The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/ip_reass.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*      $NetBSD: ip_reass.c,v 1.23 2022/05/31 08:43:16 andvar Exp $     */
    2 
    3 /*
    4  * Copyright (c) 1982, 1986, 1988, 1993
    5  *      The Regents of the University of California.  All rights reserved.
    6  *
    7  * Redistribution and use in source and binary forms, with or without
    8  * modification, are permitted provided that the following conditions
    9  * are met:
   10  * 1. Redistributions of source code must retain the above copyright
   11  *    notice, this list of conditions and the following disclaimer.
   12  * 2. Redistributions in binary form must reproduce the above copyright
   13  *    notice, this list of conditions and the following disclaimer in the
   14  *    documentation and/or other materials provided with the distribution.
   15  * 3. Neither the name of the University nor the names of its contributors
   16  *    may be used to endorse or promote products derived from this software
   17  *    without specific prior written permission.
   18  *
   19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   29  * SUCH DAMAGE.
   30  *
   31  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
   32  */
   33 
   34 /*
   35  * IP reassembly.
   36  *
   37  * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for IP
   38  * reassembly queue buffer management.
   39  *
   40  * We keep a count of total IP fragments (NB: not fragmented packets),
   41  * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments.
   42  * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the total
   43  * fragments in reassembly queues.  This AIMD policy avoids repeatedly
   44  * deleting single packets under heavy fragmentation load (e.g., from lossy
   45  * NFS peers).
   46  */
   47 
   48 #include <sys/cdefs.h>
   49 __KERNEL_RCSID(0, "$NetBSD: ip_reass.c,v 1.23 2022/05/31 08:43:16 andvar Exp $");
   50 
   51 #include <sys/param.h>
   52 #include <sys/types.h>
   53 
   54 #include <sys/malloc.h>
   55 #include <sys/mbuf.h>
   56 #include <sys/mutex.h>
   57 #include <sys/pool.h>
   58 #include <sys/queue.h>
   59 #include <sys/sysctl.h>
   60 #include <sys/systm.h>
   61 
   62 #include <net/if.h>
   63 
   64 #include <netinet/in.h>
   65 #include <netinet/in_systm.h>
   66 #include <netinet/ip.h>
   67 #include <netinet/in_pcb.h>
   68 #include <netinet/ip_var.h>
   69 #include <netinet/ip_private.h>
   70 #include <netinet/in_var.h>
   71 
   72 /*
   73  * IP reassembly queue structures.  Each fragment being reassembled is
   74  * attached to one of these structures.  They are timed out after TTL
   75  * drops to 0, and may also be reclaimed if memory becomes tight.
   76  */
   77 
   78 typedef struct ipfr_qent {
   79         TAILQ_ENTRY(ipfr_qent)  ipqe_q;
   80         struct ip *             ipqe_ip;
   81         struct mbuf *           ipqe_m;
   82         bool                    ipqe_mff;
   83         uint16_t                ipqe_off;
   84         uint16_t                ipqe_len;
   85 } ipfr_qent_t;
   86 
   87 TAILQ_HEAD(ipfr_qent_head, ipfr_qent);
   88 
   89 typedef struct ipfr_queue {
   90         LIST_ENTRY(ipfr_queue)  ipq_q;          /* to other reass headers */
   91         struct ipfr_qent_head   ipq_fragq;      /* queue of fragment entries */
   92         uint8_t                 ipq_ttl;        /* time for reass q to live */
   93         uint8_t                 ipq_p;          /* protocol of this fragment */
   94         uint16_t                ipq_id;         /* sequence id for reassembly */
   95         struct in_addr          ipq_src;
   96         struct in_addr          ipq_dst;
   97         uint16_t                ipq_nfrags;     /* frags in this queue entry */
   98         uint8_t                 ipq_tos;        /* TOS of this fragment */
   99         int                     ipq_ipsec;      /* IPsec flags */
  100 } ipfr_queue_t;
  101 
  102 /*
  103  * Hash table of IP reassembly queues.
  104  */
  105 #define IPREASS_HASH_SHIFT      6
  106 #define IPREASS_HASH_SIZE       (1 << IPREASS_HASH_SHIFT)
  107 #define IPREASS_HASH_MASK       (IPREASS_HASH_SIZE - 1)
  108 #define IPREASS_HASH(x, y) \
  109         (((((x) & 0xf) | ((((x) >> 8) & 0xf) << 4)) ^ (y)) & IPREASS_HASH_MASK)
  110 
  111 static LIST_HEAD(, ipfr_queue)  ip_frags[IPREASS_HASH_SIZE];
  112 static pool_cache_t     ipfren_cache;
  113 static kmutex_t         ipfr_lock;
  114 
  115 /* Number of packets in reassembly queue and total number of fragments. */
  116 static int              ip_nfragpackets;
  117 static int              ip_nfrags;
  118 
  119 /* Limits on packet and fragments. */
  120 static int              ip_maxfragpackets;
  121 static int              ip_maxfrags;
  122 
  123 /*
  124  * Cached copy of nmbclusters.  If nbclusters is different, recalculate
  125  * IP parameters derived from nmbclusters.
  126  */
  127 static int              ip_nmbclusters;
  128 
  129 /*
  130  * IP reassembly TTL machinery for multiplicative drop.
  131  */
  132 static u_int            fragttl_histo[IPFRAGTTL + 1];
  133 
  134 static struct sysctllog *ip_reass_sysctllog;
  135 
  136 void                    sysctl_ip_reass_setup(void);
  137 static void             ip_nmbclusters_changed(void);
  138 
  139 static struct mbuf *    ip_reass(ipfr_qent_t *, ipfr_queue_t *, u_int);
  140 static u_int            ip_reass_ttl_decr(u_int ticks);
  141 static void             ip_reass_drophalf(void);
  142 static void             ip_freef(ipfr_queue_t *);
  143 
  144 /*
  145  * ip_reass_init:
  146  *
  147  *      Initialization of IP reassembly mechanism.
  148  */
  149 void
  150 ip_reass_init(void)
  151 {
  152         int i;
  153 
  154         ipfren_cache = pool_cache_init(sizeof(ipfr_qent_t), coherency_unit,
  155             0, 0, "ipfrenpl", NULL, IPL_NET, NULL, NULL, NULL);
  156         mutex_init(&ipfr_lock, MUTEX_DEFAULT, IPL_VM);
  157 
  158         for (i = 0; i < IPREASS_HASH_SIZE; i++) {
  159                 LIST_INIT(&ip_frags[i]);
  160         }
  161         ip_maxfragpackets = 200;
  162         ip_maxfrags = 0;
  163         ip_nmbclusters_changed();
  164 
  165         sysctl_ip_reass_setup();
  166 }
  167 
  168 void
  169 sysctl_ip_reass_setup(void)
  170 {
  171 
  172         sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
  173                 CTLFLAG_PERMANENT,
  174                 CTLTYPE_NODE, "inet",
  175                 SYSCTL_DESCR("PF_INET related settings"),
  176                 NULL, 0, NULL, 0,
  177                 CTL_NET, PF_INET, CTL_EOL);
  178         sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
  179                 CTLFLAG_PERMANENT,
  180                 CTLTYPE_NODE, "ip",
  181                 SYSCTL_DESCR("IPv4 related settings"),
  182                 NULL, 0, NULL, 0,
  183                 CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL);
  184 
  185         sysctl_createv(&ip_reass_sysctllog, 0, NULL, NULL,
  186                 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
  187                 CTLTYPE_INT, "maxfragpackets",
  188                 SYSCTL_DESCR("Maximum number of fragments to retain for "
  189                              "possible reassembly"),
  190                 NULL, 0, &ip_maxfragpackets, 0,
  191                 CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL);
  192 }
  193 
  194 #define CHECK_NMBCLUSTER_PARAMS()                               \
  195 do {                                                            \
  196         if (__predict_false(ip_nmbclusters != nmbclusters))     \
  197                 ip_nmbclusters_changed();                       \
  198 } while (/*CONSTCOND*/0)
  199 
  200 /*
  201  * Compute IP limits derived from the value of nmbclusters.
  202  */
  203 static void
  204 ip_nmbclusters_changed(void)
  205 {
  206         ip_maxfrags = nmbclusters / 4;
  207         ip_nmbclusters = nmbclusters;
  208 }
  209 
  210 /*
  211  * ip_reass:
  212  *
  213  *      Take incoming datagram fragment and try to reassemble it into whole
  214  *      datagram.  If a chain for reassembly of this datagram already exists,
  215  *      then it is given as 'fp'; otherwise have to make a chain.
  216  */
  217 static struct mbuf *
  218 ip_reass(ipfr_qent_t *ipqe, ipfr_queue_t *fp, const u_int hash)
  219 {
  220         struct ip *ip = ipqe->ipqe_ip;
  221         const int hlen = ip->ip_hl << 2;
  222         struct mbuf *m = ipqe->ipqe_m, *t;
  223         int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
  224         ipfr_qent_t *nq, *p, *q;
  225         int i, next;
  226 
  227         KASSERT(mutex_owned(&ipfr_lock));
  228 
  229         /*
  230          * Presence of header sizes in mbufs would confuse code below.
  231          */
  232         m->m_data += hlen;
  233         m->m_len -= hlen;
  234 
  235         /*
  236          * We are about to add a fragment; increment frag count.
  237          */
  238         ip_nfrags++;
  239 
  240         /*
  241          * If first fragment to arrive, create a reassembly queue.
  242          */
  243         if (fp == NULL) {
  244                 /*
  245                  * Enforce upper bound on number of fragmented packets
  246                  * for which we attempt reassembly:  a) if maxfrag is 0,
  247                  * never accept fragments  b) if maxfrag is -1, accept
  248                  * all fragments without limitation.
  249                  */
  250                 if (ip_maxfragpackets < 0) {
  251                         /* no limit */
  252                 } else if (ip_nfragpackets >= ip_maxfragpackets) {
  253                         goto dropfrag;
  254                 }
  255                 fp = malloc(sizeof(ipfr_queue_t), M_FTABLE, M_NOWAIT);
  256                 if (fp == NULL) {
  257                         goto dropfrag;
  258                 }
  259                 ip_nfragpackets++;
  260                 TAILQ_INIT(&fp->ipq_fragq);
  261                 fp->ipq_nfrags = 1;
  262                 fp->ipq_ttl = IPFRAGTTL;
  263                 fp->ipq_p = ip->ip_p;
  264                 fp->ipq_id = ip->ip_id;
  265                 fp->ipq_tos = ip->ip_tos;
  266                 fp->ipq_ipsec = ipsecflags;
  267                 fp->ipq_src = ip->ip_src;
  268                 fp->ipq_dst = ip->ip_dst;
  269                 LIST_INSERT_HEAD(&ip_frags[hash], fp, ipq_q);
  270                 p = NULL;
  271                 goto insert;
  272         } else {
  273                 fp->ipq_nfrags++;
  274         }
  275 
  276         /*
  277          * Find a segment which begins after this one does.
  278          */
  279         TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
  280                 if (q->ipqe_off > ipqe->ipqe_off)
  281                         break;
  282         }
  283         if (q != NULL) {
  284                 p = TAILQ_PREV(q, ipfr_qent_head, ipqe_q);
  285         } else {
  286                 p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
  287         }
  288 
  289         /*
  290          * Look at the preceding segment.
  291          *
  292          * If it provides some of our data already, in part or entirely, trim
  293          * us or drop us.
  294          *
  295          * If a preceding segment exists, and was marked as the last segment,
  296          * drop us.
  297          */
  298         if (p != NULL) {
  299                 i = p->ipqe_off + p->ipqe_len - ipqe->ipqe_off;
  300                 if (i > 0) {
  301                         if (i >= ipqe->ipqe_len) {
  302                                 goto dropfrag;
  303                         }
  304                         m_adj(ipqe->ipqe_m, i);
  305                         ipqe->ipqe_off = ipqe->ipqe_off + i;
  306                         ipqe->ipqe_len = ipqe->ipqe_len - i;
  307                 }
  308         }
  309         if (p != NULL && !p->ipqe_mff) {
  310                 goto dropfrag;
  311         }
  312 
  313         /*
  314          * Look at the segments that follow.
  315          *
  316          * If we cover them, in part or entirely, trim them or dequeue them.
  317          *
  318          * If a following segment exists, and we are marked as the last
  319          * segment, drop us.
  320          */
  321         while (q != NULL) {
  322                 i = ipqe->ipqe_off + ipqe->ipqe_len - q->ipqe_off;
  323                 if (i <= 0) {
  324                         break;
  325                 }
  326                 if (i < q->ipqe_len) {
  327                         q->ipqe_off = q->ipqe_off + i;
  328                         q->ipqe_len = q->ipqe_len - i;
  329                         m_adj(q->ipqe_m, i);
  330                         break;
  331                 }
  332                 nq = TAILQ_NEXT(q, ipqe_q);
  333                 m_freem(q->ipqe_m);
  334                 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
  335                 pool_cache_put(ipfren_cache, q);
  336                 fp->ipq_nfrags--;
  337                 ip_nfrags--;
  338                 q = nq;
  339         }
  340         if (q != NULL && !ipqe->ipqe_mff) {
  341                 goto dropfrag;
  342         }
  343 
  344 insert:
  345         /*
  346          * Stick new segment in its place; check for complete reassembly.
  347          */
  348         if (p == NULL) {
  349                 TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
  350         } else {
  351                 TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q);
  352         }
  353         next = 0;
  354         TAILQ_FOREACH(q, &fp->ipq_fragq, ipqe_q) {
  355                 if (q->ipqe_off != next) {
  356                         mutex_exit(&ipfr_lock);
  357                         return NULL;
  358                 }
  359                 next += q->ipqe_len;
  360         }
  361         p = TAILQ_LAST(&fp->ipq_fragq, ipfr_qent_head);
  362         if (p->ipqe_mff) {
  363                 mutex_exit(&ipfr_lock);
  364                 return NULL;
  365         }
  366 
  367         /*
  368          * Reassembly is complete.  Check for a bogus message size.
  369          */
  370         q = TAILQ_FIRST(&fp->ipq_fragq);
  371         ip = q->ipqe_ip;
  372         if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
  373                 IP_STATINC(IP_STAT_TOOLONG);
  374                 ip_freef(fp);
  375                 mutex_exit(&ipfr_lock);
  376                 return NULL;
  377         }
  378         LIST_REMOVE(fp, ipq_q);
  379         ip_nfrags -= fp->ipq_nfrags;
  380         ip_nfragpackets--;
  381         mutex_exit(&ipfr_lock);
  382 
  383         /* Concatenate all fragments. */
  384         m = q->ipqe_m;
  385         t = m->m_next;
  386         m->m_next = NULL;
  387         m_cat(m, t);
  388         nq = TAILQ_NEXT(q, ipqe_q);
  389         pool_cache_put(ipfren_cache, q);
  390 
  391         for (q = nq; q != NULL; q = nq) {
  392                 t = q->ipqe_m;
  393                 nq = TAILQ_NEXT(q, ipqe_q);
  394                 pool_cache_put(ipfren_cache, q);
  395                 m_remove_pkthdr(t);
  396                 m_cat(m, t);
  397         }
  398 
  399         /*
  400          * Create header for new packet by modifying header of first
  401          * packet.  Dequeue and discard fragment reassembly header.  Make
  402          * header visible.
  403          */
  404         ip->ip_len = htons((ip->ip_hl << 2) + next);
  405         ip->ip_off = htons(0);
  406         ip->ip_src = fp->ipq_src;
  407         ip->ip_dst = fp->ipq_dst;
  408         free(fp, M_FTABLE);
  409 
  410         m->m_len += (ip->ip_hl << 2);
  411         m->m_data -= (ip->ip_hl << 2);
  412 
  413         /* Fix up mbuf.  XXX This should be done elsewhere. */
  414         {
  415                 KASSERT(m->m_flags & M_PKTHDR);
  416                 int plen = 0;
  417                 for (t = m; t; t = t->m_next) {
  418                         plen += t->m_len;
  419                 }
  420                 m->m_pkthdr.len = plen;
  421                 m->m_pkthdr.csum_flags = 0;
  422         }
  423         return m;
  424 
  425 dropfrag:
  426         if (fp != NULL) {
  427                 fp->ipq_nfrags--;
  428         }
  429         ip_nfrags--;
  430         IP_STATINC(IP_STAT_FRAGDROPPED);
  431         mutex_exit(&ipfr_lock);
  432 
  433         pool_cache_put(ipfren_cache, ipqe);
  434         m_freem(m);
  435         return NULL;
  436 }
  437 
  438 /*
  439  * ip_freef:
  440  *
  441  *      Free a fragment reassembly header and all associated datagrams.
  442  */
  443 static void
  444 ip_freef(ipfr_queue_t *fp)
  445 {
  446         ipfr_qent_t *q;
  447 
  448         KASSERT(mutex_owned(&ipfr_lock));
  449 
  450         LIST_REMOVE(fp, ipq_q);
  451         ip_nfrags -= fp->ipq_nfrags;
  452         ip_nfragpackets--;
  453 
  454         while ((q = TAILQ_FIRST(&fp->ipq_fragq)) != NULL) {
  455                 TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q);
  456                 m_freem(q->ipqe_m);
  457                 pool_cache_put(ipfren_cache, q);
  458         }
  459         free(fp, M_FTABLE);
  460 }
  461 
  462 /*
  463  * ip_reass_ttl_decr:
  464  *
  465  *      Decrement TTL of all reasembly queue entries by `ticks'.  Count
  466  *      number of distinct fragments (as opposed to partial, fragmented
  467  *      datagrams) in the reassembly queue.  While we traverse the entire
  468  *      reassembly queue, compute and return the median TTL over all
  469  *      fragments.
  470  */
  471 static u_int
  472 ip_reass_ttl_decr(u_int ticks)
  473 {
  474         u_int nfrags, median, dropfraction, keepfraction;
  475         ipfr_queue_t *fp, *nfp;
  476         int i;
  477 
  478         nfrags = 0;
  479         memset(fragttl_histo, 0, sizeof(fragttl_histo));
  480 
  481         for (i = 0; i < IPREASS_HASH_SIZE; i++) {
  482                 for (fp = LIST_FIRST(&ip_frags[i]); fp != NULL; fp = nfp) {
  483                         fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ?
  484                             0 : fp->ipq_ttl - ticks);
  485                         nfp = LIST_NEXT(fp, ipq_q);
  486                         if (fp->ipq_ttl == 0) {
  487                                 IP_STATINC(IP_STAT_FRAGTIMEOUT);
  488                                 ip_freef(fp);
  489                         } else {
  490                                 nfrags += fp->ipq_nfrags;
  491                                 fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags;
  492                         }
  493                 }
  494         }
  495 
  496         KASSERT(ip_nfrags == nfrags);
  497 
  498         /* Find median (or other drop fraction) in histogram. */
  499         dropfraction = (ip_nfrags / 2);
  500         keepfraction = ip_nfrags - dropfraction;
  501         for (i = IPFRAGTTL, median = 0; i >= 0; i--) {
  502                 median += fragttl_histo[i];
  503                 if (median >= keepfraction)
  504                         break;
  505         }
  506 
  507         /* Return TTL of median (or other fraction). */
  508         return (u_int)i;
  509 }
  510 
  511 static void
  512 ip_reass_drophalf(void)
  513 {
  514         u_int median_ticks;
  515 
  516         KASSERT(mutex_owned(&ipfr_lock));
  517 
  518         /*
  519          * Compute median TTL of all fragments, and count frags
  520          * with that TTL or lower (roughly half of all fragments).
  521          */
  522         median_ticks = ip_reass_ttl_decr(0);
  523 
  524         /* Drop half. */
  525         median_ticks = ip_reass_ttl_decr(median_ticks);
  526 }
  527 
  528 /*
  529  * ip_reass_drain: drain off all datagram fragments.  Do not acquire
  530  * softnet_lock as can be called from hardware interrupt context.
  531  */
  532 void
  533 ip_reass_drain(void)
  534 {
  535 
  536         /*
  537          * We may be called from a device's interrupt context.  If
  538          * the ipq is already busy, just bail out now.
  539          */
  540         if (mutex_tryenter(&ipfr_lock)) {
  541                 /*
  542                  * Drop half the total fragments now. If more mbufs are
  543                  * needed, we will be called again soon.
  544                  */
  545                 ip_reass_drophalf();
  546                 mutex_exit(&ipfr_lock);
  547         }
  548 }
  549 
  550 /*
  551  * ip_reass_slowtimo:
  552  *
  553  *      If a timer expires on a reassembly queue, discard it.
  554  */
  555 void
  556 ip_reass_slowtimo(void)
  557 {
  558         static u_int dropscanidx = 0;
  559         u_int i, median_ttl;
  560 
  561         mutex_enter(&ipfr_lock);
  562 
  563         /* Age TTL of all fragments by 1 tick .*/
  564         median_ttl = ip_reass_ttl_decr(1);
  565 
  566         /* Make sure fragment limit is up-to-date. */
  567         CHECK_NMBCLUSTER_PARAMS();
  568 
  569         /* If we have too many fragments, drop the older half. */
  570         if (ip_nfrags > ip_maxfrags) {
  571                 ip_reass_ttl_decr(median_ttl);
  572         }
  573 
  574         /*
  575          * If we are over the maximum number of fragmented packets (due to
  576          * the limit being lowered), drain off enough to get down to the
  577          * new limit.  Start draining from the reassembly hashqueue most
  578          * recently drained.
  579          */
  580         if (ip_maxfragpackets < 0)
  581                 ;
  582         else {
  583                 int wrapped = 0;
  584 
  585                 i = dropscanidx;
  586                 while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) {
  587                         while (LIST_FIRST(&ip_frags[i]) != NULL) {
  588                                 ip_freef(LIST_FIRST(&ip_frags[i]));
  589                         }
  590                         if (++i >= IPREASS_HASH_SIZE) {
  591                                 i = 0;
  592                         }
  593                         /*
  594                          * Do not scan forever even if fragment counters are
  595                          * wrong: stop after scanning entire reassembly queue.
  596                          */
  597                         if (i == dropscanidx) {
  598                                 wrapped = 1;
  599                         }
  600                 }
  601                 dropscanidx = i;
  602         }
  603         mutex_exit(&ipfr_lock);
  604 }
  605 
  606 /*
  607  * ip_reass_packet: generic routine to perform IP reassembly.
  608  *
  609  * => Passed fragment should have IP_MF flag and/or offset set.
  610  * => Fragment should not have other than IP_MF flags set.
  611  *
  612  * => Returns 0 on success or error otherwise.
  613  * => On complete, m0 represents a constructed final packet.
  614  */
  615 int
  616 ip_reass_packet(struct mbuf **m0)
  617 {
  618         struct mbuf *m = *m0;
  619         struct ip *ip = mtod(m, struct ip *);
  620         const int hlen = ip->ip_hl << 2;
  621         const int len = ntohs(ip->ip_len);
  622         int ipsecflags = m->m_flags & (M_DECRYPTED|M_AUTHIPHDR);
  623         ipfr_queue_t *fp;
  624         ipfr_qent_t *ipqe;
  625         u_int hash, off, flen;
  626         bool mff;
  627 
  628         /*
  629          * Prevent TCP blind data attacks by not allowing non-initial
  630          * fragments to start at less than 68 bytes (minimal fragment
  631          * size) and making sure the first fragment is at least 68
  632          * bytes.
  633          */
  634         off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
  635         if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) {
  636                 IP_STATINC(IP_STAT_BADFRAGS);
  637                 return EINVAL;
  638         }
  639 
  640         if (off + len > IP_MAXPACKET) {
  641                 IP_STATINC(IP_STAT_TOOLONG);
  642                 return EINVAL;
  643         }
  644 
  645         /*
  646          * Fragment length and MF flag.  Make sure that fragments have
  647          * a data length which is non-zero and multiple of 8 bytes.
  648          */
  649         flen = ntohs(ip->ip_len) - hlen;
  650         mff = (ip->ip_off & htons(IP_MF)) != 0;
  651         if (mff && (flen == 0 || (flen & 0x7) != 0)) {
  652                 IP_STATINC(IP_STAT_BADFRAGS);
  653                 return EINVAL;
  654         }
  655 
  656         /* Look for queue of fragments of this datagram. */
  657         mutex_enter(&ipfr_lock);
  658         hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
  659         LIST_FOREACH(fp, &ip_frags[hash], ipq_q) {
  660                 if (ip->ip_id != fp->ipq_id)
  661                         continue;
  662                 if (!in_hosteq(ip->ip_src, fp->ipq_src))
  663                         continue;
  664                 if (!in_hosteq(ip->ip_dst, fp->ipq_dst))
  665                         continue;
  666                 if (ip->ip_p != fp->ipq_p)
  667                         continue;
  668                 break;
  669         }
  670 
  671         if (fp) {
  672                 /* All fragments must have the same IPsec flags. */
  673                 if (fp->ipq_ipsec != ipsecflags) {
  674                         IP_STATINC(IP_STAT_BADFRAGS);
  675                         mutex_exit(&ipfr_lock);
  676                         return EINVAL;
  677                 }
  678 
  679                 /* Make sure that TOS matches previous fragments. */
  680                 if (fp->ipq_tos != ip->ip_tos) {
  681                         IP_STATINC(IP_STAT_BADFRAGS);
  682                         mutex_exit(&ipfr_lock);
  683                         return EINVAL;
  684                 }
  685         }
  686 
  687         /*
  688          * Create new entry and attempt to reassembly.
  689          */
  690         IP_STATINC(IP_STAT_FRAGMENTS);
  691         ipqe = pool_cache_get(ipfren_cache, PR_NOWAIT);
  692         if (ipqe == NULL) {
  693                 IP_STATINC(IP_STAT_RCVMEMDROP);
  694                 mutex_exit(&ipfr_lock);
  695                 return ENOMEM;
  696         }
  697         ipqe->ipqe_mff = mff;
  698         ipqe->ipqe_m = m;
  699         ipqe->ipqe_ip = ip;
  700         ipqe->ipqe_off = off;
  701         ipqe->ipqe_len = flen;
  702 
  703         *m0 = ip_reass(ipqe, fp, hash);
  704         if (*m0) {
  705                 /* Note that finally reassembled. */
  706                 IP_STATINC(IP_STAT_REASSEMBLED);
  707         }
  708         return 0;
  709 }

Cache object: b09c9c8e8dcddd9c3f5eabcdccb9b78d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.