The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_reass.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
    3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
    4  * Copyright (c) 1982, 1986, 1988, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 4. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD$");
   36 
   37 #include "opt_rss.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/hash.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/malloc.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <net/rss_config.h>
   51 #include <net/netisr.h>
   52 #include <net/vnet.h>
   53 
   54 #include <netinet/in.h>
   55 #include <netinet/ip.h>
   56 #include <netinet/ip_var.h>
   57 #include <netinet/in_rss.h>
   58 #ifdef MAC
   59 #include <security/mac/mac_framework.h>
   60 #endif
   61 
   62 SYSCTL_DECL(_net_inet_ip);
   63 
   64 /*
   65  * Reassembly headers are stored in hash buckets.
   66  */
   67 #define IPREASS_NHASH_LOG2      10
   68 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
   69 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
   70 
   71 struct ipqbucket {
   72         TAILQ_HEAD(ipqhead, ipq) head;
   73         struct mtx               lock;
   74         int                      count;
   75 };
   76 
   77 static VNET_DEFINE(struct ipqbucket, ipq[IPREASS_NHASH]);
   78 #define V_ipq           VNET(ipq)
   79 static VNET_DEFINE(uint32_t, ipq_hashseed);
   80 #define V_ipq_hashseed   VNET(ipq_hashseed)
   81 
   82 #define IPQ_LOCK(i)     mtx_lock(&V_ipq[i].lock)
   83 #define IPQ_TRYLOCK(i)  mtx_trylock(&V_ipq[i].lock)
   84 #define IPQ_UNLOCK(i)   mtx_unlock(&V_ipq[i].lock)
   85 #define IPQ_LOCK_ASSERT(i)      mtx_assert(&V_ipq[i].lock, MA_OWNED)
   86 
   87 static VNET_DEFINE(int, ipreass_maxbucketsize);
   88 #define V_ipreass_maxbucketsize VNET(ipreass_maxbucketsize)
   89 
   90 void            ipreass_init(void);
   91 void            ipreass_drain(void);
   92 void            ipreass_slowtimo(void);
   93 #ifdef VIMAGE
   94 void            ipreass_destroy(void);
   95 #endif
   96 static int      sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
   97 static int      sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
   98 static void     ipreass_zone_change(void *);
   99 static void     ipreass_drain_tomax(void);
  100 static void     ipq_free(struct ipqbucket *, struct ipq *);
  101 static struct ipq * ipq_reuse(int);
  102 
  103 static inline void
  104 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
  105 {
  106 
  107         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  108         ipq_free(bucket, fp);
  109 }
  110 
  111 static inline void
  112 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
  113 {
  114 
  115         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
  116         ipq_free(bucket, fp);
  117 }
  118 
  119 /*
  120  * By default, limit the number of IP fragments across all reassembly
  121  * queues to  1/32 of the total number of mbuf clusters.
  122  *
  123  * Limit the total number of reassembly queues per VNET to the
  124  * IP fragment limit, but ensure the limit will not allow any bucket
  125  * to grow above 100 items. (The bucket limit is
  126  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
  127  * multiplier to reach a 100-item limit.)
  128  * The 100-item limit was chosen as brief testing seems to show that
  129  * this produces "reasonable" performance on some subset of systems
  130  * under DoS attack.
  131  */
  132 #define IP_MAXFRAGS             (nmbclusters / 32)
  133 #define IP_MAXFRAGPACKETS       (imin(IP_MAXFRAGS, IPREASS_NHASH * 50))
  134 
  135 static int              maxfrags;
  136 static volatile u_int   nfrags;
  137 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
  138     &maxfrags, 0,
  139     "Maximum number of IPv4 fragments allowed across all reassembly queues");
  140 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
  141     __DEVOLATILE(u_int *, &nfrags), 0,
  142     "Current number of IPv4 fragments across all reassembly queues");
  143 
  144 static VNET_DEFINE(uma_zone_t, ipq_zone);
  145 #define V_ipq_zone      VNET(ipq_zone)
  146 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_VNET |
  147     CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_maxfragpackets, "I",
  148     "Maximum number of IPv4 fragment reassembly queue entries");
  149 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
  150     &VNET_NAME(ipq_zone),
  151     "Current number of IPv4 fragment reassembly queue entries");
  152 
  153 static VNET_DEFINE(int, noreass);
  154 #define V_noreass       VNET(noreass)
  155 
  156 static VNET_DEFINE(int, maxfragsperpacket);
  157 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  158 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
  159     &VNET_NAME(maxfragsperpacket), 0,
  160     "Maximum number of IPv4 fragments allowed per packet");
  161 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
  162     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  163     sysctl_maxfragbucketsize, "I",
  164     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
  165 
  166 /*
  167  * Take incoming datagram fragment and try to reassemble it into
  168  * whole datagram.  If the argument is the first fragment or one
  169  * in between the function will return NULL and store the mbuf
  170  * in the fragment chain.  If the argument is the last fragment
  171  * the packet will be reassembled and the pointer to the new
  172  * mbuf returned for further processing.  Only m_tags attached
  173  * to the first packet/fragment are preserved.
  174  * The IP header is *NOT* adjusted out of iplen.
  175  */
  176 #define M_IP_FRAG       M_PROTO9
  177 struct mbuf *
  178 ip_reass(struct mbuf *m)
  179 {
  180         struct ip *ip;
  181         struct mbuf *p, *q, *nq, *t;
  182         struct ipq *fp;
  183         struct ipqhead *head;
  184         int i, hlen, next, tmpmax;
  185         u_int8_t ecn, ecn0;
  186         uint32_t hash, hashkey[3];
  187 #ifdef  RSS
  188         uint32_t rss_hash, rss_type;
  189 #endif
  190 
  191         /*
  192          * If no reassembling or maxfragsperpacket are 0,
  193          * never accept fragments.
  194          * Also, drop packet if it would exceed the maximum
  195          * number of fragments.
  196          */
  197         tmpmax = maxfrags;
  198         if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
  199             (tmpmax >= 0 && nfrags >= (u_int)tmpmax)) {
  200                 IPSTAT_INC(ips_fragments);
  201                 IPSTAT_INC(ips_fragdropped);
  202                 m_freem(m);
  203                 return (NULL);
  204         }
  205 
  206         ip = mtod(m, struct ip *);
  207         hlen = ip->ip_hl << 2;
  208 
  209         /*
  210          * Adjust ip_len to not reflect header,
  211          * convert offset of this to bytes.
  212          */
  213         ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
  214         /*
  215          * Make sure that fragments have a data length
  216          * that's a non-zero multiple of 8 bytes, unless
  217          * this is the last fragment.
  218          */
  219         if (ip->ip_len == htons(0) ||
  220             ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
  221                 IPSTAT_INC(ips_toosmall); /* XXX */
  222                 IPSTAT_INC(ips_fragdropped);
  223                 m_freem(m);
  224                 return (NULL);
  225         }
  226         if (ip->ip_off & htons(IP_MF))
  227                 m->m_flags |= M_IP_FRAG;
  228         else
  229                 m->m_flags &= ~M_IP_FRAG;
  230         ip->ip_off = htons(ntohs(ip->ip_off) << 3);
  231 
  232         /*
  233          * Attempt reassembly; if it succeeds, proceed.
  234          * ip_reass() will return a different mbuf.
  235          */
  236         IPSTAT_INC(ips_fragments);
  237         m->m_pkthdr.PH_loc.ptr = ip;
  238 
  239         /*
  240          * Presence of header sizes in mbufs
  241          * would confuse code below.
  242          */
  243         m->m_data += hlen;
  244         m->m_len -= hlen;
  245 
  246         hashkey[0] = ip->ip_src.s_addr;
  247         hashkey[1] = ip->ip_dst.s_addr;
  248         hashkey[2] = (uint32_t)ip->ip_p << 16;
  249         hashkey[2] += ip->ip_id;
  250         hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
  251         hash &= IPREASS_HMASK;
  252         head = &V_ipq[hash].head;
  253         IPQ_LOCK(hash);
  254 
  255         /*
  256          * Look for queue of fragments
  257          * of this datagram.
  258          */
  259         TAILQ_FOREACH(fp, head, ipq_list)
  260                 if (ip->ip_id == fp->ipq_id &&
  261                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  262                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  263 #ifdef MAC
  264                     mac_ipq_match(m, fp) &&
  265 #endif
  266                     ip->ip_p == fp->ipq_p)
  267                         break;
  268         /*
  269          * If first fragment to arrive, create a reassembly queue.
  270          */
  271         if (fp == NULL) {
  272                 if (V_ipq[hash].count < V_ipreass_maxbucketsize)
  273                         fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  274                 if (fp == NULL)
  275                         fp = ipq_reuse(hash);
  276                 if (fp == NULL)
  277                         goto dropfrag;
  278 #ifdef MAC
  279                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  280                         uma_zfree(V_ipq_zone, fp);
  281                         fp = NULL;
  282                         goto dropfrag;
  283                 }
  284                 mac_ipq_create(m, fp);
  285 #endif
  286                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  287                 V_ipq[hash].count++;
  288                 fp->ipq_nfrags = 1;
  289                 atomic_add_int(&nfrags, 1);
  290                 fp->ipq_ttl = IPFRAGTTL;
  291                 fp->ipq_p = ip->ip_p;
  292                 fp->ipq_id = ip->ip_id;
  293                 fp->ipq_src = ip->ip_src;
  294                 fp->ipq_dst = ip->ip_dst;
  295                 fp->ipq_frags = m;
  296                 if (m->m_flags & M_IP_FRAG)
  297                         fp->ipq_maxoff = -1;
  298                 else
  299                         fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  300                 m->m_nextpkt = NULL;
  301                 goto done;
  302         } else {
  303                 /*
  304                  * If we already saw the last fragment, make sure
  305                  * this fragment's offset looks sane. Otherwise, if
  306                  * this is the last fragment, record its endpoint.
  307                  */
  308                 if (fp->ipq_maxoff > 0) {
  309                         i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  310                         if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
  311                             ((m->m_flags & M_IP_FRAG) == 0 &&
  312                             i != fp->ipq_maxoff)) {
  313                                 fp = NULL;
  314                                 goto dropfrag;
  315                         }
  316                 } else if ((m->m_flags & M_IP_FRAG) == 0)
  317                         fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  318                 fp->ipq_nfrags++;
  319                 atomic_add_int(&nfrags, 1);
  320 #ifdef MAC
  321                 mac_ipq_update(m, fp);
  322 #endif
  323         }
  324 
  325 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
  326 
  327         /*
  328          * Handle ECN by comparing this segment with the first one;
  329          * if CE is set, do not lose CE.
  330          * drop if CE and not-ECT are mixed for the same packet.
  331          */
  332         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  333         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  334         if (ecn == IPTOS_ECN_CE) {
  335                 if (ecn0 == IPTOS_ECN_NOTECT)
  336                         goto dropfrag;
  337                 if (ecn0 != IPTOS_ECN_CE)
  338                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  339         }
  340         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  341                 goto dropfrag;
  342 
  343         /*
  344          * Find a segment which begins after this one does.
  345          */
  346         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  347                 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
  348                         break;
  349 
  350         /*
  351          * If there is a preceding segment, it may provide some of
  352          * our data already.  If so, drop the data from the incoming
  353          * segment.  If it provides all of our data, drop us, otherwise
  354          * stick new segment in the proper place.
  355          *
  356          * If some of the data is dropped from the preceding
  357          * segment, then it's checksum is invalidated.
  358          */
  359         if (p) {
  360                 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
  361                     ntohs(ip->ip_off);
  362                 if (i > 0) {
  363                         if (i >= ntohs(ip->ip_len))
  364                                 goto dropfrag;
  365                         m_adj(m, i);
  366                         m->m_pkthdr.csum_flags = 0;
  367                         ip->ip_off = htons(ntohs(ip->ip_off) + i);
  368                         ip->ip_len = htons(ntohs(ip->ip_len) - i);
  369                 }
  370                 m->m_nextpkt = p->m_nextpkt;
  371                 p->m_nextpkt = m;
  372         } else {
  373                 m->m_nextpkt = fp->ipq_frags;
  374                 fp->ipq_frags = m;
  375         }
  376 
  377         /*
  378          * While we overlap succeeding segments trim them or,
  379          * if they are completely covered, dequeue them.
  380          */
  381         for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
  382             ntohs(GETIP(q)->ip_off); q = nq) {
  383                 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
  384                     ntohs(GETIP(q)->ip_off);
  385                 if (i < ntohs(GETIP(q)->ip_len)) {
  386                         GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
  387                         GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
  388                         m_adj(q, i);
  389                         q->m_pkthdr.csum_flags = 0;
  390                         break;
  391                 }
  392                 nq = q->m_nextpkt;
  393                 m->m_nextpkt = nq;
  394                 IPSTAT_INC(ips_fragdropped);
  395                 fp->ipq_nfrags--;
  396                 atomic_subtract_int(&nfrags, 1);
  397                 m_freem(q);
  398         }
  399 
  400         /*
  401          * Check for complete reassembly and perform frag per packet
  402          * limiting.
  403          *
  404          * Frag limiting is performed here so that the nth frag has
  405          * a chance to complete the packet before we drop the packet.
  406          * As a result, n+1 frags are actually allowed per packet, but
  407          * only n will ever be stored. (n = maxfragsperpacket.)
  408          *
  409          */
  410         next = 0;
  411         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
  412                 if (ntohs(GETIP(q)->ip_off) != next) {
  413                         if (fp->ipq_nfrags > V_maxfragsperpacket)
  414                                 ipq_drop(&V_ipq[hash], fp);
  415                         goto done;
  416                 }
  417                 next += ntohs(GETIP(q)->ip_len);
  418         }
  419         /* Make sure the last packet didn't have the IP_MF flag */
  420         if (p->m_flags & M_IP_FRAG) {
  421                 if (fp->ipq_nfrags > V_maxfragsperpacket)
  422                         ipq_drop(&V_ipq[hash], fp);
  423                 goto done;
  424         }
  425 
  426         /*
  427          * Reassembly is complete.  Make sure the packet is a sane size.
  428          */
  429         q = fp->ipq_frags;
  430         ip = GETIP(q);
  431         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
  432                 IPSTAT_INC(ips_toolong);
  433                 ipq_drop(&V_ipq[hash], fp);
  434                 goto done;
  435         }
  436 
  437         /*
  438          * Concatenate fragments.
  439          */
  440         m = q;
  441         t = m->m_next;
  442         m->m_next = NULL;
  443         m_cat(m, t);
  444         nq = q->m_nextpkt;
  445         q->m_nextpkt = NULL;
  446         for (q = nq; q != NULL; q = nq) {
  447                 nq = q->m_nextpkt;
  448                 q->m_nextpkt = NULL;
  449                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
  450                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
  451                 m_demote_pkthdr(q);
  452                 m_cat(m, q);
  453         }
  454         /*
  455          * In order to do checksumming faster we do 'end-around carry' here
  456          * (and not in for{} loop), though it implies we are not going to
  457          * reassemble more than 64k fragments.
  458          */
  459         while (m->m_pkthdr.csum_data & 0xffff0000)
  460                 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
  461                     (m->m_pkthdr.csum_data >> 16);
  462         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  463 #ifdef MAC
  464         mac_ipq_reassemble(fp, m);
  465         mac_ipq_destroy(fp);
  466 #endif
  467 
  468         /*
  469          * Create header for new ip packet by modifying header of first
  470          * packet;  dequeue and discard fragment reassembly header.
  471          * Make header visible.
  472          */
  473         ip->ip_len = htons((ip->ip_hl << 2) + next);
  474         ip->ip_src = fp->ipq_src;
  475         ip->ip_dst = fp->ipq_dst;
  476         TAILQ_REMOVE(head, fp, ipq_list);
  477         V_ipq[hash].count--;
  478         uma_zfree(V_ipq_zone, fp);
  479         m->m_len += (ip->ip_hl << 2);
  480         m->m_data -= (ip->ip_hl << 2);
  481         /* some debugging cruft by sklower, below, will go away soon */
  482         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
  483                 m_fixhdr(m);
  484         IPSTAT_INC(ips_reassembled);
  485         IPQ_UNLOCK(hash);
  486 
  487 #ifdef  RSS
  488         /*
  489          * Query the RSS layer for the flowid / flowtype for the
  490          * mbuf payload.
  491          *
  492          * For now, just assume we have to calculate a new one.
  493          * Later on we should check to see if the assigned flowid matches
  494          * what RSS wants for the given IP protocol and if so, just keep it.
  495          *
  496          * We then queue into the relevant netisr so it can be dispatched
  497          * to the correct CPU.
  498          *
  499          * Note - this may return 1, which means the flowid in the mbuf
  500          * is correct for the configured RSS hash types and can be used.
  501          */
  502         if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
  503                 m->m_pkthdr.flowid = rss_hash;
  504                 M_HASHTYPE_SET(m, rss_type);
  505         }
  506 
  507         /*
  508          * Queue/dispatch for reprocessing.
  509          *
  510          * Note: this is much slower than just handling the frame in the
  511          * current receive context.  It's likely worth investigating
  512          * why this is.
  513          */
  514         netisr_dispatch(NETISR_IP_DIRECT, m);
  515         return (NULL);
  516 #endif
  517 
  518         /* Handle in-line */
  519         return (m);
  520 
  521 dropfrag:
  522         IPSTAT_INC(ips_fragdropped);
  523         if (fp != NULL) {
  524                 fp->ipq_nfrags--;
  525                 atomic_subtract_int(&nfrags, 1);
  526         }
  527         m_freem(m);
  528 done:
  529         IPQ_UNLOCK(hash);
  530         return (NULL);
  531 
  532 #undef GETIP
  533 }
  534 
  535 /*
  536  * Initialize IP reassembly structures.
  537  */
  538 void
  539 ipreass_init(void)
  540 {
  541         int max;
  542 
  543         for (int i = 0; i < IPREASS_NHASH; i++) {
  544                 TAILQ_INIT(&V_ipq[i].head);
  545                 mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
  546                     MTX_DEF | MTX_DUPOK);
  547                 V_ipq[i].count = 0;
  548         }
  549         V_ipq_hashseed = arc4random();
  550         V_maxfragsperpacket = 16;
  551         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  552             NULL, UMA_ALIGN_PTR, 0);
  553         max = IP_MAXFRAGPACKETS;
  554         max = uma_zone_set_max(V_ipq_zone, max);
  555         V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  556 
  557         if (IS_DEFAULT_VNET(curvnet)) {
  558                 maxfrags = IP_MAXFRAGS;
  559                 EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
  560                     NULL, EVENTHANDLER_PRI_ANY);
  561         }
  562 }
  563 
  564 /*
  565  * If a timer expires on a reassembly queue, discard it.
  566  */
  567 void
  568 ipreass_slowtimo(void)
  569 {
  570         struct ipq *fp, *tmp;
  571 
  572         for (int i = 0; i < IPREASS_NHASH; i++) {
  573                 IPQ_LOCK(i);
  574                 TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
  575                 if (--fp->ipq_ttl == 0)
  576                                 ipq_timeout(&V_ipq[i], fp);
  577                 IPQ_UNLOCK(i);
  578         }
  579 }
  580 
  581 /*
  582  * Drain off all datagram fragments.
  583  */
  584 void
  585 ipreass_drain(void)
  586 {
  587 
  588         for (int i = 0; i < IPREASS_NHASH; i++) {
  589                 IPQ_LOCK(i);
  590                 while(!TAILQ_EMPTY(&V_ipq[i].head))
  591                         ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
  592                 KASSERT(V_ipq[i].count == 0,
  593                     ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
  594                     V_ipq[i].count, V_ipq));
  595                 IPQ_UNLOCK(i);
  596         }
  597 }
  598 
  599 #ifdef VIMAGE
  600 /*
  601  * Destroy IP reassembly structures.
  602  */
  603 void
  604 ipreass_destroy(void)
  605 {
  606 
  607         ipreass_drain();
  608         uma_zdestroy(V_ipq_zone);
  609         for (int i = 0; i < IPREASS_NHASH; i++)
  610                 mtx_destroy(&V_ipq[i].lock);
  611 }
  612 #endif
  613 
  614 /*
  615  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  616  * max has slightly different semantics than the sysctl, for historical
  617  * reasons.
  618  */
  619 static void
  620 ipreass_drain_tomax(void)
  621 {
  622         struct ipq *fp;
  623         int target;
  624 
  625         /*
  626          * Make sure each bucket is under the new limit. If
  627          * necessary, drop enough of the oldest elements from
  628          * each bucket to get under the new limit.
  629          */
  630         for (int i = 0; i < IPREASS_NHASH; i++) {
  631                 IPQ_LOCK(i);
  632                 while (V_ipq[i].count > V_ipreass_maxbucketsize &&
  633                     (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
  634                         ipq_timeout(&V_ipq[i], fp);
  635                 IPQ_UNLOCK(i);
  636         }
  637 
  638         /*
  639          * If we are over the maximum number of fragments,
  640          * drain off enough to get down to the new limit,
  641          * stripping off last elements on queues.  Every
  642          * run we strip the oldest element from each bucket.
  643          */
  644         target = uma_zone_get_max(V_ipq_zone);
  645         while (uma_zone_get_cur(V_ipq_zone) > target) {
  646                 for (int i = 0; i < IPREASS_NHASH; i++) {
  647                         IPQ_LOCK(i);
  648                         fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
  649                         if (fp != NULL)
  650                                 ipq_timeout(&V_ipq[i], fp);
  651                         IPQ_UNLOCK(i);
  652                 }
  653         }
  654 }
  655 
  656 static void
  657 ipreass_zone_change(void *tag)
  658 {
  659         VNET_ITERATOR_DECL(vnet_iter);
  660         int max;
  661 
  662         maxfrags = IP_MAXFRAGS;
  663         max = IP_MAXFRAGPACKETS;
  664         VNET_LIST_RLOCK_NOSLEEP();
  665         VNET_FOREACH(vnet_iter) {
  666                 CURVNET_SET(vnet_iter);
  667                 max = uma_zone_set_max(V_ipq_zone, max);
  668                 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  669                 ipreass_drain_tomax();
  670                 CURVNET_RESTORE();
  671         }
  672         VNET_LIST_RUNLOCK_NOSLEEP();
  673 }
  674 
  675 /*
  676  * Change the limit on the UMA zone, or disable the fragment allocation
  677  * at all.  Since 0 and -1 is a special values here, we need our own handler,
  678  * instead of sysctl_handle_uma_zone_max().
  679  */
  680 static int
  681 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
  682 {
  683         int error, max;
  684 
  685         if (V_noreass == 0) {
  686                 max = uma_zone_get_max(V_ipq_zone);
  687                 if (max == 0)
  688                         max = -1;
  689         } else 
  690                 max = 0;
  691         error = sysctl_handle_int(oidp, &max, 0, req);
  692         if (error || !req->newptr)
  693                 return (error);
  694         if (max > 0) {
  695                 /*
  696                  * XXXRW: Might be a good idea to sanity check the argument
  697                  * and place an extreme upper bound.
  698                  */
  699                 max = uma_zone_set_max(V_ipq_zone, max);
  700                 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  701                 ipreass_drain_tomax();
  702                 V_noreass = 0;
  703         } else if (max == 0) {
  704                 V_noreass = 1;
  705                 ipreass_drain();
  706         } else if (max == -1) {
  707                 V_noreass = 0;
  708                 uma_zone_set_max(V_ipq_zone, 0);
  709                 V_ipreass_maxbucketsize = INT_MAX;
  710         } else
  711                 return (EINVAL);
  712         return (0);
  713 }
  714 
  715 /*
  716  * Seek for old fragment queue header that can be reused.  Try to
  717  * reuse a header from currently locked hash bucket.
  718  */
  719 static struct ipq *
  720 ipq_reuse(int start)
  721 {
  722         struct ipq *fp;
  723         int bucket, i;
  724 
  725         IPQ_LOCK_ASSERT(start);
  726 
  727         for (i = 0; i < IPREASS_NHASH; i++) {
  728                 bucket = (start + i) % IPREASS_NHASH;
  729                 if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
  730                         continue;
  731                 fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
  732                 if (fp) {
  733                         struct mbuf *m;
  734 
  735                         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  736                         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  737                         while (fp->ipq_frags) {
  738                                 m = fp->ipq_frags;
  739                                 fp->ipq_frags = m->m_nextpkt;
  740                                 m_freem(m);
  741                         }
  742                         TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
  743                         V_ipq[bucket].count--;
  744                         if (bucket != start)
  745                                 IPQ_UNLOCK(bucket);
  746                         break;
  747                 }
  748                 if (bucket != start)
  749                         IPQ_UNLOCK(bucket);
  750         }
  751         IPQ_LOCK_ASSERT(start);
  752         return (fp);
  753 }
  754 
  755 /*
  756  * Free a fragment reassembly header and all associated datagrams.
  757  */
  758 static void
  759 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
  760 {
  761         struct mbuf *q;
  762 
  763         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  764         while (fp->ipq_frags) {
  765                 q = fp->ipq_frags;
  766                 fp->ipq_frags = q->m_nextpkt;
  767                 m_freem(q);
  768         }
  769         TAILQ_REMOVE(&bucket->head, fp, ipq_list);
  770         bucket->count--;
  771         uma_zfree(V_ipq_zone, fp);
  772 }
  773 
  774 /*
  775  * Get or set the maximum number of reassembly queues per bucket.
  776  */
  777 static int
  778 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
  779 {
  780         int error, max;
  781 
  782         max = V_ipreass_maxbucketsize;
  783         error = sysctl_handle_int(oidp, &max, 0, req);
  784         if (error || !req->newptr)
  785                 return (error);
  786         if (max <= 0)
  787                 return (EINVAL);
  788         V_ipreass_maxbucketsize = max;
  789         ipreass_drain_tomax();
  790         return (0);
  791 }

Cache object: ef65f2050ea25ee0b188e9412254c918


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.