The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_reass.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
    3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
    4  * Copyright (c) 1982, 1986, 1988, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_rss.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/kernel.h>
   43 #include <sys/hash.h>
   44 #include <sys/mbuf.h>
   45 #include <sys/malloc.h>
   46 #include <sys/limits.h>
   47 #include <sys/lock.h>
   48 #include <sys/mutex.h>
   49 #include <sys/sysctl.h>
   50 #include <sys/socket.h>
   51 
   52 #include <net/if.h>
   53 #include <net/if_var.h>
   54 #include <net/rss_config.h>
   55 #include <net/netisr.h>
   56 #include <net/vnet.h>
   57 
   58 #include <netinet/in.h>
   59 #include <netinet/ip.h>
   60 #include <netinet/ip_var.h>
   61 #include <netinet/in_rss.h>
   62 #ifdef MAC
   63 #include <security/mac/mac_framework.h>
   64 #endif
   65 
   66 SYSCTL_DECL(_net_inet_ip);
   67 
   68 /*
   69  * Reassembly headers are stored in hash buckets.
   70  */
   71 #define IPREASS_NHASH_LOG2      10
   72 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
   73 #define IPREASS_HMASK           (V_ipq_hashsize - 1)
   74 
   75 struct ipqbucket {
   76         TAILQ_HEAD(ipqhead, ipq) head;
   77         struct mtx               lock;
   78         struct callout           timer;
   79 #ifdef VIMAGE
   80         struct vnet              *vnet;
   81 #endif
   82         int                      count;
   83 };
   84 
   85 VNET_DEFINE_STATIC(struct ipqbucket *, ipq);
   86 #define V_ipq           VNET(ipq)
   87 VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
   88 #define V_ipq_hashseed  VNET(ipq_hashseed)
   89 VNET_DEFINE_STATIC(uint32_t, ipq_hashsize);
   90 #define V_ipq_hashsize  VNET(ipq_hashsize)
   91 
   92 #define IPQ_LOCK(i)     mtx_lock(&V_ipq[i].lock)
   93 #define IPQ_TRYLOCK(i)  mtx_trylock(&V_ipq[i].lock)
   94 #define IPQ_UNLOCK(i)   mtx_unlock(&V_ipq[i].lock)
   95 #define IPQ_LOCK_ASSERT(i)      mtx_assert(&V_ipq[i].lock, MA_OWNED)
   96 #define IPQ_BUCKET_LOCK_ASSERT(b)       mtx_assert(&(b)->lock, MA_OWNED)
   97 
   98 VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
   99 #define V_ipreass_maxbucketsize VNET(ipreass_maxbucketsize)
  100 
  101 void            ipreass_init(void);
  102 void            ipreass_vnet_init(void);
  103 #ifdef VIMAGE
  104 void            ipreass_destroy(void);
  105 #endif
  106 static int      sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
  107 static int      sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
  108 static int      sysctl_fragttl(SYSCTL_HANDLER_ARGS);
  109 static void     ipreass_zone_change(void *);
  110 static void     ipreass_drain_tomax(void);
  111 static void     ipq_free(struct ipqbucket *, struct ipq *);
  112 static struct ipq * ipq_reuse(int);
  113 static void     ipreass_callout(void *);
  114 static void     ipreass_reschedule(struct ipqbucket *);
  115 
  116 static inline void
  117 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
  118 {
  119 
  120         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  121         ipq_free(bucket, fp);
  122 }
  123 
  124 static inline void
  125 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
  126 {
  127 
  128         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
  129         ipq_free(bucket, fp);
  130         ipreass_reschedule(bucket);
  131 }
  132 
  133 /*
  134  * By default, limit the number of IP fragments across all reassembly
  135  * queues to  1/32 of the total number of mbuf clusters.
  136  *
  137  * Limit the total number of reassembly queues per VNET to the
  138  * IP fragment limit, but ensure the limit will not allow any bucket
  139  * to grow above 100 items. (The bucket limit is
  140  * IP_MAXFRAGPACKETS / (V_ipq_hashsize / 2), so the 50 is the correct
  141  * multiplier to reach a 100-item limit.)
  142  * The 100-item limit was chosen as brief testing seems to show that
  143  * this produces "reasonable" performance on some subset of systems
  144  * under DoS attack.
  145  */
  146 #define IP_MAXFRAGS             (nmbclusters / 32)
  147 #define IP_MAXFRAGPACKETS       (imin(IP_MAXFRAGS, V_ipq_hashsize * 50))
  148 
  149 static int              maxfrags;
  150 static u_int __exclusive_cache_line     nfrags;
  151 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
  152     &maxfrags, 0,
  153     "Maximum number of IPv4 fragments allowed across all reassembly queues");
  154 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
  155     &nfrags, 0,
  156     "Current number of IPv4 fragments across all reassembly queues");
  157 
  158 VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
  159 #define V_ipq_zone      VNET(ipq_zone)
  160 
  161 SYSCTL_UINT(_net_inet_ip, OID_AUTO, reass_hashsize,
  162     CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(ipq_hashsize), 0,
  163     "Size of IP fragment reassembly hashtable");
  164 
  165 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets,
  166     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
  167     NULL, 0, sysctl_maxfragpackets, "I",
  168     "Maximum number of IPv4 fragment reassembly queue entries");
  169 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
  170     &VNET_NAME(ipq_zone),
  171     "Current number of IPv4 fragment reassembly queue entries");
  172 
  173 VNET_DEFINE_STATIC(int, noreass);
  174 #define V_noreass       VNET(noreass)
  175 
  176 VNET_DEFINE_STATIC(int, maxfragsperpacket);
  177 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  178 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
  179     &VNET_NAME(maxfragsperpacket), 0,
  180     "Maximum number of IPv4 fragments allowed per packet");
  181 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
  182     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  183     sysctl_maxfragbucketsize, "I",
  184     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
  185 
  186 VNET_DEFINE_STATIC(u_int, ipfragttl) = 30;
  187 #define V_ipfragttl     VNET(ipfragttl)
  188 SYSCTL_PROC(_net_inet_ip, OID_AUTO, fragttl, CTLTYPE_INT | CTLFLAG_RW |
  189     CTLFLAG_MPSAFE | CTLFLAG_VNET, NULL, 0, sysctl_fragttl, "IU",
  190     "IP fragment life time on reassembly queue (seconds)");
  191 
  192 /*
  193  * Take incoming datagram fragment and try to reassemble it into
  194  * whole datagram.  If the argument is the first fragment or one
  195  * in between the function will return NULL and store the mbuf
  196  * in the fragment chain.  If the argument is the last fragment
  197  * the packet will be reassembled and the pointer to the new
  198  * mbuf returned for further processing.  Only m_tags attached
  199  * to the first packet/fragment are preserved.
  200  * The IP header is *NOT* adjusted out of iplen.
  201  */
  202 #define M_IP_FRAG       M_PROTO9
  203 struct mbuf *
  204 ip_reass(struct mbuf *m)
  205 {
  206         struct ip *ip;
  207         struct mbuf *p, *q, *nq, *t;
  208         struct ipq *fp;
  209         struct ifnet *srcifp;
  210         struct ipqhead *head;
  211         int i, hlen, next, tmpmax;
  212         u_int8_t ecn, ecn0;
  213         uint32_t hash, hashkey[3];
  214 #ifdef  RSS
  215         uint32_t rss_hash, rss_type;
  216 #endif
  217 
  218         /*
  219          * If no reassembling or maxfragsperpacket are 0,
  220          * never accept fragments.
  221          * Also, drop packet if it would exceed the maximum
  222          * number of fragments.
  223          */
  224         tmpmax = maxfrags;
  225         if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
  226             (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
  227                 IPSTAT_INC(ips_fragments);
  228                 IPSTAT_INC(ips_fragdropped);
  229                 m_freem(m);
  230                 return (NULL);
  231         }
  232 
  233         ip = mtod(m, struct ip *);
  234         hlen = ip->ip_hl << 2;
  235 
  236         /*
  237          * Adjust ip_len to not reflect header,
  238          * convert offset of this to bytes.
  239          */
  240         ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
  241         /*
  242          * Make sure that fragments have a data length
  243          * that's a non-zero multiple of 8 bytes, unless
  244          * this is the last fragment.
  245          */
  246         if (ip->ip_len == htons(0) ||
  247             ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
  248                 IPSTAT_INC(ips_toosmall); /* XXX */
  249                 IPSTAT_INC(ips_fragdropped);
  250                 m_freem(m);
  251                 return (NULL);
  252         }
  253         if (ip->ip_off & htons(IP_MF))
  254                 m->m_flags |= M_IP_FRAG;
  255         else
  256                 m->m_flags &= ~M_IP_FRAG;
  257         ip->ip_off = htons(ntohs(ip->ip_off) << 3);
  258 
  259         /*
  260          * Make sure the fragment lies within a packet of valid size.
  261          */
  262         if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
  263                 IPSTAT_INC(ips_toolong);
  264                 IPSTAT_INC(ips_fragdropped);
  265                 m_freem(m);
  266                 return (NULL);
  267         }
  268 
  269         /*
  270          * Store receive network interface pointer for later.
  271          */
  272         srcifp = m->m_pkthdr.rcvif;
  273 
  274         /*
  275          * Attempt reassembly; if it succeeds, proceed.
  276          * ip_reass() will return a different mbuf.
  277          */
  278         IPSTAT_INC(ips_fragments);
  279         m->m_pkthdr.PH_loc.ptr = ip;
  280 
  281         /*
  282          * Presence of header sizes in mbufs
  283          * would confuse code below.
  284          */
  285         m->m_data += hlen;
  286         m->m_len -= hlen;
  287 
  288         hashkey[0] = ip->ip_src.s_addr;
  289         hashkey[1] = ip->ip_dst.s_addr;
  290         hashkey[2] = (uint32_t)ip->ip_p << 16;
  291         hashkey[2] += ip->ip_id;
  292         hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
  293         hash &= IPREASS_HMASK;
  294         head = &V_ipq[hash].head;
  295         IPQ_LOCK(hash);
  296 
  297         /*
  298          * Look for queue of fragments
  299          * of this datagram.
  300          */
  301         TAILQ_FOREACH(fp, head, ipq_list)
  302                 if (ip->ip_id == fp->ipq_id &&
  303                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  304                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  305 #ifdef MAC
  306                     mac_ipq_match(m, fp) &&
  307 #endif
  308                     ip->ip_p == fp->ipq_p)
  309                         break;
  310         /*
  311          * If first fragment to arrive, create a reassembly queue.
  312          */
  313         if (fp == NULL) {
  314                 if (V_ipq[hash].count < V_ipreass_maxbucketsize)
  315                         fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  316                 if (fp == NULL)
  317                         fp = ipq_reuse(hash);
  318                 if (fp == NULL)
  319                         goto dropfrag;
  320 #ifdef MAC
  321                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  322                         uma_zfree(V_ipq_zone, fp);
  323                         fp = NULL;
  324                         goto dropfrag;
  325                 }
  326                 mac_ipq_create(m, fp);
  327 #endif
  328                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  329                 V_ipq[hash].count++;
  330                 fp->ipq_nfrags = 1;
  331                 atomic_add_int(&nfrags, 1);
  332                 fp->ipq_expire = time_uptime + V_ipfragttl;
  333                 fp->ipq_p = ip->ip_p;
  334                 fp->ipq_id = ip->ip_id;
  335                 fp->ipq_src = ip->ip_src;
  336                 fp->ipq_dst = ip->ip_dst;
  337                 fp->ipq_frags = m;
  338                 if (m->m_flags & M_IP_FRAG)
  339                         fp->ipq_maxoff = -1;
  340                 else
  341                         fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  342                 m->m_nextpkt = NULL;
  343                 if (fp == TAILQ_LAST(head, ipqhead))
  344                         callout_reset_sbt(&V_ipq[hash].timer,
  345                             SBT_1S * V_ipfragttl, SBT_1S, ipreass_callout,
  346                             &V_ipq[hash], 0);
  347                 else
  348                         MPASS(callout_active(&V_ipq[hash].timer));
  349                 goto done;
  350         } else {
  351                 /*
  352                  * If we already saw the last fragment, make sure
  353                  * this fragment's offset looks sane. Otherwise, if
  354                  * this is the last fragment, record its endpoint.
  355                  */
  356                 if (fp->ipq_maxoff > 0) {
  357                         i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  358                         if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
  359                             ((m->m_flags & M_IP_FRAG) == 0 &&
  360                             i != fp->ipq_maxoff)) {
  361                                 fp = NULL;
  362                                 goto dropfrag;
  363                         }
  364                 } else if ((m->m_flags & M_IP_FRAG) == 0)
  365                         fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  366                 fp->ipq_nfrags++;
  367                 atomic_add_int(&nfrags, 1);
  368 #ifdef MAC
  369                 mac_ipq_update(m, fp);
  370 #endif
  371         }
  372 
  373 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
  374 
  375         /*
  376          * Handle ECN by comparing this segment with the first one;
  377          * if CE is set, do not lose CE.
  378          * drop if CE and not-ECT are mixed for the same packet.
  379          */
  380         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  381         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  382         if (ecn == IPTOS_ECN_CE) {
  383                 if (ecn0 == IPTOS_ECN_NOTECT)
  384                         goto dropfrag;
  385                 if (ecn0 != IPTOS_ECN_CE)
  386                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  387         }
  388         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  389                 goto dropfrag;
  390 
  391         /*
  392          * Find a segment which begins after this one does.
  393          */
  394         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  395                 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
  396                         break;
  397 
  398         /*
  399          * If there is a preceding segment, it may provide some of
  400          * our data already.  If so, drop the data from the incoming
  401          * segment.  If it provides all of our data, drop us, otherwise
  402          * stick new segment in the proper place.
  403          *
  404          * If some of the data is dropped from the preceding
  405          * segment, then it's checksum is invalidated.
  406          */
  407         if (p) {
  408                 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
  409                     ntohs(ip->ip_off);
  410                 if (i > 0) {
  411                         if (i >= ntohs(ip->ip_len))
  412                                 goto dropfrag;
  413                         m_adj(m, i);
  414                         m->m_pkthdr.csum_flags = 0;
  415                         ip->ip_off = htons(ntohs(ip->ip_off) + i);
  416                         ip->ip_len = htons(ntohs(ip->ip_len) - i);
  417                 }
  418                 m->m_nextpkt = p->m_nextpkt;
  419                 p->m_nextpkt = m;
  420         } else {
  421                 m->m_nextpkt = fp->ipq_frags;
  422                 fp->ipq_frags = m;
  423         }
  424 
  425         /*
  426          * While we overlap succeeding segments trim them or,
  427          * if they are completely covered, dequeue them.
  428          */
  429         for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
  430             ntohs(GETIP(q)->ip_off); q = nq) {
  431                 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
  432                     ntohs(GETIP(q)->ip_off);
  433                 if (i < ntohs(GETIP(q)->ip_len)) {
  434                         GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
  435                         GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
  436                         m_adj(q, i);
  437                         q->m_pkthdr.csum_flags = 0;
  438                         break;
  439                 }
  440                 nq = q->m_nextpkt;
  441                 m->m_nextpkt = nq;
  442                 IPSTAT_INC(ips_fragdropped);
  443                 fp->ipq_nfrags--;
  444                 atomic_subtract_int(&nfrags, 1);
  445                 m_freem(q);
  446         }
  447 
  448         /*
  449          * Check for complete reassembly and perform frag per packet
  450          * limiting.
  451          *
  452          * Frag limiting is performed here so that the nth frag has
  453          * a chance to complete the packet before we drop the packet.
  454          * As a result, n+1 frags are actually allowed per packet, but
  455          * only n will ever be stored. (n = maxfragsperpacket.)
  456          *
  457          */
  458         next = 0;
  459         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
  460                 if (ntohs(GETIP(q)->ip_off) != next) {
  461                         if (fp->ipq_nfrags > V_maxfragsperpacket)
  462                                 ipq_drop(&V_ipq[hash], fp);
  463                         goto done;
  464                 }
  465                 next += ntohs(GETIP(q)->ip_len);
  466         }
  467         /* Make sure the last packet didn't have the IP_MF flag */
  468         if (p->m_flags & M_IP_FRAG) {
  469                 if (fp->ipq_nfrags > V_maxfragsperpacket)
  470                         ipq_drop(&V_ipq[hash], fp);
  471                 goto done;
  472         }
  473 
  474         /*
  475          * Reassembly is complete.  Make sure the packet is a sane size.
  476          */
  477         q = fp->ipq_frags;
  478         ip = GETIP(q);
  479         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
  480                 IPSTAT_INC(ips_toolong);
  481                 ipq_drop(&V_ipq[hash], fp);
  482                 goto done;
  483         }
  484 
  485         /*
  486          * Concatenate fragments.
  487          */
  488         m = q;
  489         t = m->m_next;
  490         m->m_next = NULL;
  491         m_cat(m, t);
  492         nq = q->m_nextpkt;
  493         q->m_nextpkt = NULL;
  494         for (q = nq; q != NULL; q = nq) {
  495                 nq = q->m_nextpkt;
  496                 q->m_nextpkt = NULL;
  497                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
  498                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
  499                 m_demote_pkthdr(q);
  500                 m_cat(m, q);
  501         }
  502         /*
  503          * In order to do checksumming faster we do 'end-around carry' here
  504          * (and not in for{} loop), though it implies we are not going to
  505          * reassemble more than 64k fragments.
  506          */
  507         while (m->m_pkthdr.csum_data & 0xffff0000)
  508                 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
  509                     (m->m_pkthdr.csum_data >> 16);
  510         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  511 #ifdef MAC
  512         mac_ipq_reassemble(fp, m);
  513         mac_ipq_destroy(fp);
  514 #endif
  515 
  516         /*
  517          * Create header for new ip packet by modifying header of first
  518          * packet;  dequeue and discard fragment reassembly header.
  519          * Make header visible.
  520          */
  521         ip->ip_len = htons((ip->ip_hl << 2) + next);
  522         ip->ip_src = fp->ipq_src;
  523         ip->ip_dst = fp->ipq_dst;
  524         TAILQ_REMOVE(head, fp, ipq_list);
  525         V_ipq[hash].count--;
  526         uma_zfree(V_ipq_zone, fp);
  527         m->m_len += (ip->ip_hl << 2);
  528         m->m_data -= (ip->ip_hl << 2);
  529         /* some debugging cruft by sklower, below, will go away soon */
  530         if (m->m_flags & M_PKTHDR) {    /* XXX this should be done elsewhere */
  531                 m_fixhdr(m);
  532                 /* set valid receive interface pointer */
  533                 m->m_pkthdr.rcvif = srcifp;
  534         }
  535         IPSTAT_INC(ips_reassembled);
  536         ipreass_reschedule(&V_ipq[hash]);
  537         IPQ_UNLOCK(hash);
  538 
  539 #ifdef  RSS
  540         /*
  541          * Query the RSS layer for the flowid / flowtype for the
  542          * mbuf payload.
  543          *
  544          * For now, just assume we have to calculate a new one.
  545          * Later on we should check to see if the assigned flowid matches
  546          * what RSS wants for the given IP protocol and if so, just keep it.
  547          *
  548          * We then queue into the relevant netisr so it can be dispatched
  549          * to the correct CPU.
  550          *
  551          * Note - this may return 1, which means the flowid in the mbuf
  552          * is correct for the configured RSS hash types and can be used.
  553          */
  554         if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
  555                 m->m_pkthdr.flowid = rss_hash;
  556                 M_HASHTYPE_SET(m, rss_type);
  557         }
  558 
  559         /*
  560          * Queue/dispatch for reprocessing.
  561          *
  562          * Note: this is much slower than just handling the frame in the
  563          * current receive context.  It's likely worth investigating
  564          * why this is.
  565          */
  566         netisr_dispatch(NETISR_IP_DIRECT, m);
  567         return (NULL);
  568 #endif
  569 
  570         /* Handle in-line */
  571         return (m);
  572 
  573 dropfrag:
  574         IPSTAT_INC(ips_fragdropped);
  575         if (fp != NULL) {
  576                 fp->ipq_nfrags--;
  577                 atomic_subtract_int(&nfrags, 1);
  578         }
  579         m_freem(m);
  580 done:
  581         IPQ_UNLOCK(hash);
  582         return (NULL);
  583 
  584 #undef GETIP
  585 }
  586 
  587 /*
  588  * Timer expired on a bucket.
  589  * There should be at least one ipq to be timed out.
  590  */
  591 static void
  592 ipreass_callout(void *arg)
  593 {
  594         struct ipqbucket *bucket = arg;
  595         struct ipq *fp;
  596 
  597         IPQ_BUCKET_LOCK_ASSERT(bucket);
  598         MPASS(atomic_load_int(&nfrags) > 0);
  599 
  600         CURVNET_SET(bucket->vnet);
  601         fp = TAILQ_LAST(&bucket->head, ipqhead);
  602         KASSERT(fp != NULL && fp->ipq_expire <= time_uptime,
  603             ("%s: stray callout on bucket %p, %ju < %ju", __func__, bucket,
  604             fp ? (uintmax_t)fp->ipq_expire : 0, (uintmax_t)time_uptime));
  605 
  606         while (fp != NULL && fp->ipq_expire <= time_uptime) {
  607                 ipq_timeout(bucket, fp);
  608                 fp = TAILQ_LAST(&bucket->head, ipqhead);
  609         }
  610         ipreass_reschedule(bucket);
  611         CURVNET_RESTORE();
  612 }
  613 
  614 static void
  615 ipreass_reschedule(struct ipqbucket *bucket)
  616 {
  617         struct ipq *fp;
  618 
  619         IPQ_BUCKET_LOCK_ASSERT(bucket);
  620 
  621         if ((fp = TAILQ_LAST(&bucket->head, ipqhead)) != NULL) {
  622                 time_t t;
  623 
  624                 /* Protect against time_uptime tick. */
  625                 t = fp->ipq_expire - time_uptime;
  626                 t = (t > 0) ? t : 1;
  627                 callout_reset_sbt(&bucket->timer, SBT_1S * t, SBT_1S,
  628                     ipreass_callout, bucket, 0);
  629         } else
  630                 callout_stop(&bucket->timer);
  631 }
  632 
  633 static void
  634 ipreass_drain_vnet(void)
  635 {
  636         u_int dropped = 0;
  637 
  638         for (int i = 0; i < V_ipq_hashsize; i++) {
  639                 bool resched;
  640 
  641                 IPQ_LOCK(i);
  642                 resched = !TAILQ_EMPTY(&V_ipq[i].head);
  643                 while(!TAILQ_EMPTY(&V_ipq[i].head)) {
  644                         struct ipq *fp = TAILQ_FIRST(&V_ipq[i].head);
  645 
  646                         dropped += fp->ipq_nfrags;
  647                         ipq_free(&V_ipq[i], fp);
  648                 }
  649                 if (resched)
  650                         ipreass_reschedule(&V_ipq[i]);
  651                 KASSERT(V_ipq[i].count == 0,
  652                     ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
  653                     V_ipq[i].count, V_ipq));
  654                 IPQ_UNLOCK(i);
  655         }
  656         IPSTAT_ADD(ips_fragdropped, dropped);
  657 }
  658 
  659 /*
  660  * Drain off all datagram fragments.
  661  */
  662 static void
  663 ipreass_drain(void)
  664 {
  665         VNET_ITERATOR_DECL(vnet_iter);
  666 
  667         VNET_FOREACH(vnet_iter) {
  668                 CURVNET_SET(vnet_iter);
  669                 ipreass_drain_vnet();
  670                 CURVNET_RESTORE();
  671         }
  672 }
  673 
  674 
  675 /*
  676  * Initialize IP reassembly structures.
  677  */
  678 MALLOC_DEFINE(M_IPREASS_HASH, "IP reass", "IP packet reassembly hash headers");
  679 void
  680 ipreass_vnet_init(void)
  681 {
  682         int max;
  683 
  684         V_ipq_hashsize = IPREASS_NHASH;
  685         TUNABLE_INT_FETCH("net.inet.ip.reass_hashsize", &V_ipq_hashsize);
  686         V_ipq = malloc(sizeof(struct ipqbucket) * V_ipq_hashsize,
  687             M_IPREASS_HASH, M_WAITOK);
  688 
  689         for (int i = 0; i < V_ipq_hashsize; i++) {
  690                 TAILQ_INIT(&V_ipq[i].head);
  691                 mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
  692                     MTX_DEF | MTX_DUPOK | MTX_NEW);
  693                 callout_init_mtx(&V_ipq[i].timer, &V_ipq[i].lock, 0);
  694                 V_ipq[i].count = 0;
  695 #ifdef VIMAGE
  696                 V_ipq[i].vnet = curvnet;
  697 #endif
  698         }
  699         V_ipq_hashseed = arc4random();
  700         V_maxfragsperpacket = 16;
  701         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  702             NULL, UMA_ALIGN_PTR, 0);
  703         max = IP_MAXFRAGPACKETS;
  704         max = uma_zone_set_max(V_ipq_zone, max);
  705         V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
  706 }
  707 
  708 void
  709 ipreass_init(void)
  710 {
  711 
  712         maxfrags = IP_MAXFRAGS;
  713         EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
  714             NULL, EVENTHANDLER_PRI_ANY);
  715         EVENTHANDLER_REGISTER(vm_lowmem, ipreass_drain, NULL,
  716             LOWMEM_PRI_DEFAULT);
  717         EVENTHANDLER_REGISTER(mbuf_lowmem, ipreass_drain, NULL,
  718                 LOWMEM_PRI_DEFAULT);
  719 }
  720 
  721 /*
  722  * Drain off all datagram fragments belonging to
  723  * the given network interface.
  724  */
  725 static void
  726 ipreass_cleanup(void *arg __unused, struct ifnet *ifp)
  727 {
  728         struct ipq *fp, *temp;
  729         struct mbuf *m;
  730         int i;
  731 
  732         KASSERT(ifp != NULL, ("%s: ifp is NULL", __func__));
  733 
  734         CURVNET_SET_QUIET(ifp->if_vnet);
  735 
  736         /*
  737          * Skip processing if IPv4 reassembly is not initialised or
  738          * torn down by ipreass_destroy().
  739          */
  740         if (V_ipq_zone == NULL) {
  741                 CURVNET_RESTORE();
  742                 return;
  743         }
  744 
  745         for (i = 0; i < V_ipq_hashsize; i++) {
  746                 IPQ_LOCK(i);
  747                 /* Scan fragment list. */
  748                 TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, temp) {
  749                         for (m = fp->ipq_frags; m != NULL; m = m->m_nextpkt) {
  750                                 /* clear no longer valid rcvif pointer */
  751                                 if (m->m_pkthdr.rcvif == ifp)
  752                                         m->m_pkthdr.rcvif = NULL;
  753                         }
  754                 }
  755                 IPQ_UNLOCK(i);
  756         }
  757         CURVNET_RESTORE();
  758 }
  759 EVENTHANDLER_DEFINE(ifnet_departure_event, ipreass_cleanup, NULL, 0);
  760 
  761 #ifdef VIMAGE
  762 /*
  763  * Destroy IP reassembly structures.
  764  */
  765 void
  766 ipreass_destroy(void)
  767 {
  768 
  769         ipreass_drain_vnet();
  770         uma_zdestroy(V_ipq_zone);
  771         V_ipq_zone = NULL;
  772         for (int i = 0; i < V_ipq_hashsize; i++)
  773                 mtx_destroy(&V_ipq[i].lock);
  774         free(V_ipq, M_IPREASS_HASH);
  775 }
  776 #endif
  777 
  778 /*
  779  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  780  * max has slightly different semantics than the sysctl, for historical
  781  * reasons.
  782  */
  783 static void
  784 ipreass_drain_tomax(void)
  785 {
  786         struct ipq *fp;
  787         int target;
  788 
  789         /*
  790          * Make sure each bucket is under the new limit. If
  791          * necessary, drop enough of the oldest elements from
  792          * each bucket to get under the new limit.
  793          */
  794         for (int i = 0; i < V_ipq_hashsize; i++) {
  795                 IPQ_LOCK(i);
  796                 while (V_ipq[i].count > V_ipreass_maxbucketsize &&
  797                     (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
  798                         ipq_timeout(&V_ipq[i], fp);
  799                 ipreass_reschedule(&V_ipq[i]);
  800                 IPQ_UNLOCK(i);
  801         }
  802 
  803         /*
  804          * If we are over the maximum number of fragments,
  805          * drain off enough to get down to the new limit,
  806          * stripping off last elements on queues.  Every
  807          * run we strip the oldest element from each bucket.
  808          */
  809         target = uma_zone_get_max(V_ipq_zone);
  810         while (uma_zone_get_cur(V_ipq_zone) > target) {
  811                 for (int i = 0; i < V_ipq_hashsize; i++) {
  812                         IPQ_LOCK(i);
  813                         fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
  814                         if (fp != NULL) {
  815                                 ipq_timeout(&V_ipq[i], fp);
  816                                 ipreass_reschedule(&V_ipq[i]);
  817                         }
  818                         IPQ_UNLOCK(i);
  819                 }
  820         }
  821 }
  822 
  823 static void
  824 ipreass_zone_change(void *tag)
  825 {
  826         VNET_ITERATOR_DECL(vnet_iter);
  827         int max;
  828 
  829         maxfrags = IP_MAXFRAGS;
  830         max = IP_MAXFRAGPACKETS;
  831         VNET_LIST_RLOCK_NOSLEEP();
  832         VNET_FOREACH(vnet_iter) {
  833                 CURVNET_SET(vnet_iter);
  834                 max = uma_zone_set_max(V_ipq_zone, max);
  835                 V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
  836                 ipreass_drain_tomax();
  837                 CURVNET_RESTORE();
  838         }
  839         VNET_LIST_RUNLOCK_NOSLEEP();
  840 }
  841 
  842 /*
  843  * Change the limit on the UMA zone, or disable the fragment allocation
  844  * at all.  Since 0 and -1 is a special values here, we need our own handler,
  845  * instead of sysctl_handle_uma_zone_max().
  846  */
  847 static int
  848 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
  849 {
  850         int error, max;
  851 
  852         if (V_noreass == 0) {
  853                 max = uma_zone_get_max(V_ipq_zone);
  854                 if (max == 0)
  855                         max = -1;
  856         } else
  857                 max = 0;
  858         error = sysctl_handle_int(oidp, &max, 0, req);
  859         if (error || !req->newptr)
  860                 return (error);
  861         if (max > 0) {
  862                 /*
  863                  * XXXRW: Might be a good idea to sanity check the argument
  864                  * and place an extreme upper bound.
  865                  */
  866                 max = uma_zone_set_max(V_ipq_zone, max);
  867                 V_ipreass_maxbucketsize = imax(max / (V_ipq_hashsize / 2), 1);
  868                 ipreass_drain_tomax();
  869                 V_noreass = 0;
  870         } else if (max == 0) {
  871                 V_noreass = 1;
  872                 ipreass_drain();
  873         } else if (max == -1) {
  874                 V_noreass = 0;
  875                 uma_zone_set_max(V_ipq_zone, 0);
  876                 V_ipreass_maxbucketsize = INT_MAX;
  877         } else
  878                 return (EINVAL);
  879         return (0);
  880 }
  881 
  882 /*
  883  * Seek for old fragment queue header that can be reused.  Try to
  884  * reuse a header from currently locked hash bucket.
  885  */
  886 static struct ipq *
  887 ipq_reuse(int start)
  888 {
  889         struct ipq *fp;
  890         int bucket, i;
  891 
  892         IPQ_LOCK_ASSERT(start);
  893 
  894         for (i = 0; i < V_ipq_hashsize; i++) {
  895                 bucket = (start + i) % V_ipq_hashsize;
  896                 if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
  897                         continue;
  898                 fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
  899                 if (fp) {
  900                         struct mbuf *m;
  901 
  902                         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  903                         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  904                         while (fp->ipq_frags) {
  905                                 m = fp->ipq_frags;
  906                                 fp->ipq_frags = m->m_nextpkt;
  907                                 m_freem(m);
  908                         }
  909                         TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
  910                         V_ipq[bucket].count--;
  911                         ipreass_reschedule(&V_ipq[bucket]);
  912                         if (bucket != start)
  913                                 IPQ_UNLOCK(bucket);
  914                         break;
  915                 }
  916                 if (bucket != start)
  917                         IPQ_UNLOCK(bucket);
  918         }
  919         IPQ_LOCK_ASSERT(start);
  920         return (fp);
  921 }
  922 
  923 /*
  924  * Free a fragment reassembly header and all associated datagrams.
  925  */
  926 static void
  927 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
  928 {
  929         struct mbuf *q;
  930 
  931         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  932         while (fp->ipq_frags) {
  933                 q = fp->ipq_frags;
  934                 fp->ipq_frags = q->m_nextpkt;
  935                 m_freem(q);
  936         }
  937         TAILQ_REMOVE(&bucket->head, fp, ipq_list);
  938         bucket->count--;
  939         uma_zfree(V_ipq_zone, fp);
  940 }
  941 
  942 /*
  943  * Get or set the maximum number of reassembly queues per bucket.
  944  */
  945 static int
  946 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
  947 {
  948         int error, max;
  949 
  950         max = V_ipreass_maxbucketsize;
  951         error = sysctl_handle_int(oidp, &max, 0, req);
  952         if (error || !req->newptr)
  953                 return (error);
  954         if (max <= 0)
  955                 return (EINVAL);
  956         V_ipreass_maxbucketsize = max;
  957         ipreass_drain_tomax();
  958         return (0);
  959 }
  960 
  961 /*
  962  * Get or set the IP fragment time to live.
  963  */
  964 static int
  965 sysctl_fragttl(SYSCTL_HANDLER_ARGS)
  966 {
  967         u_int ttl;
  968         int error;
  969 
  970         ttl = V_ipfragttl;
  971         error = sysctl_handle_int(oidp, &ttl, 0, req);
  972         if (error || !req->newptr)
  973                 return (error);
  974 
  975         if (ttl < 1 || ttl > MAXTTL)
  976                 return (EINVAL);
  977 
  978         atomic_store_int(&V_ipfragttl, ttl);
  979         return (0);
  980 }

Cache object: fce10db16e679705c3eafc055e0572f1


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.