The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_output.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: ip_output.c,v 1.200.4.1 2009/07/09 19:38:27 snj Exp $  */
    2 
    3 /*
    4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
    5  * All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the project nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  */
   31 
   32 /*-
   33  * Copyright (c) 1998 The NetBSD Foundation, Inc.
   34  * All rights reserved.
   35  *
   36  * This code is derived from software contributed to The NetBSD Foundation
   37  * by Public Access Networks Corporation ("Panix").  It was developed under
   38  * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
   39  *
   40  * Redistribution and use in source and binary forms, with or without
   41  * modification, are permitted provided that the following conditions
   42  * are met:
   43  * 1. Redistributions of source code must retain the above copyright
   44  *    notice, this list of conditions and the following disclaimer.
   45  * 2. Redistributions in binary form must reproduce the above copyright
   46  *    notice, this list of conditions and the following disclaimer in the
   47  *    documentation and/or other materials provided with the distribution.
   48  *
   49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
   50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
   52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
   53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
   54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
   55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
   56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
   57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
   59  * POSSIBILITY OF SUCH DAMAGE.
   60  */
   61 
   62 /*
   63  * Copyright (c) 1982, 1986, 1988, 1990, 1993
   64  *      The Regents of the University of California.  All rights reserved.
   65  *
   66  * Redistribution and use in source and binary forms, with or without
   67  * modification, are permitted provided that the following conditions
   68  * are met:
   69  * 1. Redistributions of source code must retain the above copyright
   70  *    notice, this list of conditions and the following disclaimer.
   71  * 2. Redistributions in binary form must reproduce the above copyright
   72  *    notice, this list of conditions and the following disclaimer in the
   73  *    documentation and/or other materials provided with the distribution.
   74  * 3. Neither the name of the University nor the names of its contributors
   75  *    may be used to endorse or promote products derived from this software
   76  *    without specific prior written permission.
   77  *
   78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   88  * SUCH DAMAGE.
   89  *
   90  *      @(#)ip_output.c 8.3 (Berkeley) 1/21/94
   91  */
   92 
   93 #include <sys/cdefs.h>
   94 __KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.200.4.1 2009/07/09 19:38:27 snj Exp $");
   95 
   96 #include "opt_pfil_hooks.h"
   97 #include "opt_inet.h"
   98 #include "opt_ipsec.h"
   99 #include "opt_mrouting.h"
  100 
  101 #include <sys/param.h>
  102 #include <sys/malloc.h>
  103 #include <sys/mbuf.h>
  104 #include <sys/errno.h>
  105 #include <sys/protosw.h>
  106 #include <sys/socket.h>
  107 #include <sys/socketvar.h>
  108 #include <sys/kauth.h>
  109 #ifdef FAST_IPSEC
  110 #include <sys/domain.h>
  111 #endif
  112 #include <sys/systm.h>
  113 #include <sys/proc.h>
  114 
  115 #include <net/if.h>
  116 #include <net/route.h>
  117 #include <net/pfil.h>
  118 
  119 #include <netinet/in.h>
  120 #include <netinet/in_systm.h>
  121 #include <netinet/ip.h>
  122 #include <netinet/in_pcb.h>
  123 #include <netinet/in_var.h>
  124 #include <netinet/ip_var.h>
  125 #include <netinet/ip_private.h>
  126 #include <netinet/in_offload.h>
  127 
  128 #ifdef MROUTING
  129 #include <netinet/ip_mroute.h>
  130 #endif
  131 
  132 #include <machine/stdarg.h>
  133 
  134 #ifdef IPSEC
  135 #include <netinet6/ipsec.h>
  136 #include <netinet6/ipsec_private.h>
  137 #include <netkey/key.h>
  138 #include <netkey/key_debug.h>
  139 #endif /*IPSEC*/
  140 
  141 #ifdef FAST_IPSEC
  142 #include <netipsec/ipsec.h>
  143 #include <netipsec/key.h>
  144 #include <netipsec/xform.h>
  145 #endif  /* FAST_IPSEC*/
  146 
  147 #ifdef IPSEC_NAT_T
  148 #include <netinet/udp.h>
  149 #endif
  150 
  151 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
  152 static struct ifnet *ip_multicast_if(struct in_addr *, int *);
  153 static void ip_mloopback(struct ifnet *, struct mbuf *,
  154     const struct sockaddr_in *);
  155 
  156 #ifdef PFIL_HOOKS
  157 extern struct pfil_head inet_pfil_hook;                 /* XXX */
  158 #endif
  159 
  160 int     ip_do_loopback_cksum = 0;
  161 
  162 /*
  163  * IP output.  The packet in mbuf chain m contains a skeletal IP
  164  * header (with len, off, ttl, proto, tos, src, dst).
  165  * The mbuf chain containing the packet will be freed.
  166  * The mbuf opt, if present, will not be freed.
  167  */
  168 int
  169 ip_output(struct mbuf *m0, ...)
  170 {
  171         struct rtentry *rt;
  172         struct ip *ip;
  173         struct ifnet *ifp;
  174         struct mbuf *m = m0;
  175         int hlen = sizeof (struct ip);
  176         int len, error = 0;
  177         struct route iproute;
  178         const struct sockaddr_in *dst;
  179         struct in_ifaddr *ia;
  180         struct ifaddr *xifa;
  181         struct mbuf *opt;
  182         struct route *ro;
  183         int flags, sw_csum;
  184         int *mtu_p;
  185         u_long mtu;
  186         struct ip_moptions *imo;
  187         struct socket *so;
  188         va_list ap;
  189 #ifdef IPSEC_NAT_T
  190         int natt_frag = 0;
  191 #endif
  192 #ifdef IPSEC
  193         struct secpolicy *sp = NULL;
  194 #endif /*IPSEC*/
  195 #ifdef FAST_IPSEC
  196         struct inpcb *inp;
  197         struct secpolicy *sp = NULL;
  198         int s;
  199 #endif
  200         u_int16_t ip_len;
  201         union {
  202                 struct sockaddr         dst;
  203                 struct sockaddr_in      dst4;
  204         } u;
  205         struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
  206                                          * to the nexthop
  207                                          */
  208 
  209         len = 0;
  210         va_start(ap, m0);
  211         opt = va_arg(ap, struct mbuf *);
  212         ro = va_arg(ap, struct route *);
  213         flags = va_arg(ap, int);
  214         imo = va_arg(ap, struct ip_moptions *);
  215         so = va_arg(ap, struct socket *);
  216         if (flags & IP_RETURNMTU)
  217                 mtu_p = va_arg(ap, int *);
  218         else
  219                 mtu_p = NULL;
  220         va_end(ap);
  221 
  222         MCLAIM(m, &ip_tx_mowner);
  223 #ifdef FAST_IPSEC
  224         if (so != NULL && so->so_proto->pr_domain->dom_family == AF_INET)
  225                 inp = (struct inpcb *)so->so_pcb;
  226         else
  227                 inp = NULL;
  228 #endif /* FAST_IPSEC */
  229 
  230 #ifdef  DIAGNOSTIC
  231         if ((m->m_flags & M_PKTHDR) == 0)
  232                 panic("ip_output: no HDR");
  233 
  234         if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) != 0) {
  235                 panic("ip_output: IPv6 checksum offload flags: %d",
  236                     m->m_pkthdr.csum_flags);
  237         }
  238 
  239         if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) ==
  240             (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
  241                 panic("ip_output: conflicting checksum offload flags: %d",
  242                     m->m_pkthdr.csum_flags);
  243         }
  244 #endif
  245         if (opt) {
  246                 m = ip_insertoptions(m, opt, &len);
  247                 if (len >= sizeof(struct ip))
  248                         hlen = len;
  249         }
  250         ip = mtod(m, struct ip *);
  251         /*
  252          * Fill in IP header.
  253          */
  254         if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
  255                 ip->ip_v = IPVERSION;
  256                 ip->ip_off = htons(0);
  257                 /* ip->ip_id filled in after we find out source ia */
  258                 ip->ip_hl = hlen >> 2;
  259                 IP_STATINC(IP_STAT_LOCALOUT);
  260         } else {
  261                 hlen = ip->ip_hl << 2;
  262         }
  263         /*
  264          * Route packet.
  265          */
  266         memset(&iproute, 0, sizeof(iproute));
  267         if (ro == NULL)
  268                 ro = &iproute;
  269         sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
  270         dst = satocsin(rtcache_getdst(ro));
  271         /*
  272          * If there is a cached route,
  273          * check that it is to the same destination
  274          * and is still up.  If not, free it and try again.
  275          * The address family should also be checked in case of sharing the
  276          * cache with IPv6.
  277          */
  278         if (dst == NULL)
  279                 ;
  280         else if (dst->sin_family != AF_INET ||
  281                  !in_hosteq(dst->sin_addr, ip->ip_dst))
  282                 rtcache_free(ro);
  283 
  284         if ((rt = rtcache_validate(ro)) == NULL &&
  285             (rt = rtcache_update(ro, 1)) == NULL) {
  286                 dst = &u.dst4;
  287                 rtcache_setdst(ro, &u.dst);
  288         }
  289         /*
  290          * If routing to interface only,
  291          * short circuit routing lookup.
  292          */
  293         if (flags & IP_ROUTETOIF) {
  294                 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
  295                         IP_STATINC(IP_STAT_NOROUTE);
  296                         error = ENETUNREACH;
  297                         goto bad;
  298                 }
  299                 ifp = ia->ia_ifp;
  300                 mtu = ifp->if_mtu;
  301                 ip->ip_ttl = 1;
  302         } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
  303             ip->ip_dst.s_addr == INADDR_BROADCAST) &&
  304             imo != NULL && imo->imo_multicast_ifp != NULL) {
  305                 ifp = imo->imo_multicast_ifp;
  306                 mtu = ifp->if_mtu;
  307                 IFP_TO_IA(ifp, ia);
  308         } else {
  309                 if (rt == NULL)
  310                         rt = rtcache_init(ro);
  311                 if (rt == NULL) {
  312                         IP_STATINC(IP_STAT_NOROUTE);
  313                         error = EHOSTUNREACH;
  314                         goto bad;
  315                 }
  316                 ia = ifatoia(rt->rt_ifa);
  317                 ifp = rt->rt_ifp;
  318                 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
  319                         mtu = ifp->if_mtu;
  320                 rt->rt_use++;
  321                 if (rt->rt_flags & RTF_GATEWAY)
  322                         dst = satosin(rt->rt_gateway);
  323         }
  324         if (IN_MULTICAST(ip->ip_dst.s_addr) ||
  325             (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
  326                 struct in_multi *inm;
  327 
  328                 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
  329                         M_BCAST : M_MCAST;
  330                 /*
  331                  * See if the caller provided any multicast options
  332                  */
  333                 if (imo != NULL)
  334                         ip->ip_ttl = imo->imo_multicast_ttl;
  335                 else
  336                         ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
  337 
  338                 /*
  339                  * if we don't know the outgoing ifp yet, we can't generate
  340                  * output
  341                  */
  342                 if (!ifp) {
  343                         IP_STATINC(IP_STAT_NOROUTE);
  344                         error = ENETUNREACH;
  345                         goto bad;
  346                 }
  347 
  348                 /*
  349                  * If the packet is multicast or broadcast, confirm that
  350                  * the outgoing interface can transmit it.
  351                  */
  352                 if (((m->m_flags & M_MCAST) &&
  353                      (ifp->if_flags & IFF_MULTICAST) == 0) ||
  354                     ((m->m_flags & M_BCAST) &&
  355                      (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0))  {
  356                         IP_STATINC(IP_STAT_NOROUTE);
  357                         error = ENETUNREACH;
  358                         goto bad;
  359                 }
  360                 /*
  361                  * If source address not specified yet, use an address
  362                  * of outgoing interface.
  363                  */
  364                 if (in_nullhost(ip->ip_src)) {
  365                         struct in_ifaddr *xia;
  366 
  367                         IFP_TO_IA(ifp, xia);
  368                         if (!xia) {
  369                                 error = EADDRNOTAVAIL;
  370                                 goto bad;
  371                         }
  372                         xifa = &xia->ia_ifa;
  373                         if (xifa->ifa_getifa != NULL) {
  374                                 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
  375                         }
  376                         ip->ip_src = xia->ia_addr.sin_addr;
  377                 }
  378 
  379                 IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
  380                 if (inm != NULL &&
  381                    (imo == NULL || imo->imo_multicast_loop)) {
  382                         /*
  383                          * If we belong to the destination multicast group
  384                          * on the outgoing interface, and the caller did not
  385                          * forbid loopback, loop back a copy.
  386                          */
  387                         ip_mloopback(ifp, m, &u.dst4);
  388                 }
  389 #ifdef MROUTING
  390                 else {
  391                         /*
  392                          * If we are acting as a multicast router, perform
  393                          * multicast forwarding as if the packet had just
  394                          * arrived on the interface to which we are about
  395                          * to send.  The multicast forwarding function
  396                          * recursively calls this function, using the
  397                          * IP_FORWARDING flag to prevent infinite recursion.
  398                          *
  399                          * Multicasts that are looped back by ip_mloopback(),
  400                          * above, will be forwarded by the ip_input() routine,
  401                          * if necessary.
  402                          */
  403                         extern struct socket *ip_mrouter;
  404 
  405                         if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
  406                                 if (ip_mforward(m, ifp) != 0) {
  407                                         m_freem(m);
  408                                         goto done;
  409                                 }
  410                         }
  411                 }
  412 #endif
  413                 /*
  414                  * Multicasts with a time-to-live of zero may be looped-
  415                  * back, above, but must not be transmitted on a network.
  416                  * Also, multicasts addressed to the loopback interface
  417                  * are not sent -- the above call to ip_mloopback() will
  418                  * loop back a copy if this host actually belongs to the
  419                  * destination group on the loopback interface.
  420                  */
  421                 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
  422                         m_freem(m);
  423                         goto done;
  424                 }
  425 
  426                 goto sendit;
  427         }
  428         /*
  429          * If source address not specified yet, use address
  430          * of outgoing interface.
  431          */
  432         if (in_nullhost(ip->ip_src)) {
  433                 xifa = &ia->ia_ifa;
  434                 if (xifa->ifa_getifa != NULL)
  435                         ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
  436                 ip->ip_src = ia->ia_addr.sin_addr;
  437         }
  438 
  439         /*
  440          * packets with Class-D address as source are not valid per
  441          * RFC 1112
  442          */
  443         if (IN_MULTICAST(ip->ip_src.s_addr)) {
  444                 IP_STATINC(IP_STAT_ODROPPED);
  445                 error = EADDRNOTAVAIL;
  446                 goto bad;
  447         }
  448 
  449         /*
  450          * Look for broadcast address and
  451          * and verify user is allowed to send
  452          * such a packet.
  453          */
  454         if (in_broadcast(dst->sin_addr, ifp)) {
  455                 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
  456                         error = EADDRNOTAVAIL;
  457                         goto bad;
  458                 }
  459                 if ((flags & IP_ALLOWBROADCAST) == 0) {
  460                         error = EACCES;
  461                         goto bad;
  462                 }
  463                 /* don't allow broadcast messages to be fragmented */
  464                 if (ntohs(ip->ip_len) > ifp->if_mtu) {
  465                         error = EMSGSIZE;
  466                         goto bad;
  467                 }
  468                 m->m_flags |= M_BCAST;
  469         } else
  470                 m->m_flags &= ~M_BCAST;
  471 
  472 sendit:
  473         if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
  474                 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
  475                         ip->ip_id = 0;
  476                 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
  477                         ip->ip_id = ip_newid(ia);
  478                 } else {
  479 
  480                         /*
  481                          * TSO capable interfaces (typically?) increment
  482                          * ip_id for each segment.
  483                          * "allocate" enough ids here to increase the chance
  484                          * for them to be unique.
  485                          *
  486                          * note that the following calculation is not
  487                          * needed to be precise.  wasting some ip_id is fine.
  488                          */
  489 
  490                         unsigned int segsz = m->m_pkthdr.segsz;
  491                         unsigned int datasz = ntohs(ip->ip_len) - hlen;
  492                         unsigned int num = howmany(datasz, segsz);
  493 
  494                         ip->ip_id = ip_newid_range(ia, num);
  495                 }
  496         }
  497         /*
  498          * If we're doing Path MTU Discovery, we need to set DF unless
  499          * the route's MTU is locked.
  500          */
  501         if ((flags & IP_MTUDISC) != 0 && rt != NULL &&
  502             (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
  503                 ip->ip_off |= htons(IP_DF);
  504 
  505         /* Remember the current ip_len */
  506         ip_len = ntohs(ip->ip_len);
  507 
  508 #ifdef IPSEC
  509         /* get SP for this packet */
  510         if (so == NULL)
  511                 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
  512                     flags, &error);
  513         else {
  514                 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
  515                                          IPSEC_DIR_OUTBOUND))
  516                         goto skip_ipsec;
  517                 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
  518         }
  519 
  520         if (sp == NULL) {
  521                 IPSEC_STATINC(IPSEC_STAT_IN_INVAL);
  522                 goto bad;
  523         }
  524 
  525         error = 0;
  526 
  527         /* check policy */
  528         switch (sp->policy) {
  529         case IPSEC_POLICY_DISCARD:
  530                 /*
  531                  * This packet is just discarded.
  532                  */
  533                 IPSEC_STATINC(IPSEC_STAT_OUT_POLVIO);
  534                 goto bad;
  535 
  536         case IPSEC_POLICY_BYPASS:
  537         case IPSEC_POLICY_NONE:
  538                 /* no need to do IPsec. */
  539                 goto skip_ipsec;
  540 
  541         case IPSEC_POLICY_IPSEC:
  542                 if (sp->req == NULL) {
  543                         /* XXX should be panic ? */
  544                         printf("ip_output: No IPsec request specified.\n");
  545                         error = EINVAL;
  546                         goto bad;
  547                 }
  548                 break;
  549 
  550         case IPSEC_POLICY_ENTRUST:
  551         default:
  552                 printf("ip_output: Invalid policy found. %d\n", sp->policy);
  553         }
  554 
  555 #ifdef IPSEC_NAT_T
  556         /*
  557          * NAT-T ESP fragmentation: don't do IPSec processing now,
  558          * we'll do it on each fragmented packet.
  559          */
  560         if (sp->req->sav &&
  561             ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
  562              (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
  563                 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
  564                         natt_frag = 1;
  565                         mtu = sp->req->sav->esp_frag;
  566                         goto skip_ipsec;
  567                 }
  568         }
  569 #endif /* IPSEC_NAT_T */
  570 
  571         /*
  572          * ipsec4_output() expects ip_len and ip_off in network
  573          * order.  They have been set to network order above.
  574          */
  575 
  576     {
  577         struct ipsec_output_state state;
  578         bzero(&state, sizeof(state));
  579         state.m = m;
  580         if (flags & IP_ROUTETOIF) {
  581                 state.ro = &iproute;
  582                 memset(&iproute, 0, sizeof(iproute));
  583         } else
  584                 state.ro = ro;
  585         state.dst = sintocsa(dst);
  586 
  587         /*
  588          * We can't defer the checksum of payload data if
  589          * we're about to encrypt/authenticate it.
  590          *
  591          * XXX When we support crypto offloading functions of
  592          * XXX network interfaces, we need to reconsider this,
  593          * XXX since it's likely that they'll support checksumming,
  594          * XXX as well.
  595          */
  596         if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
  597                 in_delayed_cksum(m);
  598                 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
  599         }
  600 
  601         error = ipsec4_output(&state, sp, flags);
  602 
  603         m = state.m;
  604         if (flags & IP_ROUTETOIF) {
  605                 /*
  606                  * if we have tunnel mode SA, we may need to ignore
  607                  * IP_ROUTETOIF.
  608                  */
  609                 if (state.ro != &iproute ||
  610                     rtcache_validate(state.ro) != NULL) {
  611                         flags &= ~IP_ROUTETOIF;
  612                         ro = state.ro;
  613                 }
  614         } else
  615                 ro = state.ro;
  616         dst = satocsin(state.dst);
  617         if (error) {
  618                 /* mbuf is already reclaimed in ipsec4_output. */
  619                 m0 = NULL;
  620                 switch (error) {
  621                 case EHOSTUNREACH:
  622                 case ENETUNREACH:
  623                 case EMSGSIZE:
  624                 case ENOBUFS:
  625                 case ENOMEM:
  626                         break;
  627                 default:
  628                         printf("ip4_output (ipsec): error code %d\n", error);
  629                         /*fall through*/
  630                 case ENOENT:
  631                         /* don't show these error codes to the user */
  632                         error = 0;
  633                         break;
  634                 }
  635                 goto bad;
  636         }
  637 
  638         /* be sure to update variables that are affected by ipsec4_output() */
  639         ip = mtod(m, struct ip *);
  640         hlen = ip->ip_hl << 2;
  641         ip_len = ntohs(ip->ip_len);
  642 
  643         if ((rt = rtcache_validate(ro)) == NULL) {
  644                 if ((flags & IP_ROUTETOIF) == 0) {
  645                         printf("ip_output: "
  646                                 "can't update route after IPsec processing\n");
  647                         error = EHOSTUNREACH;   /*XXX*/
  648                         goto bad;
  649                 }
  650         } else {
  651                 /* nobody uses ia beyond here */
  652                 if (state.encap) {
  653                         ifp = rt->rt_ifp;
  654                         if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
  655                                 mtu = ifp->if_mtu;
  656                 }
  657         }
  658     }
  659 skip_ipsec:
  660 #endif /*IPSEC*/
  661 #ifdef FAST_IPSEC
  662         /*
  663          * Check the security policy (SP) for the packet and, if
  664          * required, do IPsec-related processing.  There are two
  665          * cases here; the first time a packet is sent through
  666          * it will be untagged and handled by ipsec4_checkpolicy.
  667          * If the packet is resubmitted to ip_output (e.g. after
  668          * AH, ESP, etc. processing), there will be a tag to bypass
  669          * the lookup and related policy checking.
  670          */
  671         if (!ipsec_outdone(m)) {
  672                 s = splsoftnet();
  673                 if (inp != NULL &&
  674                     IPSEC_PCB_SKIP_IPSEC(inp->inp_sp, IPSEC_DIR_OUTBOUND)) {
  675                         splx(s);
  676                         goto spd_done;
  677                 }
  678                 sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
  679                                 &error, inp);
  680                 /*
  681                  * There are four return cases:
  682                  *    sp != NULL                    apply IPsec policy
  683                  *    sp == NULL, error == 0        no IPsec handling needed
  684                  *    sp == NULL, error == -EINVAL  discard packet w/o error
  685                  *    sp == NULL, error != 0        discard packet, report error
  686                  */
  687                 if (sp != NULL) {
  688 #ifdef IPSEC_NAT_T
  689                         /*
  690                          * NAT-T ESP fragmentation: don't do IPSec processing now,
  691                          * we'll do it on each fragmented packet.
  692                          */
  693                         if (sp->req->sav &&
  694                                         ((sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP) ||
  695                                          (sp->req->sav->natt_type & UDP_ENCAP_ESPINUDP_NON_IKE))) {
  696                                 if (ntohs(ip->ip_len) > sp->req->sav->esp_frag) {
  697                                         natt_frag = 1;
  698                                         mtu = sp->req->sav->esp_frag;
  699                                         splx(s);
  700                                         goto spd_done;
  701                                 }
  702                         }
  703 #endif /* IPSEC_NAT_T */
  704 
  705                         /*
  706                          * Do delayed checksums now because we send before
  707                          * this is done in the normal processing path.
  708                          */
  709                         if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
  710                                 in_delayed_cksum(m);
  711                                 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
  712                         }
  713 
  714 #ifdef __FreeBSD__
  715                         ip->ip_len = htons(ip->ip_len);
  716                         ip->ip_off = htons(ip->ip_off);
  717 #endif
  718 
  719                         /* NB: callee frees mbuf */
  720                         error = ipsec4_process_packet(m, sp->req, flags, 0);
  721                         /*
  722                          * Preserve KAME behaviour: ENOENT can be returned
  723                          * when an SA acquire is in progress.  Don't propagate
  724                          * this to user-level; it confuses applications.
  725                          *
  726                          * XXX this will go away when the SADB is redone.
  727                          */
  728                         if (error == ENOENT)
  729                                 error = 0;
  730                         splx(s);
  731                         goto done;
  732                 } else {
  733                         splx(s);
  734 
  735                         if (error != 0) {
  736                                 /*
  737                                  * Hack: -EINVAL is used to signal that a packet
  738                                  * should be silently discarded.  This is typically
  739                                  * because we asked key management for an SA and
  740                                  * it was delayed (e.g. kicked up to IKE).
  741                                  */
  742                                 if (error == -EINVAL)
  743                                         error = 0;
  744                                 goto bad;
  745                         } else {
  746                                 /* No IPsec processing for this packet. */
  747                         }
  748                 }
  749         }
  750 spd_done:
  751 #endif /* FAST_IPSEC */
  752 
  753 #ifdef PFIL_HOOKS
  754         /*
  755          * Run through list of hooks for output packets.
  756          */
  757         if ((error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
  758                 goto done;
  759         if (m == NULL)
  760                 goto done;
  761 
  762         ip = mtod(m, struct ip *);
  763         hlen = ip->ip_hl << 2;
  764         ip_len = ntohs(ip->ip_len);
  765 #endif /* PFIL_HOOKS */
  766 
  767         m->m_pkthdr.csum_data |= hlen << 16;
  768 
  769 #if IFA_STATS
  770         /*
  771          * search for the source address structure to
  772          * maintain output statistics.
  773          */
  774         INADDR_TO_IA(ip->ip_src, ia);
  775 #endif
  776 
  777         /* Maybe skip checksums on loopback interfaces. */
  778         if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
  779                 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
  780         }
  781         sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
  782         /*
  783          * If small enough for mtu of path, or if using TCP segmentation
  784          * offload, can just send directly.
  785          */
  786         if (ip_len <= mtu ||
  787             (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
  788 #if IFA_STATS
  789                 if (ia)
  790                         ia->ia_ifa.ifa_data.ifad_outbytes += ip_len;
  791 #endif
  792                 /*
  793                  * Always initialize the sum to 0!  Some HW assisted
  794                  * checksumming requires this.
  795                  */
  796                 ip->ip_sum = 0;
  797 
  798                 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
  799                         /*
  800                          * Perform any checksums that the hardware can't do
  801                          * for us.
  802                          *
  803                          * XXX Does any hardware require the {th,uh}_sum
  804                          * XXX fields to be 0?
  805                          */
  806                         if (sw_csum & M_CSUM_IPv4) {
  807                                 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
  808                                 ip->ip_sum = in_cksum(m, hlen);
  809                                 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
  810                         }
  811                         if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
  812                                 if (IN_NEED_CHECKSUM(ifp,
  813                                     sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
  814                                         in_delayed_cksum(m);
  815                                 }
  816                                 m->m_pkthdr.csum_flags &=
  817                                     ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
  818                         }
  819                 }
  820 
  821 #ifdef IPSEC
  822                 /* clean ipsec history once it goes out of the node */
  823                 ipsec_delaux(m);
  824 #endif
  825 
  826                 if (__predict_true(
  827                     (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
  828                     (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
  829                         error =
  830                             (*ifp->if_output)(ifp, m,
  831                                 (m->m_flags & M_MCAST) ?
  832                                     sintocsa(rdst) : sintocsa(dst),
  833                                 rt);
  834                 } else {
  835                         error =
  836                             ip_tso_output(ifp, m,
  837                                 (m->m_flags & M_MCAST) ?
  838                                     sintocsa(rdst) : sintocsa(dst),
  839                                 rt);
  840                 }
  841                 goto done;
  842         }
  843 
  844         /*
  845          * We can't use HW checksumming if we're about to
  846          * to fragment the packet.
  847          *
  848          * XXX Some hardware can do this.
  849          */
  850         if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
  851                 if (IN_NEED_CHECKSUM(ifp,
  852                     m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
  853                         in_delayed_cksum(m);
  854                 }
  855                 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
  856         }
  857 
  858         /*
  859          * Too large for interface; fragment if possible.
  860          * Must be able to put at least 8 bytes per fragment.
  861          */
  862         if (ntohs(ip->ip_off) & IP_DF) {
  863                 if (flags & IP_RETURNMTU)
  864                         *mtu_p = mtu;
  865                 error = EMSGSIZE;
  866                 IP_STATINC(IP_STAT_CANTFRAG);
  867                 goto bad;
  868         }
  869 
  870         error = ip_fragment(m, ifp, mtu);
  871         if (error) {
  872                 m = NULL;
  873                 goto bad;
  874         }
  875 
  876         for (; m; m = m0) {
  877                 m0 = m->m_nextpkt;
  878                 m->m_nextpkt = 0;
  879                 if (error == 0) {
  880 #if IFA_STATS
  881                         if (ia)
  882                                 ia->ia_ifa.ifa_data.ifad_outbytes +=
  883                                     ntohs(ip->ip_len);
  884 #endif
  885 #ifdef IPSEC
  886                         /* clean ipsec history once it goes out of the node */
  887                         ipsec_delaux(m);
  888 #endif /* IPSEC */
  889 
  890 #ifdef IPSEC_NAT_T
  891                         /*
  892                          * If we get there, the packet has not been handeld by
  893                          * IPSec whereas it should have. Now that it has been
  894                          * fragmented, re-inject it in ip_output so that IPsec
  895                          * processing can occur.
  896                          */
  897                         if (natt_frag) {
  898                                 error = ip_output(m, opt,
  899                                     ro, flags, imo, so, mtu_p);
  900                         } else
  901 #endif /* IPSEC_NAT_T */
  902                         {
  903                                 KASSERT((m->m_pkthdr.csum_flags &
  904                                     (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
  905                                 error = (*ifp->if_output)(ifp, m,
  906                                     (m->m_flags & M_MCAST) ?
  907                                         sintocsa(rdst) : sintocsa(dst),
  908                                     rt);
  909                         }
  910                 } else
  911                         m_freem(m);
  912         }
  913 
  914         if (error == 0)
  915                 IP_STATINC(IP_STAT_FRAGMENTED);
  916 done:
  917         rtcache_free(&iproute);
  918 
  919 #ifdef IPSEC
  920         if (sp != NULL) {
  921                 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
  922                         printf("DP ip_output call free SP:%p\n", sp));
  923                 key_freesp(sp);
  924         }
  925 #endif /* IPSEC */
  926 #ifdef FAST_IPSEC
  927         if (sp != NULL)
  928                 KEY_FREESP(&sp);
  929 #endif /* FAST_IPSEC */
  930 
  931         return (error);
  932 bad:
  933         m_freem(m);
  934         goto done;
  935 }
  936 
  937 int
  938 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
  939 {
  940         struct ip *ip, *mhip;
  941         struct mbuf *m0;
  942         int len, hlen, off;
  943         int mhlen, firstlen;
  944         struct mbuf **mnext;
  945         int sw_csum = m->m_pkthdr.csum_flags;
  946         int fragments = 0;
  947         int s;
  948         int error = 0;
  949 
  950         ip = mtod(m, struct ip *);
  951         hlen = ip->ip_hl << 2;
  952         if (ifp != NULL)
  953                 sw_csum &= ~ifp->if_csum_flags_tx;
  954 
  955         len = (mtu - hlen) &~ 7;
  956         if (len < 8) {
  957                 m_freem(m);
  958                 return (EMSGSIZE);
  959         }
  960 
  961         firstlen = len;
  962         mnext = &m->m_nextpkt;
  963 
  964         /*
  965          * Loop through length of segment after first fragment,
  966          * make new header and copy data of each part and link onto chain.
  967          */
  968         m0 = m;
  969         mhlen = sizeof (struct ip);
  970         for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
  971                 MGETHDR(m, M_DONTWAIT, MT_HEADER);
  972                 if (m == 0) {
  973                         error = ENOBUFS;
  974                         IP_STATINC(IP_STAT_ODROPPED);
  975                         goto sendorfree;
  976                 }
  977                 MCLAIM(m, m0->m_owner);
  978                 *mnext = m;
  979                 mnext = &m->m_nextpkt;
  980                 m->m_data += max_linkhdr;
  981                 mhip = mtod(m, struct ip *);
  982                 *mhip = *ip;
  983                 /* we must inherit MCAST and BCAST flags */
  984                 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
  985                 if (hlen > sizeof (struct ip)) {
  986                         mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
  987                         mhip->ip_hl = mhlen >> 2;
  988                 }
  989                 m->m_len = mhlen;
  990                 mhip->ip_off = ((off - hlen) >> 3) +
  991                     (ntohs(ip->ip_off) & ~IP_MF);
  992                 if (ip->ip_off & htons(IP_MF))
  993                         mhip->ip_off |= IP_MF;
  994                 if (off + len >= ntohs(ip->ip_len))
  995                         len = ntohs(ip->ip_len) - off;
  996                 else
  997                         mhip->ip_off |= IP_MF;
  998                 HTONS(mhip->ip_off);
  999                 mhip->ip_len = htons((u_int16_t)(len + mhlen));
 1000                 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
 1001                 if (m->m_next == 0) {
 1002                         error = ENOBUFS;        /* ??? */
 1003                         IP_STATINC(IP_STAT_ODROPPED);
 1004                         goto sendorfree;
 1005                 }
 1006                 m->m_pkthdr.len = mhlen + len;
 1007                 m->m_pkthdr.rcvif = (struct ifnet *)0;
 1008                 mhip->ip_sum = 0;
 1009                 if (sw_csum & M_CSUM_IPv4) {
 1010                         mhip->ip_sum = in_cksum(m, mhlen);
 1011                         KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
 1012                 } else {
 1013                         m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
 1014                         m->m_pkthdr.csum_data |= mhlen << 16;
 1015                 }
 1016                 IP_STATINC(IP_STAT_OFRAGMENTS);
 1017                 fragments++;
 1018         }
 1019         /*
 1020          * Update first fragment by trimming what's been copied out
 1021          * and updating header, then send each fragment (in order).
 1022          */
 1023         m = m0;
 1024         m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
 1025         m->m_pkthdr.len = hlen + firstlen;
 1026         ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
 1027         ip->ip_off |= htons(IP_MF);
 1028         ip->ip_sum = 0;
 1029         if (sw_csum & M_CSUM_IPv4) {
 1030                 ip->ip_sum = in_cksum(m, hlen);
 1031                 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
 1032         } else {
 1033                 KASSERT(m->m_pkthdr.csum_flags & M_CSUM_IPv4);
 1034                 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
 1035                         sizeof(struct ip));
 1036         }
 1037 sendorfree:
 1038         /*
 1039          * If there is no room for all the fragments, don't queue
 1040          * any of them.
 1041          */
 1042         if (ifp != NULL) {
 1043                 s = splnet();
 1044                 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
 1045                     error == 0) {
 1046                         error = ENOBUFS;
 1047                         IP_STATINC(IP_STAT_ODROPPED);
 1048                         IFQ_INC_DROPS(&ifp->if_snd);
 1049                 }
 1050                 splx(s);
 1051         }
 1052         if (error) {
 1053                 for (m = m0; m; m = m0) {
 1054                         m0 = m->m_nextpkt;
 1055                         m->m_nextpkt = NULL;
 1056                         m_freem(m);
 1057                 }
 1058         }
 1059         return (error);
 1060 }
 1061 
 1062 /*
 1063  * Process a delayed payload checksum calculation.
 1064  */
 1065 void
 1066 in_delayed_cksum(struct mbuf *m)
 1067 {
 1068         struct ip *ip;
 1069         u_int16_t csum, offset;
 1070 
 1071         ip = mtod(m, struct ip *);
 1072         offset = ip->ip_hl << 2;
 1073         csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
 1074         if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
 1075                 csum = 0xffff;
 1076 
 1077         offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
 1078 
 1079         if ((offset + sizeof(u_int16_t)) > m->m_len) {
 1080                 /* This happen when ip options were inserted
 1081                 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
 1082                     m->m_len, offset, ip->ip_p);
 1083                  */
 1084                 m_copyback(m, offset, sizeof(csum), (void *) &csum);
 1085         } else
 1086                 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
 1087 }
 1088 
 1089 /*
 1090  * Determine the maximum length of the options to be inserted;
 1091  * we would far rather allocate too much space rather than too little.
 1092  */
 1093 
 1094 u_int
 1095 ip_optlen(struct inpcb *inp)
 1096 {
 1097         struct mbuf *m = inp->inp_options;
 1098 
 1099         if (m && m->m_len > offsetof(struct ipoption, ipopt_dst))
 1100                 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
 1101         else
 1102                 return 0;
 1103 }
 1104 
 1105 
 1106 /*
 1107  * Insert IP options into preformed packet.
 1108  * Adjust IP destination as required for IP source routing,
 1109  * as indicated by a non-zero in_addr at the start of the options.
 1110  */
 1111 static struct mbuf *
 1112 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
 1113 {
 1114         struct ipoption *p = mtod(opt, struct ipoption *);
 1115         struct mbuf *n;
 1116         struct ip *ip = mtod(m, struct ip *);
 1117         unsigned optlen;
 1118 
 1119         optlen = opt->m_len - sizeof(p->ipopt_dst);
 1120         if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
 1121                 return (m);             /* XXX should fail */
 1122         if (!in_nullhost(p->ipopt_dst))
 1123                 ip->ip_dst = p->ipopt_dst;
 1124         if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
 1125                 MGETHDR(n, M_DONTWAIT, MT_HEADER);
 1126                 if (n == 0)
 1127                         return (m);
 1128                 MCLAIM(n, m->m_owner);
 1129                 M_MOVE_PKTHDR(n, m);
 1130                 m->m_len -= sizeof(struct ip);
 1131                 m->m_data += sizeof(struct ip);
 1132                 n->m_next = m;
 1133                 m = n;
 1134                 m->m_len = optlen + sizeof(struct ip);
 1135                 m->m_data += max_linkhdr;
 1136                 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
 1137         } else {
 1138                 m->m_data -= optlen;
 1139                 m->m_len += optlen;
 1140                 memmove(mtod(m, void *), ip, sizeof(struct ip));
 1141         }
 1142         m->m_pkthdr.len += optlen;
 1143         ip = mtod(m, struct ip *);
 1144         bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
 1145         *phlen = sizeof(struct ip) + optlen;
 1146         ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
 1147         return (m);
 1148 }
 1149 
 1150 /*
 1151  * Copy options from ip to jp,
 1152  * omitting those not copied during fragmentation.
 1153  */
 1154 int
 1155 ip_optcopy(struct ip *ip, struct ip *jp)
 1156 {
 1157         u_char *cp, *dp;
 1158         int opt, optlen, cnt;
 1159 
 1160         cp = (u_char *)(ip + 1);
 1161         dp = (u_char *)(jp + 1);
 1162         cnt = (ip->ip_hl << 2) - sizeof (struct ip);
 1163         for (; cnt > 0; cnt -= optlen, cp += optlen) {
 1164                 opt = cp[0];
 1165                 if (opt == IPOPT_EOL)
 1166                         break;
 1167                 if (opt == IPOPT_NOP) {
 1168                         /* Preserve for IP mcast tunnel's LSRR alignment. */
 1169                         *dp++ = IPOPT_NOP;
 1170                         optlen = 1;
 1171                         continue;
 1172                 }
 1173 #ifdef DIAGNOSTIC
 1174                 if (cnt < IPOPT_OLEN + sizeof(*cp))
 1175                         panic("malformed IPv4 option passed to ip_optcopy");
 1176 #endif
 1177                 optlen = cp[IPOPT_OLEN];
 1178 #ifdef DIAGNOSTIC
 1179                 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
 1180                         panic("malformed IPv4 option passed to ip_optcopy");
 1181 #endif
 1182                 /* bogus lengths should have been caught by ip_dooptions */
 1183                 if (optlen > cnt)
 1184                         optlen = cnt;
 1185                 if (IPOPT_COPIED(opt)) {
 1186                         bcopy((void *)cp, (void *)dp, (unsigned)optlen);
 1187                         dp += optlen;
 1188                 }
 1189         }
 1190         for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
 1191                 *dp++ = IPOPT_EOL;
 1192         return (optlen);
 1193 }
 1194 
 1195 /*
 1196  * IP socket option processing.
 1197  */
 1198 int
 1199 ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
 1200 {
 1201         struct inpcb *inp = sotoinpcb(so);
 1202         int optval = 0;
 1203         int error = 0;
 1204 #if defined(IPSEC) || defined(FAST_IPSEC)
 1205         struct lwp *l = curlwp; /*XXX*/
 1206 #endif
 1207 
 1208         if (sopt->sopt_level != IPPROTO_IP) {
 1209                 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
 1210                         return 0;
 1211                 return ENOPROTOOPT;
 1212         }
 1213 
 1214         switch (op) {
 1215         case PRCO_SETOPT:
 1216                 switch (sopt->sopt_name) {
 1217                 case IP_OPTIONS:
 1218 #ifdef notyet
 1219                 case IP_RETOPTS:
 1220 #endif
 1221                         error = ip_pcbopts(&inp->inp_options, sopt);
 1222                         break;
 1223 
 1224                 case IP_TOS:
 1225                 case IP_TTL:
 1226                 case IP_RECVOPTS:
 1227                 case IP_RECVRETOPTS:
 1228                 case IP_RECVDSTADDR:
 1229                 case IP_RECVIF:
 1230                         error = sockopt_getint(sopt, &optval);
 1231                         if (error)
 1232                                 break;
 1233 
 1234                         switch (sopt->sopt_name) {
 1235                         case IP_TOS:
 1236                                 inp->inp_ip.ip_tos = optval;
 1237                                 break;
 1238 
 1239                         case IP_TTL:
 1240                                 inp->inp_ip.ip_ttl = optval;
 1241                                 break;
 1242 #define OPTSET(bit) \
 1243         if (optval) \
 1244                 inp->inp_flags |= bit; \
 1245         else \
 1246                 inp->inp_flags &= ~bit;
 1247 
 1248                         case IP_RECVOPTS:
 1249                                 OPTSET(INP_RECVOPTS);
 1250                                 break;
 1251 
 1252                         case IP_RECVRETOPTS:
 1253                                 OPTSET(INP_RECVRETOPTS);
 1254                                 break;
 1255 
 1256                         case IP_RECVDSTADDR:
 1257                                 OPTSET(INP_RECVDSTADDR);
 1258                                 break;
 1259 
 1260                         case IP_RECVIF:
 1261                                 OPTSET(INP_RECVIF);
 1262                                 break;
 1263                         }
 1264                 break;
 1265 #undef OPTSET
 1266 
 1267                 case IP_MULTICAST_IF:
 1268                 case IP_MULTICAST_TTL:
 1269                 case IP_MULTICAST_LOOP:
 1270                 case IP_ADD_MEMBERSHIP:
 1271                 case IP_DROP_MEMBERSHIP:
 1272                         error = ip_setmoptions(&inp->inp_moptions, sopt);
 1273                         break;
 1274 
 1275                 case IP_PORTRANGE:
 1276                         error = sockopt_getint(sopt, &optval);
 1277                         if (error)
 1278                                 break;
 1279 
 1280                         /* INP_LOCK(inp); */
 1281                         switch (optval) {
 1282                         case IP_PORTRANGE_DEFAULT:
 1283                         case IP_PORTRANGE_HIGH:
 1284                                 inp->inp_flags &= ~(INP_LOWPORT);
 1285                                 break;
 1286 
 1287                         case IP_PORTRANGE_LOW:
 1288                                 inp->inp_flags |= INP_LOWPORT;
 1289                                 break;
 1290 
 1291                         default:
 1292                                 error = EINVAL;
 1293                                 break;
 1294                         }
 1295                         /* INP_UNLOCK(inp); */
 1296                         break;
 1297 
 1298 #if defined(IPSEC) || defined(FAST_IPSEC)
 1299                 case IP_IPSEC_POLICY:
 1300                     {
 1301                         int priv = 0;
 1302 
 1303 #ifdef __NetBSD__
 1304                         if (l == 0 || kauth_authorize_generic(l->l_cred,
 1305                             KAUTH_GENERIC_ISSUSER, NULL))
 1306                                 priv = 0;
 1307                         else
 1308                                 priv = 1;
 1309 #else
 1310                         priv = (in6p->in6p_socket->so_state & SS_PRIV);
 1311 #endif
 1312 
 1313                         error = ipsec4_set_policy(inp, sopt->sopt_name,
 1314                             sopt->sopt_data, sopt->sopt_size, priv);
 1315                         break;
 1316                     }
 1317 #endif /*IPSEC*/
 1318 
 1319                 default:
 1320                         error = ENOPROTOOPT;
 1321                         break;
 1322                 }
 1323                 break;
 1324 
 1325         case PRCO_GETOPT:
 1326                 switch (sopt->sopt_name) {
 1327                 case IP_OPTIONS:
 1328                 case IP_RETOPTS:
 1329                         if (inp->inp_options) {
 1330                                 struct mbuf *m;
 1331 
 1332                                 m = m_copym(inp->inp_options, 0, M_COPYALL,
 1333                                     M_DONTWAIT);
 1334                                 if (m == NULL) {
 1335                                         error = ENOBUFS;
 1336                                         break;
 1337                                 }
 1338 
 1339                                 error = sockopt_setmbuf(sopt, m);
 1340                         }
 1341                         break;
 1342 
 1343                 case IP_TOS:
 1344                 case IP_TTL:
 1345                 case IP_RECVOPTS:
 1346                 case IP_RECVRETOPTS:
 1347                 case IP_RECVDSTADDR:
 1348                 case IP_RECVIF:
 1349                 case IP_ERRORMTU:
 1350                         switch (sopt->sopt_name) {
 1351                         case IP_TOS:
 1352                                 optval = inp->inp_ip.ip_tos;
 1353                                 break;
 1354 
 1355                         case IP_TTL:
 1356                                 optval = inp->inp_ip.ip_ttl;
 1357                                 break;
 1358 
 1359                         case IP_ERRORMTU:
 1360                                 optval = inp->inp_errormtu;
 1361                                 break;
 1362 
 1363 #define OPTBIT(bit)     (inp->inp_flags & bit ? 1 : 0)
 1364 
 1365                         case IP_RECVOPTS:
 1366                                 optval = OPTBIT(INP_RECVOPTS);
 1367                                 break;
 1368 
 1369                         case IP_RECVRETOPTS:
 1370                                 optval = OPTBIT(INP_RECVRETOPTS);
 1371                                 break;
 1372 
 1373                         case IP_RECVDSTADDR:
 1374                                 optval = OPTBIT(INP_RECVDSTADDR);
 1375                                 break;
 1376 
 1377                         case IP_RECVIF:
 1378                                 optval = OPTBIT(INP_RECVIF);
 1379                                 break;
 1380                         }
 1381                         error = sockopt_setint(sopt, optval);
 1382                         break;
 1383 
 1384 #if 0   /* defined(IPSEC) || defined(FAST_IPSEC) */
 1385                 case IP_IPSEC_POLICY:
 1386                 {
 1387                         struct mbuf *m = NULL;
 1388 
 1389                         /* XXX this will return EINVAL as sopt is empty */
 1390                         error = ipsec4_get_policy(inp, sopt->sopt_data,
 1391                             sopt->sopt_size, &m);
 1392                         if (error == 0)
 1393                                 error = sockopt_setmbuf(sopt, m);
 1394                         break;
 1395                 }
 1396 #endif /*IPSEC*/
 1397 
 1398                 case IP_MULTICAST_IF:
 1399                 case IP_MULTICAST_TTL:
 1400                 case IP_MULTICAST_LOOP:
 1401                 case IP_ADD_MEMBERSHIP:
 1402                 case IP_DROP_MEMBERSHIP:
 1403                         error = ip_getmoptions(inp->inp_moptions, sopt);
 1404                         break;
 1405 
 1406                 case IP_PORTRANGE:
 1407                         if (inp->inp_flags & INP_LOWPORT)
 1408                                 optval = IP_PORTRANGE_LOW;
 1409                         else
 1410                                 optval = IP_PORTRANGE_DEFAULT;
 1411 
 1412                         error = sockopt_setint(sopt, optval);
 1413 
 1414                         break;
 1415 
 1416                 default:
 1417                         error = ENOPROTOOPT;
 1418                         break;
 1419                 }
 1420                 break;
 1421         }
 1422         return (error);
 1423 }
 1424 
 1425 /*
 1426  * Set up IP options in pcb for insertion in output packets.
 1427  * Store in mbuf with pointer in pcbopt, adding pseudo-option
 1428  * with destination address if source routed.
 1429  */
 1430 int
 1431 ip_pcbopts(struct mbuf **pcbopt, const struct sockopt *sopt)
 1432 {
 1433         struct mbuf *m;
 1434         const u_char *cp;
 1435         u_char *dp;
 1436         int cnt;
 1437         uint8_t optval, olen, offset;
 1438 
 1439         /* turn off any old options */
 1440         if (*pcbopt)
 1441                 (void)m_free(*pcbopt);
 1442         *pcbopt = NULL;
 1443 
 1444         cp = sopt->sopt_data;
 1445         cnt = sopt->sopt_size;
 1446 
 1447         if (cnt == 0)
 1448                 return (0);     /* Only turning off any previous options */
 1449 
 1450 #ifndef __vax__
 1451         if (cnt % sizeof(int32_t))
 1452                 return (EINVAL);
 1453 #endif
 1454 
 1455         m = m_get(M_DONTWAIT, MT_SOOPTS);
 1456         if (m == NULL)
 1457                 return (ENOBUFS);
 1458 
 1459         dp = mtod(m, u_char *);
 1460         memset(dp, 0, sizeof(struct in_addr));
 1461         dp += sizeof(struct in_addr);
 1462         m->m_len = sizeof(struct in_addr);
 1463 
 1464         /*
 1465          * IP option list according to RFC791. Each option is of the form
 1466          *
 1467          *      [optval] [olen] [(olen - 2) data bytes]
 1468          *
 1469          * we validate the list and copy options to an mbuf for prepending
 1470          * to data packets. The IP first-hop destination address will be
 1471          * stored before actual options and is zero if unset.
 1472          */
 1473         while (cnt > 0) {
 1474                 optval = cp[IPOPT_OPTVAL];
 1475 
 1476                 if (optval == IPOPT_EOL || optval == IPOPT_NOP) {
 1477                         olen = 1;
 1478                 } else {
 1479                         if (cnt < IPOPT_OLEN + 1)
 1480                                 goto bad;
 1481 
 1482                         olen = cp[IPOPT_OLEN];
 1483                         if (olen < IPOPT_OLEN + 1 || olen > cnt)
 1484                                 goto bad;
 1485                 }
 1486 
 1487                 if (optval == IPOPT_LSRR || optval == IPOPT_SSRR) {
 1488                         /*
 1489                          * user process specifies route as:
 1490                          *      ->A->B->C->D
 1491                          * D must be our final destination (but we can't
 1492                          * check that since we may not have connected yet).
 1493                          * A is first hop destination, which doesn't appear in
 1494                          * actual IP option, but is stored before the options.
 1495                          */
 1496                         if (olen < IPOPT_OFFSET + 1 + sizeof(struct in_addr))
 1497                                 goto bad;
 1498 
 1499                         offset = cp[IPOPT_OFFSET];
 1500                         memcpy(mtod(m, u_char *), cp + IPOPT_OFFSET + 1,
 1501                             sizeof(struct in_addr));
 1502 
 1503                         cp += sizeof(struct in_addr);
 1504                         cnt -= sizeof(struct in_addr);
 1505                         olen -= sizeof(struct in_addr);
 1506 
 1507                         if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
 1508                                 goto bad;
 1509 
 1510                         memcpy(dp, cp, olen);
 1511                         dp[IPOPT_OPTVAL] = optval;
 1512                         dp[IPOPT_OLEN] = olen;
 1513                         dp[IPOPT_OFFSET] = offset;
 1514                         break;
 1515                 } else {
 1516                         if (m->m_len + olen > MAX_IPOPTLEN + sizeof(struct in_addr))
 1517                                 goto bad;
 1518 
 1519                         memcpy(dp, cp, olen);
 1520                         break;
 1521                 }
 1522 
 1523                 dp += olen;
 1524                 m->m_len += olen;
 1525 
 1526                 if (optval == IPOPT_EOL)
 1527                         break;
 1528 
 1529                 cp += olen;
 1530                 cnt -= olen;
 1531         }
 1532 
 1533         *pcbopt = m;
 1534         return (0);
 1535 
 1536 bad:
 1537         (void)m_free(m);
 1538         return (EINVAL);
 1539 }
 1540 
 1541 /*
 1542  * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
 1543  */
 1544 static struct ifnet *
 1545 ip_multicast_if(struct in_addr *a, int *ifindexp)
 1546 {
 1547         int ifindex;
 1548         struct ifnet *ifp = NULL;
 1549         struct in_ifaddr *ia;
 1550 
 1551         if (ifindexp)
 1552                 *ifindexp = 0;
 1553         if (ntohl(a->s_addr) >> 24 == 0) {
 1554                 ifindex = ntohl(a->s_addr) & 0xffffff;
 1555                 if (ifindex < 0 || if_indexlim <= ifindex)
 1556                         return NULL;
 1557                 ifp = ifindex2ifnet[ifindex];
 1558                 if (!ifp)
 1559                         return NULL;
 1560                 if (ifindexp)
 1561                         *ifindexp = ifindex;
 1562         } else {
 1563                 LIST_FOREACH(ia, &IN_IFADDR_HASH(a->s_addr), ia_hash) {
 1564                         if (in_hosteq(ia->ia_addr.sin_addr, *a) &&
 1565                             (ia->ia_ifp->if_flags & IFF_MULTICAST) != 0) {
 1566                                 ifp = ia->ia_ifp;
 1567                                 break;
 1568                         }
 1569                 }
 1570         }
 1571         return ifp;
 1572 }
 1573 
 1574 static int
 1575 ip_getoptval(const struct sockopt *sopt, u_int8_t *val, u_int maxval)
 1576 {
 1577         u_int tval;
 1578         u_char cval;
 1579         int error;
 1580 
 1581         if (sopt == NULL)
 1582                 return EINVAL;
 1583 
 1584         switch (sopt->sopt_size) {
 1585         case sizeof(u_char):
 1586                 error = sockopt_get(sopt, &cval, sizeof(u_char));
 1587                 tval = cval;
 1588                 break;
 1589 
 1590         case sizeof(u_int):
 1591                 error = sockopt_get(sopt, &tval, sizeof(u_int));
 1592                 break;
 1593 
 1594         default:
 1595                 error = EINVAL;
 1596         }
 1597 
 1598         if (error)
 1599                 return error;
 1600 
 1601         if (tval > maxval)
 1602                 return EINVAL;
 1603 
 1604         *val = tval;
 1605         return 0;
 1606 }
 1607 
 1608 /*
 1609  * Set the IP multicast options in response to user setsockopt().
 1610  */
 1611 int
 1612 ip_setmoptions(struct ip_moptions **imop, const struct sockopt *sopt)
 1613 {
 1614         int error = 0;
 1615         int i;
 1616         struct in_addr addr;
 1617         struct ip_mreq lmreq, *mreq;
 1618         struct ifnet *ifp;
 1619         struct ip_moptions *imo = *imop;
 1620         int ifindex;
 1621 
 1622         if (imo == NULL) {
 1623                 /*
 1624                  * No multicast option buffer attached to the pcb;
 1625                  * allocate one and initialize to default values.
 1626                  */
 1627                 imo = malloc(sizeof(*imo), M_IPMOPTS, M_NOWAIT);
 1628                 if (imo == NULL)
 1629                         return (ENOBUFS);
 1630 
 1631                 *imop = imo;
 1632                 imo->imo_multicast_ifp = NULL;
 1633                 imo->imo_multicast_addr.s_addr = INADDR_ANY;
 1634                 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
 1635                 imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
 1636                 imo->imo_num_memberships = 0;
 1637         }
 1638 
 1639         switch (sopt->sopt_name) {
 1640         case IP_MULTICAST_IF:
 1641                 /*
 1642                  * Select the interface for outgoing multicast packets.
 1643                  */
 1644                 error = sockopt_get(sopt, &addr, sizeof(addr));
 1645                 if (error)
 1646                         break;
 1647 
 1648                 /*
 1649                  * INADDR_ANY is used to remove a previous selection.
 1650                  * When no interface is selected, a default one is
 1651                  * chosen every time a multicast packet is sent.
 1652                  */
 1653                 if (in_nullhost(addr)) {
 1654                         imo->imo_multicast_ifp = NULL;
 1655                         break;
 1656                 }
 1657                 /*
 1658                  * The selected interface is identified by its local
 1659                  * IP address.  Find the interface and confirm that
 1660                  * it supports multicasting.
 1661                  */
 1662                 ifp = ip_multicast_if(&addr, &ifindex);
 1663                 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
 1664                         error = EADDRNOTAVAIL;
 1665                         break;
 1666                 }
 1667                 imo->imo_multicast_ifp = ifp;
 1668                 if (ifindex)
 1669                         imo->imo_multicast_addr = addr;
 1670                 else
 1671                         imo->imo_multicast_addr.s_addr = INADDR_ANY;
 1672                 break;
 1673 
 1674         case IP_MULTICAST_TTL:
 1675                 /*
 1676                  * Set the IP time-to-live for outgoing multicast packets.
 1677                  */
 1678                 error = ip_getoptval(sopt, &imo->imo_multicast_ttl, MAXTTL);
 1679                 break;
 1680 
 1681         case IP_MULTICAST_LOOP:
 1682                 /*
 1683                  * Set the loopback flag for outgoing multicast packets.
 1684                  * Must be zero or one.
 1685                  */
 1686                 error = ip_getoptval(sopt, &imo->imo_multicast_loop, 1);
 1687                 break;
 1688 
 1689         case IP_ADD_MEMBERSHIP:
 1690                 /*
 1691                  * Add a multicast group membership.
 1692                  * Group must be a valid IP multicast address.
 1693                  */
 1694                 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
 1695                 if (error)
 1696                         break;
 1697 
 1698                 mreq = &lmreq;
 1699 
 1700                 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
 1701                         error = EINVAL;
 1702                         break;
 1703                 }
 1704                 /*
 1705                  * If no interface address was provided, use the interface of
 1706                  * the route to the given multicast address.
 1707                  */
 1708                 if (in_nullhost(mreq->imr_interface)) {
 1709                         struct rtentry *rt;
 1710                         union {
 1711                                 struct sockaddr         dst;
 1712                                 struct sockaddr_in      dst4;
 1713                         } u;
 1714                         struct route ro;
 1715 
 1716                         memset(&ro, 0, sizeof(ro));
 1717 
 1718                         sockaddr_in_init(&u.dst4, &mreq->imr_multiaddr, 0);
 1719                         rtcache_setdst(&ro, &u.dst);
 1720                         ifp = (rt = rtcache_init(&ro)) != NULL ? rt->rt_ifp
 1721                                                                 : NULL;
 1722                         rtcache_free(&ro);
 1723                 } else {
 1724                         ifp = ip_multicast_if(&mreq->imr_interface, NULL);
 1725                 }
 1726                 /*
 1727                  * See if we found an interface, and confirm that it
 1728                  * supports multicast.
 1729                  */
 1730                 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
 1731                         error = EADDRNOTAVAIL;
 1732                         break;
 1733                 }
 1734                 /*
 1735                  * See if the membership already exists or if all the
 1736                  * membership slots are full.
 1737                  */
 1738                 for (i = 0; i < imo->imo_num_memberships; ++i) {
 1739                         if (imo->imo_membership[i]->inm_ifp == ifp &&
 1740                             in_hosteq(imo->imo_membership[i]->inm_addr,
 1741                                       mreq->imr_multiaddr))
 1742                                 break;
 1743                 }
 1744                 if (i < imo->imo_num_memberships) {
 1745                         error = EADDRINUSE;
 1746                         break;
 1747                 }
 1748                 if (i == IP_MAX_MEMBERSHIPS) {
 1749                         error = ETOOMANYREFS;
 1750                         break;
 1751                 }
 1752                 /*
 1753                  * Everything looks good; add a new record to the multicast
 1754                  * address list for the given interface.
 1755                  */
 1756                 if ((imo->imo_membership[i] =
 1757                     in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
 1758                         error = ENOBUFS;
 1759                         break;
 1760                 }
 1761                 ++imo->imo_num_memberships;
 1762                 break;
 1763 
 1764         case IP_DROP_MEMBERSHIP:
 1765                 /*
 1766                  * Drop a multicast group membership.
 1767                  * Group must be a valid IP multicast address.
 1768                  */
 1769                 error = sockopt_get(sopt, &lmreq, sizeof(lmreq));
 1770                 if (error)
 1771                         break;
 1772 
 1773                 mreq = &lmreq;
 1774 
 1775                 if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
 1776                         error = EINVAL;
 1777                         break;
 1778                 }
 1779                 /*
 1780                  * If an interface address was specified, get a pointer
 1781                  * to its ifnet structure.
 1782                  */
 1783                 if (in_nullhost(mreq->imr_interface))
 1784                         ifp = NULL;
 1785                 else {
 1786                         ifp = ip_multicast_if(&mreq->imr_interface, NULL);
 1787                         if (ifp == NULL) {
 1788                                 error = EADDRNOTAVAIL;
 1789                                 break;
 1790                         }
 1791                 }
 1792                 /*
 1793                  * Find the membership in the membership array.
 1794                  */
 1795                 for (i = 0; i < imo->imo_num_memberships; ++i) {
 1796                         if ((ifp == NULL ||
 1797                              imo->imo_membership[i]->inm_ifp == ifp) &&
 1798                              in_hosteq(imo->imo_membership[i]->inm_addr,
 1799                                        mreq->imr_multiaddr))
 1800                                 break;
 1801                 }
 1802                 if (i == imo->imo_num_memberships) {
 1803                         error = EADDRNOTAVAIL;
 1804                         break;
 1805                 }
 1806                 /*
 1807                  * Give up the multicast address record to which the
 1808                  * membership points.
 1809                  */
 1810                 in_delmulti(imo->imo_membership[i]);
 1811                 /*
 1812                  * Remove the gap in the membership array.
 1813                  */
 1814                 for (++i; i < imo->imo_num_memberships; ++i)
 1815                         imo->imo_membership[i-1] = imo->imo_membership[i];
 1816                 --imo->imo_num_memberships;
 1817                 break;
 1818 
 1819         default:
 1820                 error = EOPNOTSUPP;
 1821                 break;
 1822         }
 1823 
 1824         /*
 1825          * If all options have default values, no need to keep the mbuf.
 1826          */
 1827         if (imo->imo_multicast_ifp == NULL &&
 1828             imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
 1829             imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
 1830             imo->imo_num_memberships == 0) {
 1831                 free(*imop, M_IPMOPTS);
 1832                 *imop = NULL;
 1833         }
 1834 
 1835         return (error);
 1836 }
 1837 
 1838 /*
 1839  * Return the IP multicast options in response to user getsockopt().
 1840  */
 1841 int
 1842 ip_getmoptions(struct ip_moptions *imo, struct sockopt *sopt)
 1843 {
 1844         struct in_addr addr;
 1845         struct in_ifaddr *ia;
 1846         int error;
 1847         uint8_t optval;
 1848 
 1849         error = 0;
 1850 
 1851         switch (sopt->sopt_name) {
 1852         case IP_MULTICAST_IF:
 1853                 if (imo == NULL || imo->imo_multicast_ifp == NULL)
 1854                         addr = zeroin_addr;
 1855                 else if (imo->imo_multicast_addr.s_addr) {
 1856                         /* return the value user has set */
 1857                         addr = imo->imo_multicast_addr;
 1858                 } else {
 1859                         IFP_TO_IA(imo->imo_multicast_ifp, ia);
 1860                         addr = ia ? ia->ia_addr.sin_addr : zeroin_addr;
 1861                 }
 1862                 error = sockopt_set(sopt, &addr, sizeof(addr));
 1863                 break;
 1864 
 1865         case IP_MULTICAST_TTL:
 1866                 optval = imo ? imo->imo_multicast_ttl
 1867                              : IP_DEFAULT_MULTICAST_TTL;
 1868 
 1869                 error = sockopt_set(sopt, &optval, sizeof(optval));
 1870                 break;
 1871 
 1872         case IP_MULTICAST_LOOP:
 1873                 optval = imo ? imo->imo_multicast_loop
 1874                              : IP_DEFAULT_MULTICAST_LOOP;
 1875 
 1876                 error = sockopt_set(sopt, &optval, sizeof(optval));
 1877                 break;
 1878 
 1879         default:
 1880                 error = EOPNOTSUPP;
 1881         }
 1882 
 1883         return (error);
 1884 }
 1885 
 1886 /*
 1887  * Discard the IP multicast options.
 1888  */
 1889 void
 1890 ip_freemoptions(struct ip_moptions *imo)
 1891 {
 1892         int i;
 1893 
 1894         if (imo != NULL) {
 1895                 for (i = 0; i < imo->imo_num_memberships; ++i)
 1896                         in_delmulti(imo->imo_membership[i]);
 1897                 free(imo, M_IPMOPTS);
 1898         }
 1899 }
 1900 
 1901 /*
 1902  * Routine called from ip_output() to loop back a copy of an IP multicast
 1903  * packet to the input queue of a specified interface.  Note that this
 1904  * calls the output routine of the loopback "driver", but with an interface
 1905  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
 1906  */
 1907 static void
 1908 ip_mloopback(struct ifnet *ifp, struct mbuf *m, const struct sockaddr_in *dst)
 1909 {
 1910         struct ip *ip;
 1911         struct mbuf *copym;
 1912 
 1913         copym = m_copypacket(m, M_DONTWAIT);
 1914         if (copym != NULL
 1915          && (copym->m_flags & M_EXT || copym->m_len < sizeof(struct ip)))
 1916                 copym = m_pullup(copym, sizeof(struct ip));
 1917         if (copym == NULL)
 1918                 return;
 1919         /*
 1920          * We don't bother to fragment if the IP length is greater
 1921          * than the interface's MTU.  Can this possibly matter?
 1922          */
 1923         ip = mtod(copym, struct ip *);
 1924 
 1925         if (copym->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
 1926                 in_delayed_cksum(copym);
 1927                 copym->m_pkthdr.csum_flags &=
 1928                     ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
 1929         }
 1930 
 1931         ip->ip_sum = 0;
 1932         ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
 1933         (void)looutput(ifp, copym, sintocsa(dst), NULL);
 1934 }

Cache object: 53d08b51b7ac72badba5d52df2d2e741


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.