash;
 2354 
 2355     MFC_LOCK_ASSERT();
 2356 
 2357     if (!(x->bm_flags & BW_METER_LEQ))
 2358         return;         /* XXX: we schedule timers only for "<=" entries */
 2359 
 2360     /*
 2361      * Reset the bw_meter entry
 2362      */
 2363     x->bm_start_time = *nowp;
 2364     x->bm_measured.b_packets = 0;
 2365     x->bm_measured.b_bytes = 0;
 2366     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2367 
 2368     /*
 2369      * Compute the timeout hash value and insert the entry
 2370      */
 2371     BW_METER_TIMEHASH(x, time_hash);
 2372     x->bm_time_next = bw_meter_timers[time_hash];
 2373     bw_meter_timers[time_hash] = x;
 2374     x->bm_time_hash = time_hash;
 2375 }
 2376 
 2377 /*
 2378  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2379  * by removing the entry from the proper hash bucket.
 2380  */
 2381 static void
 2382 unschedule_bw_meter(struct bw_meter *x)
 2383 {
 2384     int time_hash;
 2385     struct bw_meter *prev, *tmp;
 2386 
 2387     MFC_LOCK_ASSERT();
 2388 
 2389     if (!(x->bm_flags & BW_METER_LEQ))
 2390         return;         /* XXX: we schedule timers only for "<=" entries */
 2391 
 2392     /*
 2393      * Compute the timeout hash value and delete the entry
 2394      */
 2395     time_hash = x->bm_time_hash;
 2396     if (time_hash >= BW_METER_BUCKETS)
 2397         return;         /* Entry was not scheduled */
 2398 
 2399     for (prev = NULL, tmp = bw_meter_timers[time_hash];
 2400              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2401         if (tmp == x)
 2402             break;
 2403 
 2404     if (tmp == NULL)
 2405         panic("unschedule_bw_meter: bw_meter entry not found");
 2406 
 2407     if (prev != NULL)
 2408         prev->bm_time_next = x->bm_time_next;
 2409     else
 2410         bw_meter_timers[time_hash] = x->bm_time_next;
 2411 
 2412     x->bm_time_next = NULL;
 2413     x->bm_time_hash = BW_METER_BUCKETS;
 2414 }
 2415 
 2416 
 2417 /*
 2418  * Process all "<=" type of bw_meter that should be processed now,
 2419  * and for each entry prepare an upcall if necessary. Each processed
 2420  * entry is rescheduled again for the (periodic) processing.
 2421  *
 2422  * This is run periodically (once per second normally). On each round,
 2423  * all the potentially matching entries are in the hash slot that we are
 2424  * looking at.
 2425  */
 2426 static void
 2427 bw_meter_process()
 2428 {
 2429     static uint32_t last_tv_sec;        /* last time we processed this */
 2430 
 2431     uint32_t loops;
 2432     int i;
 2433     struct timeval now, process_endtime;
 2434 
 2435     GET_TIME(now);
 2436     if (last_tv_sec == now.tv_sec)
 2437         return;         /* nothing to do */
 2438 
 2439     loops = now.tv_sec - last_tv_sec;
 2440     last_tv_sec = now.tv_sec;
 2441     if (loops > BW_METER_BUCKETS)
 2442         loops = BW_METER_BUCKETS;
 2443 
 2444     MFC_LOCK();
 2445     /*
 2446      * Process all bins of bw_meter entries from the one after the last
 2447      * processed to the current one. On entry, i points to the last bucket
 2448      * visited, so we need to increment i at the beginning of the loop.
 2449      */
 2450     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2451         struct bw_meter *x, *tmp_list;
 2452 
 2453         if (++i >= BW_METER_BUCKETS)
 2454             i = 0;
 2455 
 2456         /* Disconnect the list of bw_meter entries from the bin */
 2457         tmp_list = bw_meter_timers[i];
 2458         bw_meter_timers[i] = NULL;
 2459 
 2460         /* Process the list of bw_meter entries */
 2461         while (tmp_list != NULL) {
 2462             x = tmp_list;
 2463             tmp_list = tmp_list->bm_time_next;
 2464 
 2465             /* Test if the time interval is over */
 2466             process_endtime = x->bm_start_time;
 2467             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2468             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2469                 /* Not yet: reschedule, but don't reset */
 2470                 int time_hash;
 2471 
 2472                 BW_METER_TIMEHASH(x, time_hash);
 2473                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2474                     /*
 2475                      * XXX: somehow the bin processing is a bit ahead of time.
 2476                      * Put the entry in the next bin.
 2477                      */
 2478                     if (++time_hash >= BW_METER_BUCKETS)
 2479                         time_hash = 0;
 2480                 }
 2481                 x->bm_time_next = bw_meter_timers[time_hash];
 2482                 bw_meter_timers[time_hash] = x;
 2483                 x->bm_time_hash = time_hash;
 2484 
 2485                 continue;
 2486             }
 2487 
 2488             /*
 2489              * Test if we should deliver an upcall
 2490              */
 2491             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2492                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2493                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2494                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2495                 /* Prepare an upcall for delivery */
 2496                 bw_meter_prepare_upcall(x, &now);
 2497             }
 2498 
 2499             /*
 2500              * Reschedule for next processing
 2501              */
 2502             schedule_bw_meter(x, &now);
 2503         }
 2504     }
 2505 
 2506     /* Send all upcalls that are pending delivery */
 2507     bw_upcalls_send();
 2508 
 2509     MFC_UNLOCK();
 2510 }
 2511 
 2512 /*
 2513  * A periodic function for sending all upcalls that are pending delivery
 2514  */
 2515 static void
 2516 expire_bw_upcalls_send(void *unused)
 2517 {
 2518     MFC_LOCK();
 2519     bw_upcalls_send();
 2520     MFC_UNLOCK();
 2521 
 2522     callout_reset(&bw_upcalls_ch, BW_UPCALLS_PERIOD,
 2523         expire_bw_upcalls_send, NULL);
 2524 }
 2525 
 2526 /*
 2527  * A periodic function for periodic scanning of the multicast forwarding
 2528  * table for processing all "<=" bw_meter entries.
 2529  */
 2530 static void
 2531 expire_bw_meter_process(void *unused)
 2532 {
 2533     if (mrt_api_config & MRT_MFC_BW_UPCALL)
 2534         bw_meter_process();
 2535 
 2536     callout_reset(&bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process, NULL);
 2537 }
 2538 
 2539 /*
 2540  * End of bandwidth monitoring code
 2541  */
 2542 
 2543 /*
 2544  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2545  *
 2546  */
 2547 static int
 2548 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
 2549     struct mfc *rt)
 2550 {
 2551     struct mbuf *mb_copy, *mm;
 2552 
 2553     if (mrtdebug & DEBUG_PIM)
 2554         log(LOG_DEBUG, "pim_register_send: ");
 2555 
 2556     /*
 2557      * Do not send IGMP_WHOLEPKT notifications to userland, if the
 2558      * rendezvous point was unspecified, and we were told not to.
 2559      */
 2560     if (pim_squelch_wholepkt != 0 && (mrt_api_config & MRT_MFC_RP) &&
 2561         (rt->mfc_rp.s_addr == INADDR_ANY))
 2562         return 0;
 2563 
 2564     mb_copy = pim_register_prepare(ip, m);
 2565     if (mb_copy == NULL)
 2566         return ENOBUFS;
 2567 
 2568     /*
 2569      * Send all the fragments. Note that the mbuf for each fragment
 2570      * is freed by the sending machinery.
 2571      */
 2572     for (mm = mb_copy; mm; mm = mb_copy) {
 2573         mb_copy = mm->m_nextpkt;
 2574         mm->m_nextpkt = 0;
 2575         mm = m_pullup(mm, sizeof(struct ip));
 2576         if (mm != NULL) {
 2577             ip = mtod(mm, struct ip *);
 2578             if ((mrt_api_config & MRT_MFC_RP) &&
 2579                 (rt->mfc_rp.s_addr != INADDR_ANY)) {
 2580                 pim_register_send_rp(ip, vifp, mm, rt);
 2581             } else {
 2582                 pim_register_send_upcall(ip, vifp, mm, rt);
 2583             }
 2584         }
 2585     }
 2586 
 2587     return 0;
 2588 }
 2589 
 2590 /*
 2591  * Return a copy of the data packet that is ready for PIM Register
 2592  * encapsulation.
 2593  * XXX: Note that in the returned copy the IP header is a valid one.
 2594  */
 2595 static struct mbuf *
 2596 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2597 {
 2598     struct mbuf *mb_copy = NULL;
 2599     int mtu;
 2600 
 2601     /* Take care of delayed checksums */
 2602     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2603         in_delayed_cksum(m);
 2604         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2605     }
 2606 
 2607     /*
 2608      * Copy the old packet & pullup its IP header into the
 2609      * new mbuf so we can modify it.
 2610      */
 2611     mb_copy = m_copypacket(m, M_DONTWAIT);
 2612     if (mb_copy == NULL)
 2613         return NULL;
 2614     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2615     if (mb_copy == NULL)
 2616         return NULL;
 2617 
 2618     /* take care of the TTL */
 2619     ip = mtod(mb_copy, struct ip *);
 2620     --ip->ip_ttl;
 2621 
 2622     /* Compute the MTU after the PIM Register encapsulation */
 2623     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2624 
 2625     if (ip->ip_len <= mtu) {
 2626         /* Turn the IP header into a valid one */
 2627         ip->ip_len = htons(ip->ip_len);
 2628         ip->ip_off = htons(ip->ip_off);
 2629         ip->ip_sum = 0;
 2630         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2631     } else {
 2632         /* Fragment the packet */
 2633         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 2634             m_freem(mb_copy);
 2635             return NULL;
 2636         }
 2637     }
 2638     return mb_copy;
 2639 }
 2640 
 2641 /*
 2642  * Send an upcall with the data packet to the user-level process.
 2643  */
 2644 static int
 2645 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 2646     struct mbuf *mb_copy, struct mfc *rt)
 2647 {
 2648     struct mbuf *mb_first;
 2649     int len = ntohs(ip->ip_len);
 2650     struct igmpmsg *im;
 2651     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2652 
 2653     VIF_LOCK_ASSERT();
 2654 
 2655     /*
 2656      * Add a new mbuf with an upcall header
 2657      */
 2658     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
 2659     if (mb_first == NULL) {
 2660         m_freem(mb_copy);
 2661         return ENOBUFS;
 2662     }
 2663     mb_first->m_data += max_linkhdr;
 2664     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 2665     mb_first->m_len = sizeof(struct igmpmsg);
 2666     mb_first->m_next = mb_copy;
 2667 
 2668     /* Send message to routing daemon */
 2669     im = mtod(mb_first, struct igmpmsg *);
 2670     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 2671     im->im_mbz          = 0;
 2672     im->im_vif          = vifp - viftable;
 2673     im->im_src          = ip->ip_src;
 2674     im->im_dst          = ip->ip_dst;
 2675 
 2676     k_igmpsrc.sin_addr  = ip->ip_src;
 2677 
 2678     mrtstat.mrts_upcalls++;
 2679 
 2680     if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 2681         if (mrtdebug & DEBUG_PIM)
 2682             log(LOG_WARNING,
 2683                 "mcast: pim_register_send_upcall: ip_mrouter socket queue full");
 2684         ++mrtstat.mrts_upq_sockfull;
 2685         return ENOBUFS;
 2686     }
 2687 
 2688     /* Keep statistics */
 2689     pimstat.pims_snd_registers_msgs++;
 2690     pimstat.pims_snd_registers_bytes += len;
 2691 
 2692     return 0;
 2693 }
 2694 
 2695 /*
 2696  * Encapsulate the data packet in PIM Register message and send it to the RP.
 2697  */
 2698 static int
 2699 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
 2700     struct mfc *rt)
 2701 {
 2702     struct mbuf *mb_first;
 2703     struct ip *ip_outer;
 2704     struct pim_encap_pimhdr *pimhdr;
 2705     int len = ntohs(ip->ip_len);
 2706     vifi_t vifi = rt->mfc_parent;
 2707 
 2708     VIF_LOCK_ASSERT();
 2709 
 2710     if ((vifi >= numvifs) || (viftable[vifi].v_lcl_addr.s_addr == 0)) {
 2711         m_freem(mb_copy);
 2712         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 2713     }
 2714 
 2715     /*
 2716      * Add a new mbuf with the encapsulating header
 2717      */
 2718     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
 2719     if (mb_first == NULL) {
 2720         m_freem(mb_copy);
 2721         return ENOBUFS;
 2722     }
 2723     mb_first->m_data += max_linkhdr;
 2724     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2725     mb_first->m_next = mb_copy;
 2726 
 2727     mb_first->m_pkthdr.len = len + mb_first->m_len;
 2728 
 2729     /*
 2730      * Fill in the encapsulating IP and PIM header
 2731      */
 2732     ip_outer = mtod(mb_first, struct ip *);
 2733     *ip_outer = pim_encap_iphdr;
 2734     ip_outer->ip_id = ip_newid();
 2735     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2736     ip_outer->ip_src = viftable[vifi].v_lcl_addr;
 2737     ip_outer->ip_dst = rt->mfc_rp;
 2738     /*
 2739      * Copy the inner header TOS to the outer header, and take care of the
 2740      * IP_DF bit.
 2741      */
 2742     ip_outer->ip_tos = ip->ip_tos;
 2743     if (ntohs(ip->ip_off) & IP_DF)
 2744         ip_outer->ip_off |= IP_DF;
 2745     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 2746                                          + sizeof(pim_encap_iphdr));
 2747     *pimhdr = pim_encap_pimhdr;
 2748     /* If the iif crosses a border, set the Border-bit */
 2749     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
 2750         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 2751 
 2752     mb_first->m_data += sizeof(pim_encap_iphdr);
 2753     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 2754     mb_first->m_data -= sizeof(pim_encap_iphdr);
 2755 
 2756     send_packet(vifp, mb_first);
 2757 
 2758     /* Keep statistics */
 2759     pimstat.pims_snd_registers_msgs++;
 2760     pimstat.pims_snd_registers_bytes += len;
 2761 
 2762     return 0;
 2763 }
 2764 
 2765 /*
 2766  * pim_encapcheck() is called by the encap[46]_input() path at runtime to
 2767  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
 2768  * into the kernel.
 2769  */
 2770 static int
 2771 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
 2772 {
 2773 
 2774 #ifdef DIAGNOSTIC
 2775     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
 2776 #endif
 2777     if (proto != IPPROTO_PIM)
 2778         return 0;       /* not for us; reject the datagram. */
 2779 
 2780     return 64;          /* claim the datagram. */
 2781 }
 2782 
 2783 /*
 2784  * PIM-SMv2 and PIM-DM messages processing.
 2785  * Receives and verifies the PIM control messages, and passes them
 2786  * up to the listening socket, using rip_input().
 2787  * The only message with special processing is the PIM_REGISTER message
 2788  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 2789  * is passed to if_simloop().
 2790  */
 2791 void
 2792 pim_input(struct mbuf *m, int off)
 2793 {
 2794     struct ip *ip = mtod(m, struct ip *);
 2795     struct pim *pim;
 2796     int minlen;
 2797     int datalen = ip->ip_len;
 2798     int ip_tos;
 2799     int iphlen = off;
 2800 
 2801     /* Keep statistics */
 2802     pimstat.pims_rcv_total_msgs++;
 2803     pimstat.pims_rcv_total_bytes += datalen;
 2804 
 2805     /*
 2806      * Validate lengths
 2807      */
 2808     if (datalen < PIM_MINLEN) {
 2809         pimstat.pims_rcv_tooshort++;
 2810         log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
 2811             datalen, (u_long)ip->ip_src.s_addr);
 2812         m_freem(m);
 2813         return;
 2814     }
 2815 
 2816     /*
 2817      * If the packet is at least as big as a REGISTER, go agead
 2818      * and grab the PIM REGISTER header size, to avoid another
 2819      * possible m_pullup() later.
 2820      *
 2821      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 2822      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 2823      */
 2824     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 2825     /*
 2826      * Get the IP and PIM headers in contiguous memory, and
 2827      * possibly the PIM REGISTER header.
 2828      */
 2829     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 2830         (m = m_pullup(m, minlen)) == 0) {
 2831         log(LOG_ERR, "pim_input: m_pullup failure\n");
 2832         return;
 2833     }
 2834     /* m_pullup() may have given us a new mbuf so reset ip. */
 2835     ip = mtod(m, struct ip *);
 2836     ip_tos = ip->ip_tos;
 2837 
 2838     /* adjust mbuf to point to the PIM header */
 2839     m->m_data += iphlen;
 2840     m->m_len  -= iphlen;
 2841     pim = mtod(m, struct pim *);
 2842 
 2843     /*
 2844      * Validate checksum. If PIM REGISTER, exclude the data packet.
 2845      *
 2846      * XXX: some older PIMv2 implementations don't make this distinction,
 2847      * so for compatibility reason perform the checksum over part of the
 2848      * message, and if error, then over the whole message.
 2849      */
 2850     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 2851         /* do nothing, checksum okay */
 2852     } else if (in_cksum(m, datalen)) {
 2853         pimstat.pims_rcv_badsum++;
 2854         if (mrtdebug & DEBUG_PIM)
 2855             log(LOG_DEBUG, "pim_input: invalid checksum");
 2856         m_freem(m);
 2857         return;
 2858     }
 2859 
 2860     /* PIM version check */
 2861     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 2862         pimstat.pims_rcv_badversion++;
 2863         log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
 2864             PIM_VT_V(pim->pim_vt), PIM_VERSION);
 2865         m_freem(m);
 2866         return;
 2867     }
 2868 
 2869     /* restore mbuf back to the outer IP */
 2870     m->m_data -= iphlen;
 2871     m->m_len  += iphlen;
 2872 
 2873     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 2874         /*
 2875          * Since this is a REGISTER, we'll make a copy of the register
 2876          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 2877          * routing daemon.
 2878          */
 2879         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 2880         struct mbuf *mcp;
 2881         struct ip *encap_ip;
 2882         u_int32_t *reghdr;
 2883         struct ifnet *vifp;
 2884 
 2885         VIF_LOCK();
 2886         if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
 2887             VIF_UNLOCK();
 2888             if (mrtdebug & DEBUG_PIM)
 2889                 log(LOG_DEBUG,
 2890                     "pim_input: register vif not set: %d\n", reg_vif_num);
 2891             m_freem(m);
 2892             return;
 2893         }
 2894         /* XXX need refcnt? */
 2895         vifp = viftable[reg_vif_num].v_ifp;
 2896         VIF_UNLOCK();
 2897 
 2898         /*
 2899          * Validate length
 2900          */
 2901         if (datalen < PIM_REG_MINLEN) {
 2902             pimstat.pims_rcv_tooshort++;
 2903             pimstat.pims_rcv_badregisters++;
 2904             log(LOG_ERR,
 2905                 "pim_input: register packet size too small %d from %lx\n",
 2906                 datalen, (u_long)ip->ip_src.s_addr);
 2907             m_freem(m);
 2908             return;
 2909         }
 2910 
 2911         reghdr = (u_int32_t *)(pim + 1);
 2912         encap_ip = (struct ip *)(reghdr + 1);
 2913 
 2914         if (mrtdebug & DEBUG_PIM) {
 2915             log(LOG_DEBUG,
 2916                 "pim_input[register], encap_ip: %lx -> %lx, encap_ip len %d\n",
 2917                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 2918                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 2919                 ntohs(encap_ip->ip_len));
 2920         }
 2921 
 2922         /* verify the version number of the inner packet */
 2923         if (encap_ip->ip_v != IPVERSION) {
 2924             pimstat.pims_rcv_badregisters++;
 2925             if (mrtdebug & DEBUG_PIM) {
 2926                 log(LOG_DEBUG, "pim_input: invalid IP version (%d) "
 2927                     "of the inner packet\n", encap_ip->ip_v);
 2928             }
 2929             m_freem(m);
 2930             return;
 2931         }
 2932 
 2933         /* verify the inner packet is destined to a mcast group */
 2934         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 2935             pimstat.pims_rcv_badregisters++;
 2936             if (mrtdebug & DEBUG_PIM)
 2937                 log(LOG_DEBUG,
 2938                     "pim_input: inner packet of register is not "
 2939                     "multicast %lx\n",
 2940                     (u_long)ntohl(encap_ip->ip_dst.s_addr));
 2941             m_freem(m);
 2942             return;
 2943         }
 2944 
 2945         /* If a NULL_REGISTER, pass it to the daemon */
 2946         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 2947             goto pim_input_to_daemon;
 2948 
 2949         /*
 2950          * Copy the TOS from the outer IP header to the inner IP header.
 2951          */
 2952         if (encap_ip->ip_tos != ip_tos) {
 2953             /* Outer TOS -> inner TOS */
 2954             encap_ip->ip_tos = ip_tos;
 2955             /* Recompute the inner header checksum. Sigh... */
 2956 
 2957             /* adjust mbuf to point to the inner IP header */
 2958             m->m_data += (iphlen + PIM_MINLEN);
 2959             m->m_len  -= (iphlen + PIM_MINLEN);
 2960 
 2961             encap_ip->ip_sum = 0;
 2962             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 2963 
 2964             /* restore mbuf to point back to the outer IP header */
 2965             m->m_data -= (iphlen + PIM_MINLEN);
 2966             m->m_len  += (iphlen + PIM_MINLEN);
 2967         }
 2968 
 2969         /*
 2970          * Decapsulate the inner IP packet and loopback to forward it
 2971          * as a normal multicast packet. Also, make a copy of the
 2972          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 2973          * to pass to the daemon later, so it can take the appropriate
 2974          * actions (e.g., send back PIM_REGISTER_STOP).
 2975          * XXX: here m->m_data points to the outer IP header.
 2976          */
 2977         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 2978         if (mcp == NULL) {
 2979             log(LOG_ERR,
 2980                 "pim_input: pim register: could not copy register head\n");
 2981             m_freem(m);
 2982             return;
 2983         }
 2984 
 2985         /* Keep statistics */
 2986         /* XXX: registers_bytes include only the encap. mcast pkt */
 2987         pimstat.pims_rcv_registers_msgs++;
 2988         pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
 2989 
 2990         /*
 2991          * forward the inner ip packet; point m_data at the inner ip.
 2992          */
 2993         m_adj(m, iphlen + PIM_MINLEN);
 2994 
 2995         if (mrtdebug & DEBUG_PIM) {
 2996             log(LOG_DEBUG,
 2997                 "pim_input: forwarding decapsulated register: "
 2998                 "src %lx, dst %lx, vif %d\n",
 2999                 (u_long)ntohl(encap_ip->ip_src.s_addr),
 3000                 (u_long)ntohl(encap_ip->ip_dst.s_addr),
 3001                 reg_vif_num);
 3002         }
 3003         /* NB: vifp was collected above; can it change on us? */
 3004         if_simloop(vifp, m, dst.sin_family, 0);
 3005 
 3006         /* prepare the register head to send to the mrouting daemon */
 3007         m = mcp;
 3008     }
 3009 
 3010 pim_input_to_daemon:
 3011     /*
 3012      * Pass the PIM message up to the daemon; if it is a Register message,
 3013      * pass the 'head' only up to the daemon. This includes the
 3014      * outer IP header, PIM header, PIM-Register header and the
 3015      * inner IP header.
 3016      * XXX: the outer IP header pkt size of a Register is not adjust to
 3017      * reflect the fact that the inner multicast data is truncated.
 3018      */
 3019     rip_input(m, iphlen);
 3020 
 3021     return;
 3022 }
 3023 
 3024 /*
 3025  * XXX: This is common code for dealing with initialization for both
 3026  * the IPv4 and IPv6 multicast forwarding paths. It could do with cleanup.
 3027  */
 3028 static int
 3029 ip_mroute_modevent(module_t mod, int type, void *unused)
 3030 {
 3031     switch (type) {
 3032     case MOD_LOAD:
 3033         MROUTER_LOCK_INIT();
 3034         MFC_LOCK_INIT();
 3035         VIF_LOCK_INIT();
 3036         ip_mrouter_reset();
 3037         TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
 3038             &pim_squelch_wholepkt);
 3039 
 3040         pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
 3041             pim_encapcheck, &in_pim_protosw, NULL);
 3042         if (pim_encap_cookie == NULL) {
 3043                 printf("ip_mroute: unable to attach pim encap\n");
 3044                 VIF_LOCK_DESTROY();
 3045                 MFC_LOCK_DESTROY();
 3046                 MROUTER_LOCK_DESTROY();
 3047                 return (EINVAL);
 3048         }
 3049 
 3050 #ifdef INET6
 3051         pim6_encap_cookie = encap_attach_func(AF_INET6, IPPROTO_PIM,
 3052             pim_encapcheck, (struct protosw *)&in6_pim_protosw, NULL);
 3053         if (pim6_encap_cookie == NULL) {
 3054                 printf("ip_mroute: unable to attach pim6 encap\n");
 3055                 if (pim_encap_cookie) {
 3056                     encap_detach(pim_encap_cookie);
 3057                     pim_encap_cookie = NULL;
 3058                 }
 3059                 VIF_LOCK_DESTROY();
 3060                 MFC_LOCK_DESTROY();
 3061                 MROUTER_LOCK_DESTROY();
 3062                 return (EINVAL);
 3063         }
 3064 #endif
 3065 
 3066         ip_mcast_src = X_ip_mcast_src;
 3067         ip_mforward = X_ip_mforward;
 3068         ip_mrouter_done = X_ip_mrouter_done;
 3069         ip_mrouter_get = X_ip_mrouter_get;
 3070         ip_mrouter_set = X_ip_mrouter_set;
 3071 
 3072 #ifdef INET6
 3073         ip6_mforward = X_ip6_mforward;
 3074         ip6_mrouter_done = X_ip6_mrouter_done;
 3075         ip6_mrouter_get = X_ip6_mrouter_get;
 3076         ip6_mrouter_set = X_ip6_mrouter_set;
 3077         mrt6_ioctl = X_mrt6_ioctl;
 3078 #endif
 3079 
 3080         ip_rsvp_force_done = X_ip_rsvp_force_done;
 3081         ip_rsvp_vif = X_ip_rsvp_vif;
 3082 
 3083         legal_vif_num = X_legal_vif_num;
 3084         mrt_ioctl = X_mrt_ioctl;
 3085         rsvp_input_p = X_rsvp_input;
 3086         break;
 3087 
 3088     case MOD_UNLOAD:
 3089         /*
 3090          * Typically module unload happens after the user-level
 3091          * process has shutdown the kernel services (the check
 3092          * below insures someone can't just yank the module out
 3093          * from under a running process).  But if the module is
 3094          * just loaded and then unloaded w/o starting up a user
 3095          * process we still need to cleanup.
 3096          */
 3097         if (ip_mrouter
 3098 #ifdef INET6
 3099             || ip6_mrouter
 3100 #endif
 3101         )
 3102             return EINVAL;
 3103 
 3104 #ifdef INET6
 3105         if (pim6_encap_cookie) {
 3106             encap_detach(pim6_encap_cookie);
 3107             pim6_encap_cookie = NULL;
 3108         }
 3109         X_ip6_mrouter_done();
 3110         ip6_mforward = NULL;
 3111         ip6_mrouter_done = NULL;
 3112         ip6_mrouter_get = NULL;
 3113         ip6_mrouter_set = NULL;
 3114         mrt6_ioctl = NULL;
 3115 #endif
 3116 
 3117         if (pim_encap_cookie) {
 3118             encap_detach(pim_encap_cookie);
 3119             pim_encap_cookie = NULL;
 3120         }
 3121         X_ip_mrouter_done();
 3122         ip_mcast_src = NULL;
 3123         ip_mforward = NULL;
 3124         ip_mrouter_done = NULL;
 3125         ip_mrouter_get = NULL;
 3126         ip_mrouter_set = NULL;
 3127 
 3128         ip_rsvp_force_done = NULL;
 3129         ip_rsvp_vif = NULL;
 3130 
 3131         legal_vif_num = NULL;
 3132         mrt_ioctl = NULL;
 3133         rsvp_input_p = NULL;
 3134 
 3135         VIF_LOCK_DESTROY();
 3136         MFC_LOCK_DESTROY();
 3137         MROUTER_LOCK_DESTROY();
 3138         break;
 3139 
 3140     default:
 3141         return EOPNOTSUPP;
 3142     }
 3143     return 0;
 3144 }
 3145 
 3146 static moduledata_t ip_mroutemod = {
 3147     "ip_mroute",
 3148     ip_mroute_modevent,
 3149     0
 3150 };
 3151 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_ANY);

Cache object: 744b88b92e2517ab5b40edc881705eeb


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.