The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/siftr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007-2009
    3  *      Swinburne University of Technology, Melbourne, Australia.
    4  * Copyright (c) 2009-2010, The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed at the Centre for Advanced
    8  * Internet Architectures, Swinburne University of Technology, Melbourne,
    9  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 /******************************************************
   34  * Statistical Information For TCP Research (SIFTR)
   35  *
   36  * A FreeBSD kernel module that adds very basic intrumentation to the
   37  * TCP stack, allowing internal stats to be recorded to a log file
   38  * for experimental, debugging and performance analysis purposes.
   39  *
   40  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
   41  * working on the NewTCP research project at Swinburne University of
   42  * Technology's Centre for Advanced Internet Architectures, Melbourne,
   43  * Australia, which was made possible in part by a grant from the Cisco
   44  * University Research Program Fund at Community Foundation Silicon Valley.
   45  * More details are available at:
   46  *   http://caia.swin.edu.au/urp/newtcp/
   47  *
   48  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
   49  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
   50  * More details are available at:
   51  *   http://www.freebsdfoundation.org/
   52  *   http://caia.swin.edu.au/freebsd/etcp09/
   53  *
   54  * Lawrence Stewart is the current maintainer, and all contact regarding
   55  * SIFTR should be directed to him via email: lastewart@swin.edu.au
   56  *
   57  * Initial release date: June 2007
   58  * Most recent update: September 2010
   59  ******************************************************/
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD: releng/11.0/sys/netinet/siftr.c 296688 2016-03-11 23:18:06Z jhb $");
   63 
   64 #include <sys/param.h>
   65 #include <sys/alq.h>
   66 #include <sys/errno.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/hash.h>
   69 #include <sys/kernel.h>
   70 #include <sys/kthread.h>
   71 #include <sys/lock.h>
   72 #include <sys/mbuf.h>
   73 #include <sys/module.h>
   74 #include <sys/mutex.h>
   75 #include <sys/pcpu.h>
   76 #include <sys/proc.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sdt.h>
   79 #include <sys/smp.h>
   80 #include <sys/socket.h>
   81 #include <sys/socketvar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/unistd.h>
   84 
   85 #include <net/if.h>
   86 #include <net/if_var.h>
   87 #include <net/pfil.h>
   88 
   89 #include <netinet/in.h>
   90 #include <netinet/in_kdtrace.h>
   91 #include <netinet/in_pcb.h>
   92 #include <netinet/in_systm.h>
   93 #include <netinet/in_var.h>
   94 #include <netinet/ip.h>
   95 #include <netinet/tcp_var.h>
   96 
   97 #ifdef SIFTR_IPV6
   98 #include <netinet/ip6.h>
   99 #include <netinet6/in6_pcb.h>
  100 #endif /* SIFTR_IPV6 */
  101 
  102 #include <machine/in_cksum.h>
  103 
  104 /*
  105  * Three digit version number refers to X.Y.Z where:
  106  * X is the major version number
  107  * Y is bumped to mark backwards incompatible changes
  108  * Z is bumped to mark backwards compatible changes
  109  */
  110 #define V_MAJOR         1
  111 #define V_BACKBREAK     2
  112 #define V_BACKCOMPAT    4
  113 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
  114 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
  115     __XSTRING(V_BACKCOMPAT)
  116 
  117 #define HOOK 0
  118 #define UNHOOK 1
  119 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
  120 #define SYS_NAME "FreeBSD"
  121 #define PACKET_TAG_SIFTR 100
  122 #define PACKET_COOKIE_SIFTR 21749576
  123 #define SIFTR_LOG_FILE_MODE 0644
  124 #define SIFTR_DISABLE 0
  125 #define SIFTR_ENABLE 1
  126 
  127 /*
  128  * Hard upper limit on the length of log messages. Bump this up if you add new
  129  * data fields such that the line length could exceed the below value.
  130  */
  131 #define MAX_LOG_MSG_LEN 200
  132 /* XXX: Make this a sysctl tunable. */
  133 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
  134 
  135 /*
  136  * 1 byte for IP version
  137  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
  138  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
  139  */
  140 #ifdef SIFTR_IPV6
  141 #define FLOW_KEY_LEN 37
  142 #else
  143 #define FLOW_KEY_LEN 13
  144 #endif
  145 
  146 #ifdef SIFTR_IPV6
  147 #define SIFTR_IPMODE 6
  148 #else
  149 #define SIFTR_IPMODE 4
  150 #endif
  151 
  152 /* useful macros */
  153 #define CAST_PTR_INT(X) (*((int*)(X)))
  154 
  155 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
  156 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
  157 
  158 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
  159 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
  160 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
  161 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
  162 
  163 static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
  164 static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
  165     "SIFTR pkt_node struct");
  166 static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
  167     "SIFTR flow_hash_node struct");
  168 
  169 /* Used as links in the pkt manager queue. */
  170 struct pkt_node {
  171         /* Timestamp of pkt as noted in the pfil hook. */
  172         struct timeval          tval;
  173         /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
  174         uint8_t                 direction;
  175         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
  176         uint8_t                 ipver;
  177         /* Hash of the pkt which triggered the log message. */
  178         uint32_t                hash;
  179         /* Local/foreign IP address. */
  180 #ifdef SIFTR_IPV6
  181         uint32_t                ip_laddr[4];
  182         uint32_t                ip_faddr[4];
  183 #else
  184         uint8_t                 ip_laddr[4];
  185         uint8_t                 ip_faddr[4];
  186 #endif
  187         /* Local TCP port. */
  188         uint16_t                tcp_localport;
  189         /* Foreign TCP port. */
  190         uint16_t                tcp_foreignport;
  191         /* Congestion Window (bytes). */
  192         u_long                  snd_cwnd;
  193         /* Sending Window (bytes). */
  194         u_long                  snd_wnd;
  195         /* Receive Window (bytes). */
  196         u_long                  rcv_wnd;
  197         /* Unused (was: Bandwidth Controlled Window (bytes)). */
  198         u_long                  snd_bwnd;
  199         /* Slow Start Threshold (bytes). */
  200         u_long                  snd_ssthresh;
  201         /* Current state of the TCP FSM. */
  202         int                     conn_state;
  203         /* Max Segment Size (bytes). */
  204         u_int                   max_seg_size;
  205         /*
  206          * Smoothed RTT stored as found in the TCP control block
  207          * in units of (TCP_RTT_SCALE*hz).
  208          */
  209         int                     smoothed_rtt;
  210         /* Is SACK enabled? */
  211         u_char                  sack_enabled;
  212         /* Window scaling for snd window. */
  213         u_char                  snd_scale;
  214         /* Window scaling for recv window. */
  215         u_char                  rcv_scale;
  216         /* TCP control block flags. */
  217         u_int                   flags;
  218         /* Retransmit timeout length. */
  219         int                     rxt_length;
  220         /* Size of the TCP send buffer in bytes. */
  221         u_int                   snd_buf_hiwater;
  222         /* Current num bytes in the send socket buffer. */
  223         u_int                   snd_buf_cc;
  224         /* Size of the TCP receive buffer in bytes. */
  225         u_int                   rcv_buf_hiwater;
  226         /* Current num bytes in the receive socket buffer. */
  227         u_int                   rcv_buf_cc;
  228         /* Number of bytes inflight that we are waiting on ACKs for. */
  229         u_int                   sent_inflight_bytes;
  230         /* Number of segments currently in the reassembly queue. */
  231         int                     t_segqlen;
  232         /* Flowid for the connection. */
  233         u_int                   flowid; 
  234         /* Flow type for the connection. */
  235         u_int                   flowtype;       
  236         /* Link to next pkt_node in the list. */
  237         STAILQ_ENTRY(pkt_node)  nodes;
  238 };
  239 
  240 struct flow_hash_node
  241 {
  242         uint16_t counter;
  243         uint8_t key[FLOW_KEY_LEN];
  244         LIST_ENTRY(flow_hash_node) nodes;
  245 };
  246 
  247 struct siftr_stats
  248 {
  249         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
  250         uint64_t n_in;
  251         uint64_t n_out;
  252         /* # pkts skipped due to failed malloc calls. */
  253         uint32_t nskip_in_malloc;
  254         uint32_t nskip_out_malloc;
  255         /* # pkts skipped due to failed mtx acquisition. */
  256         uint32_t nskip_in_mtx;
  257         uint32_t nskip_out_mtx;
  258         /* # pkts skipped due to failed inpcb lookups. */
  259         uint32_t nskip_in_inpcb;
  260         uint32_t nskip_out_inpcb;
  261         /* # pkts skipped due to failed tcpcb lookups. */
  262         uint32_t nskip_in_tcpcb;
  263         uint32_t nskip_out_tcpcb;
  264         /* # pkts skipped due to stack reinjection. */
  265         uint32_t nskip_in_dejavu;
  266         uint32_t nskip_out_dejavu;
  267 };
  268 
  269 static DPCPU_DEFINE(struct siftr_stats, ss);
  270 
  271 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
  272 static unsigned int siftr_enabled = 0;
  273 static unsigned int siftr_pkts_per_log = 1;
  274 static unsigned int siftr_generate_hashes = 0;
  275 /* static unsigned int siftr_binary_log = 0; */
  276 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
  277 static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
  278 static u_long siftr_hashmask;
  279 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
  280 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
  281 static int wait_for_pkt;
  282 static struct alq *siftr_alq = NULL;
  283 static struct mtx siftr_pkt_queue_mtx;
  284 static struct mtx siftr_pkt_mgr_mtx;
  285 static struct thread *siftr_pkt_manager_thr = NULL;
  286 /*
  287  * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
  288  * which we use as an index into this array.
  289  */
  290 static char direction[3] = {'\0', 'i','o'};
  291 
  292 /* Required function prototypes. */
  293 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
  294 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
  295 
  296 
  297 /* Declare the net.inet.siftr sysctl tree and populate it. */
  298 
  299 SYSCTL_DECL(_net_inet_siftr);
  300 
  301 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
  302     "siftr related settings");
  303 
  304 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
  305     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
  306     "switch siftr module operations on/off");
  307 
  308 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
  309     &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
  310     "A", "file to save siftr log messages to");
  311 
  312 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
  313     &siftr_pkts_per_log, 1,
  314     "number of packets between generating a log message");
  315 
  316 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
  317     &siftr_generate_hashes, 0,
  318     "enable packet hash generation");
  319 
  320 /* XXX: TODO
  321 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
  322     &siftr_binary_log, 0,
  323     "write log files in binary instead of ascii");
  324 */
  325 
  326 
  327 /* Begin functions. */
  328 
  329 static void
  330 siftr_process_pkt(struct pkt_node * pkt_node)
  331 {
  332         struct flow_hash_node *hash_node;
  333         struct listhead *counter_list;
  334         struct siftr_stats *ss;
  335         struct ale *log_buf;
  336         uint8_t key[FLOW_KEY_LEN];
  337         uint8_t found_match, key_offset;
  338 
  339         hash_node = NULL;
  340         ss = DPCPU_PTR(ss);
  341         found_match = 0;
  342         key_offset = 1;
  343 
  344         /*
  345          * Create the key that will be used to create a hash index
  346          * into our hash table. Our key consists of:
  347          * ipversion, localip, localport, foreignip, foreignport
  348          */
  349         key[0] = pkt_node->ipver;
  350         memcpy(key + key_offset, &pkt_node->ip_laddr,
  351             sizeof(pkt_node->ip_laddr));
  352         key_offset += sizeof(pkt_node->ip_laddr);
  353         memcpy(key + key_offset, &pkt_node->tcp_localport,
  354             sizeof(pkt_node->tcp_localport));
  355         key_offset += sizeof(pkt_node->tcp_localport);
  356         memcpy(key + key_offset, &pkt_node->ip_faddr,
  357             sizeof(pkt_node->ip_faddr));
  358         key_offset += sizeof(pkt_node->ip_faddr);
  359         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
  360             sizeof(pkt_node->tcp_foreignport));
  361 
  362         counter_list = counter_hash +
  363             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
  364 
  365         /*
  366          * If the list is not empty i.e. the hash index has
  367          * been used by another flow previously.
  368          */
  369         if (LIST_FIRST(counter_list) != NULL) {
  370                 /*
  371                  * Loop through the hash nodes in the list.
  372                  * There should normally only be 1 hash node in the list,
  373                  * except if there have been collisions at the hash index
  374                  * computed by hash32_buf().
  375                  */
  376                 LIST_FOREACH(hash_node, counter_list, nodes) {
  377                         /*
  378                          * Check if the key for the pkt we are currently
  379                          * processing is the same as the key stored in the
  380                          * hash node we are currently processing.
  381                          * If they are the same, then we've found the
  382                          * hash node that stores the counter for the flow
  383                          * the pkt belongs to.
  384                          */
  385                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
  386                                 found_match = 1;
  387                                 break;
  388                         }
  389                 }
  390         }
  391 
  392         /* If this flow hash hasn't been seen before or we have a collision. */
  393         if (hash_node == NULL || !found_match) {
  394                 /* Create a new hash node to store the flow's counter. */
  395                 hash_node = malloc(sizeof(struct flow_hash_node),
  396                     M_SIFTR_HASHNODE, M_WAITOK);
  397 
  398                 if (hash_node != NULL) {
  399                         /* Initialise our new hash node list entry. */
  400                         hash_node->counter = 0;
  401                         memcpy(hash_node->key, key, sizeof(key));
  402                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
  403                 } else {
  404                         /* Malloc failed. */
  405                         if (pkt_node->direction == PFIL_IN)
  406                                 ss->nskip_in_malloc++;
  407                         else
  408                                 ss->nskip_out_malloc++;
  409 
  410                         return;
  411                 }
  412         } else if (siftr_pkts_per_log > 1) {
  413                 /*
  414                  * Taking the remainder of the counter divided
  415                  * by the current value of siftr_pkts_per_log
  416                  * and storing that in counter provides a neat
  417                  * way to modulate the frequency of log
  418                  * messages being written to the log file.
  419                  */
  420                 hash_node->counter = (hash_node->counter + 1) %
  421                     siftr_pkts_per_log;
  422 
  423                 /*
  424                  * If we have not seen enough packets since the last time
  425                  * we wrote a log message for this connection, return.
  426                  */
  427                 if (hash_node->counter > 0)
  428                         return;
  429         }
  430 
  431         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
  432 
  433         if (log_buf == NULL)
  434                 return; /* Should only happen if the ALQ is shutting down. */
  435 
  436 #ifdef SIFTR_IPV6
  437         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
  438         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
  439 
  440         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
  441                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
  442                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
  443                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
  444                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
  445                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
  446                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
  447 
  448                 /* Construct an IPv6 log message. */
  449                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  450                     MAX_LOG_MSG_LEN,
  451                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
  452                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
  453                     "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
  454                     direction[pkt_node->direction],
  455                     pkt_node->hash,
  456                     pkt_node->tval.tv_sec,
  457                     pkt_node->tval.tv_usec,
  458                     UPPER_SHORT(pkt_node->ip_laddr[0]),
  459                     LOWER_SHORT(pkt_node->ip_laddr[0]),
  460                     UPPER_SHORT(pkt_node->ip_laddr[1]),
  461                     LOWER_SHORT(pkt_node->ip_laddr[1]),
  462                     UPPER_SHORT(pkt_node->ip_laddr[2]),
  463                     LOWER_SHORT(pkt_node->ip_laddr[2]),
  464                     UPPER_SHORT(pkt_node->ip_laddr[3]),
  465                     LOWER_SHORT(pkt_node->ip_laddr[3]),
  466                     ntohs(pkt_node->tcp_localport),
  467                     UPPER_SHORT(pkt_node->ip_faddr[0]),
  468                     LOWER_SHORT(pkt_node->ip_faddr[0]),
  469                     UPPER_SHORT(pkt_node->ip_faddr[1]),
  470                     LOWER_SHORT(pkt_node->ip_faddr[1]),
  471                     UPPER_SHORT(pkt_node->ip_faddr[2]),
  472                     LOWER_SHORT(pkt_node->ip_faddr[2]),
  473                     UPPER_SHORT(pkt_node->ip_faddr[3]),
  474                     LOWER_SHORT(pkt_node->ip_faddr[3]),
  475                     ntohs(pkt_node->tcp_foreignport),
  476                     pkt_node->snd_ssthresh,
  477                     pkt_node->snd_cwnd,
  478                     pkt_node->snd_bwnd,
  479                     pkt_node->snd_wnd,
  480                     pkt_node->rcv_wnd,
  481                     pkt_node->snd_scale,
  482                     pkt_node->rcv_scale,
  483                     pkt_node->conn_state,
  484                     pkt_node->max_seg_size,
  485                     pkt_node->smoothed_rtt,
  486                     pkt_node->sack_enabled,
  487                     pkt_node->flags,
  488                     pkt_node->rxt_length,
  489                     pkt_node->snd_buf_hiwater,
  490                     pkt_node->snd_buf_cc,
  491                     pkt_node->rcv_buf_hiwater,
  492                     pkt_node->rcv_buf_cc,
  493                     pkt_node->sent_inflight_bytes,
  494                     pkt_node->t_segqlen,
  495                     pkt_node->flowid,
  496                     pkt_node->flowtype);
  497         } else { /* IPv4 packet */
  498                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
  499                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
  500                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
  501                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
  502                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
  503                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
  504                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
  505                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
  506 #endif /* SIFTR_IPV6 */
  507 
  508                 /* Construct an IPv4 log message. */
  509                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  510                     MAX_LOG_MSG_LEN,
  511                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
  512                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
  513                     direction[pkt_node->direction],
  514                     pkt_node->hash,
  515                     (intmax_t)pkt_node->tval.tv_sec,
  516                     pkt_node->tval.tv_usec,
  517                     pkt_node->ip_laddr[0],
  518                     pkt_node->ip_laddr[1],
  519                     pkt_node->ip_laddr[2],
  520                     pkt_node->ip_laddr[3],
  521                     ntohs(pkt_node->tcp_localport),
  522                     pkt_node->ip_faddr[0],
  523                     pkt_node->ip_faddr[1],
  524                     pkt_node->ip_faddr[2],
  525                     pkt_node->ip_faddr[3],
  526                     ntohs(pkt_node->tcp_foreignport),
  527                     pkt_node->snd_ssthresh,
  528                     pkt_node->snd_cwnd,
  529                     pkt_node->snd_bwnd,
  530                     pkt_node->snd_wnd,
  531                     pkt_node->rcv_wnd,
  532                     pkt_node->snd_scale,
  533                     pkt_node->rcv_scale,
  534                     pkt_node->conn_state,
  535                     pkt_node->max_seg_size,
  536                     pkt_node->smoothed_rtt,
  537                     pkt_node->sack_enabled,
  538                     pkt_node->flags,
  539                     pkt_node->rxt_length,
  540                     pkt_node->snd_buf_hiwater,
  541                     pkt_node->snd_buf_cc,
  542                     pkt_node->rcv_buf_hiwater,
  543                     pkt_node->rcv_buf_cc,
  544                     pkt_node->sent_inflight_bytes,
  545                     pkt_node->t_segqlen,
  546                     pkt_node->flowid,
  547                     pkt_node->flowtype);
  548 #ifdef SIFTR_IPV6
  549         }
  550 #endif
  551 
  552         alq_post_flags(siftr_alq, log_buf, 0);
  553 }
  554 
  555 
  556 static void
  557 siftr_pkt_manager_thread(void *arg)
  558 {
  559         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
  560             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
  561         struct pkt_node *pkt_node, *pkt_node_temp;
  562         uint8_t draining;
  563 
  564         draining = 2;
  565 
  566         mtx_lock(&siftr_pkt_mgr_mtx);
  567 
  568         /* draining == 0 when queue has been flushed and it's safe to exit. */
  569         while (draining) {
  570                 /*
  571                  * Sleep until we are signalled to wake because thread has
  572                  * been told to exit or until 1 tick has passed.
  573                  */
  574                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
  575                     1);
  576 
  577                 /* Gain exclusive access to the pkt_node queue. */
  578                 mtx_lock(&siftr_pkt_queue_mtx);
  579 
  580                 /*
  581                  * Move pkt_queue to tmp_pkt_queue, which leaves
  582                  * pkt_queue empty and ready to receive more pkt_nodes.
  583                  */
  584                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
  585 
  586                 /*
  587                  * We've finished making changes to the list. Unlock it
  588                  * so the pfil hooks can continue queuing pkt_nodes.
  589                  */
  590                 mtx_unlock(&siftr_pkt_queue_mtx);
  591 
  592                 /*
  593                  * We can't hold a mutex whilst calling siftr_process_pkt
  594                  * because ALQ might sleep waiting for buffer space.
  595                  */
  596                 mtx_unlock(&siftr_pkt_mgr_mtx);
  597 
  598                 /* Flush all pkt_nodes to the log file. */
  599                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
  600                     pkt_node_temp) {
  601                         siftr_process_pkt(pkt_node);
  602                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
  603                         free(pkt_node, M_SIFTR_PKTNODE);
  604                 }
  605 
  606                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
  607                     ("SIFTR tmp_pkt_queue not empty after flush"));
  608 
  609                 mtx_lock(&siftr_pkt_mgr_mtx);
  610 
  611                 /*
  612                  * If siftr_exit_pkt_manager_thread gets set during the window
  613                  * where we are draining the tmp_pkt_queue above, there might
  614                  * still be pkts in pkt_queue that need to be drained.
  615                  * Allow one further iteration to occur after
  616                  * siftr_exit_pkt_manager_thread has been set to ensure
  617                  * pkt_queue is completely empty before we kill the thread.
  618                  *
  619                  * siftr_exit_pkt_manager_thread is set only after the pfil
  620                  * hooks have been removed, so only 1 extra iteration
  621                  * is needed to drain the queue.
  622                  */
  623                 if (siftr_exit_pkt_manager_thread)
  624                         draining--;
  625         }
  626 
  627         mtx_unlock(&siftr_pkt_mgr_mtx);
  628 
  629         /* Calls wakeup on this thread's struct thread ptr. */
  630         kthread_exit();
  631 }
  632 
  633 
  634 static uint32_t
  635 hash_pkt(struct mbuf *m, uint32_t offset)
  636 {
  637         uint32_t hash;
  638 
  639         hash = 0;
  640 
  641         while (m != NULL && offset > m->m_len) {
  642                 /*
  643                  * The IP packet payload does not start in this mbuf, so
  644                  * need to figure out which mbuf it starts in and what offset
  645                  * into the mbuf's data region the payload starts at.
  646                  */
  647                 offset -= m->m_len;
  648                 m = m->m_next;
  649         }
  650 
  651         while (m != NULL) {
  652                 /* Ensure there is data in the mbuf */
  653                 if ((m->m_len - offset) > 0)
  654                         hash = hash32_buf(m->m_data + offset,
  655                             m->m_len - offset, hash);
  656 
  657                 m = m->m_next;
  658                 offset = 0;
  659         }
  660 
  661         return (hash);
  662 }
  663 
  664 
  665 /*
  666  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
  667  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
  668  * Return value >0 means the caller should skip processing this mbuf.
  669  */
  670 static inline int
  671 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
  672 {
  673         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
  674             != NULL) {
  675                 if (dir == PFIL_IN)
  676                         ss->nskip_in_dejavu++;
  677                 else
  678                         ss->nskip_out_dejavu++;
  679 
  680                 return (1);
  681         } else {
  682                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
  683                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
  684                 if (tag == NULL) {
  685                         if (dir == PFIL_IN)
  686                                 ss->nskip_in_malloc++;
  687                         else
  688                                 ss->nskip_out_malloc++;
  689 
  690                         return (1);
  691                 }
  692 
  693                 m_tag_prepend(m, tag);
  694         }
  695 
  696         return (0);
  697 }
  698 
  699 
  700 /*
  701  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
  702  * otherwise.
  703  */
  704 static inline struct inpcb *
  705 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
  706     uint16_t dport, int dir, struct siftr_stats *ss)
  707 {
  708         struct inpcb *inp;
  709 
  710         /* We need the tcbinfo lock. */
  711         INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
  712 
  713         if (dir == PFIL_IN)
  714                 inp = (ipver == INP_IPV4 ?
  715                     in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
  716                     dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
  717                     :
  718 #ifdef SIFTR_IPV6
  719                     in6_pcblookup(&V_tcbinfo,
  720                     &((struct ip6_hdr *)ip)->ip6_src, sport,
  721                     &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
  722                     m->m_pkthdr.rcvif)
  723 #else
  724                     NULL
  725 #endif
  726                     );
  727 
  728         else
  729                 inp = (ipver == INP_IPV4 ?
  730                     in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
  731                     sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
  732                     :
  733 #ifdef SIFTR_IPV6
  734                     in6_pcblookup(&V_tcbinfo,
  735                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
  736                     &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
  737                     m->m_pkthdr.rcvif)
  738 #else
  739                     NULL
  740 #endif
  741                     );
  742 
  743         /* If we can't find the inpcb, bail. */
  744         if (inp == NULL) {
  745                 if (dir == PFIL_IN)
  746                         ss->nskip_in_inpcb++;
  747                 else
  748                         ss->nskip_out_inpcb++;
  749         }
  750 
  751         return (inp);
  752 }
  753 
  754 
  755 static inline void
  756 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
  757     int ipver, int dir, int inp_locally_locked)
  758 {
  759 #ifdef SIFTR_IPV6
  760         if (ipver == INP_IPV4) {
  761                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
  762                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
  763 #else
  764                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
  765                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
  766 #endif
  767 #ifdef SIFTR_IPV6
  768         } else {
  769                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
  770                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
  771                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
  772                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
  773                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
  774                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
  775                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
  776                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
  777         }
  778 #endif
  779         pn->tcp_localport = inp->inp_lport;
  780         pn->tcp_foreignport = inp->inp_fport;
  781         pn->snd_cwnd = tp->snd_cwnd;
  782         pn->snd_wnd = tp->snd_wnd;
  783         pn->rcv_wnd = tp->rcv_wnd;
  784         pn->snd_bwnd = 0;               /* Unused, kept for compat. */
  785         pn->snd_ssthresh = tp->snd_ssthresh;
  786         pn->snd_scale = tp->snd_scale;
  787         pn->rcv_scale = tp->rcv_scale;
  788         pn->conn_state = tp->t_state;
  789         pn->max_seg_size = tp->t_maxseg;
  790         pn->smoothed_rtt = tp->t_srtt;
  791         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
  792         pn->flags = tp->t_flags;
  793         pn->rxt_length = tp->t_rxtcur;
  794         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
  795         pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
  796         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
  797         pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
  798         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
  799         pn->t_segqlen = tp->t_segqlen;
  800         pn->flowid = inp->inp_flowid;
  801         pn->flowtype = inp->inp_flowtype;
  802 
  803         /* We've finished accessing the tcb so release the lock. */
  804         if (inp_locally_locked)
  805                 INP_RUNLOCK(inp);
  806 
  807         pn->ipver = ipver;
  808         pn->direction = dir;
  809 
  810         /*
  811          * Significantly more accurate than using getmicrotime(), but slower!
  812          * Gives true microsecond resolution at the expense of a hit to
  813          * maximum pps throughput processing when SIFTR is loaded and enabled.
  814          */
  815         microtime(&pn->tval);
  816         TCP_PROBE1(siftr, &pn);
  817 
  818 }
  819 
  820 
  821 /*
  822  * pfil hook that is called for each IPv4 packet making its way through the
  823  * stack in either direction.
  824  * The pfil subsystem holds a non-sleepable mutex somewhere when
  825  * calling our hook function, so we can't sleep at all.
  826  * It's very important to use the M_NOWAIT flag with all function calls
  827  * that support it so that they won't sleep, otherwise you get a panic.
  828  */
  829 static int
  830 siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  831     struct inpcb *inp)
  832 {
  833         struct pkt_node *pn;
  834         struct ip *ip;
  835         struct tcphdr *th;
  836         struct tcpcb *tp;
  837         struct siftr_stats *ss;
  838         unsigned int ip_hl;
  839         int inp_locally_locked;
  840 
  841         inp_locally_locked = 0;
  842         ss = DPCPU_PTR(ss);
  843 
  844         /*
  845          * m_pullup is not required here because ip_{input|output}
  846          * already do the heavy lifting for us.
  847          */
  848 
  849         ip = mtod(*m, struct ip *);
  850 
  851         /* Only continue processing if the packet is TCP. */
  852         if (ip->ip_p != IPPROTO_TCP)
  853                 goto ret;
  854 
  855         /*
  856          * If a kernel subsystem reinjects packets into the stack, our pfil
  857          * hook will be called multiple times for the same packet.
  858          * Make sure we only process unique packets.
  859          */
  860         if (siftr_chkreinject(*m, dir, ss))
  861                 goto ret;
  862 
  863         if (dir == PFIL_IN)
  864                 ss->n_in++;
  865         else
  866                 ss->n_out++;
  867 
  868         /*
  869          * Create a tcphdr struct starting at the correct offset
  870          * in the IP packet. ip->ip_hl gives the ip header length
  871          * in 4-byte words, so multiply it to get the size in bytes.
  872          */
  873         ip_hl = (ip->ip_hl << 2);
  874         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
  875 
  876         /*
  877          * If the pfil hooks don't provide a pointer to the
  878          * inpcb, we need to find it ourselves and lock it.
  879          */
  880         if (!inp) {
  881                 /* Find the corresponding inpcb for this pkt. */
  882                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
  883                     th->th_dport, dir, ss);
  884 
  885                 if (inp == NULL)
  886                         goto ret;
  887                 else
  888                         inp_locally_locked = 1;
  889         }
  890 
  891         INP_LOCK_ASSERT(inp);
  892 
  893         /* Find the TCP control block that corresponds with this packet */
  894         tp = intotcpcb(inp);
  895 
  896         /*
  897          * If we can't find the TCP control block (happens occasionaly for a
  898          * packet sent during the shutdown phase of a TCP connection),
  899          * or we're in the timewait state, bail
  900          */
  901         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
  902                 if (dir == PFIL_IN)
  903                         ss->nskip_in_tcpcb++;
  904                 else
  905                         ss->nskip_out_tcpcb++;
  906 
  907                 goto inp_unlock;
  908         }
  909 
  910         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
  911 
  912         if (pn == NULL) {
  913                 if (dir == PFIL_IN)
  914                         ss->nskip_in_malloc++;
  915                 else
  916                         ss->nskip_out_malloc++;
  917 
  918                 goto inp_unlock;
  919         }
  920 
  921         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
  922 
  923         if (siftr_generate_hashes) {
  924                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
  925                         /*
  926                          * For outbound packets, the TCP checksum isn't
  927                          * calculated yet. This is a problem for our packet
  928                          * hashing as the receiver will calc a different hash
  929                          * to ours if we don't include the correct TCP checksum
  930                          * in the bytes being hashed. To work around this
  931                          * problem, we manually calc the TCP checksum here in
  932                          * software. We unset the CSUM_TCP flag so the lower
  933                          * layers don't recalc it.
  934                          */
  935                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
  936 
  937                         /*
  938                          * Calculate the TCP checksum in software and assign
  939                          * to correct TCP header field, which will follow the
  940                          * packet mbuf down the stack. The trick here is that
  941                          * tcp_output() sets th->th_sum to the checksum of the
  942                          * pseudo header for us already. Because of the nature
  943                          * of the checksumming algorithm, we can sum over the
  944                          * entire IP payload (i.e. TCP header and data), which
  945                          * will include the already calculated pseduo header
  946                          * checksum, thus giving us the complete TCP checksum.
  947                          *
  948                          * To put it in simple terms, if checksum(1,2,3,4)=10,
  949                          * then checksum(1,2,3,4,5) == checksum(10,5).
  950                          * This property is what allows us to "cheat" and
  951                          * checksum only the IP payload which has the TCP
  952                          * th_sum field populated with the pseudo header's
  953                          * checksum, and not need to futz around checksumming
  954                          * pseudo header bytes and TCP header/data in one hit.
  955                          * Refer to RFC 1071 for more info.
  956                          *
  957                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
  958                          * in_cksum_skip 2nd argument is NOT the number of
  959                          * bytes to read from the mbuf at "skip" bytes offset
  960                          * from the start of the mbuf (very counter intuitive!).
  961                          * The number of bytes to read is calculated internally
  962                          * by the function as len-skip i.e. to sum over the IP
  963                          * payload (TCP header + data) bytes, it is INCORRECT
  964                          * to call the function like this:
  965                          * in_cksum_skip(at, ip->ip_len - offset, offset)
  966                          * Rather, it should be called like this:
  967                          * in_cksum_skip(at, ip->ip_len, offset)
  968                          * which means read "ip->ip_len - offset" bytes from
  969                          * the mbuf cluster "at" at offset "offset" bytes from
  970                          * the beginning of the "at" mbuf's data pointer.
  971                          */
  972                         th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
  973                             ip_hl);
  974                 }
  975 
  976                 /*
  977                  * XXX: Having to calculate the checksum in software and then
  978                  * hash over all bytes is really inefficient. Would be nice to
  979                  * find a way to create the hash and checksum in the same pass
  980                  * over the bytes.
  981                  */
  982                 pn->hash = hash_pkt(*m, ip_hl);
  983         }
  984 
  985         mtx_lock(&siftr_pkt_queue_mtx);
  986         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
  987         mtx_unlock(&siftr_pkt_queue_mtx);
  988         goto ret;
  989 
  990 inp_unlock:
  991         if (inp_locally_locked)
  992                 INP_RUNLOCK(inp);
  993 
  994 ret:
  995         /* Returning 0 ensures pfil will not discard the pkt */
  996         return (0);
  997 }
  998 
  999 
 1000 #ifdef SIFTR_IPV6
 1001 static int
 1002 siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
 1003     struct inpcb *inp)
 1004 {
 1005         struct pkt_node *pn;
 1006         struct ip6_hdr *ip6;
 1007         struct tcphdr *th;
 1008         struct tcpcb *tp;
 1009         struct siftr_stats *ss;
 1010         unsigned int ip6_hl;
 1011         int inp_locally_locked;
 1012 
 1013         inp_locally_locked = 0;
 1014         ss = DPCPU_PTR(ss);
 1015 
 1016         /*
 1017          * m_pullup is not required here because ip6_{input|output}
 1018          * already do the heavy lifting for us.
 1019          */
 1020 
 1021         ip6 = mtod(*m, struct ip6_hdr *);
 1022 
 1023         /*
 1024          * Only continue processing if the packet is TCP
 1025          * XXX: We should follow the next header fields
 1026          * as shown on Pg 6 RFC 2460, but right now we'll
 1027          * only check pkts that have no extension headers.
 1028          */
 1029         if (ip6->ip6_nxt != IPPROTO_TCP)
 1030                 goto ret6;
 1031 
 1032         /*
 1033          * If a kernel subsystem reinjects packets into the stack, our pfil
 1034          * hook will be called multiple times for the same packet.
 1035          * Make sure we only process unique packets.
 1036          */
 1037         if (siftr_chkreinject(*m, dir, ss))
 1038                 goto ret6;
 1039 
 1040         if (dir == PFIL_IN)
 1041                 ss->n_in++;
 1042         else
 1043                 ss->n_out++;
 1044 
 1045         ip6_hl = sizeof(struct ip6_hdr);
 1046 
 1047         /*
 1048          * Create a tcphdr struct starting at the correct offset
 1049          * in the ipv6 packet. ip->ip_hl gives the ip header length
 1050          * in 4-byte words, so multiply it to get the size in bytes.
 1051          */
 1052         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
 1053 
 1054         /*
 1055          * For inbound packets, the pfil hooks don't provide a pointer to the
 1056          * inpcb, so we need to find it ourselves and lock it.
 1057          */
 1058         if (!inp) {
 1059                 /* Find the corresponding inpcb for this pkt. */
 1060                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
 1061                     th->th_sport, th->th_dport, dir, ss);
 1062 
 1063                 if (inp == NULL)
 1064                         goto ret6;
 1065                 else
 1066                         inp_locally_locked = 1;
 1067         }
 1068 
 1069         /* Find the TCP control block that corresponds with this packet. */
 1070         tp = intotcpcb(inp);
 1071 
 1072         /*
 1073          * If we can't find the TCP control block (happens occasionaly for a
 1074          * packet sent during the shutdown phase of a TCP connection),
 1075          * or we're in the timewait state, bail.
 1076          */
 1077         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
 1078                 if (dir == PFIL_IN)
 1079                         ss->nskip_in_tcpcb++;
 1080                 else
 1081                         ss->nskip_out_tcpcb++;
 1082 
 1083                 goto inp_unlock6;
 1084         }
 1085 
 1086         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
 1087 
 1088         if (pn == NULL) {
 1089                 if (dir == PFIL_IN)
 1090                         ss->nskip_in_malloc++;
 1091                 else
 1092                         ss->nskip_out_malloc++;
 1093 
 1094                 goto inp_unlock6;
 1095         }
 1096 
 1097         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
 1098 
 1099         /* XXX: Figure out how to generate hashes for IPv6 packets. */
 1100 
 1101         mtx_lock(&siftr_pkt_queue_mtx);
 1102         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
 1103         mtx_unlock(&siftr_pkt_queue_mtx);
 1104         goto ret6;
 1105 
 1106 inp_unlock6:
 1107         if (inp_locally_locked)
 1108                 INP_RUNLOCK(inp);
 1109 
 1110 ret6:
 1111         /* Returning 0 ensures pfil will not discard the pkt. */
 1112         return (0);
 1113 }
 1114 #endif /* #ifdef SIFTR_IPV6 */
 1115 
 1116 
 1117 static int
 1118 siftr_pfil(int action)
 1119 {
 1120         struct pfil_head *pfh_inet;
 1121 #ifdef SIFTR_IPV6
 1122         struct pfil_head *pfh_inet6;
 1123 #endif
 1124         VNET_ITERATOR_DECL(vnet_iter);
 1125 
 1126         VNET_LIST_RLOCK();
 1127         VNET_FOREACH(vnet_iter) {
 1128                 CURVNET_SET(vnet_iter);
 1129                 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
 1130 #ifdef SIFTR_IPV6
 1131                 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
 1132 #endif
 1133 
 1134                 if (action == HOOK) {
 1135                         pfil_add_hook(siftr_chkpkt, NULL,
 1136                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1137 #ifdef SIFTR_IPV6
 1138                         pfil_add_hook(siftr_chkpkt6, NULL,
 1139                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1140 #endif
 1141                 } else if (action == UNHOOK) {
 1142                         pfil_remove_hook(siftr_chkpkt, NULL,
 1143                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1144 #ifdef SIFTR_IPV6
 1145                         pfil_remove_hook(siftr_chkpkt6, NULL,
 1146                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1147 #endif
 1148                 }
 1149                 CURVNET_RESTORE();
 1150         }
 1151         VNET_LIST_RUNLOCK();
 1152 
 1153         return (0);
 1154 }
 1155 
 1156 
 1157 static int
 1158 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
 1159 {
 1160         struct alq *new_alq;
 1161         int error;
 1162 
 1163         error = sysctl_handle_string(oidp, arg1, arg2, req);
 1164 
 1165         /* Check for error or same filename */
 1166         if (error != 0 || req->newptr == NULL ||
 1167             strncmp(siftr_logfile, arg1, arg2) == 0)
 1168                 goto done;
 1169 
 1170         /* Filname changed */
 1171         error = alq_open(&new_alq, arg1, curthread->td_ucred,
 1172             SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1173         if (error != 0)
 1174                 goto done;
 1175 
 1176         /*
 1177          * If disabled, siftr_alq == NULL so we simply close
 1178          * the alq as we've proved it can be opened.
 1179          * If enabled, close the existing alq and switch the old
 1180          * for the new.
 1181          */
 1182         if (siftr_alq == NULL) {
 1183                 alq_close(new_alq);
 1184         } else {
 1185                 alq_close(siftr_alq);
 1186                 siftr_alq = new_alq;
 1187         }
 1188 
 1189         /* Update filename upon success */
 1190         strlcpy(siftr_logfile, arg1, arg2);
 1191 done:
 1192         return (error);
 1193 }
 1194 
 1195 static int
 1196 siftr_manage_ops(uint8_t action)
 1197 {
 1198         struct siftr_stats totalss;
 1199         struct timeval tval;
 1200         struct flow_hash_node *counter, *tmp_counter;
 1201         struct sbuf *s;
 1202         int i, key_index, ret, error;
 1203         uint32_t bytes_to_write, total_skipped_pkts;
 1204         uint16_t lport, fport;
 1205         uint8_t *key, ipver;
 1206 
 1207 #ifdef SIFTR_IPV6
 1208         uint32_t laddr[4];
 1209         uint32_t faddr[4];
 1210 #else
 1211         uint8_t laddr[4];
 1212         uint8_t faddr[4];
 1213 #endif
 1214 
 1215         error = 0;
 1216         total_skipped_pkts = 0;
 1217 
 1218         /* Init an autosizing sbuf that initially holds 200 chars. */
 1219         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
 1220                 return (-1);
 1221 
 1222         if (action == SIFTR_ENABLE) {
 1223                 /*
 1224                  * Create our alq
 1225                  * XXX: We should abort if alq_open fails!
 1226                  */
 1227                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
 1228                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1229 
 1230                 STAILQ_INIT(&pkt_queue);
 1231 
 1232                 DPCPU_ZERO(ss);
 1233 
 1234                 siftr_exit_pkt_manager_thread = 0;
 1235 
 1236                 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
 1237                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
 1238                     "siftr_pkt_manager_thr");
 1239 
 1240                 siftr_pfil(HOOK);
 1241 
 1242                 microtime(&tval);
 1243 
 1244                 sbuf_printf(s,
 1245                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
 1246                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
 1247                     "sysver=%u\tipmode=%u\n",
 1248                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
 1249                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
 1250 
 1251                 sbuf_finish(s);
 1252                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
 1253 
 1254         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
 1255                 /*
 1256                  * Remove the pfil hook functions. All threads currently in
 1257                  * the hook functions are allowed to exit before siftr_pfil()
 1258                  * returns.
 1259                  */
 1260                 siftr_pfil(UNHOOK);
 1261 
 1262                 /* This will block until the pkt manager thread unlocks it. */
 1263                 mtx_lock(&siftr_pkt_mgr_mtx);
 1264 
 1265                 /* Tell the pkt manager thread that it should exit now. */
 1266                 siftr_exit_pkt_manager_thread = 1;
 1267 
 1268                 /*
 1269                  * Wake the pkt_manager thread so it realises that
 1270                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
 1271                  * The wakeup won't be delivered until we unlock
 1272                  * siftr_pkt_mgr_mtx so this isn't racy.
 1273                  */
 1274                 wakeup(&wait_for_pkt);
 1275 
 1276                 /* Wait for the pkt_manager thread to exit. */
 1277                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
 1278                     "thrwait", 0);
 1279 
 1280                 siftr_pkt_manager_thr = NULL;
 1281                 mtx_unlock(&siftr_pkt_mgr_mtx);
 1282 
 1283                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
 1284                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
 1285                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
 1286                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
 1287                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
 1288                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
 1289                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
 1290                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
 1291                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
 1292                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
 1293 
 1294                 total_skipped_pkts = totalss.nskip_in_malloc +
 1295                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
 1296                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
 1297                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
 1298                     totalss.nskip_out_inpcb;
 1299 
 1300                 microtime(&tval);
 1301 
 1302                 sbuf_printf(s,
 1303                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
 1304                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
 1305                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
 1306                     "num_outbound_skipped_pkts_malloc=%u\t"
 1307                     "num_inbound_skipped_pkts_mtx=%u\t"
 1308                     "num_outbound_skipped_pkts_mtx=%u\t"
 1309                     "num_inbound_skipped_pkts_tcpcb=%u\t"
 1310                     "num_outbound_skipped_pkts_tcpcb=%u\t"
 1311                     "num_inbound_skipped_pkts_inpcb=%u\t"
 1312                     "num_outbound_skipped_pkts_inpcb=%u\t"
 1313                     "total_skipped_tcp_pkts=%u\tflow_list=",
 1314                     (intmax_t)tval.tv_sec,
 1315                     tval.tv_usec,
 1316                     (uintmax_t)totalss.n_in,
 1317                     (uintmax_t)totalss.n_out,
 1318                     (uintmax_t)(totalss.n_in + totalss.n_out),
 1319                     totalss.nskip_in_malloc,
 1320                     totalss.nskip_out_malloc,
 1321                     totalss.nskip_in_mtx,
 1322                     totalss.nskip_out_mtx,
 1323                     totalss.nskip_in_tcpcb,
 1324                     totalss.nskip_out_tcpcb,
 1325                     totalss.nskip_in_inpcb,
 1326                     totalss.nskip_out_inpcb,
 1327                     total_skipped_pkts);
 1328 
 1329                 /*
 1330                  * Iterate over the flow hash, printing a summary of each
 1331                  * flow seen and freeing any malloc'd memory.
 1332                  * The hash consists of an array of LISTs (man 3 queue).
 1333                  */
 1334                 for (i = 0; i <= siftr_hashmask; i++) {
 1335                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
 1336                             tmp_counter) {
 1337                                 key = counter->key;
 1338                                 key_index = 1;
 1339 
 1340                                 ipver = key[0];
 1341 
 1342                                 memcpy(laddr, key + key_index, sizeof(laddr));
 1343                                 key_index += sizeof(laddr);
 1344                                 memcpy(&lport, key + key_index, sizeof(lport));
 1345                                 key_index += sizeof(lport);
 1346                                 memcpy(faddr, key + key_index, sizeof(faddr));
 1347                                 key_index += sizeof(faddr);
 1348                                 memcpy(&fport, key + key_index, sizeof(fport));
 1349 
 1350 #ifdef SIFTR_IPV6
 1351                                 laddr[3] = ntohl(laddr[3]);
 1352                                 faddr[3] = ntohl(faddr[3]);
 1353 
 1354                                 if (ipver == INP_IPV6) {
 1355                                         laddr[0] = ntohl(laddr[0]);
 1356                                         laddr[1] = ntohl(laddr[1]);
 1357                                         laddr[2] = ntohl(laddr[2]);
 1358                                         faddr[0] = ntohl(faddr[0]);
 1359                                         faddr[1] = ntohl(faddr[1]);
 1360                                         faddr[2] = ntohl(faddr[2]);
 1361 
 1362                                         sbuf_printf(s,
 1363                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
 1364                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
 1365                                             UPPER_SHORT(laddr[0]),
 1366                                             LOWER_SHORT(laddr[0]),
 1367                                             UPPER_SHORT(laddr[1]),
 1368                                             LOWER_SHORT(laddr[1]),
 1369                                             UPPER_SHORT(laddr[2]),
 1370                                             LOWER_SHORT(laddr[2]),
 1371                                             UPPER_SHORT(laddr[3]),
 1372                                             LOWER_SHORT(laddr[3]),
 1373                                             ntohs(lport),
 1374                                             UPPER_SHORT(faddr[0]),
 1375                                             LOWER_SHORT(faddr[0]),
 1376                                             UPPER_SHORT(faddr[1]),
 1377                                             LOWER_SHORT(faddr[1]),
 1378                                             UPPER_SHORT(faddr[2]),
 1379                                             LOWER_SHORT(faddr[2]),
 1380                                             UPPER_SHORT(faddr[3]),
 1381                                             LOWER_SHORT(faddr[3]),
 1382                                             ntohs(fport));
 1383                                 } else {
 1384                                         laddr[0] = FIRST_OCTET(laddr[3]);
 1385                                         laddr[1] = SECOND_OCTET(laddr[3]);
 1386                                         laddr[2] = THIRD_OCTET(laddr[3]);
 1387                                         laddr[3] = FOURTH_OCTET(laddr[3]);
 1388                                         faddr[0] = FIRST_OCTET(faddr[3]);
 1389                                         faddr[1] = SECOND_OCTET(faddr[3]);
 1390                                         faddr[2] = THIRD_OCTET(faddr[3]);
 1391                                         faddr[3] = FOURTH_OCTET(faddr[3]);
 1392 #endif
 1393                                         sbuf_printf(s,
 1394                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
 1395                                             laddr[0],
 1396                                             laddr[1],
 1397                                             laddr[2],
 1398                                             laddr[3],
 1399                                             ntohs(lport),
 1400                                             faddr[0],
 1401                                             faddr[1],
 1402                                             faddr[2],
 1403                                             faddr[3],
 1404                                             ntohs(fport));
 1405 #ifdef SIFTR_IPV6
 1406                                 }
 1407 #endif
 1408 
 1409                                 free(counter, M_SIFTR_HASHNODE);
 1410                         }
 1411 
 1412                         LIST_INIT(counter_hash + i);
 1413                 }
 1414 
 1415                 sbuf_printf(s, "\n");
 1416                 sbuf_finish(s);
 1417 
 1418                 i = 0;
 1419                 do {
 1420                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
 1421                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
 1422                         i += bytes_to_write;
 1423                 } while (i < sbuf_len(s));
 1424 
 1425                 alq_close(siftr_alq);
 1426                 siftr_alq = NULL;
 1427         }
 1428 
 1429         sbuf_delete(s);
 1430 
 1431         /*
 1432          * XXX: Should be using ret to check if any functions fail
 1433          * and set error appropriately
 1434          */
 1435 
 1436         return (error);
 1437 }
 1438 
 1439 
 1440 static int
 1441 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
 1442 {
 1443         if (req->newptr == NULL)
 1444                 goto skip;
 1445 
 1446         /* If the value passed in isn't 0 or 1, return an error. */
 1447         if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
 1448                 return (1);
 1449 
 1450         /* If we are changing state (0 to 1 or 1 to 0). */
 1451         if (CAST_PTR_INT(req->newptr) != siftr_enabled )
 1452                 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
 1453                         siftr_manage_ops(SIFTR_DISABLE);
 1454                         return (1);
 1455                 }
 1456 
 1457 skip:
 1458         return (sysctl_handle_int(oidp, arg1, arg2, req));
 1459 }
 1460 
 1461 
 1462 static void
 1463 siftr_shutdown_handler(void *arg)
 1464 {
 1465         siftr_manage_ops(SIFTR_DISABLE);
 1466 }
 1467 
 1468 
 1469 /*
 1470  * Module is being unloaded or machine is shutting down. Take care of cleanup.
 1471  */
 1472 static int
 1473 deinit_siftr(void)
 1474 {
 1475         /* Cleanup. */
 1476         siftr_manage_ops(SIFTR_DISABLE);
 1477         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
 1478         mtx_destroy(&siftr_pkt_queue_mtx);
 1479         mtx_destroy(&siftr_pkt_mgr_mtx);
 1480 
 1481         return (0);
 1482 }
 1483 
 1484 
 1485 /*
 1486  * Module has just been loaded into the kernel.
 1487  */
 1488 static int
 1489 init_siftr(void)
 1490 {
 1491         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
 1492             SHUTDOWN_PRI_FIRST);
 1493 
 1494         /* Initialise our flow counter hash table. */
 1495         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
 1496             &siftr_hashmask);
 1497 
 1498         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
 1499         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
 1500 
 1501         /* Print message to the user's current terminal. */
 1502         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
 1503             "          http://caia.swin.edu.au/urp/newtcp\n\n",
 1504             MODVERSION_STR);
 1505 
 1506         return (0);
 1507 }
 1508 
 1509 
 1510 /*
 1511  * This is the function that is called to load and unload the module.
 1512  * When the module is loaded, this function is called once with
 1513  * "what" == MOD_LOAD
 1514  * When the module is unloaded, this function is called twice with
 1515  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
 1516  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
 1517  * this function is called once with "what" = MOD_SHUTDOWN
 1518  * When the system is shut down, the handler isn't called until the very end
 1519  * of the shutdown sequence i.e. after the disks have been synced.
 1520  */
 1521 static int
 1522 siftr_load_handler(module_t mod, int what, void *arg)
 1523 {
 1524         int ret;
 1525 
 1526         switch (what) {
 1527         case MOD_LOAD:
 1528                 ret = init_siftr();
 1529                 break;
 1530 
 1531         case MOD_QUIESCE:
 1532         case MOD_SHUTDOWN:
 1533                 ret = deinit_siftr();
 1534                 break;
 1535 
 1536         case MOD_UNLOAD:
 1537                 ret = 0;
 1538                 break;
 1539 
 1540         default:
 1541                 ret = EINVAL;
 1542                 break;
 1543         }
 1544 
 1545         return (ret);
 1546 }
 1547 
 1548 
 1549 static moduledata_t siftr_mod = {
 1550         .name = "siftr",
 1551         .evhand = siftr_load_handler,
 1552 };
 1553 
 1554 /*
 1555  * Param 1: name of the kernel module
 1556  * Param 2: moduledata_t struct containing info about the kernel module
 1557  *          and the execution entry point for the module
 1558  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
 1559  *          Defines the module initialisation order
 1560  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
 1561  *          Defines the initialisation order of this kld relative to others
 1562  *          within the same subsystem as defined by param 3
 1563  */
 1564 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
 1565 MODULE_DEPEND(siftr, alq, 1, 1, 1);
 1566 MODULE_VERSION(siftr, MODVERSION);

Cache object: aa8fb0f5139e4d93ad677fecbe2d2774


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.