The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/siftr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007-2009
    3  *      Swinburne University of Technology, Melbourne, Australia.
    4  * Copyright (c) 2009-2010, The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed at the Centre for Advanced
    8  * Internet Architectures, Swinburne University of Technology, Melbourne,
    9  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 /******************************************************
   34  * Statistical Information For TCP Research (SIFTR)
   35  *
   36  * A FreeBSD kernel module that adds very basic intrumentation to the
   37  * TCP stack, allowing internal stats to be recorded to a log file
   38  * for experimental, debugging and performance analysis purposes.
   39  *
   40  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
   41  * working on the NewTCP research project at Swinburne University of
   42  * Technology's Centre for Advanced Internet Architectures, Melbourne,
   43  * Australia, which was made possible in part by a grant from the Cisco
   44  * University Research Program Fund at Community Foundation Silicon Valley.
   45  * More details are available at:
   46  *   http://caia.swin.edu.au/urp/newtcp/
   47  *
   48  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
   49  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
   50  * More details are available at:
   51  *   http://www.freebsdfoundation.org/
   52  *   http://caia.swin.edu.au/freebsd/etcp09/
   53  *
   54  * Lawrence Stewart is the current maintainer, and all contact regarding
   55  * SIFTR should be directed to him via email: lastewart@swin.edu.au
   56  *
   57  * Initial release date: June 2007
   58  * Most recent update: September 2010
   59  ******************************************************/
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD$");
   63 
   64 #include <sys/param.h>
   65 #include <sys/alq.h>
   66 #include <sys/errno.h>
   67 #include <sys/eventhandler.h>
   68 #include <sys/hash.h>
   69 #include <sys/kernel.h>
   70 #include <sys/kthread.h>
   71 #include <sys/lock.h>
   72 #include <sys/mbuf.h>
   73 #include <sys/module.h>
   74 #include <sys/mutex.h>
   75 #include <sys/pcpu.h>
   76 #include <sys/proc.h>
   77 #include <sys/sbuf.h>
   78 #include <sys/sdt.h>
   79 #include <sys/smp.h>
   80 #include <sys/socket.h>
   81 #include <sys/socketvar.h>
   82 #include <sys/sysctl.h>
   83 #include <sys/unistd.h>
   84 
   85 #include <net/if.h>
   86 #include <net/if_var.h>
   87 #include <net/pfil.h>
   88 
   89 #include <netinet/in.h>
   90 #include <netinet/in_kdtrace.h>
   91 #include <netinet/in_pcb.h>
   92 #include <netinet/in_systm.h>
   93 #include <netinet/in_var.h>
   94 #include <netinet/ip.h>
   95 #include <netinet/tcp_var.h>
   96 
   97 #ifdef SIFTR_IPV6
   98 #include <netinet/ip6.h>
   99 #include <netinet6/in6_pcb.h>
  100 #endif /* SIFTR_IPV6 */
  101 
  102 #include <machine/in_cksum.h>
  103 
  104 /*
  105  * Three digit version number refers to X.Y.Z where:
  106  * X is the major version number
  107  * Y is bumped to mark backwards incompatible changes
  108  * Z is bumped to mark backwards compatible changes
  109  */
  110 #define V_MAJOR         1
  111 #define V_BACKBREAK     2
  112 #define V_BACKCOMPAT    4
  113 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
  114 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
  115     __XSTRING(V_BACKCOMPAT)
  116 
  117 #define HOOK 0
  118 #define UNHOOK 1
  119 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
  120 #define SYS_NAME "FreeBSD"
  121 #define PACKET_TAG_SIFTR 100
  122 #define PACKET_COOKIE_SIFTR 21749576
  123 #define SIFTR_LOG_FILE_MODE 0644
  124 #define SIFTR_DISABLE 0
  125 #define SIFTR_ENABLE 1
  126 
  127 /*
  128  * Hard upper limit on the length of log messages. Bump this up if you add new
  129  * data fields such that the line length could exceed the below value.
  130  */
  131 #define MAX_LOG_MSG_LEN 200
  132 /* XXX: Make this a sysctl tunable. */
  133 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
  134 
  135 /*
  136  * 1 byte for IP version
  137  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
  138  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
  139  */
  140 #ifdef SIFTR_IPV6
  141 #define FLOW_KEY_LEN 37
  142 #else
  143 #define FLOW_KEY_LEN 13
  144 #endif
  145 
  146 #ifdef SIFTR_IPV6
  147 #define SIFTR_IPMODE 6
  148 #else
  149 #define SIFTR_IPMODE 4
  150 #endif
  151 
  152 /* useful macros */
  153 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
  154 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
  155 
  156 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
  157 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
  158 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
  159 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
  160 
  161 static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
  162 static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
  163     "SIFTR pkt_node struct");
  164 static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
  165     "SIFTR flow_hash_node struct");
  166 
  167 /* Used as links in the pkt manager queue. */
  168 struct pkt_node {
  169         /* Timestamp of pkt as noted in the pfil hook. */
  170         struct timeval          tval;
  171         /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
  172         uint8_t                 direction;
  173         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
  174         uint8_t                 ipver;
  175         /* Hash of the pkt which triggered the log message. */
  176         uint32_t                hash;
  177         /* Local/foreign IP address. */
  178 #ifdef SIFTR_IPV6
  179         uint32_t                ip_laddr[4];
  180         uint32_t                ip_faddr[4];
  181 #else
  182         uint8_t                 ip_laddr[4];
  183         uint8_t                 ip_faddr[4];
  184 #endif
  185         /* Local TCP port. */
  186         uint16_t                tcp_localport;
  187         /* Foreign TCP port. */
  188         uint16_t                tcp_foreignport;
  189         /* Congestion Window (bytes). */
  190         u_long                  snd_cwnd;
  191         /* Sending Window (bytes). */
  192         u_long                  snd_wnd;
  193         /* Receive Window (bytes). */
  194         u_long                  rcv_wnd;
  195         /* Unused (was: Bandwidth Controlled Window (bytes)). */
  196         u_long                  snd_bwnd;
  197         /* Slow Start Threshold (bytes). */
  198         u_long                  snd_ssthresh;
  199         /* Current state of the TCP FSM. */
  200         int                     conn_state;
  201         /* Max Segment Size (bytes). */
  202         u_int                   max_seg_size;
  203         /*
  204          * Smoothed RTT stored as found in the TCP control block
  205          * in units of (TCP_RTT_SCALE*hz).
  206          */
  207         int                     smoothed_rtt;
  208         /* Is SACK enabled? */
  209         u_char                  sack_enabled;
  210         /* Window scaling for snd window. */
  211         u_char                  snd_scale;
  212         /* Window scaling for recv window. */
  213         u_char                  rcv_scale;
  214         /* TCP control block flags. */
  215         u_int                   flags;
  216         /* Retransmit timeout length. */
  217         int                     rxt_length;
  218         /* Size of the TCP send buffer in bytes. */
  219         u_int                   snd_buf_hiwater;
  220         /* Current num bytes in the send socket buffer. */
  221         u_int                   snd_buf_cc;
  222         /* Size of the TCP receive buffer in bytes. */
  223         u_int                   rcv_buf_hiwater;
  224         /* Current num bytes in the receive socket buffer. */
  225         u_int                   rcv_buf_cc;
  226         /* Number of bytes inflight that we are waiting on ACKs for. */
  227         u_int                   sent_inflight_bytes;
  228         /* Number of segments currently in the reassembly queue. */
  229         int                     t_segqlen;
  230         /* Flowid for the connection. */
  231         u_int                   flowid; 
  232         /* Flow type for the connection. */
  233         u_int                   flowtype;       
  234         /* Link to next pkt_node in the list. */
  235         STAILQ_ENTRY(pkt_node)  nodes;
  236 };
  237 
  238 struct flow_hash_node
  239 {
  240         uint16_t counter;
  241         uint8_t key[FLOW_KEY_LEN];
  242         LIST_ENTRY(flow_hash_node) nodes;
  243 };
  244 
  245 struct siftr_stats
  246 {
  247         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
  248         uint64_t n_in;
  249         uint64_t n_out;
  250         /* # pkts skipped due to failed malloc calls. */
  251         uint32_t nskip_in_malloc;
  252         uint32_t nskip_out_malloc;
  253         /* # pkts skipped due to failed mtx acquisition. */
  254         uint32_t nskip_in_mtx;
  255         uint32_t nskip_out_mtx;
  256         /* # pkts skipped due to failed inpcb lookups. */
  257         uint32_t nskip_in_inpcb;
  258         uint32_t nskip_out_inpcb;
  259         /* # pkts skipped due to failed tcpcb lookups. */
  260         uint32_t nskip_in_tcpcb;
  261         uint32_t nskip_out_tcpcb;
  262         /* # pkts skipped due to stack reinjection. */
  263         uint32_t nskip_in_dejavu;
  264         uint32_t nskip_out_dejavu;
  265 };
  266 
  267 static DPCPU_DEFINE(struct siftr_stats, ss);
  268 
  269 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
  270 static unsigned int siftr_enabled = 0;
  271 static unsigned int siftr_pkts_per_log = 1;
  272 static unsigned int siftr_generate_hashes = 0;
  273 /* static unsigned int siftr_binary_log = 0; */
  274 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
  275 static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
  276 static u_long siftr_hashmask;
  277 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
  278 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
  279 static int wait_for_pkt;
  280 static struct alq *siftr_alq = NULL;
  281 static struct mtx siftr_pkt_queue_mtx;
  282 static struct mtx siftr_pkt_mgr_mtx;
  283 static struct thread *siftr_pkt_manager_thr = NULL;
  284 /*
  285  * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
  286  * which we use as an index into this array.
  287  */
  288 static char direction[3] = {'\0', 'i','o'};
  289 
  290 /* Required function prototypes. */
  291 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
  292 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
  293 
  294 
  295 /* Declare the net.inet.siftr sysctl tree and populate it. */
  296 
  297 SYSCTL_DECL(_net_inet_siftr);
  298 
  299 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
  300     "siftr related settings");
  301 
  302 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
  303     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
  304     "switch siftr module operations on/off");
  305 
  306 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
  307     &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
  308     "A", "file to save siftr log messages to");
  309 
  310 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
  311     &siftr_pkts_per_log, 1,
  312     "number of packets between generating a log message");
  313 
  314 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
  315     &siftr_generate_hashes, 0,
  316     "enable packet hash generation");
  317 
  318 /* XXX: TODO
  319 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
  320     &siftr_binary_log, 0,
  321     "write log files in binary instead of ascii");
  322 */
  323 
  324 
  325 /* Begin functions. */
  326 
  327 static void
  328 siftr_process_pkt(struct pkt_node * pkt_node)
  329 {
  330         struct flow_hash_node *hash_node;
  331         struct listhead *counter_list;
  332         struct siftr_stats *ss;
  333         struct ale *log_buf;
  334         uint8_t key[FLOW_KEY_LEN];
  335         uint8_t found_match, key_offset;
  336 
  337         hash_node = NULL;
  338         ss = DPCPU_PTR(ss);
  339         found_match = 0;
  340         key_offset = 1;
  341 
  342         /*
  343          * Create the key that will be used to create a hash index
  344          * into our hash table. Our key consists of:
  345          * ipversion, localip, localport, foreignip, foreignport
  346          */
  347         key[0] = pkt_node->ipver;
  348         memcpy(key + key_offset, &pkt_node->ip_laddr,
  349             sizeof(pkt_node->ip_laddr));
  350         key_offset += sizeof(pkt_node->ip_laddr);
  351         memcpy(key + key_offset, &pkt_node->tcp_localport,
  352             sizeof(pkt_node->tcp_localport));
  353         key_offset += sizeof(pkt_node->tcp_localport);
  354         memcpy(key + key_offset, &pkt_node->ip_faddr,
  355             sizeof(pkt_node->ip_faddr));
  356         key_offset += sizeof(pkt_node->ip_faddr);
  357         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
  358             sizeof(pkt_node->tcp_foreignport));
  359 
  360         counter_list = counter_hash +
  361             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
  362 
  363         /*
  364          * If the list is not empty i.e. the hash index has
  365          * been used by another flow previously.
  366          */
  367         if (LIST_FIRST(counter_list) != NULL) {
  368                 /*
  369                  * Loop through the hash nodes in the list.
  370                  * There should normally only be 1 hash node in the list,
  371                  * except if there have been collisions at the hash index
  372                  * computed by hash32_buf().
  373                  */
  374                 LIST_FOREACH(hash_node, counter_list, nodes) {
  375                         /*
  376                          * Check if the key for the pkt we are currently
  377                          * processing is the same as the key stored in the
  378                          * hash node we are currently processing.
  379                          * If they are the same, then we've found the
  380                          * hash node that stores the counter for the flow
  381                          * the pkt belongs to.
  382                          */
  383                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
  384                                 found_match = 1;
  385                                 break;
  386                         }
  387                 }
  388         }
  389 
  390         /* If this flow hash hasn't been seen before or we have a collision. */
  391         if (hash_node == NULL || !found_match) {
  392                 /* Create a new hash node to store the flow's counter. */
  393                 hash_node = malloc(sizeof(struct flow_hash_node),
  394                     M_SIFTR_HASHNODE, M_WAITOK);
  395 
  396                 if (hash_node != NULL) {
  397                         /* Initialise our new hash node list entry. */
  398                         hash_node->counter = 0;
  399                         memcpy(hash_node->key, key, sizeof(key));
  400                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
  401                 } else {
  402                         /* Malloc failed. */
  403                         if (pkt_node->direction == PFIL_IN)
  404                                 ss->nskip_in_malloc++;
  405                         else
  406                                 ss->nskip_out_malloc++;
  407 
  408                         return;
  409                 }
  410         } else if (siftr_pkts_per_log > 1) {
  411                 /*
  412                  * Taking the remainder of the counter divided
  413                  * by the current value of siftr_pkts_per_log
  414                  * and storing that in counter provides a neat
  415                  * way to modulate the frequency of log
  416                  * messages being written to the log file.
  417                  */
  418                 hash_node->counter = (hash_node->counter + 1) %
  419                     siftr_pkts_per_log;
  420 
  421                 /*
  422                  * If we have not seen enough packets since the last time
  423                  * we wrote a log message for this connection, return.
  424                  */
  425                 if (hash_node->counter > 0)
  426                         return;
  427         }
  428 
  429         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
  430 
  431         if (log_buf == NULL)
  432                 return; /* Should only happen if the ALQ is shutting down. */
  433 
  434 #ifdef SIFTR_IPV6
  435         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
  436         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
  437 
  438         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
  439                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
  440                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
  441                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
  442                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
  443                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
  444                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
  445 
  446                 /* Construct an IPv6 log message. */
  447                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  448                     MAX_LOG_MSG_LEN,
  449                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
  450                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
  451                     "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
  452                     direction[pkt_node->direction],
  453                     pkt_node->hash,
  454                     pkt_node->tval.tv_sec,
  455                     pkt_node->tval.tv_usec,
  456                     UPPER_SHORT(pkt_node->ip_laddr[0]),
  457                     LOWER_SHORT(pkt_node->ip_laddr[0]),
  458                     UPPER_SHORT(pkt_node->ip_laddr[1]),
  459                     LOWER_SHORT(pkt_node->ip_laddr[1]),
  460                     UPPER_SHORT(pkt_node->ip_laddr[2]),
  461                     LOWER_SHORT(pkt_node->ip_laddr[2]),
  462                     UPPER_SHORT(pkt_node->ip_laddr[3]),
  463                     LOWER_SHORT(pkt_node->ip_laddr[3]),
  464                     ntohs(pkt_node->tcp_localport),
  465                     UPPER_SHORT(pkt_node->ip_faddr[0]),
  466                     LOWER_SHORT(pkt_node->ip_faddr[0]),
  467                     UPPER_SHORT(pkt_node->ip_faddr[1]),
  468                     LOWER_SHORT(pkt_node->ip_faddr[1]),
  469                     UPPER_SHORT(pkt_node->ip_faddr[2]),
  470                     LOWER_SHORT(pkt_node->ip_faddr[2]),
  471                     UPPER_SHORT(pkt_node->ip_faddr[3]),
  472                     LOWER_SHORT(pkt_node->ip_faddr[3]),
  473                     ntohs(pkt_node->tcp_foreignport),
  474                     pkt_node->snd_ssthresh,
  475                     pkt_node->snd_cwnd,
  476                     pkt_node->snd_bwnd,
  477                     pkt_node->snd_wnd,
  478                     pkt_node->rcv_wnd,
  479                     pkt_node->snd_scale,
  480                     pkt_node->rcv_scale,
  481                     pkt_node->conn_state,
  482                     pkt_node->max_seg_size,
  483                     pkt_node->smoothed_rtt,
  484                     pkt_node->sack_enabled,
  485                     pkt_node->flags,
  486                     pkt_node->rxt_length,
  487                     pkt_node->snd_buf_hiwater,
  488                     pkt_node->snd_buf_cc,
  489                     pkt_node->rcv_buf_hiwater,
  490                     pkt_node->rcv_buf_cc,
  491                     pkt_node->sent_inflight_bytes,
  492                     pkt_node->t_segqlen,
  493                     pkt_node->flowid,
  494                     pkt_node->flowtype);
  495         } else { /* IPv4 packet */
  496                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
  497                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
  498                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
  499                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
  500                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
  501                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
  502                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
  503                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
  504 #endif /* SIFTR_IPV6 */
  505 
  506                 /* Construct an IPv4 log message. */
  507                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  508                     MAX_LOG_MSG_LEN,
  509                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
  510                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
  511                     direction[pkt_node->direction],
  512                     pkt_node->hash,
  513                     (intmax_t)pkt_node->tval.tv_sec,
  514                     pkt_node->tval.tv_usec,
  515                     pkt_node->ip_laddr[0],
  516                     pkt_node->ip_laddr[1],
  517                     pkt_node->ip_laddr[2],
  518                     pkt_node->ip_laddr[3],
  519                     ntohs(pkt_node->tcp_localport),
  520                     pkt_node->ip_faddr[0],
  521                     pkt_node->ip_faddr[1],
  522                     pkt_node->ip_faddr[2],
  523                     pkt_node->ip_faddr[3],
  524                     ntohs(pkt_node->tcp_foreignport),
  525                     pkt_node->snd_ssthresh,
  526                     pkt_node->snd_cwnd,
  527                     pkt_node->snd_bwnd,
  528                     pkt_node->snd_wnd,
  529                     pkt_node->rcv_wnd,
  530                     pkt_node->snd_scale,
  531                     pkt_node->rcv_scale,
  532                     pkt_node->conn_state,
  533                     pkt_node->max_seg_size,
  534                     pkt_node->smoothed_rtt,
  535                     pkt_node->sack_enabled,
  536                     pkt_node->flags,
  537                     pkt_node->rxt_length,
  538                     pkt_node->snd_buf_hiwater,
  539                     pkt_node->snd_buf_cc,
  540                     pkt_node->rcv_buf_hiwater,
  541                     pkt_node->rcv_buf_cc,
  542                     pkt_node->sent_inflight_bytes,
  543                     pkt_node->t_segqlen,
  544                     pkt_node->flowid,
  545                     pkt_node->flowtype);
  546 #ifdef SIFTR_IPV6
  547         }
  548 #endif
  549 
  550         alq_post_flags(siftr_alq, log_buf, 0);
  551 }
  552 
  553 
  554 static void
  555 siftr_pkt_manager_thread(void *arg)
  556 {
  557         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
  558             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
  559         struct pkt_node *pkt_node, *pkt_node_temp;
  560         uint8_t draining;
  561 
  562         draining = 2;
  563 
  564         mtx_lock(&siftr_pkt_mgr_mtx);
  565 
  566         /* draining == 0 when queue has been flushed and it's safe to exit. */
  567         while (draining) {
  568                 /*
  569                  * Sleep until we are signalled to wake because thread has
  570                  * been told to exit or until 1 tick has passed.
  571                  */
  572                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
  573                     1);
  574 
  575                 /* Gain exclusive access to the pkt_node queue. */
  576                 mtx_lock(&siftr_pkt_queue_mtx);
  577 
  578                 /*
  579                  * Move pkt_queue to tmp_pkt_queue, which leaves
  580                  * pkt_queue empty and ready to receive more pkt_nodes.
  581                  */
  582                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
  583 
  584                 /*
  585                  * We've finished making changes to the list. Unlock it
  586                  * so the pfil hooks can continue queuing pkt_nodes.
  587                  */
  588                 mtx_unlock(&siftr_pkt_queue_mtx);
  589 
  590                 /*
  591                  * We can't hold a mutex whilst calling siftr_process_pkt
  592                  * because ALQ might sleep waiting for buffer space.
  593                  */
  594                 mtx_unlock(&siftr_pkt_mgr_mtx);
  595 
  596                 /* Flush all pkt_nodes to the log file. */
  597                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
  598                     pkt_node_temp) {
  599                         siftr_process_pkt(pkt_node);
  600                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
  601                         free(pkt_node, M_SIFTR_PKTNODE);
  602                 }
  603 
  604                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
  605                     ("SIFTR tmp_pkt_queue not empty after flush"));
  606 
  607                 mtx_lock(&siftr_pkt_mgr_mtx);
  608 
  609                 /*
  610                  * If siftr_exit_pkt_manager_thread gets set during the window
  611                  * where we are draining the tmp_pkt_queue above, there might
  612                  * still be pkts in pkt_queue that need to be drained.
  613                  * Allow one further iteration to occur after
  614                  * siftr_exit_pkt_manager_thread has been set to ensure
  615                  * pkt_queue is completely empty before we kill the thread.
  616                  *
  617                  * siftr_exit_pkt_manager_thread is set only after the pfil
  618                  * hooks have been removed, so only 1 extra iteration
  619                  * is needed to drain the queue.
  620                  */
  621                 if (siftr_exit_pkt_manager_thread)
  622                         draining--;
  623         }
  624 
  625         mtx_unlock(&siftr_pkt_mgr_mtx);
  626 
  627         /* Calls wakeup on this thread's struct thread ptr. */
  628         kthread_exit();
  629 }
  630 
  631 
  632 static uint32_t
  633 hash_pkt(struct mbuf *m, uint32_t offset)
  634 {
  635         uint32_t hash;
  636 
  637         hash = 0;
  638 
  639         while (m != NULL && offset > m->m_len) {
  640                 /*
  641                  * The IP packet payload does not start in this mbuf, so
  642                  * need to figure out which mbuf it starts in and what offset
  643                  * into the mbuf's data region the payload starts at.
  644                  */
  645                 offset -= m->m_len;
  646                 m = m->m_next;
  647         }
  648 
  649         while (m != NULL) {
  650                 /* Ensure there is data in the mbuf */
  651                 if ((m->m_len - offset) > 0)
  652                         hash = hash32_buf(m->m_data + offset,
  653                             m->m_len - offset, hash);
  654 
  655                 m = m->m_next;
  656                 offset = 0;
  657         }
  658 
  659         return (hash);
  660 }
  661 
  662 
  663 /*
  664  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
  665  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
  666  * Return value >0 means the caller should skip processing this mbuf.
  667  */
  668 static inline int
  669 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
  670 {
  671         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
  672             != NULL) {
  673                 if (dir == PFIL_IN)
  674                         ss->nskip_in_dejavu++;
  675                 else
  676                         ss->nskip_out_dejavu++;
  677 
  678                 return (1);
  679         } else {
  680                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
  681                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
  682                 if (tag == NULL) {
  683                         if (dir == PFIL_IN)
  684                                 ss->nskip_in_malloc++;
  685                         else
  686                                 ss->nskip_out_malloc++;
  687 
  688                         return (1);
  689                 }
  690 
  691                 m_tag_prepend(m, tag);
  692         }
  693 
  694         return (0);
  695 }
  696 
  697 
  698 /*
  699  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
  700  * otherwise.
  701  */
  702 static inline struct inpcb *
  703 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
  704     uint16_t dport, int dir, struct siftr_stats *ss)
  705 {
  706         struct inpcb *inp;
  707 
  708         /* We need the tcbinfo lock. */
  709         INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
  710 
  711         if (dir == PFIL_IN)
  712                 inp = (ipver == INP_IPV4 ?
  713                     in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
  714                     dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
  715                     :
  716 #ifdef SIFTR_IPV6
  717                     in6_pcblookup(&V_tcbinfo,
  718                     &((struct ip6_hdr *)ip)->ip6_src, sport,
  719                     &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
  720                     m->m_pkthdr.rcvif)
  721 #else
  722                     NULL
  723 #endif
  724                     );
  725 
  726         else
  727                 inp = (ipver == INP_IPV4 ?
  728                     in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
  729                     sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
  730                     :
  731 #ifdef SIFTR_IPV6
  732                     in6_pcblookup(&V_tcbinfo,
  733                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
  734                     &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
  735                     m->m_pkthdr.rcvif)
  736 #else
  737                     NULL
  738 #endif
  739                     );
  740 
  741         /* If we can't find the inpcb, bail. */
  742         if (inp == NULL) {
  743                 if (dir == PFIL_IN)
  744                         ss->nskip_in_inpcb++;
  745                 else
  746                         ss->nskip_out_inpcb++;
  747         }
  748 
  749         return (inp);
  750 }
  751 
  752 
  753 static inline void
  754 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
  755     int ipver, int dir, int inp_locally_locked)
  756 {
  757 #ifdef SIFTR_IPV6
  758         if (ipver == INP_IPV4) {
  759                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
  760                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
  761 #else
  762                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
  763                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
  764 #endif
  765 #ifdef SIFTR_IPV6
  766         } else {
  767                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
  768                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
  769                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
  770                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
  771                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
  772                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
  773                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
  774                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
  775         }
  776 #endif
  777         pn->tcp_localport = inp->inp_lport;
  778         pn->tcp_foreignport = inp->inp_fport;
  779         pn->snd_cwnd = tp->snd_cwnd;
  780         pn->snd_wnd = tp->snd_wnd;
  781         pn->rcv_wnd = tp->rcv_wnd;
  782         pn->snd_bwnd = 0;               /* Unused, kept for compat. */
  783         pn->snd_ssthresh = tp->snd_ssthresh;
  784         pn->snd_scale = tp->snd_scale;
  785         pn->rcv_scale = tp->rcv_scale;
  786         pn->conn_state = tp->t_state;
  787         pn->max_seg_size = tp->t_maxseg;
  788         pn->smoothed_rtt = tp->t_srtt;
  789         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
  790         pn->flags = tp->t_flags;
  791         pn->rxt_length = tp->t_rxtcur;
  792         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
  793         pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
  794         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
  795         pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
  796         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
  797         pn->t_segqlen = tp->t_segqlen;
  798         pn->flowid = inp->inp_flowid;
  799         pn->flowtype = inp->inp_flowtype;
  800 
  801         /* We've finished accessing the tcb so release the lock. */
  802         if (inp_locally_locked)
  803                 INP_RUNLOCK(inp);
  804 
  805         pn->ipver = ipver;
  806         pn->direction = dir;
  807 
  808         /*
  809          * Significantly more accurate than using getmicrotime(), but slower!
  810          * Gives true microsecond resolution at the expense of a hit to
  811          * maximum pps throughput processing when SIFTR is loaded and enabled.
  812          */
  813         microtime(&pn->tval);
  814         TCP_PROBE1(siftr, &pn);
  815 
  816 }
  817 
  818 
  819 /*
  820  * pfil hook that is called for each IPv4 packet making its way through the
  821  * stack in either direction.
  822  * The pfil subsystem holds a non-sleepable mutex somewhere when
  823  * calling our hook function, so we can't sleep at all.
  824  * It's very important to use the M_NOWAIT flag with all function calls
  825  * that support it so that they won't sleep, otherwise you get a panic.
  826  */
  827 static int
  828 siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  829     struct inpcb *inp)
  830 {
  831         struct pkt_node *pn;
  832         struct ip *ip;
  833         struct tcphdr *th;
  834         struct tcpcb *tp;
  835         struct siftr_stats *ss;
  836         unsigned int ip_hl;
  837         int inp_locally_locked;
  838 
  839         inp_locally_locked = 0;
  840         ss = DPCPU_PTR(ss);
  841 
  842         /*
  843          * m_pullup is not required here because ip_{input|output}
  844          * already do the heavy lifting for us.
  845          */
  846 
  847         ip = mtod(*m, struct ip *);
  848 
  849         /* Only continue processing if the packet is TCP. */
  850         if (ip->ip_p != IPPROTO_TCP)
  851                 goto ret;
  852 
  853         /*
  854          * If a kernel subsystem reinjects packets into the stack, our pfil
  855          * hook will be called multiple times for the same packet.
  856          * Make sure we only process unique packets.
  857          */
  858         if (siftr_chkreinject(*m, dir, ss))
  859                 goto ret;
  860 
  861         if (dir == PFIL_IN)
  862                 ss->n_in++;
  863         else
  864                 ss->n_out++;
  865 
  866         /*
  867          * Create a tcphdr struct starting at the correct offset
  868          * in the IP packet. ip->ip_hl gives the ip header length
  869          * in 4-byte words, so multiply it to get the size in bytes.
  870          */
  871         ip_hl = (ip->ip_hl << 2);
  872         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
  873 
  874         /*
  875          * If the pfil hooks don't provide a pointer to the
  876          * inpcb, we need to find it ourselves and lock it.
  877          */
  878         if (!inp) {
  879                 /* Find the corresponding inpcb for this pkt. */
  880                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
  881                     th->th_dport, dir, ss);
  882 
  883                 if (inp == NULL)
  884                         goto ret;
  885                 else
  886                         inp_locally_locked = 1;
  887         }
  888 
  889         INP_LOCK_ASSERT(inp);
  890 
  891         /* Find the TCP control block that corresponds with this packet */
  892         tp = intotcpcb(inp);
  893 
  894         /*
  895          * If we can't find the TCP control block (happens occasionaly for a
  896          * packet sent during the shutdown phase of a TCP connection),
  897          * or we're in the timewait state, bail
  898          */
  899         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
  900                 if (dir == PFIL_IN)
  901                         ss->nskip_in_tcpcb++;
  902                 else
  903                         ss->nskip_out_tcpcb++;
  904 
  905                 goto inp_unlock;
  906         }
  907 
  908         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
  909 
  910         if (pn == NULL) {
  911                 if (dir == PFIL_IN)
  912                         ss->nskip_in_malloc++;
  913                 else
  914                         ss->nskip_out_malloc++;
  915 
  916                 goto inp_unlock;
  917         }
  918 
  919         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
  920 
  921         if (siftr_generate_hashes) {
  922                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
  923                         /*
  924                          * For outbound packets, the TCP checksum isn't
  925                          * calculated yet. This is a problem for our packet
  926                          * hashing as the receiver will calc a different hash
  927                          * to ours if we don't include the correct TCP checksum
  928                          * in the bytes being hashed. To work around this
  929                          * problem, we manually calc the TCP checksum here in
  930                          * software. We unset the CSUM_TCP flag so the lower
  931                          * layers don't recalc it.
  932                          */
  933                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
  934 
  935                         /*
  936                          * Calculate the TCP checksum in software and assign
  937                          * to correct TCP header field, which will follow the
  938                          * packet mbuf down the stack. The trick here is that
  939                          * tcp_output() sets th->th_sum to the checksum of the
  940                          * pseudo header for us already. Because of the nature
  941                          * of the checksumming algorithm, we can sum over the
  942                          * entire IP payload (i.e. TCP header and data), which
  943                          * will include the already calculated pseduo header
  944                          * checksum, thus giving us the complete TCP checksum.
  945                          *
  946                          * To put it in simple terms, if checksum(1,2,3,4)=10,
  947                          * then checksum(1,2,3,4,5) == checksum(10,5).
  948                          * This property is what allows us to "cheat" and
  949                          * checksum only the IP payload which has the TCP
  950                          * th_sum field populated with the pseudo header's
  951                          * checksum, and not need to futz around checksumming
  952                          * pseudo header bytes and TCP header/data in one hit.
  953                          * Refer to RFC 1071 for more info.
  954                          *
  955                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
  956                          * in_cksum_skip 2nd argument is NOT the number of
  957                          * bytes to read from the mbuf at "skip" bytes offset
  958                          * from the start of the mbuf (very counter intuitive!).
  959                          * The number of bytes to read is calculated internally
  960                          * by the function as len-skip i.e. to sum over the IP
  961                          * payload (TCP header + data) bytes, it is INCORRECT
  962                          * to call the function like this:
  963                          * in_cksum_skip(at, ip->ip_len - offset, offset)
  964                          * Rather, it should be called like this:
  965                          * in_cksum_skip(at, ip->ip_len, offset)
  966                          * which means read "ip->ip_len - offset" bytes from
  967                          * the mbuf cluster "at" at offset "offset" bytes from
  968                          * the beginning of the "at" mbuf's data pointer.
  969                          */
  970                         th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
  971                             ip_hl);
  972                 }
  973 
  974                 /*
  975                  * XXX: Having to calculate the checksum in software and then
  976                  * hash over all bytes is really inefficient. Would be nice to
  977                  * find a way to create the hash and checksum in the same pass
  978                  * over the bytes.
  979                  */
  980                 pn->hash = hash_pkt(*m, ip_hl);
  981         }
  982 
  983         mtx_lock(&siftr_pkt_queue_mtx);
  984         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
  985         mtx_unlock(&siftr_pkt_queue_mtx);
  986         goto ret;
  987 
  988 inp_unlock:
  989         if (inp_locally_locked)
  990                 INP_RUNLOCK(inp);
  991 
  992 ret:
  993         /* Returning 0 ensures pfil will not discard the pkt */
  994         return (0);
  995 }
  996 
  997 
  998 #ifdef SIFTR_IPV6
  999 static int
 1000 siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
 1001     struct inpcb *inp)
 1002 {
 1003         struct pkt_node *pn;
 1004         struct ip6_hdr *ip6;
 1005         struct tcphdr *th;
 1006         struct tcpcb *tp;
 1007         struct siftr_stats *ss;
 1008         unsigned int ip6_hl;
 1009         int inp_locally_locked;
 1010 
 1011         inp_locally_locked = 0;
 1012         ss = DPCPU_PTR(ss);
 1013 
 1014         /*
 1015          * m_pullup is not required here because ip6_{input|output}
 1016          * already do the heavy lifting for us.
 1017          */
 1018 
 1019         ip6 = mtod(*m, struct ip6_hdr *);
 1020 
 1021         /*
 1022          * Only continue processing if the packet is TCP
 1023          * XXX: We should follow the next header fields
 1024          * as shown on Pg 6 RFC 2460, but right now we'll
 1025          * only check pkts that have no extension headers.
 1026          */
 1027         if (ip6->ip6_nxt != IPPROTO_TCP)
 1028                 goto ret6;
 1029 
 1030         /*
 1031          * If a kernel subsystem reinjects packets into the stack, our pfil
 1032          * hook will be called multiple times for the same packet.
 1033          * Make sure we only process unique packets.
 1034          */
 1035         if (siftr_chkreinject(*m, dir, ss))
 1036                 goto ret6;
 1037 
 1038         if (dir == PFIL_IN)
 1039                 ss->n_in++;
 1040         else
 1041                 ss->n_out++;
 1042 
 1043         ip6_hl = sizeof(struct ip6_hdr);
 1044 
 1045         /*
 1046          * Create a tcphdr struct starting at the correct offset
 1047          * in the ipv6 packet. ip->ip_hl gives the ip header length
 1048          * in 4-byte words, so multiply it to get the size in bytes.
 1049          */
 1050         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
 1051 
 1052         /*
 1053          * For inbound packets, the pfil hooks don't provide a pointer to the
 1054          * inpcb, so we need to find it ourselves and lock it.
 1055          */
 1056         if (!inp) {
 1057                 /* Find the corresponding inpcb for this pkt. */
 1058                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
 1059                     th->th_sport, th->th_dport, dir, ss);
 1060 
 1061                 if (inp == NULL)
 1062                         goto ret6;
 1063                 else
 1064                         inp_locally_locked = 1;
 1065         }
 1066 
 1067         /* Find the TCP control block that corresponds with this packet. */
 1068         tp = intotcpcb(inp);
 1069 
 1070         /*
 1071          * If we can't find the TCP control block (happens occasionaly for a
 1072          * packet sent during the shutdown phase of a TCP connection),
 1073          * or we're in the timewait state, bail.
 1074          */
 1075         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
 1076                 if (dir == PFIL_IN)
 1077                         ss->nskip_in_tcpcb++;
 1078                 else
 1079                         ss->nskip_out_tcpcb++;
 1080 
 1081                 goto inp_unlock6;
 1082         }
 1083 
 1084         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
 1085 
 1086         if (pn == NULL) {
 1087                 if (dir == PFIL_IN)
 1088                         ss->nskip_in_malloc++;
 1089                 else
 1090                         ss->nskip_out_malloc++;
 1091 
 1092                 goto inp_unlock6;
 1093         }
 1094 
 1095         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
 1096 
 1097         /* XXX: Figure out how to generate hashes for IPv6 packets. */
 1098 
 1099         mtx_lock(&siftr_pkt_queue_mtx);
 1100         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
 1101         mtx_unlock(&siftr_pkt_queue_mtx);
 1102         goto ret6;
 1103 
 1104 inp_unlock6:
 1105         if (inp_locally_locked)
 1106                 INP_RUNLOCK(inp);
 1107 
 1108 ret6:
 1109         /* Returning 0 ensures pfil will not discard the pkt. */
 1110         return (0);
 1111 }
 1112 #endif /* #ifdef SIFTR_IPV6 */
 1113 
 1114 
 1115 static int
 1116 siftr_pfil(int action)
 1117 {
 1118         struct pfil_head *pfh_inet;
 1119 #ifdef SIFTR_IPV6
 1120         struct pfil_head *pfh_inet6;
 1121 #endif
 1122         VNET_ITERATOR_DECL(vnet_iter);
 1123 
 1124         VNET_LIST_RLOCK();
 1125         VNET_FOREACH(vnet_iter) {
 1126                 CURVNET_SET(vnet_iter);
 1127                 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
 1128 #ifdef SIFTR_IPV6
 1129                 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
 1130 #endif
 1131 
 1132                 if (action == HOOK) {
 1133                         pfil_add_hook(siftr_chkpkt, NULL,
 1134                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1135 #ifdef SIFTR_IPV6
 1136                         pfil_add_hook(siftr_chkpkt6, NULL,
 1137                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1138 #endif
 1139                 } else if (action == UNHOOK) {
 1140                         pfil_remove_hook(siftr_chkpkt, NULL,
 1141                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1142 #ifdef SIFTR_IPV6
 1143                         pfil_remove_hook(siftr_chkpkt6, NULL,
 1144                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1145 #endif
 1146                 }
 1147                 CURVNET_RESTORE();
 1148         }
 1149         VNET_LIST_RUNLOCK();
 1150 
 1151         return (0);
 1152 }
 1153 
 1154 
 1155 static int
 1156 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
 1157 {
 1158         struct alq *new_alq;
 1159         int error;
 1160 
 1161         error = sysctl_handle_string(oidp, arg1, arg2, req);
 1162 
 1163         /* Check for error or same filename */
 1164         if (error != 0 || req->newptr == NULL ||
 1165             strncmp(siftr_logfile, arg1, arg2) == 0)
 1166                 goto done;
 1167 
 1168         /* Filname changed */
 1169         error = alq_open(&new_alq, arg1, curthread->td_ucred,
 1170             SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1171         if (error != 0)
 1172                 goto done;
 1173 
 1174         /*
 1175          * If disabled, siftr_alq == NULL so we simply close
 1176          * the alq as we've proved it can be opened.
 1177          * If enabled, close the existing alq and switch the old
 1178          * for the new.
 1179          */
 1180         if (siftr_alq == NULL) {
 1181                 alq_close(new_alq);
 1182         } else {
 1183                 alq_close(siftr_alq);
 1184                 siftr_alq = new_alq;
 1185         }
 1186 
 1187         /* Update filename upon success */
 1188         strlcpy(siftr_logfile, arg1, arg2);
 1189 done:
 1190         return (error);
 1191 }
 1192 
 1193 static int
 1194 siftr_manage_ops(uint8_t action)
 1195 {
 1196         struct siftr_stats totalss;
 1197         struct timeval tval;
 1198         struct flow_hash_node *counter, *tmp_counter;
 1199         struct sbuf *s;
 1200         int i, key_index, ret, error;
 1201         uint32_t bytes_to_write, total_skipped_pkts;
 1202         uint16_t lport, fport;
 1203         uint8_t *key, ipver;
 1204 
 1205 #ifdef SIFTR_IPV6
 1206         uint32_t laddr[4];
 1207         uint32_t faddr[4];
 1208 #else
 1209         uint8_t laddr[4];
 1210         uint8_t faddr[4];
 1211 #endif
 1212 
 1213         error = 0;
 1214         total_skipped_pkts = 0;
 1215 
 1216         /* Init an autosizing sbuf that initially holds 200 chars. */
 1217         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
 1218                 return (-1);
 1219 
 1220         if (action == SIFTR_ENABLE && siftr_pkt_manager_thr == NULL) {
 1221                 /*
 1222                  * Create our alq
 1223                  * XXX: We should abort if alq_open fails!
 1224                  */
 1225                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
 1226                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1227 
 1228                 STAILQ_INIT(&pkt_queue);
 1229 
 1230                 DPCPU_ZERO(ss);
 1231 
 1232                 siftr_exit_pkt_manager_thread = 0;
 1233 
 1234                 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
 1235                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
 1236                     "siftr_pkt_manager_thr");
 1237 
 1238                 siftr_pfil(HOOK);
 1239 
 1240                 microtime(&tval);
 1241 
 1242                 sbuf_printf(s,
 1243                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
 1244                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
 1245                     "sysver=%u\tipmode=%u\n",
 1246                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
 1247                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
 1248 
 1249                 sbuf_finish(s);
 1250                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
 1251 
 1252         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
 1253                 /*
 1254                  * Remove the pfil hook functions. All threads currently in
 1255                  * the hook functions are allowed to exit before siftr_pfil()
 1256                  * returns.
 1257                  */
 1258                 siftr_pfil(UNHOOK);
 1259 
 1260                 /* This will block until the pkt manager thread unlocks it. */
 1261                 mtx_lock(&siftr_pkt_mgr_mtx);
 1262 
 1263                 /* Tell the pkt manager thread that it should exit now. */
 1264                 siftr_exit_pkt_manager_thread = 1;
 1265 
 1266                 /*
 1267                  * Wake the pkt_manager thread so it realises that
 1268                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
 1269                  * The wakeup won't be delivered until we unlock
 1270                  * siftr_pkt_mgr_mtx so this isn't racy.
 1271                  */
 1272                 wakeup(&wait_for_pkt);
 1273 
 1274                 /* Wait for the pkt_manager thread to exit. */
 1275                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
 1276                     "thrwait", 0);
 1277 
 1278                 siftr_pkt_manager_thr = NULL;
 1279                 mtx_unlock(&siftr_pkt_mgr_mtx);
 1280 
 1281                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
 1282                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
 1283                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
 1284                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
 1285                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
 1286                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
 1287                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
 1288                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
 1289                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
 1290                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
 1291 
 1292                 total_skipped_pkts = totalss.nskip_in_malloc +
 1293                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
 1294                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
 1295                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
 1296                     totalss.nskip_out_inpcb;
 1297 
 1298                 microtime(&tval);
 1299 
 1300                 sbuf_printf(s,
 1301                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
 1302                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
 1303                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
 1304                     "num_outbound_skipped_pkts_malloc=%u\t"
 1305                     "num_inbound_skipped_pkts_mtx=%u\t"
 1306                     "num_outbound_skipped_pkts_mtx=%u\t"
 1307                     "num_inbound_skipped_pkts_tcpcb=%u\t"
 1308                     "num_outbound_skipped_pkts_tcpcb=%u\t"
 1309                     "num_inbound_skipped_pkts_inpcb=%u\t"
 1310                     "num_outbound_skipped_pkts_inpcb=%u\t"
 1311                     "total_skipped_tcp_pkts=%u\tflow_list=",
 1312                     (intmax_t)tval.tv_sec,
 1313                     tval.tv_usec,
 1314                     (uintmax_t)totalss.n_in,
 1315                     (uintmax_t)totalss.n_out,
 1316                     (uintmax_t)(totalss.n_in + totalss.n_out),
 1317                     totalss.nskip_in_malloc,
 1318                     totalss.nskip_out_malloc,
 1319                     totalss.nskip_in_mtx,
 1320                     totalss.nskip_out_mtx,
 1321                     totalss.nskip_in_tcpcb,
 1322                     totalss.nskip_out_tcpcb,
 1323                     totalss.nskip_in_inpcb,
 1324                     totalss.nskip_out_inpcb,
 1325                     total_skipped_pkts);
 1326 
 1327                 /*
 1328                  * Iterate over the flow hash, printing a summary of each
 1329                  * flow seen and freeing any malloc'd memory.
 1330                  * The hash consists of an array of LISTs (man 3 queue).
 1331                  */
 1332                 for (i = 0; i <= siftr_hashmask; i++) {
 1333                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
 1334                             tmp_counter) {
 1335                                 key = counter->key;
 1336                                 key_index = 1;
 1337 
 1338                                 ipver = key[0];
 1339 
 1340                                 memcpy(laddr, key + key_index, sizeof(laddr));
 1341                                 key_index += sizeof(laddr);
 1342                                 memcpy(&lport, key + key_index, sizeof(lport));
 1343                                 key_index += sizeof(lport);
 1344                                 memcpy(faddr, key + key_index, sizeof(faddr));
 1345                                 key_index += sizeof(faddr);
 1346                                 memcpy(&fport, key + key_index, sizeof(fport));
 1347 
 1348 #ifdef SIFTR_IPV6
 1349                                 laddr[3] = ntohl(laddr[3]);
 1350                                 faddr[3] = ntohl(faddr[3]);
 1351 
 1352                                 if (ipver == INP_IPV6) {
 1353                                         laddr[0] = ntohl(laddr[0]);
 1354                                         laddr[1] = ntohl(laddr[1]);
 1355                                         laddr[2] = ntohl(laddr[2]);
 1356                                         faddr[0] = ntohl(faddr[0]);
 1357                                         faddr[1] = ntohl(faddr[1]);
 1358                                         faddr[2] = ntohl(faddr[2]);
 1359 
 1360                                         sbuf_printf(s,
 1361                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
 1362                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
 1363                                             UPPER_SHORT(laddr[0]),
 1364                                             LOWER_SHORT(laddr[0]),
 1365                                             UPPER_SHORT(laddr[1]),
 1366                                             LOWER_SHORT(laddr[1]),
 1367                                             UPPER_SHORT(laddr[2]),
 1368                                             LOWER_SHORT(laddr[2]),
 1369                                             UPPER_SHORT(laddr[3]),
 1370                                             LOWER_SHORT(laddr[3]),
 1371                                             ntohs(lport),
 1372                                             UPPER_SHORT(faddr[0]),
 1373                                             LOWER_SHORT(faddr[0]),
 1374                                             UPPER_SHORT(faddr[1]),
 1375                                             LOWER_SHORT(faddr[1]),
 1376                                             UPPER_SHORT(faddr[2]),
 1377                                             LOWER_SHORT(faddr[2]),
 1378                                             UPPER_SHORT(faddr[3]),
 1379                                             LOWER_SHORT(faddr[3]),
 1380                                             ntohs(fport));
 1381                                 } else {
 1382                                         laddr[0] = FIRST_OCTET(laddr[3]);
 1383                                         laddr[1] = SECOND_OCTET(laddr[3]);
 1384                                         laddr[2] = THIRD_OCTET(laddr[3]);
 1385                                         laddr[3] = FOURTH_OCTET(laddr[3]);
 1386                                         faddr[0] = FIRST_OCTET(faddr[3]);
 1387                                         faddr[1] = SECOND_OCTET(faddr[3]);
 1388                                         faddr[2] = THIRD_OCTET(faddr[3]);
 1389                                         faddr[3] = FOURTH_OCTET(faddr[3]);
 1390 #endif
 1391                                         sbuf_printf(s,
 1392                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
 1393                                             laddr[0],
 1394                                             laddr[1],
 1395                                             laddr[2],
 1396                                             laddr[3],
 1397                                             ntohs(lport),
 1398                                             faddr[0],
 1399                                             faddr[1],
 1400                                             faddr[2],
 1401                                             faddr[3],
 1402                                             ntohs(fport));
 1403 #ifdef SIFTR_IPV6
 1404                                 }
 1405 #endif
 1406 
 1407                                 free(counter, M_SIFTR_HASHNODE);
 1408                         }
 1409 
 1410                         LIST_INIT(counter_hash + i);
 1411                 }
 1412 
 1413                 sbuf_printf(s, "\n");
 1414                 sbuf_finish(s);
 1415 
 1416                 i = 0;
 1417                 do {
 1418                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
 1419                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
 1420                         i += bytes_to_write;
 1421                 } while (i < sbuf_len(s));
 1422 
 1423                 alq_close(siftr_alq);
 1424                 siftr_alq = NULL;
 1425         } else
 1426                 error = EINVAL;
 1427 
 1428         sbuf_delete(s);
 1429 
 1430         /*
 1431          * XXX: Should be using ret to check if any functions fail
 1432          * and set error appropriately
 1433          */
 1434 
 1435         return (error);
 1436 }
 1437 
 1438 
 1439 static int
 1440 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
 1441 {
 1442         int error;
 1443         uint32_t new;
 1444 
 1445         new = siftr_enabled;
 1446         error = sysctl_handle_int(oidp, &new, 0, req);
 1447         if (error == 0 && req->newptr != NULL) {
 1448                 if (new > 1)
 1449                         return (EINVAL);
 1450                 else if (new != siftr_enabled) {
 1451                         if ((error = siftr_manage_ops(new)) == 0) {
 1452                                 siftr_enabled = new;
 1453                         } else {
 1454                                 siftr_manage_ops(SIFTR_DISABLE);
 1455                         }
 1456                 }
 1457         }
 1458 
 1459         return (error);
 1460 }
 1461 
 1462 
 1463 static void
 1464 siftr_shutdown_handler(void *arg)
 1465 {
 1466         if (siftr_enabled == 1) {
 1467                 siftr_manage_ops(SIFTR_DISABLE);
 1468         }
 1469 }
 1470 
 1471 
 1472 /*
 1473  * Module is being unloaded or machine is shutting down. Take care of cleanup.
 1474  */
 1475 static int
 1476 deinit_siftr(void)
 1477 {
 1478         /* Cleanup. */
 1479         siftr_manage_ops(SIFTR_DISABLE);
 1480         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
 1481         mtx_destroy(&siftr_pkt_queue_mtx);
 1482         mtx_destroy(&siftr_pkt_mgr_mtx);
 1483 
 1484         return (0);
 1485 }
 1486 
 1487 
 1488 /*
 1489  * Module has just been loaded into the kernel.
 1490  */
 1491 static int
 1492 init_siftr(void)
 1493 {
 1494         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
 1495             SHUTDOWN_PRI_FIRST);
 1496 
 1497         /* Initialise our flow counter hash table. */
 1498         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
 1499             &siftr_hashmask);
 1500 
 1501         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
 1502         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
 1503 
 1504         /* Print message to the user's current terminal. */
 1505         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
 1506             "          http://caia.swin.edu.au/urp/newtcp\n\n",
 1507             MODVERSION_STR);
 1508 
 1509         return (0);
 1510 }
 1511 
 1512 
 1513 /*
 1514  * This is the function that is called to load and unload the module.
 1515  * When the module is loaded, this function is called once with
 1516  * "what" == MOD_LOAD
 1517  * When the module is unloaded, this function is called twice with
 1518  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
 1519  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
 1520  * this function is called once with "what" = MOD_SHUTDOWN
 1521  * When the system is shut down, the handler isn't called until the very end
 1522  * of the shutdown sequence i.e. after the disks have been synced.
 1523  */
 1524 static int
 1525 siftr_load_handler(module_t mod, int what, void *arg)
 1526 {
 1527         int ret;
 1528 
 1529         switch (what) {
 1530         case MOD_LOAD:
 1531                 ret = init_siftr();
 1532                 break;
 1533 
 1534         case MOD_QUIESCE:
 1535         case MOD_SHUTDOWN:
 1536                 ret = deinit_siftr();
 1537                 break;
 1538 
 1539         case MOD_UNLOAD:
 1540                 ret = 0;
 1541                 break;
 1542 
 1543         default:
 1544                 ret = EINVAL;
 1545                 break;
 1546         }
 1547 
 1548         return (ret);
 1549 }
 1550 
 1551 
 1552 static moduledata_t siftr_mod = {
 1553         .name = "siftr",
 1554         .evhand = siftr_load_handler,
 1555 };
 1556 
 1557 /*
 1558  * Param 1: name of the kernel module
 1559  * Param 2: moduledata_t struct containing info about the kernel module
 1560  *          and the execution entry point for the module
 1561  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
 1562  *          Defines the module initialisation order
 1563  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
 1564  *          Defines the initialisation order of this kld relative to others
 1565  *          within the same subsystem as defined by param 3
 1566  */
 1567 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
 1568 MODULE_DEPEND(siftr, alq, 1, 1, 1);
 1569 MODULE_VERSION(siftr, MODVERSION);

Cache object: a0aa433724b9ae2e45b66ea17b64f786


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.