The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_reass.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2015 Gleb Smirnoff <glebius@FreeBSD.org>
    3  * Copyright (c) 2015 Adrian Chadd <adrian@FreeBSD.org>
    4  * Copyright (c) 1982, 1986, 1988, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 #include <sys/cdefs.h>
   35 __FBSDID("$FreeBSD: releng/12.0/sys/netinet/ip_reass.c 341262 2018-11-29 20:59:18Z markj $");
   36 
   37 #include "opt_rss.h"
   38 
   39 #include <sys/param.h>
   40 #include <sys/systm.h>
   41 #include <sys/eventhandler.h>
   42 #include <sys/hash.h>
   43 #include <sys/mbuf.h>
   44 #include <sys/malloc.h>
   45 #include <sys/limits.h>
   46 #include <sys/lock.h>
   47 #include <sys/mutex.h>
   48 #include <sys/sysctl.h>
   49 
   50 #include <net/rss_config.h>
   51 #include <net/netisr.h>
   52 #include <net/vnet.h>
   53 
   54 #include <netinet/in.h>
   55 #include <netinet/ip.h>
   56 #include <netinet/ip_var.h>
   57 #include <netinet/in_rss.h>
   58 #ifdef MAC
   59 #include <security/mac/mac_framework.h>
   60 #endif
   61 
   62 SYSCTL_DECL(_net_inet_ip);
   63 
   64 /*
   65  * Reassembly headers are stored in hash buckets.
   66  */
   67 #define IPREASS_NHASH_LOG2      10
   68 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
   69 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
   70 
   71 struct ipqbucket {
   72         TAILQ_HEAD(ipqhead, ipq) head;
   73         struct mtx               lock;
   74         int                      count;
   75 };
   76 
   77 VNET_DEFINE_STATIC(struct ipqbucket, ipq[IPREASS_NHASH]);
   78 #define V_ipq           VNET(ipq)
   79 VNET_DEFINE_STATIC(uint32_t, ipq_hashseed);
   80 #define V_ipq_hashseed   VNET(ipq_hashseed)
   81 
   82 #define IPQ_LOCK(i)     mtx_lock(&V_ipq[i].lock)
   83 #define IPQ_TRYLOCK(i)  mtx_trylock(&V_ipq[i].lock)
   84 #define IPQ_UNLOCK(i)   mtx_unlock(&V_ipq[i].lock)
   85 #define IPQ_LOCK_ASSERT(i)      mtx_assert(&V_ipq[i].lock, MA_OWNED)
   86 
   87 VNET_DEFINE_STATIC(int, ipreass_maxbucketsize);
   88 #define V_ipreass_maxbucketsize VNET(ipreass_maxbucketsize)
   89 
   90 void            ipreass_init(void);
   91 void            ipreass_drain(void);
   92 void            ipreass_slowtimo(void);
   93 #ifdef VIMAGE
   94 void            ipreass_destroy(void);
   95 #endif
   96 static int      sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS);
   97 static int      sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS);
   98 static void     ipreass_zone_change(void *);
   99 static void     ipreass_drain_tomax(void);
  100 static void     ipq_free(struct ipqbucket *, struct ipq *);
  101 static struct ipq * ipq_reuse(int);
  102 
  103 static inline void
  104 ipq_timeout(struct ipqbucket *bucket, struct ipq *fp)
  105 {
  106 
  107         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  108         ipq_free(bucket, fp);
  109 }
  110 
  111 static inline void
  112 ipq_drop(struct ipqbucket *bucket, struct ipq *fp)
  113 {
  114 
  115         IPSTAT_ADD(ips_fragdropped, fp->ipq_nfrags);
  116         ipq_free(bucket, fp);
  117 }
  118 
  119 /*
  120  * By default, limit the number of IP fragments across all reassembly
  121  * queues to  1/32 of the total number of mbuf clusters.
  122  *
  123  * Limit the total number of reassembly queues per VNET to the
  124  * IP fragment limit, but ensure the limit will not allow any bucket
  125  * to grow above 100 items. (The bucket limit is
  126  * IP_MAXFRAGPACKETS / (IPREASS_NHASH / 2), so the 50 is the correct
  127  * multiplier to reach a 100-item limit.)
  128  * The 100-item limit was chosen as brief testing seems to show that
  129  * this produces "reasonable" performance on some subset of systems
  130  * under DoS attack.
  131  */
  132 #define IP_MAXFRAGS             (nmbclusters / 32)
  133 #define IP_MAXFRAGPACKETS       (imin(IP_MAXFRAGS, IPREASS_NHASH * 50))
  134 
  135 static int              maxfrags;
  136 static volatile u_int   nfrags;
  137 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfrags, CTLFLAG_RW,
  138     &maxfrags, 0,
  139     "Maximum number of IPv4 fragments allowed across all reassembly queues");
  140 SYSCTL_UINT(_net_inet_ip, OID_AUTO, curfrags, CTLFLAG_RD,
  141     __DEVOLATILE(u_int *, &nfrags), 0,
  142     "Current number of IPv4 fragments across all reassembly queues");
  143 
  144 VNET_DEFINE_STATIC(uma_zone_t, ipq_zone);
  145 #define V_ipq_zone      VNET(ipq_zone)
  146 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_VNET |
  147     CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_maxfragpackets, "I",
  148     "Maximum number of IPv4 fragment reassembly queue entries");
  149 SYSCTL_UMA_CUR(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_VNET,
  150     &VNET_NAME(ipq_zone),
  151     "Current number of IPv4 fragment reassembly queue entries");
  152 
  153 VNET_DEFINE_STATIC(int, noreass);
  154 #define V_noreass       VNET(noreass)
  155 
  156 VNET_DEFINE_STATIC(int, maxfragsperpacket);
  157 #define V_maxfragsperpacket     VNET(maxfragsperpacket)
  158 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_VNET | CTLFLAG_RW,
  159     &VNET_NAME(maxfragsperpacket), 0,
  160     "Maximum number of IPv4 fragments allowed per packet");
  161 SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragbucketsize,
  162     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
  163     sysctl_maxfragbucketsize, "I",
  164     "Maximum number of IPv4 fragment reassembly queue entries per bucket");
  165 
  166 /*
  167  * Take incoming datagram fragment and try to reassemble it into
  168  * whole datagram.  If the argument is the first fragment or one
  169  * in between the function will return NULL and store the mbuf
  170  * in the fragment chain.  If the argument is the last fragment
  171  * the packet will be reassembled and the pointer to the new
  172  * mbuf returned for further processing.  Only m_tags attached
  173  * to the first packet/fragment are preserved.
  174  * The IP header is *NOT* adjusted out of iplen.
  175  */
  176 #define M_IP_FRAG       M_PROTO9
  177 struct mbuf *
  178 ip_reass(struct mbuf *m)
  179 {
  180         struct ip *ip;
  181         struct mbuf *p, *q, *nq, *t;
  182         struct ipq *fp;
  183         struct ipqhead *head;
  184         int i, hlen, next, tmpmax;
  185         u_int8_t ecn, ecn0;
  186         uint32_t hash, hashkey[3];
  187 #ifdef  RSS
  188         uint32_t rss_hash, rss_type;
  189 #endif
  190 
  191         /*
  192          * If no reassembling or maxfragsperpacket are 0,
  193          * never accept fragments.
  194          * Also, drop packet if it would exceed the maximum
  195          * number of fragments.
  196          */
  197         tmpmax = maxfrags;
  198         if (V_noreass == 1 || V_maxfragsperpacket == 0 ||
  199             (tmpmax >= 0 && atomic_load_int(&nfrags) >= (u_int)tmpmax)) {
  200                 IPSTAT_INC(ips_fragments);
  201                 IPSTAT_INC(ips_fragdropped);
  202                 m_freem(m);
  203                 return (NULL);
  204         }
  205 
  206         ip = mtod(m, struct ip *);
  207         hlen = ip->ip_hl << 2;
  208 
  209         /*
  210          * Adjust ip_len to not reflect header,
  211          * convert offset of this to bytes.
  212          */
  213         ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
  214         /*
  215          * Make sure that fragments have a data length
  216          * that's a non-zero multiple of 8 bytes, unless
  217          * this is the last fragment.
  218          */
  219         if (ip->ip_len == htons(0) ||
  220             ((ip->ip_off & htons(IP_MF)) && (ntohs(ip->ip_len) & 0x7) != 0)) {
  221                 IPSTAT_INC(ips_toosmall); /* XXX */
  222                 IPSTAT_INC(ips_fragdropped);
  223                 m_freem(m);
  224                 return (NULL);
  225         }
  226         if (ip->ip_off & htons(IP_MF))
  227                 m->m_flags |= M_IP_FRAG;
  228         else
  229                 m->m_flags &= ~M_IP_FRAG;
  230         ip->ip_off = htons(ntohs(ip->ip_off) << 3);
  231 
  232         /*
  233          * Make sure the fragment lies within a packet of valid size.
  234          */
  235         if (ntohs(ip->ip_len) + ntohs(ip->ip_off) > IP_MAXPACKET) {
  236                 IPSTAT_INC(ips_toolong);
  237                 IPSTAT_INC(ips_fragdropped);
  238                 m_freem(m);
  239                 return (NULL);
  240         }
  241 
  242         /*
  243          * Attempt reassembly; if it succeeds, proceed.
  244          * ip_reass() will return a different mbuf.
  245          */
  246         IPSTAT_INC(ips_fragments);
  247         m->m_pkthdr.PH_loc.ptr = ip;
  248 
  249         /*
  250          * Presence of header sizes in mbufs
  251          * would confuse code below.
  252          */
  253         m->m_data += hlen;
  254         m->m_len -= hlen;
  255 
  256         hashkey[0] = ip->ip_src.s_addr;
  257         hashkey[1] = ip->ip_dst.s_addr;
  258         hashkey[2] = (uint32_t)ip->ip_p << 16;
  259         hashkey[2] += ip->ip_id;
  260         hash = jenkins_hash32(hashkey, nitems(hashkey), V_ipq_hashseed);
  261         hash &= IPREASS_HMASK;
  262         head = &V_ipq[hash].head;
  263         IPQ_LOCK(hash);
  264 
  265         /*
  266          * Look for queue of fragments
  267          * of this datagram.
  268          */
  269         TAILQ_FOREACH(fp, head, ipq_list)
  270                 if (ip->ip_id == fp->ipq_id &&
  271                     ip->ip_src.s_addr == fp->ipq_src.s_addr &&
  272                     ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
  273 #ifdef MAC
  274                     mac_ipq_match(m, fp) &&
  275 #endif
  276                     ip->ip_p == fp->ipq_p)
  277                         break;
  278         /*
  279          * If first fragment to arrive, create a reassembly queue.
  280          */
  281         if (fp == NULL) {
  282                 if (V_ipq[hash].count < V_ipreass_maxbucketsize)
  283                         fp = uma_zalloc(V_ipq_zone, M_NOWAIT);
  284                 if (fp == NULL)
  285                         fp = ipq_reuse(hash);
  286                 if (fp == NULL)
  287                         goto dropfrag;
  288 #ifdef MAC
  289                 if (mac_ipq_init(fp, M_NOWAIT) != 0) {
  290                         uma_zfree(V_ipq_zone, fp);
  291                         fp = NULL;
  292                         goto dropfrag;
  293                 }
  294                 mac_ipq_create(m, fp);
  295 #endif
  296                 TAILQ_INSERT_HEAD(head, fp, ipq_list);
  297                 V_ipq[hash].count++;
  298                 fp->ipq_nfrags = 1;
  299                 atomic_add_int(&nfrags, 1);
  300                 fp->ipq_ttl = IPFRAGTTL;
  301                 fp->ipq_p = ip->ip_p;
  302                 fp->ipq_id = ip->ip_id;
  303                 fp->ipq_src = ip->ip_src;
  304                 fp->ipq_dst = ip->ip_dst;
  305                 fp->ipq_frags = m;
  306                 if (m->m_flags & M_IP_FRAG)
  307                         fp->ipq_maxoff = -1;
  308                 else
  309                         fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  310                 m->m_nextpkt = NULL;
  311                 goto done;
  312         } else {
  313                 /*
  314                  * If we already saw the last fragment, make sure
  315                  * this fragment's offset looks sane. Otherwise, if
  316                  * this is the last fragment, record its endpoint.
  317                  */
  318                 if (fp->ipq_maxoff > 0) {
  319                         i = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  320                         if (((m->m_flags & M_IP_FRAG) && i >= fp->ipq_maxoff) ||
  321                             ((m->m_flags & M_IP_FRAG) == 0 &&
  322                             i != fp->ipq_maxoff)) {
  323                                 fp = NULL;
  324                                 goto dropfrag;
  325                         }
  326                 } else if ((m->m_flags & M_IP_FRAG) == 0)
  327                         fp->ipq_maxoff = ntohs(ip->ip_off) + ntohs(ip->ip_len);
  328                 fp->ipq_nfrags++;
  329                 atomic_add_int(&nfrags, 1);
  330 #ifdef MAC
  331                 mac_ipq_update(m, fp);
  332 #endif
  333         }
  334 
  335 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.PH_loc.ptr))
  336 
  337         /*
  338          * Handle ECN by comparing this segment with the first one;
  339          * if CE is set, do not lose CE.
  340          * drop if CE and not-ECT are mixed for the same packet.
  341          */
  342         ecn = ip->ip_tos & IPTOS_ECN_MASK;
  343         ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
  344         if (ecn == IPTOS_ECN_CE) {
  345                 if (ecn0 == IPTOS_ECN_NOTECT)
  346                         goto dropfrag;
  347                 if (ecn0 != IPTOS_ECN_CE)
  348                         GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
  349         }
  350         if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
  351                 goto dropfrag;
  352 
  353         /*
  354          * Find a segment which begins after this one does.
  355          */
  356         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
  357                 if (ntohs(GETIP(q)->ip_off) > ntohs(ip->ip_off))
  358                         break;
  359 
  360         /*
  361          * If there is a preceding segment, it may provide some of
  362          * our data already.  If so, drop the data from the incoming
  363          * segment.  If it provides all of our data, drop us, otherwise
  364          * stick new segment in the proper place.
  365          *
  366          * If some of the data is dropped from the preceding
  367          * segment, then it's checksum is invalidated.
  368          */
  369         if (p) {
  370                 i = ntohs(GETIP(p)->ip_off) + ntohs(GETIP(p)->ip_len) -
  371                     ntohs(ip->ip_off);
  372                 if (i > 0) {
  373                         if (i >= ntohs(ip->ip_len))
  374                                 goto dropfrag;
  375                         m_adj(m, i);
  376                         m->m_pkthdr.csum_flags = 0;
  377                         ip->ip_off = htons(ntohs(ip->ip_off) + i);
  378                         ip->ip_len = htons(ntohs(ip->ip_len) - i);
  379                 }
  380                 m->m_nextpkt = p->m_nextpkt;
  381                 p->m_nextpkt = m;
  382         } else {
  383                 m->m_nextpkt = fp->ipq_frags;
  384                 fp->ipq_frags = m;
  385         }
  386 
  387         /*
  388          * While we overlap succeeding segments trim them or,
  389          * if they are completely covered, dequeue them.
  390          */
  391         for (; q != NULL && ntohs(ip->ip_off) + ntohs(ip->ip_len) >
  392             ntohs(GETIP(q)->ip_off); q = nq) {
  393                 i = (ntohs(ip->ip_off) + ntohs(ip->ip_len)) -
  394                     ntohs(GETIP(q)->ip_off);
  395                 if (i < ntohs(GETIP(q)->ip_len)) {
  396                         GETIP(q)->ip_len = htons(ntohs(GETIP(q)->ip_len) - i);
  397                         GETIP(q)->ip_off = htons(ntohs(GETIP(q)->ip_off) + i);
  398                         m_adj(q, i);
  399                         q->m_pkthdr.csum_flags = 0;
  400                         break;
  401                 }
  402                 nq = q->m_nextpkt;
  403                 m->m_nextpkt = nq;
  404                 IPSTAT_INC(ips_fragdropped);
  405                 fp->ipq_nfrags--;
  406                 atomic_subtract_int(&nfrags, 1);
  407                 m_freem(q);
  408         }
  409 
  410         /*
  411          * Check for complete reassembly and perform frag per packet
  412          * limiting.
  413          *
  414          * Frag limiting is performed here so that the nth frag has
  415          * a chance to complete the packet before we drop the packet.
  416          * As a result, n+1 frags are actually allowed per packet, but
  417          * only n will ever be stored. (n = maxfragsperpacket.)
  418          *
  419          */
  420         next = 0;
  421         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
  422                 if (ntohs(GETIP(q)->ip_off) != next) {
  423                         if (fp->ipq_nfrags > V_maxfragsperpacket)
  424                                 ipq_drop(&V_ipq[hash], fp);
  425                         goto done;
  426                 }
  427                 next += ntohs(GETIP(q)->ip_len);
  428         }
  429         /* Make sure the last packet didn't have the IP_MF flag */
  430         if (p->m_flags & M_IP_FRAG) {
  431                 if (fp->ipq_nfrags > V_maxfragsperpacket)
  432                         ipq_drop(&V_ipq[hash], fp);
  433                 goto done;
  434         }
  435 
  436         /*
  437          * Reassembly is complete.  Make sure the packet is a sane size.
  438          */
  439         q = fp->ipq_frags;
  440         ip = GETIP(q);
  441         if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
  442                 IPSTAT_INC(ips_toolong);
  443                 ipq_drop(&V_ipq[hash], fp);
  444                 goto done;
  445         }
  446 
  447         /*
  448          * Concatenate fragments.
  449          */
  450         m = q;
  451         t = m->m_next;
  452         m->m_next = NULL;
  453         m_cat(m, t);
  454         nq = q->m_nextpkt;
  455         q->m_nextpkt = NULL;
  456         for (q = nq; q != NULL; q = nq) {
  457                 nq = q->m_nextpkt;
  458                 q->m_nextpkt = NULL;
  459                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
  460                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
  461                 m_demote_pkthdr(q);
  462                 m_cat(m, q);
  463         }
  464         /*
  465          * In order to do checksumming faster we do 'end-around carry' here
  466          * (and not in for{} loop), though it implies we are not going to
  467          * reassemble more than 64k fragments.
  468          */
  469         while (m->m_pkthdr.csum_data & 0xffff0000)
  470                 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_data & 0xffff) +
  471                     (m->m_pkthdr.csum_data >> 16);
  472         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  473 #ifdef MAC
  474         mac_ipq_reassemble(fp, m);
  475         mac_ipq_destroy(fp);
  476 #endif
  477 
  478         /*
  479          * Create header for new ip packet by modifying header of first
  480          * packet;  dequeue and discard fragment reassembly header.
  481          * Make header visible.
  482          */
  483         ip->ip_len = htons((ip->ip_hl << 2) + next);
  484         ip->ip_src = fp->ipq_src;
  485         ip->ip_dst = fp->ipq_dst;
  486         TAILQ_REMOVE(head, fp, ipq_list);
  487         V_ipq[hash].count--;
  488         uma_zfree(V_ipq_zone, fp);
  489         m->m_len += (ip->ip_hl << 2);
  490         m->m_data -= (ip->ip_hl << 2);
  491         /* some debugging cruft by sklower, below, will go away soon */
  492         if (m->m_flags & M_PKTHDR)      /* XXX this should be done elsewhere */
  493                 m_fixhdr(m);
  494         IPSTAT_INC(ips_reassembled);
  495         IPQ_UNLOCK(hash);
  496 
  497 #ifdef  RSS
  498         /*
  499          * Query the RSS layer for the flowid / flowtype for the
  500          * mbuf payload.
  501          *
  502          * For now, just assume we have to calculate a new one.
  503          * Later on we should check to see if the assigned flowid matches
  504          * what RSS wants for the given IP protocol and if so, just keep it.
  505          *
  506          * We then queue into the relevant netisr so it can be dispatched
  507          * to the correct CPU.
  508          *
  509          * Note - this may return 1, which means the flowid in the mbuf
  510          * is correct for the configured RSS hash types and can be used.
  511          */
  512         if (rss_mbuf_software_hash_v4(m, 0, &rss_hash, &rss_type) == 0) {
  513                 m->m_pkthdr.flowid = rss_hash;
  514                 M_HASHTYPE_SET(m, rss_type);
  515         }
  516 
  517         /*
  518          * Queue/dispatch for reprocessing.
  519          *
  520          * Note: this is much slower than just handling the frame in the
  521          * current receive context.  It's likely worth investigating
  522          * why this is.
  523          */
  524         netisr_dispatch(NETISR_IP_DIRECT, m);
  525         return (NULL);
  526 #endif
  527 
  528         /* Handle in-line */
  529         return (m);
  530 
  531 dropfrag:
  532         IPSTAT_INC(ips_fragdropped);
  533         if (fp != NULL) {
  534                 fp->ipq_nfrags--;
  535                 atomic_subtract_int(&nfrags, 1);
  536         }
  537         m_freem(m);
  538 done:
  539         IPQ_UNLOCK(hash);
  540         return (NULL);
  541 
  542 #undef GETIP
  543 }
  544 
  545 /*
  546  * Initialize IP reassembly structures.
  547  */
  548 void
  549 ipreass_init(void)
  550 {
  551         int max;
  552 
  553         for (int i = 0; i < IPREASS_NHASH; i++) {
  554                 TAILQ_INIT(&V_ipq[i].head);
  555                 mtx_init(&V_ipq[i].lock, "IP reassembly", NULL,
  556                     MTX_DEF | MTX_DUPOK);
  557                 V_ipq[i].count = 0;
  558         }
  559         V_ipq_hashseed = arc4random();
  560         V_maxfragsperpacket = 16;
  561         V_ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
  562             NULL, UMA_ALIGN_PTR, 0);
  563         max = IP_MAXFRAGPACKETS;
  564         max = uma_zone_set_max(V_ipq_zone, max);
  565         V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  566 
  567         if (IS_DEFAULT_VNET(curvnet)) {
  568                 maxfrags = IP_MAXFRAGS;
  569                 EVENTHANDLER_REGISTER(nmbclusters_change, ipreass_zone_change,
  570                     NULL, EVENTHANDLER_PRI_ANY);
  571         }
  572 }
  573 
  574 /*
  575  * If a timer expires on a reassembly queue, discard it.
  576  */
  577 void
  578 ipreass_slowtimo(void)
  579 {
  580         struct ipq *fp, *tmp;
  581 
  582         for (int i = 0; i < IPREASS_NHASH; i++) {
  583                 IPQ_LOCK(i);
  584                 TAILQ_FOREACH_SAFE(fp, &V_ipq[i].head, ipq_list, tmp)
  585                 if (--fp->ipq_ttl == 0)
  586                                 ipq_timeout(&V_ipq[i], fp);
  587                 IPQ_UNLOCK(i);
  588         }
  589 }
  590 
  591 /*
  592  * Drain off all datagram fragments.
  593  */
  594 void
  595 ipreass_drain(void)
  596 {
  597 
  598         for (int i = 0; i < IPREASS_NHASH; i++) {
  599                 IPQ_LOCK(i);
  600                 while(!TAILQ_EMPTY(&V_ipq[i].head))
  601                         ipq_drop(&V_ipq[i], TAILQ_FIRST(&V_ipq[i].head));
  602                 KASSERT(V_ipq[i].count == 0,
  603                     ("%s: V_ipq[%d] count %d (V_ipq=%p)", __func__, i,
  604                     V_ipq[i].count, V_ipq));
  605                 IPQ_UNLOCK(i);
  606         }
  607 }
  608 
  609 #ifdef VIMAGE
  610 /*
  611  * Destroy IP reassembly structures.
  612  */
  613 void
  614 ipreass_destroy(void)
  615 {
  616 
  617         ipreass_drain();
  618         uma_zdestroy(V_ipq_zone);
  619         for (int i = 0; i < IPREASS_NHASH; i++)
  620                 mtx_destroy(&V_ipq[i].lock);
  621 }
  622 #endif
  623 
  624 /*
  625  * After maxnipq has been updated, propagate the change to UMA.  The UMA zone
  626  * max has slightly different semantics than the sysctl, for historical
  627  * reasons.
  628  */
  629 static void
  630 ipreass_drain_tomax(void)
  631 {
  632         struct ipq *fp;
  633         int target;
  634 
  635         /*
  636          * Make sure each bucket is under the new limit. If
  637          * necessary, drop enough of the oldest elements from
  638          * each bucket to get under the new limit.
  639          */
  640         for (int i = 0; i < IPREASS_NHASH; i++) {
  641                 IPQ_LOCK(i);
  642                 while (V_ipq[i].count > V_ipreass_maxbucketsize &&
  643                     (fp = TAILQ_LAST(&V_ipq[i].head, ipqhead)) != NULL)
  644                         ipq_timeout(&V_ipq[i], fp);
  645                 IPQ_UNLOCK(i);
  646         }
  647 
  648         /*
  649          * If we are over the maximum number of fragments,
  650          * drain off enough to get down to the new limit,
  651          * stripping off last elements on queues.  Every
  652          * run we strip the oldest element from each bucket.
  653          */
  654         target = uma_zone_get_max(V_ipq_zone);
  655         while (uma_zone_get_cur(V_ipq_zone) > target) {
  656                 for (int i = 0; i < IPREASS_NHASH; i++) {
  657                         IPQ_LOCK(i);
  658                         fp = TAILQ_LAST(&V_ipq[i].head, ipqhead);
  659                         if (fp != NULL)
  660                                 ipq_timeout(&V_ipq[i], fp);
  661                         IPQ_UNLOCK(i);
  662                 }
  663         }
  664 }
  665 
  666 static void
  667 ipreass_zone_change(void *tag)
  668 {
  669         VNET_ITERATOR_DECL(vnet_iter);
  670         int max;
  671 
  672         maxfrags = IP_MAXFRAGS;
  673         max = IP_MAXFRAGPACKETS;
  674         VNET_LIST_RLOCK_NOSLEEP();
  675         VNET_FOREACH(vnet_iter) {
  676                 CURVNET_SET(vnet_iter);
  677                 max = uma_zone_set_max(V_ipq_zone, max);
  678                 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  679                 ipreass_drain_tomax();
  680                 CURVNET_RESTORE();
  681         }
  682         VNET_LIST_RUNLOCK_NOSLEEP();
  683 }
  684 
  685 /*
  686  * Change the limit on the UMA zone, or disable the fragment allocation
  687  * at all.  Since 0 and -1 is a special values here, we need our own handler,
  688  * instead of sysctl_handle_uma_zone_max().
  689  */
  690 static int
  691 sysctl_maxfragpackets(SYSCTL_HANDLER_ARGS)
  692 {
  693         int error, max;
  694 
  695         if (V_noreass == 0) {
  696                 max = uma_zone_get_max(V_ipq_zone);
  697                 if (max == 0)
  698                         max = -1;
  699         } else 
  700                 max = 0;
  701         error = sysctl_handle_int(oidp, &max, 0, req);
  702         if (error || !req->newptr)
  703                 return (error);
  704         if (max > 0) {
  705                 /*
  706                  * XXXRW: Might be a good idea to sanity check the argument
  707                  * and place an extreme upper bound.
  708                  */
  709                 max = uma_zone_set_max(V_ipq_zone, max);
  710                 V_ipreass_maxbucketsize = imax(max / (IPREASS_NHASH / 2), 1);
  711                 ipreass_drain_tomax();
  712                 V_noreass = 0;
  713         } else if (max == 0) {
  714                 V_noreass = 1;
  715                 ipreass_drain();
  716         } else if (max == -1) {
  717                 V_noreass = 0;
  718                 uma_zone_set_max(V_ipq_zone, 0);
  719                 V_ipreass_maxbucketsize = INT_MAX;
  720         } else
  721                 return (EINVAL);
  722         return (0);
  723 }
  724 
  725 /*
  726  * Seek for old fragment queue header that can be reused.  Try to
  727  * reuse a header from currently locked hash bucket.
  728  */
  729 static struct ipq *
  730 ipq_reuse(int start)
  731 {
  732         struct ipq *fp;
  733         int bucket, i;
  734 
  735         IPQ_LOCK_ASSERT(start);
  736 
  737         for (i = 0; i < IPREASS_NHASH; i++) {
  738                 bucket = (start + i) % IPREASS_NHASH;
  739                 if (bucket != start && IPQ_TRYLOCK(bucket) == 0)
  740                         continue;
  741                 fp = TAILQ_LAST(&V_ipq[bucket].head, ipqhead);
  742                 if (fp) {
  743                         struct mbuf *m;
  744 
  745                         IPSTAT_ADD(ips_fragtimeout, fp->ipq_nfrags);
  746                         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  747                         while (fp->ipq_frags) {
  748                                 m = fp->ipq_frags;
  749                                 fp->ipq_frags = m->m_nextpkt;
  750                                 m_freem(m);
  751                         }
  752                         TAILQ_REMOVE(&V_ipq[bucket].head, fp, ipq_list);
  753                         V_ipq[bucket].count--;
  754                         if (bucket != start)
  755                                 IPQ_UNLOCK(bucket);
  756                         break;
  757                 }
  758                 if (bucket != start)
  759                         IPQ_UNLOCK(bucket);
  760         }
  761         IPQ_LOCK_ASSERT(start);
  762         return (fp);
  763 }
  764 
  765 /*
  766  * Free a fragment reassembly header and all associated datagrams.
  767  */
  768 static void
  769 ipq_free(struct ipqbucket *bucket, struct ipq *fp)
  770 {
  771         struct mbuf *q;
  772 
  773         atomic_subtract_int(&nfrags, fp->ipq_nfrags);
  774         while (fp->ipq_frags) {
  775                 q = fp->ipq_frags;
  776                 fp->ipq_frags = q->m_nextpkt;
  777                 m_freem(q);
  778         }
  779         TAILQ_REMOVE(&bucket->head, fp, ipq_list);
  780         bucket->count--;
  781         uma_zfree(V_ipq_zone, fp);
  782 }
  783 
  784 /*
  785  * Get or set the maximum number of reassembly queues per bucket.
  786  */
  787 static int
  788 sysctl_maxfragbucketsize(SYSCTL_HANDLER_ARGS)
  789 {
  790         int error, max;
  791 
  792         max = V_ipreass_maxbucketsize;
  793         error = sysctl_handle_int(oidp, &max, 0, req);
  794         if (error || !req->newptr)
  795                 return (error);
  796         if (max <= 0)
  797                 return (EINVAL);
  798         V_ipreass_maxbucketsize = max;
  799         ipreass_drain_tomax();
  800         return (0);
  801 }

Cache object: 4c0a4c1a14278c8cd3e8c599c3dd0497


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.