The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_reass.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
    3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
    4  * Copyright (c) 1982, 1986, 1988, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/11.1/sys/netinet/ip_reass.c 337828 2018-08-15 02:30:11Z delphij $");
   36 
   37 #include "opt_rss.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/hash.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/malloc.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <net/rss_config.h>
   51 #include <net/netisr.h>
   52 #include <net/vnet.h>
   53 
   54 #include <netinet/in.h>
   55 #include <netinet/ip.h>
   56 #include <netinet/ip_var.h>
   57 #include <netinet/in_rss.h>
   58 #ifdef MAC
   59 #include <security/mac/mac_framework.h>
   60 #endif
   61 
   62 SYSCTL_DECL(_net_inet_ip);
   63 
   64 /*
   65  * Reassembly headers are stored in hash buckets.
   66  */
   67 #define IPREASS_NHASH_LOG2      10
   68 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
   69 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
   70 
   71 struct ipqbucket {
   72         TAILQ_HEAD(ipqhead, ipq) head;
   73         struct mtx               lock;
   74         int                      count;
   75 };
   76 
   77 static VNET_DEFINE(struct ipqbucket, ipq[IPREASS_NHASH]);
   78 #define V_ipq           VNET(ipq)
   79 static VNET_DEFINE(uint32_t, ipq_hashseed);
   80 #define V_ipq_hashseed   VNET(ipq_hashseed)
   81 
   82 #define IPQ_LOCK(i)     mtx_lock(&V_ipq[i].lock)
   83 #define IPQ_TRYLOCK(i)  mtx_trylock(&V_ipq[i].lock)
   84 #define IPQ_UNLOCK(i)   mtx_unlock(&V_ipq[i].lock)
   85 #define IPQ_LOCK_ASSERT(i)      mtx_assert(&V_ipq[i].lock, MA_OWNED)
   86 
   87 static VNET_DEFINE(int, ipreass_maxbucketsize);
   88 #define V_ipreass_maxbucketsize VNET(ipreass_maxbucketsize)
   89 
   90 void            ipreass_init(void);
   91 void            ipreass_drain(void);
   92 void            ipreass_slowtimo(void);
   93 #ifdef VIMAGE
   94 void            ipreass_destroy(void);
   95 #endif
   96 static int      sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
   97 static int      sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
   98 static void     ipreass_zone_change(void *);
   99 static void     ipreass_drain_tomax(void);
  100 static void     ipq_free(struct ipqbucket *, struct ipq *);
  101 static struct ipq * ipq_reuse(int);
  102 
  103 static inline void
  104 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
  105 {
  106 
  107         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  108         ipq_free(bucket, fp);
  109 }
  110 
  111 static inline void
  112 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
  113 {
  114 
  115         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
  116         ipq_free(bucket, fp);
  117 }
  118 
  119 /*
  120  * By default, limit the number of IP fragments across all reassembly
  121  * queues to  1/32 of the total number of mbuf clusters.
  122  *
  123  * Limit the total number of reassembly queues per VNET to the
  124  * IP fragment limit, but ensure the limit will not allow any bucket
  125  * to grow above 100 items. (The bucket limit is
  126  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
  127  * multiplier to reach a 100-item limit.)
  128  * The 100-item limit was chosen as brief testing seems to show that
  129  * this produces "reasonable" performance on some subset of systems
  130  * under DoS attack.
  131  */
  132 #define IP_MAXFRAGS             (nmbclusters / 32)
  133 #define IP_MAXFRAGPACKETS       (imin(IP_MAXFRAGS, IPREASS_NHASH * 50))
  134 
  135 static int              maxfrags;
  136 static volatile u_int   nfrags;
  137 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
  138     &maxfrags, 0,
  139     "Maximum number of IPv4 fragments allowed across all reassembly queues");
  140 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
  141     __DEVOLATILE(u_int *, &nfrags), 0,
  142     "Current number of IPv4 fragments across all reassembly queues");
  143 
  144 static VNET_DEFINE(uma_zone_t, ipq_zone);
  145 #define V_ipq_zone      VNET(ipq_zone)
  146 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_VNET |
  147     CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_maxfragpackets, "I",
  148     "Maximum number of IPv4 fragment reassembly queue entries");
  149 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
  150     &VNET_NAME(ipq_zone),
  151     "Current number of IPv4 fragment reassembly queue entries");
  152 
  153 static VNET_DEFINE(int, noreass);
  154 #define V_noreass       VNET(noreass)
  155 
  156 static VNET_DEFINE(int, maxfragsperpacket);
  157 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  158 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
  159     &VNET_NAME(maxfragsperpacket), 0,
  160     "Maximum number of IPv4 fragments allowed per packet");
  161 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
  162     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  163     sysctl_maxfragbucketsize, "I",
  164     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
  165 
  166 /*
  167  * Take incoming datagram fragment and try to reassemble it into
  168  * whole datagram.  If the argument is the first fragment or one
  169  * in between the function will return NULL and store the mbuf
  170  * in the fragment chain.  If the argument is the last fragment
  171  * the packet will be reassembled and the pointer to the new
  172  * mbuf returned for further processing.  Only m_tags attached
  173  * to the first packet/fragment are preserved.
  174  * The IP header is *NOT* adjusted out of iplen.
  175  */
  176 #define M_IP_FRAG       M_PROTO9
  177 struct mbuf *
  178 ip_reass(struct mbuf *m)
  179 {
  180         struct ip *ip;
  181         struct mbuf *p, *q, *nq, *t;
  182         struct ipq *fp;
  183         struct ipqhead *head;
  184         int i, hlen, next, tmpmax;
  185         u_int8_t ecn, ecn0;
  186         uint32_t hash, hashkey[3];
  187 #ifdef  RSS
  188         uint32_t rss_hash, rss_type;
  189 #endif
  190 
  191         /*
  192          * If no reassembling or maxfragsperpacket are 0,
  193          * never accept fragments.
  194          * Also, drop packet if it would exceed the maximum
  195          * number of fragments.
  196          */
  197         tmpmax = maxfrags;
  198         if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
  199             (tmpmax >= 0 && nfrags >= (u_int)tmpmax)) {
  200                 IPSTAT_INC(ips_fragments);
  201                 IPSTAT_INC(ips_fragdropped);
  202                 m_freem(m);
  203                 return (NULL);
  204         }
  205 
  206         ip = mtod(m, struct ip *);
  207         hlen = ip->ip_hl << 2;
  208 
  209         /*
  210          * Adjust ip_len to not reflect header,
  211          * convert offset of this to bytes.
  212          */
  213         ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
  214         if (ip->ip_off & htons(IP_MF)) {
  215                 /*
  216                  * Make sure that fragments have a data length
  217                  * that's a non-zero multiple of 8 bytes.
  218                  */
  219                 if (ip->ip_len == htons(0) || (ntohs(ip->ip_len) & 0x7) != 0) {
  220                         IPSTAT_INC(ips_toosmall); /* XXX */
  221                         IPSTAT_INC(ips_fragdropped);
  222                         m_freem(m);
  223                         return (NULL);
  224                 }
  225                 m->m_flags |= M_IP_FRAG;
  226         } else
  227                 m->m_flags &= ~M_IP_FRAG;
  228         ip->ip_off = htons(ntohs(ip->ip_off) << 3);
  229 
  230         /*
  231          * Attempt reassembly; if it succeeds, proceed.
  232          * ip_reass() will return a different mbuf.
  233          */
  234         IPSTAT_INC(ips_fragments);
  235         m->m_pkthdr.PH_loc.ptr = ip;
  236 
  237         /*
  238          * Presence of header sizes in mbufs
  239          * would confuse code below.
  240          */
  241         m->m_data += hlen;
  242         m->m_len -= hlen;
  243 
  244         hashkey[0] = ip->ip_src.s_addr;
  245         hashkey[1] = ip->ip_dst.s_addr;
  246         hashkey[2] = (uint32_t)ip->ip_p << 16;
  247         hashkey[2] += ip->ip_id;
  248         hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
  249         hash &= IPREASS_HMASK;
  250         head = &V_ipq[hash].head;
  251         IPQ_LOCK(hash);
  252 
  253         /*
  254          * Look for queue of fragments
  255          * of this datagram.
  256          */
  257         TAILQ_FOREACH(fp, head, ipq_list)
  258                 if (ip->ip_id == fp->ipq_id &&
  259                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  260                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  261 #ifdef MAC
  262                     mac_ipq_match(m, fp) &&
  263 #endif
  264                     ip->ip_p == fp->ipq_p)
  265                         break;
  266         /*
  267          * If first fragment to arrive, create a reassembly queue.
  268          */
  269         if (fp == NULL) {
  270                 if (V_ipq[hash].count < V_ipreass_maxbucketsize)
  271                         fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  272                 if (fp == NULL)
  273                         fp = ipq_reuse(hash);
  274                 if (fp == NULL)
  275                         goto dropfrag;
  276 #ifdef MAC
  277                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  278                         uma_zfree(V_ipq_zone, fp);
  279                         fp = NULL;
  280                         goto dropfrag;
  281                 }
  282                 mac_ipq_create(m, fp);
  283 #endif
  284                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  285                 V_ipq[hash].count++;
  286                 fp->ipq_nfrags = 1;
  287                 atomic_add_int(&nfrags, 1);
  288                 fp->ipq_ttl = IPFRAGTTL;
  289                 fp->ipq_p = ip->ip_p;
  290                 fp->ipq_id = ip->ip_id;
  291                 fp->ipq_src = ip->ip_src;
  292                 fp->ipq_dst = ip->ip_dst;
  293                 fp->ipq_frags = m;
  294                 m->m_nextpkt = NULL;
  295                 goto done;
  296         } else {
  297                 fp->ipq_nfrags++;
  298                 atomic_add_int(&nfrags, 1);
  299 #ifdef MAC
  300                 mac_ipq_update(m, fp);
  301 #endif
  302         }
  303 
  304 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
  305 
  306         /*
  307          * Handle ECN by comparing this segment with the first one;
  308          * if CE is set, do not lose CE.
  309          * drop if CE and not-ECT are mixed for the same packet.
  310          */
  311         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  312         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  313         if (ecn == IPTOS_ECN_CE) {
  314                 if (ecn0 == IPTOS_ECN_NOTECT)
  315                         goto dropfrag;
  316                 if (ecn0 != IPTOS_ECN_CE)
  317                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  318         }
  319         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  320                 goto dropfrag;
  321 
  322         /*
  323          * Find a segment which begins after this one does.
  324          */
  325         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  326                 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
  327                         break;
  328 
  329         /*
  330          * If there is a preceding segment, it may provide some of
  331          * our data already.  If so, drop the data from the incoming
  332          * segment.  If it provides all of our data, drop us, otherwise
  333          * stick new segment in the proper place.
  334          *
  335          * If some of the data is dropped from the preceding
  336          * segment, then it's checksum is invalidated.
  337          */
  338         if (p) {
  339                 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
  340                     ntohs(ip->ip_off);
  341                 if (i > 0) {
  342                         if (i >= ntohs(ip->ip_len))
  343                                 goto dropfrag;
  344                         m_adj(m, i);
  345                         m->m_pkthdr.csum_flags = 0;
  346                         ip->ip_off = htons(ntohs(ip->ip_off) + i);
  347                         ip->ip_len = htons(ntohs(ip->ip_len) - i);
  348                 }
  349                 m->m_nextpkt = p->m_nextpkt;
  350                 p->m_nextpkt = m;
  351         } else {
  352                 m->m_nextpkt = fp->ipq_frags;
  353                 fp->ipq_frags = m;
  354         }
  355 
  356         /*
  357          * While we overlap succeeding segments trim them or,
  358          * if they are completely covered, dequeue them.
  359          */
  360         for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
  361             ntohs(GETIP(q)->ip_off); q = nq) {
  362                 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
  363                     ntohs(GETIP(q)->ip_off);
  364                 if (i < ntohs(GETIP(q)->ip_len)) {
  365                         GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
  366                         GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
  367                         m_adj(q, i);
  368                         q->m_pkthdr.csum_flags = 0;
  369                         break;
  370                 }
  371                 nq = q->m_nextpkt;
  372                 m->m_nextpkt = nq;
  373                 IPSTAT_INC(ips_fragdropped);
  374                 fp->ipq_nfrags--;
  375                 atomic_subtract_int(&nfrags, 1);
  376                 m_freem(q);
  377         }
  378 
  379         /*
  380          * Check for complete reassembly and perform frag per packet
  381          * limiting.
  382          *
  383          * Frag limiting is performed here so that the nth frag has
  384          * a chance to complete the packet before we drop the packet.
  385          * As a result, n+1 frags are actually allowed per packet, but
  386          * only n will ever be stored. (n = maxfragsperpacket.)
  387          *
  388          */
  389         next = 0;
  390         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
  391                 if (ntohs(GETIP(q)->ip_off) != next) {
  392                         if (fp->ipq_nfrags > V_maxfragsperpacket)
  393                                 ipq_drop(&V_ipq[hash], fp);
  394                         goto done;
  395                 }
  396                 next += ntohs(GETIP(q)->ip_len);
  397         }
  398         /* Make sure the last packet didn't have the IP_MF flag */
  399         if (p->m_flags & M_IP_FRAG) {
  400                 if (fp->ipq_nfrags > V_maxfragsperpacket)
  401                         ipq_drop(&V_ipq[hash], fp);
  402                 goto done;
  403         }
  404 
  405         /*
  406          * Reassembly is complete.  Make sure the packet is a sane size.
  407          */
  408         q = fp->ipq_frags;
  409         ip = GETIP(q);
  410         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
  411                 IPSTAT_INC(ips_toolong);
  412                 ipq_drop(&V_ipq[hash], fp);
  413                 goto done;
  414         }
  415 
  416         /*
  417          * Concatenate fragments.
  418          */
  419         m = q;
  420         t = m->m_next;
  421         m->m_next = NULL;
  422         m_cat(m, t);
  423         nq = q->m_nextpkt;
  424         q->m_nextpkt = NULL;
  425         for (q = nq; q != NULL; q = nq) {
  426                 nq = q->m_nextpkt;
  427                 q->m_nextpkt = NULL;
  428                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
  429                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
  430                 m_cat(m, q);
  431         }
  432         /*
  433          * In order to do checksumming faster we do 'end-around carry' here
  434          * (and not in for{} loop), though it implies we are not going to
  435          * reassemble more than 64k fragments.
  436          */
  437         while (m->m_pkthdr.csum_data & 0xffff0000)
  438                 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
  439                     (m->m_pkthdr.csum_data >> 16);
  440         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  441 #ifdef MAC
  442         mac_ipq_reassemble(fp, m);
  443         mac_ipq_destroy(fp);
  444 #endif
  445 
  446         /*
  447          * Create header for new ip packet by modifying header of first
  448          * packet;  dequeue and discard fragment reassembly header.
  449          * Make header visible.
  450          */
  451         ip->ip_len = htons((ip->ip_hl << 2) + next);
  452         ip->ip_src = fp->ipq_src;
  453         ip->ip_dst = fp->ipq_dst;
  454         TAILQ_REMOVE(head, fp, ipq_list);
  455         V_ipq[hash].count--;
  456         uma_zfree(V_ipq_zone, fp);
  457         m->m_len += (ip->ip_hl << 2);
  458         m->m_data -= (ip->ip_hl << 2);
  459         /* some debugging cruft by sklower, below, will go away soon */
  460         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
  461                 m_fixhdr(m);
  462         IPSTAT_INC(ips_reassembled);
  463         IPQ_UNLOCK(hash);
  464 
  465 #ifdef  RSS
  466         /*
  467          * Query the RSS layer for the flowid / flowtype for the
  468          * mbuf payload.
  469          *
  470          * For now, just assume we have to calculate a new one.
  471          * Later on we should check to see if the assigned flowid matches
  472          * what RSS wants for the given IP protocol and if so, just keep it.
  473          *
  474          * We then queue into the relevant netisr so it can be dispatched
  475          * to the correct CPU.
  476          *
  477          * Note - this may return 1, which means the flowid in the mbuf
  478          * is correct for the configured RSS hash types and can be used.
  479          */
  480         if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
  481                 m->m_pkthdr.flowid = rss_hash;
  482                 M_HASHTYPE_SET(m, rss_type);
  483         }
  484 
  485         /*
  486          * Queue/dispatch for reprocessing.
  487          *
  488          * Note: this is much slower than just handling the frame in the
  489          * current receive context.  It's likely worth investigating
  490          * why this is.
  491          */
  492         netisr_dispatch(NETISR_IP_DIRECT, m);
  493         return (NULL);
  494 #endif
  495 
  496         /* Handle in-line */
  497         return (m);
  498 
  499 dropfrag:
  500         IPSTAT_INC(ips_fragdropped);
  501         if (fp != NULL) {
  502                 fp->ipq_nfrags--;
  503                 atomic_subtract_int(&nfrags, 1);
  504         }
  505         m_freem(m);
  506 done:
  507         IPQ_UNLOCK(hash);
  508         return (NULL);
  509 
  510 #undef GETIP
  511 }
  512 
  513 /*
  514  * Initialize IP reassembly structures.
  515  */
  516 void
  517 ipreass_init(void)
  518 {
  519         int max;
  520 
  521         for (int i = 0; i < IPREASS_NHASH; i++) {
  522                 TAILQ_INIT(&V_ipq[i].head);
  523                 mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
  524                     MTX_DEF | MTX_DUPOK);
  525                 V_ipq[i].count = 0;
  526         }
  527         V_ipq_hashseed = arc4random();
  528         V_maxfragsperpacket = 16;
  529         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  530             NULL, UMA_ALIGN_PTR, 0);
  531         max = IP_MAXFRAGPACKETS;
  532         max = uma_zone_set_max(V_ipq_zone, max);
  533         V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  534 
  535         if (IS_DEFAULT_VNET(curvnet)) {
  536                 maxfrags = IP_MAXFRAGS;
  537                 EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
  538                     NULL, EVENTHANDLER_PRI_ANY);
  539         }
  540 }
  541 
  542 /*
  543  * If a timer expires on a reassembly queue, discard it.
  544  */
  545 void
  546 ipreass_slowtimo(void)
  547 {
  548         struct ipq *fp, *tmp;
  549 
  550         for (int i = 0; i < IPREASS_NHASH; i++) {
  551                 IPQ_LOCK(i);
  552                 TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
  553                 if (--fp->ipq_ttl == 0)
  554                                 ipq_timeout(&V_ipq[i], fp);
  555                 IPQ_UNLOCK(i);
  556         }
  557 }
  558 
  559 /*
  560  * Drain off all datagram fragments.
  561  */
  562 void
  563 ipreass_drain(void)
  564 {
  565 
  566         for (int i = 0; i < IPREASS_NHASH; i++) {
  567                 IPQ_LOCK(i);
  568                 while(!TAILQ_EMPTY(&V_ipq[i].head))
  569                         ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
  570                 KASSERT(V_ipq[i].count == 0,
  571                     ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
  572                     V_ipq[i].count, V_ipq));
  573                 IPQ_UNLOCK(i);
  574         }
  575 }
  576 
  577 #ifdef VIMAGE
  578 /*
  579  * Destroy IP reassembly structures.
  580  */
  581 void
  582 ipreass_destroy(void)
  583 {
  584 
  585         ipreass_drain();
  586         uma_zdestroy(V_ipq_zone);
  587         for (int i = 0; i < IPREASS_NHASH; i++)
  588                 mtx_destroy(&V_ipq[i].lock);
  589 }
  590 #endif
  591 
  592 /*
  593  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  594  * max has slightly different semantics than the sysctl, for historical
  595  * reasons.
  596  */
  597 static void
  598 ipreass_drain_tomax(void)
  599 {
  600         struct ipq *fp;
  601         int target;
  602 
  603         /*
  604          * Make sure each bucket is under the new limit. If
  605          * necessary, drop enough of the oldest elements from
  606          * each bucket to get under the new limit.
  607          */
  608         for (int i = 0; i < IPREASS_NHASH; i++) {
  609                 IPQ_LOCK(i);
  610                 while (V_ipq[i].count > V_ipreass_maxbucketsize &&
  611                     (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
  612                         ipq_timeout(&V_ipq[i], fp);
  613                 IPQ_UNLOCK(i);
  614         }
  615 
  616         /*
  617          * If we are over the maximum number of fragments,
  618          * drain off enough to get down to the new limit,
  619          * stripping off last elements on queues.  Every
  620          * run we strip the oldest element from each bucket.
  621          */
  622         target = uma_zone_get_max(V_ipq_zone);
  623         while (uma_zone_get_cur(V_ipq_zone) > target) {
  624                 for (int i = 0; i < IPREASS_NHASH; i++) {
  625                         IPQ_LOCK(i);
  626                         fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
  627                         if (fp != NULL)
  628                                 ipq_timeout(&V_ipq[i], fp);
  629                         IPQ_UNLOCK(i);
  630                 }
  631         }
  632 }
  633 
  634 static void
  635 ipreass_zone_change(void *tag)
  636 {
  637         VNET_ITERATOR_DECL(vnet_iter);
  638         int max;
  639 
  640         maxfrags = IP_MAXFRAGS;
  641         max = IP_MAXFRAGPACKETS;
  642         VNET_LIST_RLOCK_NOSLEEP();
  643         VNET_FOREACH(vnet_iter) {
  644                 CURVNET_SET(vnet_iter);
  645                 max = uma_zone_set_max(V_ipq_zone, max);
  646                 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  647                 ipreass_drain_tomax();
  648                 CURVNET_RESTORE();
  649         }
  650         VNET_LIST_RUNLOCK_NOSLEEP();
  651 }
  652 
  653 /*
  654  * Change the limit on the UMA zone, or disable the fragment allocation
  655  * at all.  Since 0 and -1 is a special values here, we need our own handler,
  656  * instead of sysctl_handle_uma_zone_max().
  657  */
  658 static int
  659 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
  660 {
  661         int error, max;
  662 
  663         if (V_noreass == 0) {
  664                 max = uma_zone_get_max(V_ipq_zone);
  665                 if (max == 0)
  666                         max = -1;
  667         } else 
  668                 max = 0;
  669         error = sysctl_handle_int(oidp, &max, 0, req);
  670         if (error || !req->newptr)
  671                 return (error);
  672         if (max > 0) {
  673                 /*
  674                  * XXXRW: Might be a good idea to sanity check the argument
  675                  * and place an extreme upper bound.
  676                  */
  677                 max = uma_zone_set_max(V_ipq_zone, max);
  678                 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  679                 ipreass_drain_tomax();
  680                 V_noreass = 0;
  681         } else if (max == 0) {
  682                 V_noreass = 1;
  683                 ipreass_drain();
  684         } else if (max == -1) {
  685                 V_noreass = 0;
  686                 uma_zone_set_max(V_ipq_zone, 0);
  687                 V_ipreass_maxbucketsize = INT_MAX;
  688         } else
  689                 return (EINVAL);
  690         return (0);
  691 }
  692 
  693 /*
  694  * Seek for old fragment queue header that can be reused.  Try to
  695  * reuse a header from currently locked hash bucket.
  696  */
  697 static struct ipq *
  698 ipq_reuse(int start)
  699 {
  700         struct ipq *fp;
  701         int bucket, i;
  702 
  703         IPQ_LOCK_ASSERT(start);
  704 
  705         for (i = 0; i < IPREASS_NHASH; i++) {
  706                 bucket = (start + i) % IPREASS_NHASH;
  707                 if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
  708                         continue;
  709                 fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
  710                 if (fp) {
  711                         struct mbuf *m;
  712 
  713                         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  714                         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  715                         while (fp->ipq_frags) {
  716                                 m = fp->ipq_frags;
  717                                 fp->ipq_frags = m->m_nextpkt;
  718                                 m_freem(m);
  719                         }
  720                         TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
  721                         V_ipq[bucket].count--;
  722                         if (bucket != start)
  723                                 IPQ_UNLOCK(bucket);
  724                         break;
  725                 }
  726                 if (bucket != start)
  727                         IPQ_UNLOCK(bucket);
  728         }
  729         IPQ_LOCK_ASSERT(start);
  730         return (fp);
  731 }
  732 
  733 /*
  734  * Free a fragment reassembly header and all associated datagrams.
  735  */
  736 static void
  737 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
  738 {
  739         struct mbuf *q;
  740 
  741         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  742         while (fp->ipq_frags) {
  743                 q = fp->ipq_frags;
  744                 fp->ipq_frags = q->m_nextpkt;
  745                 m_freem(q);
  746         }
  747         TAILQ_REMOVE(&bucket->head, fp, ipq_list);
  748         bucket->count--;
  749         uma_zfree(V_ipq_zone, fp);
  750 }
  751 
  752 /*
  753  * Get or set the maximum number of reassembly queues per bucket.
  754  */
  755 static int
  756 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
  757 {
  758         int error, max;
  759 
  760         max = V_ipreass_maxbucketsize;
  761         error = sysctl_handle_int(oidp, &max, 0, req);
  762         if (error || !req->newptr)
  763                 return (error);
  764         if (max <= 0)
  765                 return (EINVAL);
  766         V_ipreass_maxbucketsize = max;
  767         ipreass_drain_tomax();
  768         return (0);
  769 }

Cache object: a51d61d0d60a95ccbf10a1679bce5c79


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.