The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_mroute.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1989 Stephen Deering
    3  * Copyright (c) 1992, 1993
    4  *      The Regents of the University of California.  All rights reserved.
    5  *
    6  * This code is derived from software contributed to Berkeley by
    7  * Stephen Deering of Stanford University.
    8  *
    9  * Redistribution and use in source and binary forms, with or without
   10  * modification, are permitted provided that the following conditions
   11  * are met:
   12  * 1. Redistributions of source code must retain the above copyright
   13  *    notice, this list of conditions and the following disclaimer.
   14  * 2. Redistributions in binary form must reproduce the above copyright
   15  *    notice, this list of conditions and the following disclaimer in the
   16  *    documentation and/or other materials provided with the distribution.
   17  * 4. Neither the name of the University nor the names of its contributors
   18  *    may be used to endorse or promote products derived from this software
   19  *    without specific prior written permission.
   20  *
   21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   31  * SUCH DAMAGE.
   32  *
   33  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
   34  */
   35 
   36 /*
   37  * IP multicast forwarding procedures
   38  *
   39  * Written by David Waitzman, BBN Labs, August 1988.
   40  * Modified by Steve Deering, Stanford, February 1989.
   41  * Modified by Mark J. Steiglitz, Stanford, May, 1991
   42  * Modified by Van Jacobson, LBL, January 1993
   43  * Modified by Ajit Thyagarajan, PARC, August 1993
   44  * Modified by Bill Fenner, PARC, April 1995
   45  * Modified by Ahmed Helmy, SGI, June 1996
   46  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
   47  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
   48  * Modified by Hitoshi Asaeda, WIDE, August 2000
   49  * Modified by Pavlin Radoslavov, ICSI, October 2002
   50  *
   51  * MROUTING Revision: 3.5
   52  * and PIM-SMv2 and PIM-DM support, advanced API support,
   53  * bandwidth metering and signaling
   54  */
   55 
   56 /*
   57  * TODO: Prefix functions with ipmf_.
   58  * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol
   59  * domain attachment (if_afdata) so we can track consumers of that service.
   60  * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT,
   61  * move it to socket options.
   62  * TODO: Cleanup LSRR removal further.
   63  * TODO: Push RSVP stubs into raw_ip.c.
   64  * TODO: Use bitstring.h for vif set.
   65  * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded.
   66  * TODO: Sync ip6_mroute.c with this file.
   67  */
   68 
   69 #include <sys/cdefs.h>
   70 __FBSDID("$FreeBSD$");
   71 
   72 #include "opt_inet.h"
   73 #include "opt_mrouting.h"
   74 
   75 #define _PIM_VT 1
   76 
   77 #include <sys/param.h>
   78 #include <sys/kernel.h>
   79 #include <sys/stddef.h>
   80 #include <sys/lock.h>
   81 #include <sys/ktr.h>
   82 #include <sys/malloc.h>
   83 #include <sys/mbuf.h>
   84 #include <sys/module.h>
   85 #include <sys/priv.h>
   86 #include <sys/protosw.h>
   87 #include <sys/signalvar.h>
   88 #include <sys/socket.h>
   89 #include <sys/socketvar.h>
   90 #include <sys/sockio.h>
   91 #include <sys/sx.h>
   92 #include <sys/sysctl.h>
   93 #include <sys/syslog.h>
   94 #include <sys/systm.h>
   95 #include <sys/time.h>
   96 
   97 #include <net/if.h>
   98 #include <net/netisr.h>
   99 #include <net/route.h>
  100 #include <net/vnet.h>
  101 
  102 #include <netinet/in.h>
  103 #include <netinet/igmp.h>
  104 #include <netinet/in_systm.h>
  105 #include <netinet/in_var.h>
  106 #include <netinet/ip.h>
  107 #include <netinet/ip_encap.h>
  108 #include <netinet/ip_mroute.h>
  109 #include <netinet/ip_var.h>
  110 #include <netinet/ip_options.h>
  111 #include <netinet/pim.h>
  112 #include <netinet/pim_var.h>
  113 #include <netinet/udp.h>
  114 
  115 #include <machine/in_cksum.h>
  116 
  117 #include <security/mac/mac_framework.h>
  118 
  119 #ifndef KTR_IPMF
  120 #define KTR_IPMF KTR_INET
  121 #endif
  122 
  123 #define         VIFI_INVALID    ((vifi_t) -1)
  124 #define         M_HASCL(m)      ((m)->m_flags & M_EXT)
  125 
  126 static VNET_DEFINE(uint32_t, last_tv_sec); /* last time we processed this */
  127 #define V_last_tv_sec   VNET(last_tv_sec)
  128 
  129 static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache");
  130 
  131 /*
  132  * Locking.  We use two locks: one for the virtual interface table and
  133  * one for the forwarding table.  These locks may be nested in which case
  134  * the VIF lock must always be taken first.  Note that each lock is used
  135  * to cover not only the specific data structure but also related data
  136  * structures.
  137  */
  138 
  139 static struct mtx mrouter_mtx;
  140 #define MROUTER_LOCK()          mtx_lock(&mrouter_mtx)
  141 #define MROUTER_UNLOCK()        mtx_unlock(&mrouter_mtx)
  142 #define MROUTER_LOCK_ASSERT()   mtx_assert(&mrouter_mtx, MA_OWNED)
  143 #define MROUTER_LOCK_INIT()                                             \
  144         mtx_init(&mrouter_mtx, "IPv4 multicast forwarding", NULL, MTX_DEF)
  145 #define MROUTER_LOCK_DESTROY()  mtx_destroy(&mrouter_mtx)
  146 
  147 static int ip_mrouter_cnt;      /* # of vnets with active mrouters */
  148 static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */
  149 
  150 static VNET_DEFINE(struct mrtstat, mrtstat);
  151 #define V_mrtstat               VNET(mrtstat)
  152 SYSCTL_VNET_STRUCT(_net_inet_ip, OID_AUTO, mrtstat, CTLFLAG_RW,
  153     &VNET_NAME(mrtstat), mrtstat,
  154     "IPv4 Multicast Forwarding Statistics (struct mrtstat, "
  155     "netinet/ip_mroute.h)");
  156 
  157 static VNET_DEFINE(u_long, mfchash);
  158 #define V_mfchash               VNET(mfchash)
  159 #define MFCHASH(a, g)                                                   \
  160         ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \
  161           ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash)
  162 #define MFCHASHSIZE     256
  163 
  164 static u_long mfchashsize;                      /* Hash size */
  165 static VNET_DEFINE(u_char *, nexpire);          /* 0..mfchashsize-1 */
  166 #define V_nexpire               VNET(nexpire)
  167 static VNET_DEFINE(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl);
  168 #define V_mfchashtbl            VNET(mfchashtbl)
  169 
  170 static struct mtx mfc_mtx;
  171 #define MFC_LOCK()              mtx_lock(&mfc_mtx)
  172 #define MFC_UNLOCK()            mtx_unlock(&mfc_mtx)
  173 #define MFC_LOCK_ASSERT()       mtx_assert(&mfc_mtx, MA_OWNED)
  174 #define MFC_LOCK_INIT()                                                 \
  175         mtx_init(&mfc_mtx, "IPv4 multicast forwarding cache", NULL, MTX_DEF)
  176 #define MFC_LOCK_DESTROY()      mtx_destroy(&mfc_mtx)
  177 
  178 static VNET_DEFINE(vifi_t, numvifs);
  179 #define V_numvifs               VNET(numvifs)
  180 static VNET_DEFINE(struct vif, viftable[MAXVIFS]);
  181 #define V_viftable              VNET(viftable)
  182 SYSCTL_VNET_OPAQUE(_net_inet_ip, OID_AUTO, viftable, CTLFLAG_RD,
  183     &VNET_NAME(viftable), sizeof(V_viftable), "S,vif[MAXVIFS]",
  184     "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)");
  185 
  186 static struct mtx vif_mtx;
  187 #define VIF_LOCK()              mtx_lock(&vif_mtx)
  188 #define VIF_UNLOCK()            mtx_unlock(&vif_mtx)
  189 #define VIF_LOCK_ASSERT()       mtx_assert(&vif_mtx, MA_OWNED)
  190 #define VIF_LOCK_INIT()                                                 \
  191         mtx_init(&vif_mtx, "IPv4 multicast interfaces", NULL, MTX_DEF)
  192 #define VIF_LOCK_DESTROY()      mtx_destroy(&vif_mtx)
  193 
  194 static eventhandler_tag if_detach_event_tag = NULL;
  195 
  196 static VNET_DEFINE(struct callout, expire_upcalls_ch);
  197 #define V_expire_upcalls_ch     VNET(expire_upcalls_ch)
  198 
  199 #define         EXPIRE_TIMEOUT  (hz / 4)        /* 4x / second          */
  200 #define         UPCALL_EXPIRE   6               /* number of timeouts   */
  201 
  202 /*
  203  * Bandwidth meter variables and constants
  204  */
  205 static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters");
  206 /*
  207  * Pending timeouts are stored in a hash table, the key being the
  208  * expiration time. Periodically, the entries are analysed and processed.
  209  */
  210 #define BW_METER_BUCKETS        1024
  211 static VNET_DEFINE(struct bw_meter*, bw_meter_timers[BW_METER_BUCKETS]);
  212 #define V_bw_meter_timers       VNET(bw_meter_timers)
  213 static VNET_DEFINE(struct callout, bw_meter_ch);
  214 #define V_bw_meter_ch           VNET(bw_meter_ch)
  215 #define BW_METER_PERIOD (hz)            /* periodical handling of bw meters */
  216 
  217 /*
  218  * Pending upcalls are stored in a vector which is flushed when
  219  * full, or periodically
  220  */
  221 static VNET_DEFINE(struct bw_upcall, bw_upcalls[BW_UPCALLS_MAX]);
  222 #define V_bw_upcalls            VNET(bw_upcalls)
  223 static VNET_DEFINE(u_int, bw_upcalls_n); /* # of pending upcalls */
  224 #define V_bw_upcalls_n          VNET(bw_upcalls_n)
  225 static VNET_DEFINE(struct callout, bw_upcalls_ch);
  226 #define V_bw_upcalls_ch         VNET(bw_upcalls_ch)
  227 
  228 #define BW_UPCALLS_PERIOD (hz)          /* periodical flush of bw upcalls */
  229 
  230 static VNET_DEFINE(struct pimstat, pimstat);
  231 #define V_pimstat               VNET(pimstat)
  232 
  233 SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW, 0, "PIM");
  234 SYSCTL_VNET_STRUCT(_net_inet_pim, PIMCTL_STATS, stats, CTLFLAG_RD,
  235     &VNET_NAME(pimstat), pimstat,
  236     "PIM Statistics (struct pimstat, netinet/pim_var.h)");
  237 
  238 static u_long   pim_squelch_wholepkt = 0;
  239 SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW,
  240     &pim_squelch_wholepkt, 0,
  241     "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified");
  242 
  243 extern  struct domain inetdomain;
  244 static const struct protosw in_pim_protosw = {
  245         .pr_type =              SOCK_RAW,
  246         .pr_domain =            &inetdomain,
  247         .pr_protocol =          IPPROTO_PIM,
  248         .pr_flags =             PR_ATOMIC|PR_ADDR|PR_LASTHDR,
  249         .pr_input =             pim_input,
  250         .pr_output =            (pr_output_t*)rip_output,
  251         .pr_ctloutput =         rip_ctloutput,
  252         .pr_usrreqs =           &rip_usrreqs
  253 };
  254 static const struct encaptab *pim_encap_cookie;
  255 
  256 static int pim_encapcheck(const struct mbuf *, int, int, void *);
  257 
  258 /*
  259  * Note: the PIM Register encapsulation adds the following in front of a
  260  * data packet:
  261  *
  262  * struct pim_encap_hdr {
  263  *    struct ip ip;
  264  *    struct pim_encap_pimhdr  pim;
  265  * }
  266  *
  267  */
  268 
  269 struct pim_encap_pimhdr {
  270         struct pim pim;
  271         uint32_t   flags;
  272 };
  273 #define         PIM_ENCAP_TTL   64
  274 
  275 static struct ip pim_encap_iphdr = {
  276 #if BYTE_ORDER == LITTLE_ENDIAN
  277         sizeof(struct ip) >> 2,
  278         IPVERSION,
  279 #else
  280         IPVERSION,
  281         sizeof(struct ip) >> 2,
  282 #endif
  283         0,                      /* tos */
  284         sizeof(struct ip),      /* total length */
  285         0,                      /* id */
  286         0,                      /* frag offset */
  287         PIM_ENCAP_TTL,
  288         IPPROTO_PIM,
  289         0,                      /* checksum */
  290 };
  291 
  292 static struct pim_encap_pimhdr pim_encap_pimhdr = {
  293     {
  294         PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
  295         0,                      /* reserved */
  296         0,                      /* checksum */
  297     },
  298     0                           /* flags */
  299 };
  300 
  301 static VNET_DEFINE(vifi_t, reg_vif_num) = VIFI_INVALID;
  302 #define V_reg_vif_num           VNET(reg_vif_num)
  303 static VNET_DEFINE(struct ifnet, multicast_register_if);
  304 #define V_multicast_register_if VNET(multicast_register_if)
  305 
  306 /*
  307  * Private variables.
  308  */
  309 
  310 static u_long   X_ip_mcast_src(int);
  311 static int      X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *,
  312                     struct ip_moptions *);
  313 static int      X_ip_mrouter_done(void);
  314 static int      X_ip_mrouter_get(struct socket *, struct sockopt *);
  315 static int      X_ip_mrouter_set(struct socket *, struct sockopt *);
  316 static int      X_legal_vif_num(int);
  317 static int      X_mrt_ioctl(u_long, caddr_t, int);
  318 
  319 static int      add_bw_upcall(struct bw_upcall *);
  320 static int      add_mfc(struct mfcctl2 *);
  321 static int      add_vif(struct vifctl *);
  322 static void     bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
  323 static void     bw_meter_process(void);
  324 static void     bw_meter_receive_packet(struct bw_meter *, int,
  325                     struct timeval *);
  326 static void     bw_upcalls_send(void);
  327 static int      del_bw_upcall(struct bw_upcall *);
  328 static int      del_mfc(struct mfcctl2 *);
  329 static int      del_vif(vifi_t);
  330 static int      del_vif_locked(vifi_t);
  331 static void     expire_bw_meter_process(void *);
  332 static void     expire_bw_upcalls_send(void *);
  333 static void     expire_mfc(struct mfc *);
  334 static void     expire_upcalls(void *);
  335 static void     free_bw_list(struct bw_meter *);
  336 static int      get_sg_cnt(struct sioc_sg_req *);
  337 static int      get_vif_cnt(struct sioc_vif_req *);
  338 static void     if_detached_event(void *, struct ifnet *);
  339 static int      ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
  340 static int      ip_mrouter_init(struct socket *, int);
  341 static __inline struct mfc *
  342                 mfc_find(struct in_addr *, struct in_addr *);
  343 static void     phyint_send(struct ip *, struct vif *, struct mbuf *);
  344 static struct mbuf *
  345                 pim_register_prepare(struct ip *, struct mbuf *);
  346 static int      pim_register_send(struct ip *, struct vif *,
  347                     struct mbuf *, struct mfc *);
  348 static int      pim_register_send_rp(struct ip *, struct vif *,
  349                     struct mbuf *, struct mfc *);
  350 static int      pim_register_send_upcall(struct ip *, struct vif *,
  351                     struct mbuf *, struct mfc *);
  352 static void     schedule_bw_meter(struct bw_meter *, struct timeval *);
  353 static void     send_packet(struct vif *, struct mbuf *);
  354 static int      set_api_config(uint32_t *);
  355 static int      set_assert(int);
  356 static int      socket_send(struct socket *, struct mbuf *,
  357                     struct sockaddr_in *);
  358 static void     unschedule_bw_meter(struct bw_meter *);
  359 
  360 /*
  361  * Kernel multicast forwarding API capabilities and setup.
  362  * If more API capabilities are added to the kernel, they should be
  363  * recorded in `mrt_api_support'.
  364  */
  365 #define MRT_API_VERSION         0x0305
  366 
  367 static const int mrt_api_version = MRT_API_VERSION;
  368 static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
  369                                          MRT_MFC_FLAGS_BORDER_VIF |
  370                                          MRT_MFC_RP |
  371                                          MRT_MFC_BW_UPCALL);
  372 static VNET_DEFINE(uint32_t, mrt_api_config);
  373 #define V_mrt_api_config        VNET(mrt_api_config)
  374 static VNET_DEFINE(int, pim_assert_enabled);
  375 #define V_pim_assert_enabled    VNET(pim_assert_enabled)
  376 static struct timeval pim_assert_interval = { 3, 0 };   /* Rate limit */
  377 
  378 /*
  379  * Find a route for a given origin IP address and multicast group address.
  380  * Statistics must be updated by the caller.
  381  */
  382 static __inline struct mfc *
  383 mfc_find(struct in_addr *o, struct in_addr *g)
  384 {
  385         struct mfc *rt;
  386 
  387         MFC_LOCK_ASSERT();
  388 
  389         LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
  390                 if (in_hosteq(rt->mfc_origin, *o) &&
  391                     in_hosteq(rt->mfc_mcastgrp, *g) &&
  392                     TAILQ_EMPTY(&rt->mfc_stall))
  393                         break;
  394         }
  395 
  396         return (rt);
  397 }
  398 
  399 /*
  400  * Handle MRT setsockopt commands to modify the multicast forwarding tables.
  401  */
  402 static int
  403 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
  404 {
  405     int error, optval;
  406     vifi_t      vifi;
  407     struct      vifctl vifc;
  408     struct      mfcctl2 mfc;
  409     struct      bw_upcall bw_upcall;
  410     uint32_t    i;
  411 
  412     if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT)
  413         return EPERM;
  414 
  415     error = 0;
  416     switch (sopt->sopt_name) {
  417     case MRT_INIT:
  418         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  419         if (error)
  420             break;
  421         error = ip_mrouter_init(so, optval);
  422         break;
  423 
  424     case MRT_DONE:
  425         error = ip_mrouter_done();
  426         break;
  427 
  428     case MRT_ADD_VIF:
  429         error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
  430         if (error)
  431             break;
  432         error = add_vif(&vifc);
  433         break;
  434 
  435     case MRT_DEL_VIF:
  436         error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
  437         if (error)
  438             break;
  439         error = del_vif(vifi);
  440         break;
  441 
  442     case MRT_ADD_MFC:
  443     case MRT_DEL_MFC:
  444         /*
  445          * select data size depending on API version.
  446          */
  447         if (sopt->sopt_name == MRT_ADD_MFC &&
  448                 V_mrt_api_config & MRT_API_FLAGS_ALL) {
  449             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2),
  450                                 sizeof(struct mfcctl2));
  451         } else {
  452             error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl),
  453                                 sizeof(struct mfcctl));
  454             bzero((caddr_t)&mfc + sizeof(struct mfcctl),
  455                         sizeof(mfc) - sizeof(struct mfcctl));
  456         }
  457         if (error)
  458             break;
  459         if (sopt->sopt_name == MRT_ADD_MFC)
  460             error = add_mfc(&mfc);
  461         else
  462             error = del_mfc(&mfc);
  463         break;
  464 
  465     case MRT_ASSERT:
  466         error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval);
  467         if (error)
  468             break;
  469         set_assert(optval);
  470         break;
  471 
  472     case MRT_API_CONFIG:
  473         error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
  474         if (!error)
  475             error = set_api_config(&i);
  476         if (!error)
  477             error = sooptcopyout(sopt, &i, sizeof i);
  478         break;
  479 
  480     case MRT_ADD_BW_UPCALL:
  481     case MRT_DEL_BW_UPCALL:
  482         error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall,
  483                                 sizeof bw_upcall);
  484         if (error)
  485             break;
  486         if (sopt->sopt_name == MRT_ADD_BW_UPCALL)
  487             error = add_bw_upcall(&bw_upcall);
  488         else
  489             error = del_bw_upcall(&bw_upcall);
  490         break;
  491 
  492     default:
  493         error = EOPNOTSUPP;
  494         break;
  495     }
  496     return error;
  497 }
  498 
  499 /*
  500  * Handle MRT getsockopt commands
  501  */
  502 static int
  503 X_ip_mrouter_get(struct socket *so, struct sockopt *sopt)
  504 {
  505     int error;
  506 
  507     switch (sopt->sopt_name) {
  508     case MRT_VERSION:
  509         error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version);
  510         break;
  511 
  512     case MRT_ASSERT:
  513         error = sooptcopyout(sopt, &V_pim_assert_enabled,
  514             sizeof V_pim_assert_enabled);
  515         break;
  516 
  517     case MRT_API_SUPPORT:
  518         error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support);
  519         break;
  520 
  521     case MRT_API_CONFIG:
  522         error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config);
  523         break;
  524 
  525     default:
  526         error = EOPNOTSUPP;
  527         break;
  528     }
  529     return error;
  530 }
  531 
  532 /*
  533  * Handle ioctl commands to obtain information from the cache
  534  */
  535 static int
  536 X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused)
  537 {
  538     int error = 0;
  539 
  540     /*
  541      * Currently the only function calling this ioctl routine is rtioctl().
  542      * Typically, only root can create the raw socket in order to execute
  543      * this ioctl method, however the request might be coming from a prison
  544      */
  545     error = priv_check(curthread, PRIV_NETINET_MROUTE);
  546     if (error)
  547         return (error);
  548     switch (cmd) {
  549     case (SIOCGETVIFCNT):
  550         error = get_vif_cnt((struct sioc_vif_req *)data);
  551         break;
  552 
  553     case (SIOCGETSGCNT):
  554         error = get_sg_cnt((struct sioc_sg_req *)data);
  555         break;
  556 
  557     default:
  558         error = EINVAL;
  559         break;
  560     }
  561     return error;
  562 }
  563 
  564 /*
  565  * returns the packet, byte, rpf-failure count for the source group provided
  566  */
  567 static int
  568 get_sg_cnt(struct sioc_sg_req *req)
  569 {
  570     struct mfc *rt;
  571 
  572     MFC_LOCK();
  573     rt = mfc_find(&req->src, &req->grp);
  574     if (rt == NULL) {
  575         MFC_UNLOCK();
  576         req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
  577         return EADDRNOTAVAIL;
  578     }
  579     req->pktcnt = rt->mfc_pkt_cnt;
  580     req->bytecnt = rt->mfc_byte_cnt;
  581     req->wrong_if = rt->mfc_wrong_if;
  582     MFC_UNLOCK();
  583     return 0;
  584 }
  585 
  586 /*
  587  * returns the input and output packet and byte counts on the vif provided
  588  */
  589 static int
  590 get_vif_cnt(struct sioc_vif_req *req)
  591 {
  592     vifi_t vifi = req->vifi;
  593 
  594     VIF_LOCK();
  595     if (vifi >= V_numvifs) {
  596         VIF_UNLOCK();
  597         return EINVAL;
  598     }
  599 
  600     req->icount = V_viftable[vifi].v_pkt_in;
  601     req->ocount = V_viftable[vifi].v_pkt_out;
  602     req->ibytes = V_viftable[vifi].v_bytes_in;
  603     req->obytes = V_viftable[vifi].v_bytes_out;
  604     VIF_UNLOCK();
  605 
  606     return 0;
  607 }
  608 
  609 static void
  610 if_detached_event(void *arg __unused, struct ifnet *ifp)
  611 {
  612     vifi_t vifi;
  613     u_long i;
  614 
  615     MROUTER_LOCK();
  616 
  617     if (V_ip_mrouter == NULL) {
  618         MROUTER_UNLOCK();
  619         return;
  620     }
  621 
  622     VIF_LOCK();
  623     MFC_LOCK();
  624 
  625     /*
  626      * Tear down multicast forwarder state associated with this ifnet.
  627      * 1. Walk the vif list, matching vifs against this ifnet.
  628      * 2. Walk the multicast forwarding cache (mfc) looking for
  629      *    inner matches with this vif's index.
  630      * 3. Expire any matching multicast forwarding cache entries.
  631      * 4. Free vif state. This should disable ALLMULTI on the interface.
  632      */
  633     for (vifi = 0; vifi < V_numvifs; vifi++) {
  634         if (V_viftable[vifi].v_ifp != ifp)
  635                 continue;
  636         for (i = 0; i < mfchashsize; i++) {
  637                 struct mfc *rt, *nrt;
  638                 for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
  639                         nrt = LIST_NEXT(rt, mfc_hash);
  640                         if (rt->mfc_parent == vifi) {
  641                                 expire_mfc(rt);
  642                         }
  643                 }
  644         }
  645         del_vif_locked(vifi);
  646     }
  647 
  648     MFC_UNLOCK();
  649     VIF_UNLOCK();
  650 
  651     MROUTER_UNLOCK();
  652 }
  653                         
  654 /*
  655  * Enable multicast forwarding.
  656  */
  657 static int
  658 ip_mrouter_init(struct socket *so, int version)
  659 {
  660 
  661     CTR3(KTR_IPMF, "%s: so_type %d, pr_protocol %d", __func__,
  662         so->so_type, so->so_proto->pr_protocol);
  663 
  664     if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP)
  665         return EOPNOTSUPP;
  666 
  667     if (version != 1)
  668         return ENOPROTOOPT;
  669 
  670     MROUTER_LOCK();
  671 
  672     if (ip_mrouter_unloading) {
  673         MROUTER_UNLOCK();
  674         return ENOPROTOOPT;
  675     }
  676 
  677     if (V_ip_mrouter != NULL) {
  678         MROUTER_UNLOCK();
  679         return EADDRINUSE;
  680     }
  681 
  682     V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash,
  683         HASH_NOWAIT);
  684 
  685     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
  686         curvnet);
  687     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
  688         curvnet);
  689     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
  690         curvnet);
  691 
  692     V_ip_mrouter = so;
  693     ip_mrouter_cnt++;
  694 
  695     MROUTER_UNLOCK();
  696 
  697     CTR1(KTR_IPMF, "%s: done", __func__);
  698 
  699     return 0;
  700 }
  701 
  702 /*
  703  * Disable multicast forwarding.
  704  */
  705 static int
  706 X_ip_mrouter_done(void)
  707 {
  708     struct ifnet *ifp;
  709     u_long i;
  710     vifi_t vifi;
  711 
  712     MROUTER_LOCK();
  713 
  714     if (V_ip_mrouter == NULL) {
  715         MROUTER_UNLOCK();
  716         return EINVAL;
  717     }
  718 
  719     /*
  720      * Detach/disable hooks to the reset of the system.
  721      */
  722     V_ip_mrouter = NULL;
  723     ip_mrouter_cnt--;
  724     V_mrt_api_config = 0;
  725 
  726     VIF_LOCK();
  727 
  728     /*
  729      * For each phyint in use, disable promiscuous reception of all IP
  730      * multicasts.
  731      */
  732     for (vifi = 0; vifi < V_numvifs; vifi++) {
  733         if (!in_nullhost(V_viftable[vifi].v_lcl_addr) &&
  734                 !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) {
  735             ifp = V_viftable[vifi].v_ifp;
  736             if_allmulti(ifp, 0);
  737         }
  738     }
  739     bzero((caddr_t)V_viftable, sizeof(V_viftable));
  740     V_numvifs = 0;
  741     V_pim_assert_enabled = 0;
  742     
  743     VIF_UNLOCK();
  744 
  745     callout_stop(&V_expire_upcalls_ch);
  746     callout_stop(&V_bw_upcalls_ch);
  747     callout_stop(&V_bw_meter_ch);
  748 
  749     MFC_LOCK();
  750 
  751     /*
  752      * Free all multicast forwarding cache entries.
  753      * Do not use hashdestroy(), as we must perform other cleanup.
  754      */
  755     for (i = 0; i < mfchashsize; i++) {
  756         struct mfc *rt, *nrt;
  757         for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
  758                 nrt = LIST_NEXT(rt, mfc_hash);
  759                 expire_mfc(rt);
  760         }
  761     }
  762     free(V_mfchashtbl, M_MRTABLE);
  763     V_mfchashtbl = NULL;
  764 
  765     bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize);
  766 
  767     V_bw_upcalls_n = 0;
  768     bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
  769 
  770     MFC_UNLOCK();
  771 
  772     V_reg_vif_num = VIFI_INVALID;
  773 
  774     MROUTER_UNLOCK();
  775 
  776     CTR1(KTR_IPMF, "%s: done", __func__);
  777 
  778     return 0;
  779 }
  780 
  781 /*
  782  * Set PIM assert processing global
  783  */
  784 static int
  785 set_assert(int i)
  786 {
  787     if ((i != 1) && (i != 0))
  788         return EINVAL;
  789 
  790     V_pim_assert_enabled = i;
  791 
  792     return 0;
  793 }
  794 
  795 /*
  796  * Configure API capabilities
  797  */
  798 int
  799 set_api_config(uint32_t *apival)
  800 {
  801     u_long i;
  802 
  803     /*
  804      * We can set the API capabilities only if it is the first operation
  805      * after MRT_INIT. I.e.:
  806      *  - there are no vifs installed
  807      *  - pim_assert is not enabled
  808      *  - the MFC table is empty
  809      */
  810     if (V_numvifs > 0) {
  811         *apival = 0;
  812         return EPERM;
  813     }
  814     if (V_pim_assert_enabled) {
  815         *apival = 0;
  816         return EPERM;
  817     }
  818 
  819     MFC_LOCK();
  820 
  821     for (i = 0; i < mfchashsize; i++) {
  822         if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) {
  823             MFC_UNLOCK();
  824             *apival = 0;
  825             return EPERM;
  826         }
  827     }
  828 
  829     MFC_UNLOCK();
  830 
  831     V_mrt_api_config = *apival & mrt_api_support;
  832     *apival = V_mrt_api_config;
  833 
  834     return 0;
  835 }
  836 
  837 /*
  838  * Add a vif to the vif table
  839  */
  840 static int
  841 add_vif(struct vifctl *vifcp)
  842 {
  843     struct vif *vifp = V_viftable + vifcp->vifc_vifi;
  844     struct sockaddr_in sin = {sizeof sin, AF_INET};
  845     struct ifaddr *ifa;
  846     struct ifnet *ifp;
  847     int error;
  848 
  849     VIF_LOCK();
  850     if (vifcp->vifc_vifi >= MAXVIFS) {
  851         VIF_UNLOCK();
  852         return EINVAL;
  853     }
  854     /* rate limiting is no longer supported by this code */
  855     if (vifcp->vifc_rate_limit != 0) {
  856         log(LOG_ERR, "rate limiting is no longer supported\n");
  857         VIF_UNLOCK();
  858         return EINVAL;
  859     }
  860     if (!in_nullhost(vifp->v_lcl_addr)) {
  861         VIF_UNLOCK();
  862         return EADDRINUSE;
  863     }
  864     if (in_nullhost(vifcp->vifc_lcl_addr)) {
  865         VIF_UNLOCK();
  866         return EADDRNOTAVAIL;
  867     }
  868 
  869     /* Find the interface with an address in AF_INET family */
  870     if (vifcp->vifc_flags & VIFF_REGISTER) {
  871         /*
  872          * XXX: Because VIFF_REGISTER does not really need a valid
  873          * local interface (e.g. it could be 127.0.0.2), we don't
  874          * check its address.
  875          */
  876         ifp = NULL;
  877     } else {
  878         sin.sin_addr = vifcp->vifc_lcl_addr;
  879         ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
  880         if (ifa == NULL) {
  881             VIF_UNLOCK();
  882             return EADDRNOTAVAIL;
  883         }
  884         ifp = ifa->ifa_ifp;
  885         ifa_free(ifa);
  886     }
  887 
  888     if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) {
  889         CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__);
  890         VIF_UNLOCK();
  891         return EOPNOTSUPP;
  892     } else if (vifcp->vifc_flags & VIFF_REGISTER) {
  893         ifp = &V_multicast_register_if;
  894         CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp);
  895         if (V_reg_vif_num == VIFI_INVALID) {
  896             if_initname(&V_multicast_register_if, "register_vif", 0);
  897             V_multicast_register_if.if_flags = IFF_LOOPBACK;
  898             V_reg_vif_num = vifcp->vifc_vifi;
  899         }
  900     } else {            /* Make sure the interface supports multicast */
  901         if ((ifp->if_flags & IFF_MULTICAST) == 0) {
  902             VIF_UNLOCK();
  903             return EOPNOTSUPP;
  904         }
  905 
  906         /* Enable promiscuous reception of all IP multicasts from the if */
  907         error = if_allmulti(ifp, 1);
  908         if (error) {
  909             VIF_UNLOCK();
  910             return error;
  911         }
  912     }
  913 
  914     vifp->v_flags     = vifcp->vifc_flags;
  915     vifp->v_threshold = vifcp->vifc_threshold;
  916     vifp->v_lcl_addr  = vifcp->vifc_lcl_addr;
  917     vifp->v_rmt_addr  = vifcp->vifc_rmt_addr;
  918     vifp->v_ifp       = ifp;
  919     /* initialize per vif pkt counters */
  920     vifp->v_pkt_in    = 0;
  921     vifp->v_pkt_out   = 0;
  922     vifp->v_bytes_in  = 0;
  923     vifp->v_bytes_out = 0;
  924     bzero(&vifp->v_route, sizeof(vifp->v_route));
  925 
  926     /* Adjust numvifs up if the vifi is higher than numvifs */
  927     if (V_numvifs <= vifcp->vifc_vifi)
  928         V_numvifs = vifcp->vifc_vifi + 1;
  929 
  930     VIF_UNLOCK();
  931 
  932     CTR4(KTR_IPMF, "%s: add vif %d laddr %s thresh %x", __func__,
  933         (int)vifcp->vifc_vifi, inet_ntoa(vifcp->vifc_lcl_addr),
  934         (int)vifcp->vifc_threshold);
  935 
  936     return 0;
  937 }
  938 
  939 /*
  940  * Delete a vif from the vif table
  941  */
  942 static int
  943 del_vif_locked(vifi_t vifi)
  944 {
  945     struct vif *vifp;
  946 
  947     VIF_LOCK_ASSERT();
  948 
  949     if (vifi >= V_numvifs) {
  950         return EINVAL;
  951     }
  952     vifp = &V_viftable[vifi];
  953     if (in_nullhost(vifp->v_lcl_addr)) {
  954         return EADDRNOTAVAIL;
  955     }
  956 
  957     if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER)))
  958         if_allmulti(vifp->v_ifp, 0);
  959 
  960     if (vifp->v_flags & VIFF_REGISTER)
  961         V_reg_vif_num = VIFI_INVALID;
  962 
  963     bzero((caddr_t)vifp, sizeof (*vifp));
  964 
  965     CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi);
  966 
  967     /* Adjust numvifs down */
  968     for (vifi = V_numvifs; vifi > 0; vifi--)
  969         if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr))
  970             break;
  971     V_numvifs = vifi;
  972 
  973     return 0;
  974 }
  975 
  976 static int
  977 del_vif(vifi_t vifi)
  978 {
  979     int cc;
  980 
  981     VIF_LOCK();
  982     cc = del_vif_locked(vifi);
  983     VIF_UNLOCK();
  984 
  985     return cc;
  986 }
  987 
  988 /*
  989  * update an mfc entry without resetting counters and S,G addresses.
  990  */
  991 static void
  992 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
  993 {
  994     int i;
  995 
  996     rt->mfc_parent = mfccp->mfcc_parent;
  997     for (i = 0; i < V_numvifs; i++) {
  998         rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
  999         rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config &
 1000             MRT_MFC_FLAGS_ALL;
 1001     }
 1002     /* set the RP address */
 1003     if (V_mrt_api_config & MRT_MFC_RP)
 1004         rt->mfc_rp = mfccp->mfcc_rp;
 1005     else
 1006         rt->mfc_rp.s_addr = INADDR_ANY;
 1007 }
 1008 
 1009 /*
 1010  * fully initialize an mfc entry from the parameter.
 1011  */
 1012 static void
 1013 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
 1014 {
 1015     rt->mfc_origin     = mfccp->mfcc_origin;
 1016     rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
 1017 
 1018     update_mfc_params(rt, mfccp);
 1019 
 1020     /* initialize pkt counters per src-grp */
 1021     rt->mfc_pkt_cnt    = 0;
 1022     rt->mfc_byte_cnt   = 0;
 1023     rt->mfc_wrong_if   = 0;
 1024     timevalclear(&rt->mfc_last_assert);
 1025 }
 1026 
 1027 static void
 1028 expire_mfc(struct mfc *rt)
 1029 {
 1030         struct rtdetq *rte, *nrte;
 1031 
 1032         free_bw_list(rt->mfc_bw_meter);
 1033 
 1034         TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
 1035                 m_freem(rte->m);
 1036                 TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
 1037                 free(rte, M_MRTABLE);
 1038         }
 1039 
 1040         LIST_REMOVE(rt, mfc_hash);
 1041         free(rt, M_MRTABLE);
 1042 }
 1043 
 1044 /*
 1045  * Add an mfc entry
 1046  */
 1047 static int
 1048 add_mfc(struct mfcctl2 *mfccp)
 1049 {
 1050     struct mfc *rt;
 1051     struct rtdetq *rte, *nrte;
 1052     u_long hash = 0;
 1053     u_short nstl;
 1054 
 1055     VIF_LOCK();
 1056     MFC_LOCK();
 1057 
 1058     rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
 1059 
 1060     /* If an entry already exists, just update the fields */
 1061     if (rt) {
 1062         CTR4(KTR_IPMF, "%s: update mfc orig %s group %lx parent %x",
 1063             __func__, inet_ntoa(mfccp->mfcc_origin),
 1064             (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1065             mfccp->mfcc_parent);
 1066         update_mfc_params(rt, mfccp);
 1067         MFC_UNLOCK();
 1068         VIF_UNLOCK();
 1069         return (0);
 1070     }
 1071 
 1072     /*
 1073      * Find the entry for which the upcall was made and update
 1074      */
 1075     nstl = 0;
 1076     hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
 1077     LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1078         if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1079             in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
 1080             !TAILQ_EMPTY(&rt->mfc_stall)) {
 1081                 CTR5(KTR_IPMF,
 1082                     "%s: add mfc orig %s group %lx parent %x qh %p",
 1083                     __func__, inet_ntoa(mfccp->mfcc_origin),
 1084                     (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr),
 1085                     mfccp->mfcc_parent,
 1086                     TAILQ_FIRST(&rt->mfc_stall));
 1087                 if (nstl++)
 1088                         CTR1(KTR_IPMF, "%s: multiple matches", __func__);
 1089 
 1090                 init_mfc_params(rt, mfccp);
 1091                 rt->mfc_expire = 0;     /* Don't clean this guy up */
 1092                 V_nexpire[hash]--;
 1093 
 1094                 /* Free queued packets, but attempt to forward them first. */
 1095                 TAILQ_FOREACH_SAFE(rte, &rt->mfc_stall, rte_link, nrte) {
 1096                         if (rte->ifp != NULL)
 1097                                 ip_mdq(rte->m, rte->ifp, rt, -1);
 1098                         m_freem(rte->m);
 1099                         TAILQ_REMOVE(&rt->mfc_stall, rte, rte_link);
 1100                         rt->mfc_nstall--;
 1101                         free(rte, M_MRTABLE);
 1102                 }
 1103         }
 1104     }
 1105 
 1106     /*
 1107      * It is possible that an entry is being inserted without an upcall
 1108      */
 1109     if (nstl == 0) {
 1110         CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__);
 1111         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1112                 if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
 1113                     in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
 1114                         init_mfc_params(rt, mfccp);
 1115                         if (rt->mfc_expire)
 1116                             V_nexpire[hash]--;
 1117                         rt->mfc_expire = 0;
 1118                         break; /* XXX */
 1119                 }
 1120         }
 1121 
 1122         if (rt == NULL) {               /* no upcall, so make a new entry */
 1123             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1124             if (rt == NULL) {
 1125                 MFC_UNLOCK();
 1126                 VIF_UNLOCK();
 1127                 return (ENOBUFS);
 1128             }
 1129 
 1130             init_mfc_params(rt, mfccp);
 1131             TAILQ_INIT(&rt->mfc_stall);
 1132             rt->mfc_nstall = 0;
 1133 
 1134             rt->mfc_expire     = 0;
 1135             rt->mfc_bw_meter = NULL;
 1136 
 1137             /* insert new entry at head of hash chain */
 1138             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1139         }
 1140     }
 1141 
 1142     MFC_UNLOCK();
 1143     VIF_UNLOCK();
 1144 
 1145     return (0);
 1146 }
 1147 
 1148 /*
 1149  * Delete an mfc entry
 1150  */
 1151 static int
 1152 del_mfc(struct mfcctl2 *mfccp)
 1153 {
 1154     struct in_addr      origin;
 1155     struct in_addr      mcastgrp;
 1156     struct mfc          *rt;
 1157 
 1158     origin = mfccp->mfcc_origin;
 1159     mcastgrp = mfccp->mfcc_mcastgrp;
 1160 
 1161     CTR3(KTR_IPMF, "%s: delete mfc orig %s group %lx", __func__,
 1162         inet_ntoa(origin), (u_long)ntohl(mcastgrp.s_addr));
 1163 
 1164     MFC_LOCK();
 1165 
 1166     rt = mfc_find(&origin, &mcastgrp);
 1167     if (rt == NULL) {
 1168         MFC_UNLOCK();
 1169         return EADDRNOTAVAIL;
 1170     }
 1171 
 1172     /*
 1173      * free the bw_meter entries
 1174      */
 1175     free_bw_list(rt->mfc_bw_meter);
 1176     rt->mfc_bw_meter = NULL;
 1177 
 1178     LIST_REMOVE(rt, mfc_hash);
 1179     free(rt, M_MRTABLE);
 1180 
 1181     MFC_UNLOCK();
 1182 
 1183     return (0);
 1184 }
 1185 
 1186 /*
 1187  * Send a message to the routing daemon on the multicast routing socket.
 1188  */
 1189 static int
 1190 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
 1191 {
 1192     if (s) {
 1193         SOCKBUF_LOCK(&s->so_rcv);
 1194         if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm,
 1195             NULL) != 0) {
 1196             sorwakeup_locked(s);
 1197             return 0;
 1198         }
 1199         SOCKBUF_UNLOCK(&s->so_rcv);
 1200     }
 1201     m_freem(mm);
 1202     return -1;
 1203 }
 1204 
 1205 /*
 1206  * IP multicast forwarding function. This function assumes that the packet
 1207  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
 1208  * pointed to by "ifp", and the packet is to be relayed to other networks
 1209  * that have members of the packet's destination IP multicast group.
 1210  *
 1211  * The packet is returned unscathed to the caller, unless it is
 1212  * erroneous, in which case a non-zero return value tells the caller to
 1213  * discard it.
 1214  */
 1215 
 1216 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
 1217 
 1218 static int
 1219 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
 1220     struct ip_moptions *imo)
 1221 {
 1222     struct mfc *rt;
 1223     int error;
 1224     vifi_t vifi;
 1225 
 1226     CTR3(KTR_IPMF, "ip_mforward: delete mfc orig %s group %lx ifp %p",
 1227         inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr), ifp);
 1228 
 1229     if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 ||
 1230                 ((u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
 1231         /*
 1232          * Packet arrived via a physical interface or
 1233          * an encapsulated tunnel or a register_vif.
 1234          */
 1235     } else {
 1236         /*
 1237          * Packet arrived through a source-route tunnel.
 1238          * Source-route tunnels are no longer supported.
 1239          */
 1240         return (1);
 1241     }
 1242 
 1243     VIF_LOCK();
 1244     MFC_LOCK();
 1245     if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) {
 1246         if (ip->ip_ttl < MAXTTL)
 1247             ip->ip_ttl++;       /* compensate for -1 in *_send routines */
 1248         error = ip_mdq(m, ifp, NULL, vifi);
 1249         MFC_UNLOCK();
 1250         VIF_UNLOCK();
 1251         return error;
 1252     }
 1253 
 1254     /*
 1255      * Don't forward a packet with time-to-live of zero or one,
 1256      * or a packet destined to a local-only group.
 1257      */
 1258     if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) {
 1259         MFC_UNLOCK();
 1260         VIF_UNLOCK();
 1261         return 0;
 1262     }
 1263 
 1264     /*
 1265      * Determine forwarding vifs from the forwarding cache table
 1266      */
 1267     MRTSTAT_INC(mrts_mfc_lookups);
 1268     rt = mfc_find(&ip->ip_src, &ip->ip_dst);
 1269 
 1270     /* Entry exists, so forward if necessary */
 1271     if (rt != NULL) {
 1272         error = ip_mdq(m, ifp, rt, -1);
 1273         MFC_UNLOCK();
 1274         VIF_UNLOCK();
 1275         return error;
 1276     } else {
 1277         /*
 1278          * If we don't have a route for packet's origin,
 1279          * Make a copy of the packet & send message to routing daemon
 1280          */
 1281 
 1282         struct mbuf *mb0;
 1283         struct rtdetq *rte;
 1284         u_long hash;
 1285         int hlen = ip->ip_hl << 2;
 1286 
 1287         MRTSTAT_INC(mrts_mfc_misses);
 1288         MRTSTAT_INC(mrts_no_route);
 1289         CTR2(KTR_IPMF, "ip_mforward: no mfc for (%s,%lx)",
 1290             inet_ntoa(ip->ip_src), (u_long)ntohl(ip->ip_dst.s_addr));
 1291 
 1292         /*
 1293          * Allocate mbufs early so that we don't do extra work if we are
 1294          * just going to fail anyway.  Make sure to pullup the header so
 1295          * that other people can't step on it.
 1296          */
 1297         rte = (struct rtdetq *)malloc((sizeof *rte), M_MRTABLE,
 1298             M_NOWAIT|M_ZERO);
 1299         if (rte == NULL) {
 1300             MFC_UNLOCK();
 1301             VIF_UNLOCK();
 1302             return ENOBUFS;
 1303         }
 1304 
 1305         mb0 = m_copypacket(m, M_DONTWAIT);
 1306         if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
 1307             mb0 = m_pullup(mb0, hlen);
 1308         if (mb0 == NULL) {
 1309             free(rte, M_MRTABLE);
 1310             MFC_UNLOCK();
 1311             VIF_UNLOCK();
 1312             return ENOBUFS;
 1313         }
 1314 
 1315         /* is there an upcall waiting for this flow ? */
 1316         hash = MFCHASH(ip->ip_src, ip->ip_dst);
 1317         LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) {
 1318                 if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
 1319                     in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
 1320                     !TAILQ_EMPTY(&rt->mfc_stall))
 1321                         break;
 1322         }
 1323 
 1324         if (rt == NULL) {
 1325             int i;
 1326             struct igmpmsg *im;
 1327             struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1328             struct mbuf *mm;
 1329 
 1330             /*
 1331              * Locate the vifi for the incoming interface for this packet.
 1332              * If none found, drop packet.
 1333              */
 1334             for (vifi = 0; vifi < V_numvifs &&
 1335                     V_viftable[vifi].v_ifp != ifp; vifi++)
 1336                 ;
 1337             if (vifi >= V_numvifs)      /* vif not found, drop packet */
 1338                 goto non_fatal;
 1339 
 1340             /* no upcall, so make a new entry */
 1341             rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT);
 1342             if (rt == NULL)
 1343                 goto fail;
 1344 
 1345             /* Make a copy of the header to send to the user level process */
 1346             mm = m_copy(mb0, 0, hlen);
 1347             if (mm == NULL)
 1348                 goto fail1;
 1349 
 1350             /*
 1351              * Send message to routing daemon to install
 1352              * a route into the kernel table
 1353              */
 1354 
 1355             im = mtod(mm, struct igmpmsg *);
 1356             im->im_msgtype = IGMPMSG_NOCACHE;
 1357             im->im_mbz = 0;
 1358             im->im_vif = vifi;
 1359 
 1360             MRTSTAT_INC(mrts_upcalls);
 1361 
 1362             k_igmpsrc.sin_addr = ip->ip_src;
 1363             if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1364                 CTR0(KTR_IPMF, "ip_mforward: socket queue full");
 1365                 MRTSTAT_INC(mrts_upq_sockfull);
 1366 fail1:
 1367                 free(rt, M_MRTABLE);
 1368 fail:
 1369                 free(rte, M_MRTABLE);
 1370                 m_freem(mb0);
 1371                 MFC_UNLOCK();
 1372                 VIF_UNLOCK();
 1373                 return ENOBUFS;
 1374             }
 1375 
 1376             /* insert new entry at head of hash chain */
 1377             rt->mfc_origin.s_addr     = ip->ip_src.s_addr;
 1378             rt->mfc_mcastgrp.s_addr   = ip->ip_dst.s_addr;
 1379             rt->mfc_expire            = UPCALL_EXPIRE;
 1380             V_nexpire[hash]++;
 1381             for (i = 0; i < V_numvifs; i++) {
 1382                 rt->mfc_ttls[i] = 0;
 1383                 rt->mfc_flags[i] = 0;
 1384             }
 1385             rt->mfc_parent = -1;
 1386 
 1387             /* clear the RP address */
 1388             rt->mfc_rp.s_addr = INADDR_ANY;
 1389             rt->mfc_bw_meter = NULL;
 1390 
 1391             /* initialize pkt counters per src-grp */
 1392             rt->mfc_pkt_cnt = 0;
 1393             rt->mfc_byte_cnt = 0;
 1394             rt->mfc_wrong_if = 0;
 1395             timevalclear(&rt->mfc_last_assert);
 1396 
 1397             TAILQ_INIT(&rt->mfc_stall);
 1398             rt->mfc_nstall = 0;
 1399 
 1400             /* link into table */
 1401             LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash);
 1402             TAILQ_INSERT_HEAD(&rt->mfc_stall, rte, rte_link);
 1403             rt->mfc_nstall++;
 1404 
 1405         } else {
 1406             /* determine if queue has overflowed */
 1407             if (rt->mfc_nstall > MAX_UPQ) {
 1408                 MRTSTAT_INC(mrts_upq_ovflw);
 1409 non_fatal:
 1410                 free(rte, M_MRTABLE);
 1411                 m_freem(mb0);
 1412                 MFC_UNLOCK();
 1413                 VIF_UNLOCK();
 1414                 return (0);
 1415             }
 1416             TAILQ_INSERT_TAIL(&rt->mfc_stall, rte, rte_link);
 1417             rt->mfc_nstall++;
 1418         }
 1419 
 1420         rte->m                  = mb0;
 1421         rte->ifp                = ifp;
 1422 
 1423         MFC_UNLOCK();
 1424         VIF_UNLOCK();
 1425 
 1426         return 0;
 1427     }
 1428 }
 1429 
 1430 /*
 1431  * Clean up the cache entry if upcall is not serviced
 1432  */
 1433 static void
 1434 expire_upcalls(void *arg)
 1435 {
 1436     u_long i;
 1437 
 1438     CURVNET_SET((struct vnet *) arg);
 1439 
 1440     MFC_LOCK();
 1441 
 1442     for (i = 0; i < mfchashsize; i++) {
 1443         struct mfc *rt, *nrt;
 1444 
 1445         if (V_nexpire[i] == 0)
 1446             continue;
 1447 
 1448         for (rt = LIST_FIRST(&V_mfchashtbl[i]); rt; rt = nrt) {
 1449                 nrt = LIST_NEXT(rt, mfc_hash);
 1450 
 1451                 if (TAILQ_EMPTY(&rt->mfc_stall))
 1452                         continue;
 1453 
 1454                 if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
 1455                         continue;
 1456 
 1457                 /*
 1458                  * free the bw_meter entries
 1459                  */
 1460                 while (rt->mfc_bw_meter != NULL) {
 1461                     struct bw_meter *x = rt->mfc_bw_meter;
 1462 
 1463                     rt->mfc_bw_meter = x->bm_mfc_next;
 1464                     free(x, M_BWMETER);
 1465                 }
 1466 
 1467                 MRTSTAT_INC(mrts_cache_cleanups);
 1468                 CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__,
 1469                     (u_long)ntohl(rt->mfc_origin.s_addr),
 1470                     (u_long)ntohl(rt->mfc_mcastgrp.s_addr));
 1471 
 1472                 expire_mfc(rt);
 1473             }
 1474     }
 1475 
 1476     MFC_UNLOCK();
 1477 
 1478     callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls,
 1479         curvnet);
 1480 
 1481     CURVNET_RESTORE();
 1482 }
 1483 
 1484 /*
 1485  * Packet forwarding routine once entry in the cache is made
 1486  */
 1487 static int
 1488 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
 1489 {
 1490     struct ip  *ip = mtod(m, struct ip *);
 1491     vifi_t vifi;
 1492     int plen = ip->ip_len;
 1493 
 1494     VIF_LOCK_ASSERT();
 1495 
 1496     /*
 1497      * If xmt_vif is not -1, send on only the requested vif.
 1498      *
 1499      * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
 1500      */
 1501     if (xmt_vif < V_numvifs) {
 1502         if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER)
 1503                 pim_register_send(ip, V_viftable + xmt_vif, m, rt);
 1504         else
 1505                 phyint_send(ip, V_viftable + xmt_vif, m);
 1506         return 1;
 1507     }
 1508 
 1509     /*
 1510      * Don't forward if it didn't arrive from the parent vif for its origin.
 1511      */
 1512     vifi = rt->mfc_parent;
 1513     if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) {
 1514         CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)",
 1515             __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp);
 1516         MRTSTAT_INC(mrts_wrong_if);
 1517         ++rt->mfc_wrong_if;
 1518         /*
 1519          * If we are doing PIM assert processing, send a message
 1520          * to the routing daemon.
 1521          *
 1522          * XXX: A PIM-SM router needs the WRONGVIF detection so it
 1523          * can complete the SPT switch, regardless of the type
 1524          * of the iif (broadcast media, GRE tunnel, etc).
 1525          */
 1526         if (V_pim_assert_enabled && (vifi < V_numvifs) &&
 1527             V_viftable[vifi].v_ifp) {
 1528 
 1529             if (ifp == &V_multicast_register_if)
 1530                 PIMSTAT_INC(pims_rcv_registers_wrongiif);
 1531 
 1532             /* Get vifi for the incoming packet */
 1533             for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp;
 1534                 vifi++)
 1535                 ;
 1536             if (vifi >= V_numvifs)
 1537                 return 0;       /* The iif is not found: ignore the packet. */
 1538 
 1539             if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF)
 1540                 return 0;       /* WRONGVIF disabled: ignore the packet */
 1541 
 1542             if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) {
 1543                 struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 1544                 struct igmpmsg *im;
 1545                 int hlen = ip->ip_hl << 2;
 1546                 struct mbuf *mm = m_copy(m, 0, hlen);
 1547 
 1548                 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
 1549                     mm = m_pullup(mm, hlen);
 1550                 if (mm == NULL)
 1551                     return ENOBUFS;
 1552 
 1553                 im = mtod(mm, struct igmpmsg *);
 1554                 im->im_msgtype  = IGMPMSG_WRONGVIF;
 1555                 im->im_mbz              = 0;
 1556                 im->im_vif              = vifi;
 1557 
 1558                 MRTSTAT_INC(mrts_upcalls);
 1559 
 1560                 k_igmpsrc.sin_addr = im->im_src;
 1561                 if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) {
 1562                     CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 1563                     MRTSTAT_INC(mrts_upq_sockfull);
 1564                     return ENOBUFS;
 1565                 }
 1566             }
 1567         }
 1568         return 0;
 1569     }
 1570 
 1571 
 1572     /* If I sourced this packet, it counts as output, else it was input. */
 1573     if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) {
 1574         V_viftable[vifi].v_pkt_out++;
 1575         V_viftable[vifi].v_bytes_out += plen;
 1576     } else {
 1577         V_viftable[vifi].v_pkt_in++;
 1578         V_viftable[vifi].v_bytes_in += plen;
 1579     }
 1580     rt->mfc_pkt_cnt++;
 1581     rt->mfc_byte_cnt += plen;
 1582 
 1583     /*
 1584      * For each vif, decide if a copy of the packet should be forwarded.
 1585      * Forward if:
 1586      *          - the ttl exceeds the vif's threshold
 1587      *          - there are group members downstream on interface
 1588      */
 1589     for (vifi = 0; vifi < V_numvifs; vifi++)
 1590         if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) {
 1591             V_viftable[vifi].v_pkt_out++;
 1592             V_viftable[vifi].v_bytes_out += plen;
 1593             if (V_viftable[vifi].v_flags & VIFF_REGISTER)
 1594                 pim_register_send(ip, V_viftable + vifi, m, rt);
 1595             else
 1596                 phyint_send(ip, V_viftable + vifi, m);
 1597         }
 1598 
 1599     /*
 1600      * Perform upcall-related bw measuring.
 1601      */
 1602     if (rt->mfc_bw_meter != NULL) {
 1603         struct bw_meter *x;
 1604         struct timeval now;
 1605 
 1606         microtime(&now);
 1607         MFC_LOCK_ASSERT();
 1608         for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
 1609             bw_meter_receive_packet(x, plen, &now);
 1610     }
 1611 
 1612     return 0;
 1613 }
 1614 
 1615 /*
 1616  * Check if a vif number is legal/ok. This is used by in_mcast.c.
 1617  */
 1618 static int
 1619 X_legal_vif_num(int vif)
 1620 {
 1621         int ret;
 1622 
 1623         ret = 0;
 1624         if (vif < 0)
 1625                 return (ret);
 1626 
 1627         VIF_LOCK();
 1628         if (vif < V_numvifs)
 1629                 ret = 1;
 1630         VIF_UNLOCK();
 1631 
 1632         return (ret);
 1633 }
 1634 
 1635 /*
 1636  * Return the local address used by this vif
 1637  */
 1638 static u_long
 1639 X_ip_mcast_src(int vifi)
 1640 {
 1641         in_addr_t addr;
 1642 
 1643         addr = INADDR_ANY;
 1644         if (vifi < 0)
 1645                 return (addr);
 1646 
 1647         VIF_LOCK();
 1648         if (vifi < V_numvifs)
 1649                 addr = V_viftable[vifi].v_lcl_addr.s_addr;
 1650         VIF_UNLOCK();
 1651 
 1652         return (addr);
 1653 }
 1654 
 1655 static void
 1656 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
 1657 {
 1658     struct mbuf *mb_copy;
 1659     int hlen = ip->ip_hl << 2;
 1660 
 1661     VIF_LOCK_ASSERT();
 1662 
 1663     /*
 1664      * Make a new reference to the packet; make sure that
 1665      * the IP header is actually copied, not just referenced,
 1666      * so that ip_output() only scribbles on the copy.
 1667      */
 1668     mb_copy = m_copypacket(m, M_DONTWAIT);
 1669     if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
 1670         mb_copy = m_pullup(mb_copy, hlen);
 1671     if (mb_copy == NULL)
 1672         return;
 1673 
 1674     send_packet(vifp, mb_copy);
 1675 }
 1676 
 1677 static void
 1678 send_packet(struct vif *vifp, struct mbuf *m)
 1679 {
 1680         struct ip_moptions imo;
 1681         struct in_multi *imm[2];
 1682         int error;
 1683 
 1684         VIF_LOCK_ASSERT();
 1685 
 1686         imo.imo_multicast_ifp  = vifp->v_ifp;
 1687         imo.imo_multicast_ttl  = mtod(m, struct ip *)->ip_ttl - 1;
 1688         imo.imo_multicast_loop = 1;
 1689         imo.imo_multicast_vif  = -1;
 1690         imo.imo_num_memberships = 0;
 1691         imo.imo_max_memberships = 2;
 1692         imo.imo_membership  = &imm[0];
 1693 
 1694         /*
 1695          * Re-entrancy should not be a problem here, because
 1696          * the packets that we send out and are looped back at us
 1697          * should get rejected because they appear to come from
 1698          * the loopback interface, thus preventing looping.
 1699          */
 1700         error = ip_output(m, NULL, &vifp->v_route, IP_FORWARDING, &imo, NULL);
 1701         CTR3(KTR_IPMF, "%s: vif %td err %d", __func__,
 1702             (ptrdiff_t)(vifp - V_viftable), error);
 1703 }
 1704 
 1705 /*
 1706  * Stubs for old RSVP socket shim implementation.
 1707  */
 1708 
 1709 static int
 1710 X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused)
 1711 {
 1712 
 1713         return (EOPNOTSUPP);
 1714 }
 1715 
 1716 static void
 1717 X_ip_rsvp_force_done(struct socket *so __unused)
 1718 {
 1719 
 1720 }
 1721 
 1722 static void
 1723 X_rsvp_input(struct mbuf *m, int off __unused)
 1724 {
 1725 
 1726         if (!V_rsvp_on)
 1727                 m_freem(m);
 1728 }
 1729 
 1730 /*
 1731  * Code for bandwidth monitors
 1732  */
 1733 
 1734 /*
 1735  * Define common interface for timeval-related methods
 1736  */
 1737 #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp)
 1738 #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp))
 1739 #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp))
 1740 
 1741 static uint32_t
 1742 compute_bw_meter_flags(struct bw_upcall *req)
 1743 {
 1744     uint32_t flags = 0;
 1745 
 1746     if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
 1747         flags |= BW_METER_UNIT_PACKETS;
 1748     if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
 1749         flags |= BW_METER_UNIT_BYTES;
 1750     if (req->bu_flags & BW_UPCALL_GEQ)
 1751         flags |= BW_METER_GEQ;
 1752     if (req->bu_flags & BW_UPCALL_LEQ)
 1753         flags |= BW_METER_LEQ;
 1754 
 1755     return flags;
 1756 }
 1757 
 1758 /*
 1759  * Add a bw_meter entry
 1760  */
 1761 static int
 1762 add_bw_upcall(struct bw_upcall *req)
 1763 {
 1764     struct mfc *mfc;
 1765     struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
 1766                 BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
 1767     struct timeval now;
 1768     struct bw_meter *x;
 1769     uint32_t flags;
 1770 
 1771     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1772         return EOPNOTSUPP;
 1773 
 1774     /* Test if the flags are valid */
 1775     if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
 1776         return EINVAL;
 1777     if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
 1778         return EINVAL;
 1779     if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1780             == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
 1781         return EINVAL;
 1782 
 1783     /* Test if the threshold time interval is valid */
 1784     if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
 1785         return EINVAL;
 1786 
 1787     flags = compute_bw_meter_flags(req);
 1788 
 1789     /*
 1790      * Find if we have already same bw_meter entry
 1791      */
 1792     MFC_LOCK();
 1793     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1794     if (mfc == NULL) {
 1795         MFC_UNLOCK();
 1796         return EADDRNOTAVAIL;
 1797     }
 1798     for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
 1799         if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1800                            &req->bu_threshold.b_time, ==)) &&
 1801             (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 1802             (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 1803             (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
 1804             MFC_UNLOCK();
 1805             return 0;           /* XXX Already installed */
 1806         }
 1807     }
 1808 
 1809     /* Allocate the new bw_meter entry */
 1810     x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
 1811     if (x == NULL) {
 1812         MFC_UNLOCK();
 1813         return ENOBUFS;
 1814     }
 1815 
 1816     /* Set the new bw_meter entry */
 1817     x->bm_threshold.b_time = req->bu_threshold.b_time;
 1818     microtime(&now);
 1819     x->bm_start_time = now;
 1820     x->bm_threshold.b_packets = req->bu_threshold.b_packets;
 1821     x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
 1822     x->bm_measured.b_packets = 0;
 1823     x->bm_measured.b_bytes = 0;
 1824     x->bm_flags = flags;
 1825     x->bm_time_next = NULL;
 1826     x->bm_time_hash = BW_METER_BUCKETS;
 1827 
 1828     /* Add the new bw_meter entry to the front of entries for this MFC */
 1829     x->bm_mfc = mfc;
 1830     x->bm_mfc_next = mfc->mfc_bw_meter;
 1831     mfc->mfc_bw_meter = x;
 1832     schedule_bw_meter(x, &now);
 1833     MFC_UNLOCK();
 1834 
 1835     return 0;
 1836 }
 1837 
 1838 static void
 1839 free_bw_list(struct bw_meter *list)
 1840 {
 1841     while (list != NULL) {
 1842         struct bw_meter *x = list;
 1843 
 1844         list = list->bm_mfc_next;
 1845         unschedule_bw_meter(x);
 1846         free(x, M_BWMETER);
 1847     }
 1848 }
 1849 
 1850 /*
 1851  * Delete one or multiple bw_meter entries
 1852  */
 1853 static int
 1854 del_bw_upcall(struct bw_upcall *req)
 1855 {
 1856     struct mfc *mfc;
 1857     struct bw_meter *x;
 1858 
 1859     if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL))
 1860         return EOPNOTSUPP;
 1861 
 1862     MFC_LOCK();
 1863 
 1864     /* Find the corresponding MFC entry */
 1865     mfc = mfc_find(&req->bu_src, &req->bu_dst);
 1866     if (mfc == NULL) {
 1867         MFC_UNLOCK();
 1868         return EADDRNOTAVAIL;
 1869     } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
 1870         /*
 1871          * Delete all bw_meter entries for this mfc
 1872          */
 1873         struct bw_meter *list;
 1874 
 1875         list = mfc->mfc_bw_meter;
 1876         mfc->mfc_bw_meter = NULL;
 1877         free_bw_list(list);
 1878         MFC_UNLOCK();
 1879         return 0;
 1880     } else {                    /* Delete a single bw_meter entry */
 1881         struct bw_meter *prev;
 1882         uint32_t flags = 0;
 1883 
 1884         flags = compute_bw_meter_flags(req);
 1885 
 1886         /* Find the bw_meter entry to delete */
 1887         for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
 1888              prev = x, x = x->bm_mfc_next) {
 1889             if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
 1890                                &req->bu_threshold.b_time, ==)) &&
 1891                 (x->bm_threshold.b_packets == req->bu_threshold.b_packets) &&
 1892                 (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
 1893                 (x->bm_flags & BW_METER_USER_FLAGS) == flags)
 1894                 break;
 1895         }
 1896         if (x != NULL) { /* Delete entry from the list for this MFC */
 1897             if (prev != NULL)
 1898                 prev->bm_mfc_next = x->bm_mfc_next;     /* remove from middle*/
 1899             else
 1900                 x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;/* new head of list */
 1901 
 1902             unschedule_bw_meter(x);
 1903             MFC_UNLOCK();
 1904             /* Free the bw_meter entry */
 1905             free(x, M_BWMETER);
 1906             return 0;
 1907         } else {
 1908             MFC_UNLOCK();
 1909             return EINVAL;
 1910         }
 1911     }
 1912     /* NOTREACHED */
 1913 }
 1914 
 1915 /*
 1916  * Perform bandwidth measurement processing that may result in an upcall
 1917  */
 1918 static void
 1919 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
 1920 {
 1921     struct timeval delta;
 1922 
 1923     MFC_LOCK_ASSERT();
 1924 
 1925     delta = *nowp;
 1926     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 1927 
 1928     if (x->bm_flags & BW_METER_GEQ) {
 1929         /*
 1930          * Processing for ">=" type of bw_meter entry
 1931          */
 1932         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 1933             /* Reset the bw_meter entry */
 1934             x->bm_start_time = *nowp;
 1935             x->bm_measured.b_packets = 0;
 1936             x->bm_measured.b_bytes = 0;
 1937             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 1938         }
 1939 
 1940         /* Record that a packet is received */
 1941         x->bm_measured.b_packets++;
 1942         x->bm_measured.b_bytes += plen;
 1943 
 1944         /*
 1945          * Test if we should deliver an upcall
 1946          */
 1947         if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
 1948             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1949                  (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) ||
 1950                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1951                  (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) {
 1952                 /* Prepare an upcall for delivery */
 1953                 bw_meter_prepare_upcall(x, nowp);
 1954                 x->bm_flags |= BW_METER_UPCALL_DELIVERED;
 1955             }
 1956         }
 1957     } else if (x->bm_flags & BW_METER_LEQ) {
 1958         /*
 1959          * Processing for "<=" type of bw_meter entry
 1960          */
 1961         if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
 1962             /*
 1963              * We are behind time with the multicast forwarding table
 1964              * scanning for "<=" type of bw_meter entries, so test now
 1965              * if we should deliver an upcall.
 1966              */
 1967             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 1968                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 1969                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 1970                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 1971                 /* Prepare an upcall for delivery */
 1972                 bw_meter_prepare_upcall(x, nowp);
 1973             }
 1974             /* Reschedule the bw_meter entry */
 1975             unschedule_bw_meter(x);
 1976             schedule_bw_meter(x, nowp);
 1977         }
 1978 
 1979         /* Record that a packet is received */
 1980         x->bm_measured.b_packets++;
 1981         x->bm_measured.b_bytes += plen;
 1982 
 1983         /*
 1984          * Test if we should restart the measuring interval
 1985          */
 1986         if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
 1987              x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
 1988             (x->bm_flags & BW_METER_UNIT_BYTES &&
 1989              x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
 1990             /* Don't restart the measuring interval */
 1991         } else {
 1992             /* Do restart the measuring interval */
 1993             /*
 1994              * XXX: note that we don't unschedule and schedule, because this
 1995              * might be too much overhead per packet. Instead, when we process
 1996              * all entries for a given timer hash bin, we check whether it is
 1997              * really a timeout. If not, we reschedule at that time.
 1998              */
 1999             x->bm_start_time = *nowp;
 2000             x->bm_measured.b_packets = 0;
 2001             x->bm_measured.b_bytes = 0;
 2002             x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2003         }
 2004     }
 2005 }
 2006 
 2007 /*
 2008  * Prepare a bandwidth-related upcall
 2009  */
 2010 static void
 2011 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
 2012 {
 2013     struct timeval delta;
 2014     struct bw_upcall *u;
 2015 
 2016     MFC_LOCK_ASSERT();
 2017 
 2018     /*
 2019      * Compute the measured time interval
 2020      */
 2021     delta = *nowp;
 2022     BW_TIMEVALDECR(&delta, &x->bm_start_time);
 2023 
 2024     /*
 2025      * If there are too many pending upcalls, deliver them now
 2026      */
 2027     if (V_bw_upcalls_n >= BW_UPCALLS_MAX)
 2028         bw_upcalls_send();
 2029 
 2030     /*
 2031      * Set the bw_upcall entry
 2032      */
 2033     u = &V_bw_upcalls[V_bw_upcalls_n++];
 2034     u->bu_src = x->bm_mfc->mfc_origin;
 2035     u->bu_dst = x->bm_mfc->mfc_mcastgrp;
 2036     u->bu_threshold.b_time = x->bm_threshold.b_time;
 2037     u->bu_threshold.b_packets = x->bm_threshold.b_packets;
 2038     u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
 2039     u->bu_measured.b_time = delta;
 2040     u->bu_measured.b_packets = x->bm_measured.b_packets;
 2041     u->bu_measured.b_bytes = x->bm_measured.b_bytes;
 2042     u->bu_flags = 0;
 2043     if (x->bm_flags & BW_METER_UNIT_PACKETS)
 2044         u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
 2045     if (x->bm_flags & BW_METER_UNIT_BYTES)
 2046         u->bu_flags |= BW_UPCALL_UNIT_BYTES;
 2047     if (x->bm_flags & BW_METER_GEQ)
 2048         u->bu_flags |= BW_UPCALL_GEQ;
 2049     if (x->bm_flags & BW_METER_LEQ)
 2050         u->bu_flags |= BW_UPCALL_LEQ;
 2051 }
 2052 
 2053 /*
 2054  * Send the pending bandwidth-related upcalls
 2055  */
 2056 static void
 2057 bw_upcalls_send(void)
 2058 {
 2059     struct mbuf *m;
 2060     int len = V_bw_upcalls_n * sizeof(V_bw_upcalls[0]);
 2061     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2062     static struct igmpmsg igmpmsg = { 0,                /* unused1 */
 2063                                       0,                /* unused2 */
 2064                                       IGMPMSG_BW_UPCALL,/* im_msgtype */
 2065                                       0,                /* im_mbz  */
 2066                                       0,                /* im_vif  */
 2067                                       0,                /* unused3 */
 2068                                       { 0 },            /* im_src  */
 2069                                       { 0 } };          /* im_dst  */
 2070 
 2071     MFC_LOCK_ASSERT();
 2072 
 2073     if (V_bw_upcalls_n == 0)
 2074         return;                 /* No pending upcalls */
 2075 
 2076     V_bw_upcalls_n = 0;
 2077 
 2078     /*
 2079      * Allocate a new mbuf, initialize it with the header and
 2080      * the payload for the pending calls.
 2081      */
 2082     MGETHDR(m, M_DONTWAIT, MT_DATA);
 2083     if (m == NULL) {
 2084         log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
 2085         return;
 2086     }
 2087 
 2088     m->m_len = m->m_pkthdr.len = 0;
 2089     m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg);
 2090     m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&V_bw_upcalls[0]);
 2091 
 2092     /*
 2093      * Send the upcalls
 2094      * XXX do we need to set the address in k_igmpsrc ?
 2095      */
 2096     MRTSTAT_INC(mrts_upcalls);
 2097     if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) {
 2098         log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n");
 2099         MRTSTAT_INC(mrts_upq_sockfull);
 2100     }
 2101 }
 2102 
 2103 /*
 2104  * Compute the timeout hash value for the bw_meter entries
 2105  */
 2106 #define BW_METER_TIMEHASH(bw_meter, hash)                               \
 2107     do {                                                                \
 2108         struct timeval next_timeval = (bw_meter)->bm_start_time;        \
 2109                                                                         \
 2110         BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
 2111         (hash) = next_timeval.tv_sec;                                   \
 2112         if (next_timeval.tv_usec)                                       \
 2113             (hash)++; /* XXX: make sure we don't timeout early */       \
 2114         (hash) %= BW_METER_BUCKETS;                                     \
 2115     } while (0)
 2116 
 2117 /*
 2118  * Schedule a timer to process periodically bw_meter entry of type "<="
 2119  * by linking the entry in the proper hash bucket.
 2120  */
 2121 static void
 2122 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
 2123 {
 2124     int time_hash;
 2125 
 2126     MFC_LOCK_ASSERT();
 2127 
 2128     if (!(x->bm_flags & BW_METER_LEQ))
 2129         return;         /* XXX: we schedule timers only for "<=" entries */
 2130 
 2131     /*
 2132      * Reset the bw_meter entry
 2133      */
 2134     x->bm_start_time = *nowp;
 2135     x->bm_measured.b_packets = 0;
 2136     x->bm_measured.b_bytes = 0;
 2137     x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
 2138 
 2139     /*
 2140      * Compute the timeout hash value and insert the entry
 2141      */
 2142     BW_METER_TIMEHASH(x, time_hash);
 2143     x->bm_time_next = V_bw_meter_timers[time_hash];
 2144     V_bw_meter_timers[time_hash] = x;
 2145     x->bm_time_hash = time_hash;
 2146 }
 2147 
 2148 /*
 2149  * Unschedule the periodic timer that processes bw_meter entry of type "<="
 2150  * by removing the entry from the proper hash bucket.
 2151  */
 2152 static void
 2153 unschedule_bw_meter(struct bw_meter *x)
 2154 {
 2155     int time_hash;
 2156     struct bw_meter *prev, *tmp;
 2157 
 2158     MFC_LOCK_ASSERT();
 2159 
 2160     if (!(x->bm_flags & BW_METER_LEQ))
 2161         return;         /* XXX: we schedule timers only for "<=" entries */
 2162 
 2163     /*
 2164      * Compute the timeout hash value and delete the entry
 2165      */
 2166     time_hash = x->bm_time_hash;
 2167     if (time_hash >= BW_METER_BUCKETS)
 2168         return;         /* Entry was not scheduled */
 2169 
 2170     for (prev = NULL, tmp = V_bw_meter_timers[time_hash];
 2171              tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
 2172         if (tmp == x)
 2173             break;
 2174 
 2175     if (tmp == NULL)
 2176         panic("unschedule_bw_meter: bw_meter entry not found");
 2177 
 2178     if (prev != NULL)
 2179         prev->bm_time_next = x->bm_time_next;
 2180     else
 2181         V_bw_meter_timers[time_hash] = x->bm_time_next;
 2182 
 2183     x->bm_time_next = NULL;
 2184     x->bm_time_hash = BW_METER_BUCKETS;
 2185 }
 2186 
 2187 
 2188 /*
 2189  * Process all "<=" type of bw_meter that should be processed now,
 2190  * and for each entry prepare an upcall if necessary. Each processed
 2191  * entry is rescheduled again for the (periodic) processing.
 2192  *
 2193  * This is run periodically (once per second normally). On each round,
 2194  * all the potentially matching entries are in the hash slot that we are
 2195  * looking at.
 2196  */
 2197 static void
 2198 bw_meter_process()
 2199 {
 2200     uint32_t loops;
 2201     int i;
 2202     struct timeval now, process_endtime;
 2203 
 2204     microtime(&now);
 2205     if (V_last_tv_sec == now.tv_sec)
 2206         return;         /* nothing to do */
 2207 
 2208     loops = now.tv_sec - V_last_tv_sec;
 2209     V_last_tv_sec = now.tv_sec;
 2210     if (loops > BW_METER_BUCKETS)
 2211         loops = BW_METER_BUCKETS;
 2212 
 2213     MFC_LOCK();
 2214     /*
 2215      * Process all bins of bw_meter entries from the one after the last
 2216      * processed to the current one. On entry, i points to the last bucket
 2217      * visited, so we need to increment i at the beginning of the loop.
 2218      */
 2219     for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
 2220         struct bw_meter *x, *tmp_list;
 2221 
 2222         if (++i >= BW_METER_BUCKETS)
 2223             i = 0;
 2224 
 2225         /* Disconnect the list of bw_meter entries from the bin */
 2226         tmp_list = V_bw_meter_timers[i];
 2227         V_bw_meter_timers[i] = NULL;
 2228 
 2229         /* Process the list of bw_meter entries */
 2230         while (tmp_list != NULL) {
 2231             x = tmp_list;
 2232             tmp_list = tmp_list->bm_time_next;
 2233 
 2234             /* Test if the time interval is over */
 2235             process_endtime = x->bm_start_time;
 2236             BW_TIMEVALADD(&process_endtime, &x->bm_threshold.b_time);
 2237             if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
 2238                 /* Not yet: reschedule, but don't reset */
 2239                 int time_hash;
 2240 
 2241                 BW_METER_TIMEHASH(x, time_hash);
 2242                 if (time_hash == i && process_endtime.tv_sec == now.tv_sec) {
 2243                     /*
 2244                      * XXX: somehow the bin processing is a bit ahead of time.
 2245                      * Put the entry in the next bin.
 2246                      */
 2247                     if (++time_hash >= BW_METER_BUCKETS)
 2248                         time_hash = 0;
 2249                 }
 2250                 x->bm_time_next = V_bw_meter_timers[time_hash];
 2251                 V_bw_meter_timers[time_hash] = x;
 2252                 x->bm_time_hash = time_hash;
 2253 
 2254                 continue;
 2255             }
 2256 
 2257             /*
 2258              * Test if we should deliver an upcall
 2259              */
 2260             if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
 2261                  (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) ||
 2262                 ((x->bm_flags & BW_METER_UNIT_BYTES) &&
 2263                  (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) {
 2264                 /* Prepare an upcall for delivery */
 2265                 bw_meter_prepare_upcall(x, &now);
 2266             }
 2267 
 2268             /*
 2269              * Reschedule for next processing
 2270              */
 2271             schedule_bw_meter(x, &now);
 2272         }
 2273     }
 2274 
 2275     /* Send all upcalls that are pending delivery */
 2276     bw_upcalls_send();
 2277 
 2278     MFC_UNLOCK();
 2279 }
 2280 
 2281 /*
 2282  * A periodic function for sending all upcalls that are pending delivery
 2283  */
 2284 static void
 2285 expire_bw_upcalls_send(void *arg)
 2286 {
 2287     CURVNET_SET((struct vnet *) arg);
 2288 
 2289     MFC_LOCK();
 2290     bw_upcalls_send();
 2291     MFC_UNLOCK();
 2292 
 2293     callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send,
 2294         curvnet);
 2295     CURVNET_RESTORE();
 2296 }
 2297 
 2298 /*
 2299  * A periodic function for periodic scanning of the multicast forwarding
 2300  * table for processing all "<=" bw_meter entries.
 2301  */
 2302 static void
 2303 expire_bw_meter_process(void *arg)
 2304 {
 2305     CURVNET_SET((struct vnet *) arg);
 2306 
 2307     if (V_mrt_api_config & MRT_MFC_BW_UPCALL)
 2308         bw_meter_process();
 2309 
 2310     callout_reset(&V_bw_meter_ch, BW_METER_PERIOD, expire_bw_meter_process,
 2311         curvnet);
 2312     CURVNET_RESTORE();
 2313 }
 2314 
 2315 /*
 2316  * End of bandwidth monitoring code
 2317  */
 2318 
 2319 /*
 2320  * Send the packet up to the user daemon, or eventually do kernel encapsulation
 2321  *
 2322  */
 2323 static int
 2324 pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m,
 2325     struct mfc *rt)
 2326 {
 2327     struct mbuf *mb_copy, *mm;
 2328 
 2329     /*
 2330      * Do not send IGMP_WHOLEPKT notifications to userland, if the
 2331      * rendezvous point was unspecified, and we were told not to.
 2332      */
 2333     if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) &&
 2334         in_nullhost(rt->mfc_rp))
 2335         return 0;
 2336 
 2337     mb_copy = pim_register_prepare(ip, m);
 2338     if (mb_copy == NULL)
 2339         return ENOBUFS;
 2340 
 2341     /*
 2342      * Send all the fragments. Note that the mbuf for each fragment
 2343      * is freed by the sending machinery.
 2344      */
 2345     for (mm = mb_copy; mm; mm = mb_copy) {
 2346         mb_copy = mm->m_nextpkt;
 2347         mm->m_nextpkt = 0;
 2348         mm = m_pullup(mm, sizeof(struct ip));
 2349         if (mm != NULL) {
 2350             ip = mtod(mm, struct ip *);
 2351             if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) {
 2352                 pim_register_send_rp(ip, vifp, mm, rt);
 2353             } else {
 2354                 pim_register_send_upcall(ip, vifp, mm, rt);
 2355             }
 2356         }
 2357     }
 2358 
 2359     return 0;
 2360 }
 2361 
 2362 /*
 2363  * Return a copy of the data packet that is ready for PIM Register
 2364  * encapsulation.
 2365  * XXX: Note that in the returned copy the IP header is a valid one.
 2366  */
 2367 static struct mbuf *
 2368 pim_register_prepare(struct ip *ip, struct mbuf *m)
 2369 {
 2370     struct mbuf *mb_copy = NULL;
 2371     int mtu;
 2372 
 2373     /* Take care of delayed checksums */
 2374     if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
 2375         in_delayed_cksum(m);
 2376         m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
 2377     }
 2378 
 2379     /*
 2380      * Copy the old packet & pullup its IP header into the
 2381      * new mbuf so we can modify it.
 2382      */
 2383     mb_copy = m_copypacket(m, M_DONTWAIT);
 2384     if (mb_copy == NULL)
 2385         return NULL;
 2386     mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
 2387     if (mb_copy == NULL)
 2388         return NULL;
 2389 
 2390     /* take care of the TTL */
 2391     ip = mtod(mb_copy, struct ip *);
 2392     --ip->ip_ttl;
 2393 
 2394     /* Compute the MTU after the PIM Register encapsulation */
 2395     mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
 2396 
 2397     if (ip->ip_len <= mtu) {
 2398         /* Turn the IP header into a valid one */
 2399         ip->ip_len = htons(ip->ip_len);
 2400         ip->ip_off = htons(ip->ip_off);
 2401         ip->ip_sum = 0;
 2402         ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
 2403     } else {
 2404         /* Fragment the packet */
 2405         if (ip_fragment(ip, &mb_copy, mtu, 0, CSUM_DELAY_IP) != 0) {
 2406             m_freem(mb_copy);
 2407             return NULL;
 2408         }
 2409     }
 2410     return mb_copy;
 2411 }
 2412 
 2413 /*
 2414  * Send an upcall with the data packet to the user-level process.
 2415  */
 2416 static int
 2417 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
 2418     struct mbuf *mb_copy, struct mfc *rt)
 2419 {
 2420     struct mbuf *mb_first;
 2421     int len = ntohs(ip->ip_len);
 2422     struct igmpmsg *im;
 2423     struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
 2424 
 2425     VIF_LOCK_ASSERT();
 2426 
 2427     /*
 2428      * Add a new mbuf with an upcall header
 2429      */
 2430     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
 2431     if (mb_first == NULL) {
 2432         m_freem(mb_copy);
 2433         return ENOBUFS;
 2434     }
 2435     mb_first->m_data += max_linkhdr;
 2436     mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
 2437     mb_first->m_len = sizeof(struct igmpmsg);
 2438     mb_first->m_next = mb_copy;
 2439 
 2440     /* Send message to routing daemon */
 2441     im = mtod(mb_first, struct igmpmsg *);
 2442     im->im_msgtype      = IGMPMSG_WHOLEPKT;
 2443     im->im_mbz          = 0;
 2444     im->im_vif          = vifp - V_viftable;
 2445     im->im_src          = ip->ip_src;
 2446     im->im_dst          = ip->ip_dst;
 2447 
 2448     k_igmpsrc.sin_addr  = ip->ip_src;
 2449 
 2450     MRTSTAT_INC(mrts_upcalls);
 2451 
 2452     if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) {
 2453         CTR1(KTR_IPMF, "%s: socket queue full", __func__);
 2454         MRTSTAT_INC(mrts_upq_sockfull);
 2455         return ENOBUFS;
 2456     }
 2457 
 2458     /* Keep statistics */
 2459     PIMSTAT_INC(pims_snd_registers_msgs);
 2460     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2461 
 2462     return 0;
 2463 }
 2464 
 2465 /*
 2466  * Encapsulate the data packet in PIM Register message and send it to the RP.
 2467  */
 2468 static int
 2469 pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy,
 2470     struct mfc *rt)
 2471 {
 2472     struct mbuf *mb_first;
 2473     struct ip *ip_outer;
 2474     struct pim_encap_pimhdr *pimhdr;
 2475     int len = ntohs(ip->ip_len);
 2476     vifi_t vifi = rt->mfc_parent;
 2477 
 2478     VIF_LOCK_ASSERT();
 2479 
 2480     if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) {
 2481         m_freem(mb_copy);
 2482         return EADDRNOTAVAIL;           /* The iif vif is invalid */
 2483     }
 2484 
 2485     /*
 2486      * Add a new mbuf with the encapsulating header
 2487      */
 2488     MGETHDR(mb_first, M_DONTWAIT, MT_DATA);
 2489     if (mb_first == NULL) {
 2490         m_freem(mb_copy);
 2491         return ENOBUFS;
 2492     }
 2493     mb_first->m_data += max_linkhdr;
 2494     mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2495     mb_first->m_next = mb_copy;
 2496 
 2497     mb_first->m_pkthdr.len = len + mb_first->m_len;
 2498 
 2499     /*
 2500      * Fill in the encapsulating IP and PIM header
 2501      */
 2502     ip_outer = mtod(mb_first, struct ip *);
 2503     *ip_outer = pim_encap_iphdr;
 2504     ip_outer->ip_id = ip_newid();
 2505     ip_outer->ip_len = len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
 2506     ip_outer->ip_src = V_viftable[vifi].v_lcl_addr;
 2507     ip_outer->ip_dst = rt->mfc_rp;
 2508     /*
 2509      * Copy the inner header TOS to the outer header, and take care of the
 2510      * IP_DF bit.
 2511      */
 2512     ip_outer->ip_tos = ip->ip_tos;
 2513     if (ntohs(ip->ip_off) & IP_DF)
 2514         ip_outer->ip_off |= IP_DF;
 2515     pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
 2516                                          + sizeof(pim_encap_iphdr));
 2517     *pimhdr = pim_encap_pimhdr;
 2518     /* If the iif crosses a border, set the Border-bit */
 2519     if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config)
 2520         pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
 2521 
 2522     mb_first->m_data += sizeof(pim_encap_iphdr);
 2523     pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
 2524     mb_first->m_data -= sizeof(pim_encap_iphdr);
 2525 
 2526     send_packet(vifp, mb_first);
 2527 
 2528     /* Keep statistics */
 2529     PIMSTAT_INC(pims_snd_registers_msgs);
 2530     PIMSTAT_ADD(pims_snd_registers_bytes, len);
 2531 
 2532     return 0;
 2533 }
 2534 
 2535 /*
 2536  * pim_encapcheck() is called by the encap4_input() path at runtime to
 2537  * determine if a packet is for PIM; allowing PIM to be dynamically loaded
 2538  * into the kernel.
 2539  */
 2540 static int
 2541 pim_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
 2542 {
 2543 
 2544 #ifdef DIAGNOSTIC
 2545     KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM"));
 2546 #endif
 2547     if (proto != IPPROTO_PIM)
 2548         return 0;       /* not for us; reject the datagram. */
 2549 
 2550     return 64;          /* claim the datagram. */
 2551 }
 2552 
 2553 /*
 2554  * PIM-SMv2 and PIM-DM messages processing.
 2555  * Receives and verifies the PIM control messages, and passes them
 2556  * up to the listening socket, using rip_input().
 2557  * The only message with special processing is the PIM_REGISTER message
 2558  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
 2559  * is passed to if_simloop().
 2560  */
 2561 void
 2562 pim_input(struct mbuf *m, int off)
 2563 {
 2564     struct ip *ip = mtod(m, struct ip *);
 2565     struct pim *pim;
 2566     int minlen;
 2567     int datalen = ip->ip_len;
 2568     int ip_tos;
 2569     int iphlen = off;
 2570 
 2571     /* Keep statistics */
 2572     PIMSTAT_INC(pims_rcv_total_msgs);
 2573     PIMSTAT_ADD(pims_rcv_total_bytes, datalen);
 2574 
 2575     /*
 2576      * Validate lengths
 2577      */
 2578     if (datalen < PIM_MINLEN) {
 2579         PIMSTAT_INC(pims_rcv_tooshort);
 2580         CTR3(KTR_IPMF, "%s: short packet (%d) from %s",
 2581             __func__, datalen, inet_ntoa(ip->ip_src));
 2582         m_freem(m);
 2583         return;
 2584     }
 2585 
 2586     /*
 2587      * If the packet is at least as big as a REGISTER, go agead
 2588      * and grab the PIM REGISTER header size, to avoid another
 2589      * possible m_pullup() later.
 2590      *
 2591      * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
 2592      * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
 2593      */
 2594     minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN);
 2595     /*
 2596      * Get the IP and PIM headers in contiguous memory, and
 2597      * possibly the PIM REGISTER header.
 2598      */
 2599     if ((m->m_flags & M_EXT || m->m_len < minlen) &&
 2600         (m = m_pullup(m, minlen)) == 0) {
 2601         CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__);
 2602         return;
 2603     }
 2604 
 2605     /* m_pullup() may have given us a new mbuf so reset ip. */
 2606     ip = mtod(m, struct ip *);
 2607     ip_tos = ip->ip_tos;
 2608 
 2609     /* adjust mbuf to point to the PIM header */
 2610     m->m_data += iphlen;
 2611     m->m_len  -= iphlen;
 2612     pim = mtod(m, struct pim *);
 2613 
 2614     /*
 2615      * Validate checksum. If PIM REGISTER, exclude the data packet.
 2616      *
 2617      * XXX: some older PIMv2 implementations don't make this distinction,
 2618      * so for compatibility reason perform the checksum over part of the
 2619      * message, and if error, then over the whole message.
 2620      */
 2621     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) {
 2622         /* do nothing, checksum okay */
 2623     } else if (in_cksum(m, datalen)) {
 2624         PIMSTAT_INC(pims_rcv_badsum);
 2625         CTR1(KTR_IPMF, "%s: invalid checksum", __func__);
 2626         m_freem(m);
 2627         return;
 2628     }
 2629 
 2630     /* PIM version check */
 2631     if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
 2632         PIMSTAT_INC(pims_rcv_badversion);
 2633         CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__,
 2634             (int)PIM_VT_V(pim->pim_vt), PIM_VERSION);
 2635         m_freem(m);
 2636         return;
 2637     }
 2638 
 2639     /* restore mbuf back to the outer IP */
 2640     m->m_data -= iphlen;
 2641     m->m_len  += iphlen;
 2642 
 2643     if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
 2644         /*
 2645          * Since this is a REGISTER, we'll make a copy of the register
 2646          * headers ip + pim + u_int32 + encap_ip, to be passed up to the
 2647          * routing daemon.
 2648          */
 2649         struct sockaddr_in dst = { sizeof(dst), AF_INET };
 2650         struct mbuf *mcp;
 2651         struct ip *encap_ip;
 2652         u_int32_t *reghdr;
 2653         struct ifnet *vifp;
 2654 
 2655         VIF_LOCK();
 2656         if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) {
 2657             VIF_UNLOCK();
 2658             CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__,
 2659                 (int)V_reg_vif_num);
 2660             m_freem(m);
 2661             return;
 2662         }
 2663         /* XXX need refcnt? */
 2664         vifp = V_viftable[V_reg_vif_num].v_ifp;
 2665         VIF_UNLOCK();
 2666 
 2667         /*
 2668          * Validate length
 2669          */
 2670         if (datalen < PIM_REG_MINLEN) {
 2671             PIMSTAT_INC(pims_rcv_tooshort);
 2672             PIMSTAT_INC(pims_rcv_badregisters);
 2673             CTR1(KTR_IPMF, "%s: register packet size too small", __func__);
 2674             m_freem(m);
 2675             return;
 2676         }
 2677 
 2678         reghdr = (u_int32_t *)(pim + 1);
 2679         encap_ip = (struct ip *)(reghdr + 1);
 2680 
 2681         CTR3(KTR_IPMF, "%s: register: encap ip src %s len %d",
 2682             __func__, inet_ntoa(encap_ip->ip_src), ntohs(encap_ip->ip_len));
 2683 
 2684         /* verify the version number of the inner packet */
 2685         if (encap_ip->ip_v != IPVERSION) {
 2686             PIMSTAT_INC(pims_rcv_badregisters);
 2687             CTR1(KTR_IPMF, "%s: bad encap ip version", __func__);
 2688             m_freem(m);
 2689             return;
 2690         }
 2691 
 2692         /* verify the inner packet is destined to a mcast group */
 2693         if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) {
 2694             PIMSTAT_INC(pims_rcv_badregisters);
 2695             CTR2(KTR_IPMF, "%s: bad encap ip dest %s", __func__,
 2696                 inet_ntoa(encap_ip->ip_dst));
 2697             m_freem(m);
 2698             return;
 2699         }
 2700 
 2701         /* If a NULL_REGISTER, pass it to the daemon */
 2702         if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
 2703             goto pim_input_to_daemon;
 2704 
 2705         /*
 2706          * Copy the TOS from the outer IP header to the inner IP header.
 2707          */
 2708         if (encap_ip->ip_tos != ip_tos) {
 2709             /* Outer TOS -> inner TOS */
 2710             encap_ip->ip_tos = ip_tos;
 2711             /* Recompute the inner header checksum. Sigh... */
 2712 
 2713             /* adjust mbuf to point to the inner IP header */
 2714             m->m_data += (iphlen + PIM_MINLEN);
 2715             m->m_len  -= (iphlen + PIM_MINLEN);
 2716 
 2717             encap_ip->ip_sum = 0;
 2718             encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
 2719 
 2720             /* restore mbuf to point back to the outer IP header */
 2721             m->m_data -= (iphlen + PIM_MINLEN);
 2722             m->m_len  += (iphlen + PIM_MINLEN);
 2723         }
 2724 
 2725         /*
 2726          * Decapsulate the inner IP packet and loopback to forward it
 2727          * as a normal multicast packet. Also, make a copy of the
 2728          *     outer_iphdr + pimhdr + reghdr + encap_iphdr
 2729          * to pass to the daemon later, so it can take the appropriate
 2730          * actions (e.g., send back PIM_REGISTER_STOP).
 2731          * XXX: here m->m_data points to the outer IP header.
 2732          */
 2733         mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
 2734         if (mcp == NULL) {
 2735             CTR1(KTR_IPMF, "%s: m_copy() failed", __func__);
 2736             m_freem(m);
 2737             return;
 2738         }
 2739 
 2740         /* Keep statistics */
 2741         /* XXX: registers_bytes include only the encap. mcast pkt */
 2742         PIMSTAT_INC(pims_rcv_registers_msgs);
 2743         PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len));
 2744 
 2745         /*
 2746          * forward the inner ip packet; point m_data at the inner ip.
 2747          */
 2748         m_adj(m, iphlen + PIM_MINLEN);
 2749 
 2750         CTR4(KTR_IPMF,
 2751             "%s: forward decap'd REGISTER: src %lx dst %lx vif %d",
 2752             __func__,
 2753             (u_long)ntohl(encap_ip->ip_src.s_addr),
 2754             (u_long)ntohl(encap_ip->ip_dst.s_addr),
 2755             (int)V_reg_vif_num);
 2756 
 2757         /* NB: vifp was collected above; can it change on us? */
 2758         if_simloop(vifp, m, dst.sin_family, 0);
 2759 
 2760         /* prepare the register head to send to the mrouting daemon */
 2761         m = mcp;
 2762     }
 2763 
 2764 pim_input_to_daemon:
 2765     /*
 2766      * Pass the PIM message up to the daemon; if it is a Register message,
 2767      * pass the 'head' only up to the daemon. This includes the
 2768      * outer IP header, PIM header, PIM-Register header and the
 2769      * inner IP header.
 2770      * XXX: the outer IP header pkt size of a Register is not adjust to
 2771      * reflect the fact that the inner multicast data is truncated.
 2772      */
 2773     rip_input(m, iphlen);
 2774 
 2775     return;
 2776 }
 2777 
 2778 static int
 2779 sysctl_mfctable(SYSCTL_HANDLER_ARGS)
 2780 {
 2781         struct mfc      *rt;
 2782         int              error, i;
 2783 
 2784         if (req->newptr)
 2785                 return (EPERM);
 2786         if (V_mfchashtbl == NULL)       /* XXX unlocked */
 2787                 return (0);
 2788         error = sysctl_wire_old_buffer(req, 0);
 2789         if (error)
 2790                 return (error);
 2791 
 2792         MFC_LOCK();
 2793         for (i = 0; i < mfchashsize; i++) {
 2794                 LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) {
 2795                         error = SYSCTL_OUT(req, rt, sizeof(struct mfc));
 2796                         if (error)
 2797                                 goto out_locked;
 2798                 }
 2799         }
 2800 out_locked:
 2801         MFC_UNLOCK();
 2802         return (error);
 2803 }
 2804 
 2805 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD, sysctl_mfctable,
 2806     "IPv4 Multicast Forwarding Table (struct *mfc[mfchashsize], "
 2807     "netinet/ip_mroute.h)");
 2808 
 2809 static void
 2810 vnet_mroute_init(const void *unused __unused)
 2811 {
 2812 
 2813         MALLOC(V_nexpire, u_char *, mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO);
 2814         bzero(V_bw_meter_timers, sizeof(V_bw_meter_timers));
 2815         callout_init(&V_expire_upcalls_ch, CALLOUT_MPSAFE);
 2816         callout_init(&V_bw_upcalls_ch, CALLOUT_MPSAFE);
 2817         callout_init(&V_bw_meter_ch, CALLOUT_MPSAFE);
 2818 }
 2819 
 2820 VNET_SYSINIT(vnet_mroute_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mroute_init,
 2821         NULL);
 2822 
 2823 static void
 2824 vnet_mroute_uninit(const void *unused __unused)
 2825 {
 2826 
 2827         FREE(V_nexpire, M_MRTABLE);
 2828         V_nexpire = NULL;
 2829 }
 2830 
 2831 VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, 
 2832         vnet_mroute_uninit, NULL);
 2833 
 2834 static int
 2835 ip_mroute_modevent(module_t mod, int type, void *unused)
 2836 {
 2837 
 2838     switch (type) {
 2839     case MOD_LOAD:
 2840         MROUTER_LOCK_INIT();
 2841 
 2842         if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, 
 2843             if_detached_event, NULL, EVENTHANDLER_PRI_ANY);
 2844         if (if_detach_event_tag == NULL) {
 2845                 printf("ip_mroute: unable to register "
 2846                     "ifnet_departure_event handler\n");
 2847                 MROUTER_LOCK_DESTROY();
 2848                 return (EINVAL);
 2849         }
 2850 
 2851         MFC_LOCK_INIT();
 2852         VIF_LOCK_INIT();
 2853 
 2854         mfchashsize = MFCHASHSIZE;
 2855         if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) &&
 2856             !powerof2(mfchashsize)) {
 2857                 printf("WARNING: %s not a power of 2; using default\n",
 2858                     "net.inet.ip.mfchashsize");
 2859                 mfchashsize = MFCHASHSIZE;
 2860         }
 2861 
 2862         pim_squelch_wholepkt = 0;
 2863         TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt",
 2864             &pim_squelch_wholepkt);
 2865 
 2866         pim_encap_cookie = encap_attach_func(AF_INET, IPPROTO_PIM,
 2867             pim_encapcheck, &in_pim_protosw, NULL);
 2868         if (pim_encap_cookie == NULL) {
 2869                 printf("ip_mroute: unable to attach pim encap\n");
 2870                 VIF_LOCK_DESTROY();
 2871                 MFC_LOCK_DESTROY();
 2872                 MROUTER_LOCK_DESTROY();
 2873                 return (EINVAL);
 2874         }
 2875 
 2876         ip_mcast_src = X_ip_mcast_src;
 2877         ip_mforward = X_ip_mforward;
 2878         ip_mrouter_done = X_ip_mrouter_done;
 2879         ip_mrouter_get = X_ip_mrouter_get;
 2880         ip_mrouter_set = X_ip_mrouter_set;
 2881 
 2882         ip_rsvp_force_done = X_ip_rsvp_force_done;
 2883         ip_rsvp_vif = X_ip_rsvp_vif;
 2884 
 2885         legal_vif_num = X_legal_vif_num;
 2886         mrt_ioctl = X_mrt_ioctl;
 2887         rsvp_input_p = X_rsvp_input;
 2888         break;
 2889 
 2890     case MOD_UNLOAD:
 2891         /*
 2892          * Typically module unload happens after the user-level
 2893          * process has shutdown the kernel services (the check
 2894          * below insures someone can't just yank the module out
 2895          * from under a running process).  But if the module is
 2896          * just loaded and then unloaded w/o starting up a user
 2897          * process we still need to cleanup.
 2898          */
 2899         MROUTER_LOCK();
 2900         if (ip_mrouter_cnt != 0) {
 2901             MROUTER_UNLOCK();
 2902             return (EINVAL);
 2903         }
 2904         ip_mrouter_unloading = 1;
 2905         MROUTER_UNLOCK();
 2906 
 2907         EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag);
 2908 
 2909         if (pim_encap_cookie) {
 2910             encap_detach(pim_encap_cookie);
 2911             pim_encap_cookie = NULL;
 2912         }
 2913 
 2914         ip_mcast_src = NULL;
 2915         ip_mforward = NULL;
 2916         ip_mrouter_done = NULL;
 2917         ip_mrouter_get = NULL;
 2918         ip_mrouter_set = NULL;
 2919 
 2920         ip_rsvp_force_done = NULL;
 2921         ip_rsvp_vif = NULL;
 2922 
 2923         legal_vif_num = NULL;
 2924         mrt_ioctl = NULL;
 2925         rsvp_input_p = NULL;
 2926 
 2927         VIF_LOCK_DESTROY();
 2928         MFC_LOCK_DESTROY();
 2929         MROUTER_LOCK_DESTROY();
 2930         break;
 2931 
 2932     default:
 2933         return EOPNOTSUPP;
 2934     }
 2935     return 0;
 2936 }
 2937 
 2938 static moduledata_t ip_mroutemod = {
 2939     "ip_mroute",
 2940     ip_mroute_modevent,
 2941     0
 2942 };
 2943 
 2944 DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PSEUDO, SI_ORDER_MIDDLE);

Cache object: f51f7a16e50b492a537cf801bdf7c2f4


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.