The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/siftr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
    3  *
    4  * Copyright (c) 2007-2009
    5  *      Swinburne University of Technology, Melbourne, Australia.
    6  * Copyright (c) 2009-2010, The FreeBSD Foundation
    7  * All rights reserved.
    8  *
    9  * Portions of this software were developed at the Centre for Advanced
   10  * Internet Architectures, Swinburne University of Technology, Melbourne,
   11  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
   12  *
   13  * Redistribution and use in source and binary forms, with or without
   14  * modification, are permitted provided that the following conditions
   15  * are met:
   16  * 1. Redistributions of source code must retain the above copyright
   17  *    notice, this list of conditions and the following disclaimer.
   18  * 2. Redistributions in binary form must reproduce the above copyright
   19  *    notice, this list of conditions and the following disclaimer in the
   20  *    documentation and/or other materials provided with the distribution.
   21  *
   22  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   32  * SUCH DAMAGE.
   33  */
   34 
   35 /******************************************************
   36  * Statistical Information For TCP Research (SIFTR)
   37  *
   38  * A FreeBSD kernel module that adds very basic intrumentation to the
   39  * TCP stack, allowing internal stats to be recorded to a log file
   40  * for experimental, debugging and performance analysis purposes.
   41  *
   42  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
   43  * working on the NewTCP research project at Swinburne University of
   44  * Technology's Centre for Advanced Internet Architectures, Melbourne,
   45  * Australia, which was made possible in part by a grant from the Cisco
   46  * University Research Program Fund at Community Foundation Silicon Valley.
   47  * More details are available at:
   48  *   http://caia.swin.edu.au/urp/newtcp/
   49  *
   50  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
   51  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
   52  * More details are available at:
   53  *   http://www.freebsdfoundation.org/
   54  *   http://caia.swin.edu.au/freebsd/etcp09/
   55  *
   56  * Lawrence Stewart is the current maintainer, and all contact regarding
   57  * SIFTR should be directed to him via email: lastewart@swin.edu.au
   58  *
   59  * Initial release date: June 2007
   60  * Most recent update: September 2010
   61  ******************************************************/
   62 
   63 #include <sys/cdefs.h>
   64 __FBSDID("$FreeBSD: releng/12.0/sys/netinet/siftr.c 339039 2018-10-01 10:46:00Z ae $");
   65 
   66 #include <sys/param.h>
   67 #include <sys/alq.h>
   68 #include <sys/errno.h>
   69 #include <sys/eventhandler.h>
   70 #include <sys/hash.h>
   71 #include <sys/kernel.h>
   72 #include <sys/kthread.h>
   73 #include <sys/lock.h>
   74 #include <sys/mbuf.h>
   75 #include <sys/module.h>
   76 #include <sys/mutex.h>
   77 #include <sys/pcpu.h>
   78 #include <sys/proc.h>
   79 #include <sys/sbuf.h>
   80 #include <sys/sdt.h>
   81 #include <sys/smp.h>
   82 #include <sys/socket.h>
   83 #include <sys/socketvar.h>
   84 #include <sys/sysctl.h>
   85 #include <sys/unistd.h>
   86 
   87 #include <net/if.h>
   88 #include <net/if_var.h>
   89 #include <net/pfil.h>
   90 
   91 #include <netinet/in.h>
   92 #include <netinet/in_kdtrace.h>
   93 #include <netinet/in_pcb.h>
   94 #include <netinet/in_systm.h>
   95 #include <netinet/in_var.h>
   96 #include <netinet/ip.h>
   97 #include <netinet/tcp_var.h>
   98 
   99 #ifdef SIFTR_IPV6
  100 #include <netinet/ip6.h>
  101 #include <netinet6/in6_pcb.h>
  102 #endif /* SIFTR_IPV6 */
  103 
  104 #include <machine/in_cksum.h>
  105 
  106 /*
  107  * Three digit version number refers to X.Y.Z where:
  108  * X is the major version number
  109  * Y is bumped to mark backwards incompatible changes
  110  * Z is bumped to mark backwards compatible changes
  111  */
  112 #define V_MAJOR         1
  113 #define V_BACKBREAK     2
  114 #define V_BACKCOMPAT    4
  115 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
  116 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
  117     __XSTRING(V_BACKCOMPAT)
  118 
  119 #define HOOK 0
  120 #define UNHOOK 1
  121 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
  122 #define SYS_NAME "FreeBSD"
  123 #define PACKET_TAG_SIFTR 100
  124 #define PACKET_COOKIE_SIFTR 21749576
  125 #define SIFTR_LOG_FILE_MODE 0644
  126 #define SIFTR_DISABLE 0
  127 #define SIFTR_ENABLE 1
  128 
  129 /*
  130  * Hard upper limit on the length of log messages. Bump this up if you add new
  131  * data fields such that the line length could exceed the below value.
  132  */
  133 #define MAX_LOG_MSG_LEN 200
  134 /* XXX: Make this a sysctl tunable. */
  135 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
  136 
  137 /*
  138  * 1 byte for IP version
  139  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
  140  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
  141  */
  142 #ifdef SIFTR_IPV6
  143 #define FLOW_KEY_LEN 37
  144 #else
  145 #define FLOW_KEY_LEN 13
  146 #endif
  147 
  148 #ifdef SIFTR_IPV6
  149 #define SIFTR_IPMODE 6
  150 #else
  151 #define SIFTR_IPMODE 4
  152 #endif
  153 
  154 /* useful macros */
  155 #define CAST_PTR_INT(X) (*((int*)(X)))
  156 
  157 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
  158 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
  159 
  160 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
  161 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
  162 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
  163 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
  164 
  165 static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
  166 static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
  167     "SIFTR pkt_node struct");
  168 static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
  169     "SIFTR flow_hash_node struct");
  170 
  171 /* Used as links in the pkt manager queue. */
  172 struct pkt_node {
  173         /* Timestamp of pkt as noted in the pfil hook. */
  174         struct timeval          tval;
  175         /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
  176         uint8_t                 direction;
  177         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
  178         uint8_t                 ipver;
  179         /* Hash of the pkt which triggered the log message. */
  180         uint32_t                hash;
  181         /* Local/foreign IP address. */
  182 #ifdef SIFTR_IPV6
  183         uint32_t                ip_laddr[4];
  184         uint32_t                ip_faddr[4];
  185 #else
  186         uint8_t                 ip_laddr[4];
  187         uint8_t                 ip_faddr[4];
  188 #endif
  189         /* Local TCP port. */
  190         uint16_t                tcp_localport;
  191         /* Foreign TCP port. */
  192         uint16_t                tcp_foreignport;
  193         /* Congestion Window (bytes). */
  194         u_long                  snd_cwnd;
  195         /* Sending Window (bytes). */
  196         u_long                  snd_wnd;
  197         /* Receive Window (bytes). */
  198         u_long                  rcv_wnd;
  199         /* Unused (was: Bandwidth Controlled Window (bytes)). */
  200         u_long                  snd_bwnd;
  201         /* Slow Start Threshold (bytes). */
  202         u_long                  snd_ssthresh;
  203         /* Current state of the TCP FSM. */
  204         int                     conn_state;
  205         /* Max Segment Size (bytes). */
  206         u_int                   max_seg_size;
  207         /*
  208          * Smoothed RTT stored as found in the TCP control block
  209          * in units of (TCP_RTT_SCALE*hz).
  210          */
  211         int                     smoothed_rtt;
  212         /* Is SACK enabled? */
  213         u_char                  sack_enabled;
  214         /* Window scaling for snd window. */
  215         u_char                  snd_scale;
  216         /* Window scaling for recv window. */
  217         u_char                  rcv_scale;
  218         /* TCP control block flags. */
  219         u_int                   flags;
  220         /* Retransmit timeout length. */
  221         int                     rxt_length;
  222         /* Size of the TCP send buffer in bytes. */
  223         u_int                   snd_buf_hiwater;
  224         /* Current num bytes in the send socket buffer. */
  225         u_int                   snd_buf_cc;
  226         /* Size of the TCP receive buffer in bytes. */
  227         u_int                   rcv_buf_hiwater;
  228         /* Current num bytes in the receive socket buffer. */
  229         u_int                   rcv_buf_cc;
  230         /* Number of bytes inflight that we are waiting on ACKs for. */
  231         u_int                   sent_inflight_bytes;
  232         /* Number of segments currently in the reassembly queue. */
  233         int                     t_segqlen;
  234         /* Flowid for the connection. */
  235         u_int                   flowid; 
  236         /* Flow type for the connection. */
  237         u_int                   flowtype;       
  238         /* Link to next pkt_node in the list. */
  239         STAILQ_ENTRY(pkt_node)  nodes;
  240 };
  241 
  242 struct flow_hash_node
  243 {
  244         uint16_t counter;
  245         uint8_t key[FLOW_KEY_LEN];
  246         LIST_ENTRY(flow_hash_node) nodes;
  247 };
  248 
  249 struct siftr_stats
  250 {
  251         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
  252         uint64_t n_in;
  253         uint64_t n_out;
  254         /* # pkts skipped due to failed malloc calls. */
  255         uint32_t nskip_in_malloc;
  256         uint32_t nskip_out_malloc;
  257         /* # pkts skipped due to failed mtx acquisition. */
  258         uint32_t nskip_in_mtx;
  259         uint32_t nskip_out_mtx;
  260         /* # pkts skipped due to failed inpcb lookups. */
  261         uint32_t nskip_in_inpcb;
  262         uint32_t nskip_out_inpcb;
  263         /* # pkts skipped due to failed tcpcb lookups. */
  264         uint32_t nskip_in_tcpcb;
  265         uint32_t nskip_out_tcpcb;
  266         /* # pkts skipped due to stack reinjection. */
  267         uint32_t nskip_in_dejavu;
  268         uint32_t nskip_out_dejavu;
  269 };
  270 
  271 DPCPU_DEFINE_STATIC(struct siftr_stats, ss);
  272 
  273 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
  274 static unsigned int siftr_enabled = 0;
  275 static unsigned int siftr_pkts_per_log = 1;
  276 static unsigned int siftr_generate_hashes = 0;
  277 /* static unsigned int siftr_binary_log = 0; */
  278 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
  279 static char siftr_logfile_shadow[PATH_MAX] = "/var/log/siftr.log";
  280 static u_long siftr_hashmask;
  281 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
  282 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
  283 static int wait_for_pkt;
  284 static struct alq *siftr_alq = NULL;
  285 static struct mtx siftr_pkt_queue_mtx;
  286 static struct mtx siftr_pkt_mgr_mtx;
  287 static struct thread *siftr_pkt_manager_thr = NULL;
  288 /*
  289  * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
  290  * which we use as an index into this array.
  291  */
  292 static char direction[3] = {'\0', 'i','o'};
  293 
  294 /* Required function prototypes. */
  295 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
  296 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
  297 
  298 
  299 /* Declare the net.inet.siftr sysctl tree and populate it. */
  300 
  301 SYSCTL_DECL(_net_inet_siftr);
  302 
  303 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
  304     "siftr related settings");
  305 
  306 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
  307     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
  308     "switch siftr module operations on/off");
  309 
  310 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
  311     &siftr_logfile_shadow, sizeof(siftr_logfile_shadow), &siftr_sysctl_logfile_name_handler,
  312     "A", "file to save siftr log messages to");
  313 
  314 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
  315     &siftr_pkts_per_log, 1,
  316     "number of packets between generating a log message");
  317 
  318 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
  319     &siftr_generate_hashes, 0,
  320     "enable packet hash generation");
  321 
  322 /* XXX: TODO
  323 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
  324     &siftr_binary_log, 0,
  325     "write log files in binary instead of ascii");
  326 */
  327 
  328 
  329 /* Begin functions. */
  330 
  331 static void
  332 siftr_process_pkt(struct pkt_node * pkt_node)
  333 {
  334         struct flow_hash_node *hash_node;
  335         struct listhead *counter_list;
  336         struct siftr_stats *ss;
  337         struct ale *log_buf;
  338         uint8_t key[FLOW_KEY_LEN];
  339         uint8_t found_match, key_offset;
  340 
  341         hash_node = NULL;
  342         ss = DPCPU_PTR(ss);
  343         found_match = 0;
  344         key_offset = 1;
  345 
  346         /*
  347          * Create the key that will be used to create a hash index
  348          * into our hash table. Our key consists of:
  349          * ipversion, localip, localport, foreignip, foreignport
  350          */
  351         key[0] = pkt_node->ipver;
  352         memcpy(key + key_offset, &pkt_node->ip_laddr,
  353             sizeof(pkt_node->ip_laddr));
  354         key_offset += sizeof(pkt_node->ip_laddr);
  355         memcpy(key + key_offset, &pkt_node->tcp_localport,
  356             sizeof(pkt_node->tcp_localport));
  357         key_offset += sizeof(pkt_node->tcp_localport);
  358         memcpy(key + key_offset, &pkt_node->ip_faddr,
  359             sizeof(pkt_node->ip_faddr));
  360         key_offset += sizeof(pkt_node->ip_faddr);
  361         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
  362             sizeof(pkt_node->tcp_foreignport));
  363 
  364         counter_list = counter_hash +
  365             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
  366 
  367         /*
  368          * If the list is not empty i.e. the hash index has
  369          * been used by another flow previously.
  370          */
  371         if (LIST_FIRST(counter_list) != NULL) {
  372                 /*
  373                  * Loop through the hash nodes in the list.
  374                  * There should normally only be 1 hash node in the list,
  375                  * except if there have been collisions at the hash index
  376                  * computed by hash32_buf().
  377                  */
  378                 LIST_FOREACH(hash_node, counter_list, nodes) {
  379                         /*
  380                          * Check if the key for the pkt we are currently
  381                          * processing is the same as the key stored in the
  382                          * hash node we are currently processing.
  383                          * If they are the same, then we've found the
  384                          * hash node that stores the counter for the flow
  385                          * the pkt belongs to.
  386                          */
  387                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
  388                                 found_match = 1;
  389                                 break;
  390                         }
  391                 }
  392         }
  393 
  394         /* If this flow hash hasn't been seen before or we have a collision. */
  395         if (hash_node == NULL || !found_match) {
  396                 /* Create a new hash node to store the flow's counter. */
  397                 hash_node = malloc(sizeof(struct flow_hash_node),
  398                     M_SIFTR_HASHNODE, M_WAITOK);
  399 
  400                 if (hash_node != NULL) {
  401                         /* Initialise our new hash node list entry. */
  402                         hash_node->counter = 0;
  403                         memcpy(hash_node->key, key, sizeof(key));
  404                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
  405                 } else {
  406                         /* Malloc failed. */
  407                         if (pkt_node->direction == PFIL_IN)
  408                                 ss->nskip_in_malloc++;
  409                         else
  410                                 ss->nskip_out_malloc++;
  411 
  412                         return;
  413                 }
  414         } else if (siftr_pkts_per_log > 1) {
  415                 /*
  416                  * Taking the remainder of the counter divided
  417                  * by the current value of siftr_pkts_per_log
  418                  * and storing that in counter provides a neat
  419                  * way to modulate the frequency of log
  420                  * messages being written to the log file.
  421                  */
  422                 hash_node->counter = (hash_node->counter + 1) %
  423                     siftr_pkts_per_log;
  424 
  425                 /*
  426                  * If we have not seen enough packets since the last time
  427                  * we wrote a log message for this connection, return.
  428                  */
  429                 if (hash_node->counter > 0)
  430                         return;
  431         }
  432 
  433         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
  434 
  435         if (log_buf == NULL)
  436                 return; /* Should only happen if the ALQ is shutting down. */
  437 
  438 #ifdef SIFTR_IPV6
  439         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
  440         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
  441 
  442         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
  443                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
  444                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
  445                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
  446                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
  447                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
  448                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
  449 
  450                 /* Construct an IPv6 log message. */
  451                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  452                     MAX_LOG_MSG_LEN,
  453                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
  454                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
  455                     "%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
  456                     direction[pkt_node->direction],
  457                     pkt_node->hash,
  458                     pkt_node->tval.tv_sec,
  459                     pkt_node->tval.tv_usec,
  460                     UPPER_SHORT(pkt_node->ip_laddr[0]),
  461                     LOWER_SHORT(pkt_node->ip_laddr[0]),
  462                     UPPER_SHORT(pkt_node->ip_laddr[1]),
  463                     LOWER_SHORT(pkt_node->ip_laddr[1]),
  464                     UPPER_SHORT(pkt_node->ip_laddr[2]),
  465                     LOWER_SHORT(pkt_node->ip_laddr[2]),
  466                     UPPER_SHORT(pkt_node->ip_laddr[3]),
  467                     LOWER_SHORT(pkt_node->ip_laddr[3]),
  468                     ntohs(pkt_node->tcp_localport),
  469                     UPPER_SHORT(pkt_node->ip_faddr[0]),
  470                     LOWER_SHORT(pkt_node->ip_faddr[0]),
  471                     UPPER_SHORT(pkt_node->ip_faddr[1]),
  472                     LOWER_SHORT(pkt_node->ip_faddr[1]),
  473                     UPPER_SHORT(pkt_node->ip_faddr[2]),
  474                     LOWER_SHORT(pkt_node->ip_faddr[2]),
  475                     UPPER_SHORT(pkt_node->ip_faddr[3]),
  476                     LOWER_SHORT(pkt_node->ip_faddr[3]),
  477                     ntohs(pkt_node->tcp_foreignport),
  478                     pkt_node->snd_ssthresh,
  479                     pkt_node->snd_cwnd,
  480                     pkt_node->snd_bwnd,
  481                     pkt_node->snd_wnd,
  482                     pkt_node->rcv_wnd,
  483                     pkt_node->snd_scale,
  484                     pkt_node->rcv_scale,
  485                     pkt_node->conn_state,
  486                     pkt_node->max_seg_size,
  487                     pkt_node->smoothed_rtt,
  488                     pkt_node->sack_enabled,
  489                     pkt_node->flags,
  490                     pkt_node->rxt_length,
  491                     pkt_node->snd_buf_hiwater,
  492                     pkt_node->snd_buf_cc,
  493                     pkt_node->rcv_buf_hiwater,
  494                     pkt_node->rcv_buf_cc,
  495                     pkt_node->sent_inflight_bytes,
  496                     pkt_node->t_segqlen,
  497                     pkt_node->flowid,
  498                     pkt_node->flowtype);
  499         } else { /* IPv4 packet */
  500                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
  501                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
  502                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
  503                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
  504                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
  505                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
  506                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
  507                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
  508 #endif /* SIFTR_IPV6 */
  509 
  510                 /* Construct an IPv4 log message. */
  511                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  512                     MAX_LOG_MSG_LEN,
  513                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
  514                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u,%u,%u\n",
  515                     direction[pkt_node->direction],
  516                     pkt_node->hash,
  517                     (intmax_t)pkt_node->tval.tv_sec,
  518                     pkt_node->tval.tv_usec,
  519                     pkt_node->ip_laddr[0],
  520                     pkt_node->ip_laddr[1],
  521                     pkt_node->ip_laddr[2],
  522                     pkt_node->ip_laddr[3],
  523                     ntohs(pkt_node->tcp_localport),
  524                     pkt_node->ip_faddr[0],
  525                     pkt_node->ip_faddr[1],
  526                     pkt_node->ip_faddr[2],
  527                     pkt_node->ip_faddr[3],
  528                     ntohs(pkt_node->tcp_foreignport),
  529                     pkt_node->snd_ssthresh,
  530                     pkt_node->snd_cwnd,
  531                     pkt_node->snd_bwnd,
  532                     pkt_node->snd_wnd,
  533                     pkt_node->rcv_wnd,
  534                     pkt_node->snd_scale,
  535                     pkt_node->rcv_scale,
  536                     pkt_node->conn_state,
  537                     pkt_node->max_seg_size,
  538                     pkt_node->smoothed_rtt,
  539                     pkt_node->sack_enabled,
  540                     pkt_node->flags,
  541                     pkt_node->rxt_length,
  542                     pkt_node->snd_buf_hiwater,
  543                     pkt_node->snd_buf_cc,
  544                     pkt_node->rcv_buf_hiwater,
  545                     pkt_node->rcv_buf_cc,
  546                     pkt_node->sent_inflight_bytes,
  547                     pkt_node->t_segqlen,
  548                     pkt_node->flowid,
  549                     pkt_node->flowtype);
  550 #ifdef SIFTR_IPV6
  551         }
  552 #endif
  553 
  554         alq_post_flags(siftr_alq, log_buf, 0);
  555 }
  556 
  557 
  558 static void
  559 siftr_pkt_manager_thread(void *arg)
  560 {
  561         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
  562             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
  563         struct pkt_node *pkt_node, *pkt_node_temp;
  564         uint8_t draining;
  565 
  566         draining = 2;
  567 
  568         mtx_lock(&siftr_pkt_mgr_mtx);
  569 
  570         /* draining == 0 when queue has been flushed and it's safe to exit. */
  571         while (draining) {
  572                 /*
  573                  * Sleep until we are signalled to wake because thread has
  574                  * been told to exit or until 1 tick has passed.
  575                  */
  576                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
  577                     1);
  578 
  579                 /* Gain exclusive access to the pkt_node queue. */
  580                 mtx_lock(&siftr_pkt_queue_mtx);
  581 
  582                 /*
  583                  * Move pkt_queue to tmp_pkt_queue, which leaves
  584                  * pkt_queue empty and ready to receive more pkt_nodes.
  585                  */
  586                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
  587 
  588                 /*
  589                  * We've finished making changes to the list. Unlock it
  590                  * so the pfil hooks can continue queuing pkt_nodes.
  591                  */
  592                 mtx_unlock(&siftr_pkt_queue_mtx);
  593 
  594                 /*
  595                  * We can't hold a mutex whilst calling siftr_process_pkt
  596                  * because ALQ might sleep waiting for buffer space.
  597                  */
  598                 mtx_unlock(&siftr_pkt_mgr_mtx);
  599 
  600                 /* Flush all pkt_nodes to the log file. */
  601                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
  602                     pkt_node_temp) {
  603                         siftr_process_pkt(pkt_node);
  604                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
  605                         free(pkt_node, M_SIFTR_PKTNODE);
  606                 }
  607 
  608                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
  609                     ("SIFTR tmp_pkt_queue not empty after flush"));
  610 
  611                 mtx_lock(&siftr_pkt_mgr_mtx);
  612 
  613                 /*
  614                  * If siftr_exit_pkt_manager_thread gets set during the window
  615                  * where we are draining the tmp_pkt_queue above, there might
  616                  * still be pkts in pkt_queue that need to be drained.
  617                  * Allow one further iteration to occur after
  618                  * siftr_exit_pkt_manager_thread has been set to ensure
  619                  * pkt_queue is completely empty before we kill the thread.
  620                  *
  621                  * siftr_exit_pkt_manager_thread is set only after the pfil
  622                  * hooks have been removed, so only 1 extra iteration
  623                  * is needed to drain the queue.
  624                  */
  625                 if (siftr_exit_pkt_manager_thread)
  626                         draining--;
  627         }
  628 
  629         mtx_unlock(&siftr_pkt_mgr_mtx);
  630 
  631         /* Calls wakeup on this thread's struct thread ptr. */
  632         kthread_exit();
  633 }
  634 
  635 
  636 static uint32_t
  637 hash_pkt(struct mbuf *m, uint32_t offset)
  638 {
  639         uint32_t hash;
  640 
  641         hash = 0;
  642 
  643         while (m != NULL && offset > m->m_len) {
  644                 /*
  645                  * The IP packet payload does not start in this mbuf, so
  646                  * need to figure out which mbuf it starts in and what offset
  647                  * into the mbuf's data region the payload starts at.
  648                  */
  649                 offset -= m->m_len;
  650                 m = m->m_next;
  651         }
  652 
  653         while (m != NULL) {
  654                 /* Ensure there is data in the mbuf */
  655                 if ((m->m_len - offset) > 0)
  656                         hash = hash32_buf(m->m_data + offset,
  657                             m->m_len - offset, hash);
  658 
  659                 m = m->m_next;
  660                 offset = 0;
  661         }
  662 
  663         return (hash);
  664 }
  665 
  666 
  667 /*
  668  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
  669  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
  670  * Return value >0 means the caller should skip processing this mbuf.
  671  */
  672 static inline int
  673 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
  674 {
  675         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
  676             != NULL) {
  677                 if (dir == PFIL_IN)
  678                         ss->nskip_in_dejavu++;
  679                 else
  680                         ss->nskip_out_dejavu++;
  681 
  682                 return (1);
  683         } else {
  684                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
  685                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
  686                 if (tag == NULL) {
  687                         if (dir == PFIL_IN)
  688                                 ss->nskip_in_malloc++;
  689                         else
  690                                 ss->nskip_out_malloc++;
  691 
  692                         return (1);
  693                 }
  694 
  695                 m_tag_prepend(m, tag);
  696         }
  697 
  698         return (0);
  699 }
  700 
  701 
  702 /*
  703  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
  704  * otherwise.
  705  */
  706 static inline struct inpcb *
  707 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
  708     uint16_t dport, int dir, struct siftr_stats *ss)
  709 {
  710         struct inpcb *inp;
  711 
  712         /* We need the tcbinfo lock. */
  713         INP_INFO_WUNLOCK_ASSERT(&V_tcbinfo);
  714 
  715         if (dir == PFIL_IN)
  716                 inp = (ipver == INP_IPV4 ?
  717                     in_pcblookup(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
  718                     dport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
  719                     :
  720 #ifdef SIFTR_IPV6
  721                     in6_pcblookup(&V_tcbinfo,
  722                     &((struct ip6_hdr *)ip)->ip6_src, sport,
  723                     &((struct ip6_hdr *)ip)->ip6_dst, dport, INPLOOKUP_RLOCKPCB,
  724                     m->m_pkthdr.rcvif)
  725 #else
  726                     NULL
  727 #endif
  728                     );
  729 
  730         else
  731                 inp = (ipver == INP_IPV4 ?
  732                     in_pcblookup(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
  733                     sport, INPLOOKUP_RLOCKPCB, m->m_pkthdr.rcvif)
  734                     :
  735 #ifdef SIFTR_IPV6
  736                     in6_pcblookup(&V_tcbinfo,
  737                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
  738                     &((struct ip6_hdr *)ip)->ip6_src, sport, INPLOOKUP_RLOCKPCB,
  739                     m->m_pkthdr.rcvif)
  740 #else
  741                     NULL
  742 #endif
  743                     );
  744 
  745         /* If we can't find the inpcb, bail. */
  746         if (inp == NULL) {
  747                 if (dir == PFIL_IN)
  748                         ss->nskip_in_inpcb++;
  749                 else
  750                         ss->nskip_out_inpcb++;
  751         }
  752 
  753         return (inp);
  754 }
  755 
  756 
  757 static inline void
  758 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
  759     int ipver, int dir, int inp_locally_locked)
  760 {
  761 #ifdef SIFTR_IPV6
  762         if (ipver == INP_IPV4) {
  763                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
  764                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
  765 #else
  766                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
  767                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
  768 #endif
  769 #ifdef SIFTR_IPV6
  770         } else {
  771                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
  772                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
  773                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
  774                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
  775                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
  776                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
  777                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
  778                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
  779         }
  780 #endif
  781         pn->tcp_localport = inp->inp_lport;
  782         pn->tcp_foreignport = inp->inp_fport;
  783         pn->snd_cwnd = tp->snd_cwnd;
  784         pn->snd_wnd = tp->snd_wnd;
  785         pn->rcv_wnd = tp->rcv_wnd;
  786         pn->snd_bwnd = 0;               /* Unused, kept for compat. */
  787         pn->snd_ssthresh = tp->snd_ssthresh;
  788         pn->snd_scale = tp->snd_scale;
  789         pn->rcv_scale = tp->rcv_scale;
  790         pn->conn_state = tp->t_state;
  791         pn->max_seg_size = tp->t_maxseg;
  792         pn->smoothed_rtt = tp->t_srtt;
  793         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
  794         pn->flags = tp->t_flags;
  795         pn->rxt_length = tp->t_rxtcur;
  796         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
  797         pn->snd_buf_cc = sbused(&inp->inp_socket->so_snd);
  798         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
  799         pn->rcv_buf_cc = sbused(&inp->inp_socket->so_rcv);
  800         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
  801         pn->t_segqlen = tp->t_segqlen;
  802         pn->flowid = inp->inp_flowid;
  803         pn->flowtype = inp->inp_flowtype;
  804 
  805         /* We've finished accessing the tcb so release the lock. */
  806         if (inp_locally_locked)
  807                 INP_RUNLOCK(inp);
  808 
  809         pn->ipver = ipver;
  810         pn->direction = dir;
  811 
  812         /*
  813          * Significantly more accurate than using getmicrotime(), but slower!
  814          * Gives true microsecond resolution at the expense of a hit to
  815          * maximum pps throughput processing when SIFTR is loaded and enabled.
  816          */
  817         microtime(&pn->tval);
  818         TCP_PROBE1(siftr, &pn);
  819 
  820 }
  821 
  822 
  823 /*
  824  * pfil hook that is called for each IPv4 packet making its way through the
  825  * stack in either direction.
  826  * The pfil subsystem holds a non-sleepable mutex somewhere when
  827  * calling our hook function, so we can't sleep at all.
  828  * It's very important to use the M_NOWAIT flag with all function calls
  829  * that support it so that they won't sleep, otherwise you get a panic.
  830  */
  831 static int
  832 siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  833     struct inpcb *inp)
  834 {
  835         struct pkt_node *pn;
  836         struct ip *ip;
  837         struct tcphdr *th;
  838         struct tcpcb *tp;
  839         struct siftr_stats *ss;
  840         unsigned int ip_hl;
  841         int inp_locally_locked;
  842 
  843         inp_locally_locked = 0;
  844         ss = DPCPU_PTR(ss);
  845 
  846         /*
  847          * m_pullup is not required here because ip_{input|output}
  848          * already do the heavy lifting for us.
  849          */
  850 
  851         ip = mtod(*m, struct ip *);
  852 
  853         /* Only continue processing if the packet is TCP. */
  854         if (ip->ip_p != IPPROTO_TCP)
  855                 goto ret;
  856 
  857         /*
  858          * If a kernel subsystem reinjects packets into the stack, our pfil
  859          * hook will be called multiple times for the same packet.
  860          * Make sure we only process unique packets.
  861          */
  862         if (siftr_chkreinject(*m, dir, ss))
  863                 goto ret;
  864 
  865         if (dir == PFIL_IN)
  866                 ss->n_in++;
  867         else
  868                 ss->n_out++;
  869 
  870         /*
  871          * Create a tcphdr struct starting at the correct offset
  872          * in the IP packet. ip->ip_hl gives the ip header length
  873          * in 4-byte words, so multiply it to get the size in bytes.
  874          */
  875         ip_hl = (ip->ip_hl << 2);
  876         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
  877 
  878         /*
  879          * If the pfil hooks don't provide a pointer to the
  880          * inpcb, we need to find it ourselves and lock it.
  881          */
  882         if (!inp) {
  883                 /* Find the corresponding inpcb for this pkt. */
  884                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
  885                     th->th_dport, dir, ss);
  886 
  887                 if (inp == NULL)
  888                         goto ret;
  889                 else
  890                         inp_locally_locked = 1;
  891         }
  892 
  893         INP_LOCK_ASSERT(inp);
  894 
  895         /* Find the TCP control block that corresponds with this packet */
  896         tp = intotcpcb(inp);
  897 
  898         /*
  899          * If we can't find the TCP control block (happens occasionaly for a
  900          * packet sent during the shutdown phase of a TCP connection),
  901          * or we're in the timewait state, bail
  902          */
  903         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
  904                 if (dir == PFIL_IN)
  905                         ss->nskip_in_tcpcb++;
  906                 else
  907                         ss->nskip_out_tcpcb++;
  908 
  909                 goto inp_unlock;
  910         }
  911 
  912         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
  913 
  914         if (pn == NULL) {
  915                 if (dir == PFIL_IN)
  916                         ss->nskip_in_malloc++;
  917                 else
  918                         ss->nskip_out_malloc++;
  919 
  920                 goto inp_unlock;
  921         }
  922 
  923         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
  924 
  925         if (siftr_generate_hashes) {
  926                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
  927                         /*
  928                          * For outbound packets, the TCP checksum isn't
  929                          * calculated yet. This is a problem for our packet
  930                          * hashing as the receiver will calc a different hash
  931                          * to ours if we don't include the correct TCP checksum
  932                          * in the bytes being hashed. To work around this
  933                          * problem, we manually calc the TCP checksum here in
  934                          * software. We unset the CSUM_TCP flag so the lower
  935                          * layers don't recalc it.
  936                          */
  937                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
  938 
  939                         /*
  940                          * Calculate the TCP checksum in software and assign
  941                          * to correct TCP header field, which will follow the
  942                          * packet mbuf down the stack. The trick here is that
  943                          * tcp_output() sets th->th_sum to the checksum of the
  944                          * pseudo header for us already. Because of the nature
  945                          * of the checksumming algorithm, we can sum over the
  946                          * entire IP payload (i.e. TCP header and data), which
  947                          * will include the already calculated pseduo header
  948                          * checksum, thus giving us the complete TCP checksum.
  949                          *
  950                          * To put it in simple terms, if checksum(1,2,3,4)=10,
  951                          * then checksum(1,2,3,4,5) == checksum(10,5).
  952                          * This property is what allows us to "cheat" and
  953                          * checksum only the IP payload which has the TCP
  954                          * th_sum field populated with the pseudo header's
  955                          * checksum, and not need to futz around checksumming
  956                          * pseudo header bytes and TCP header/data in one hit.
  957                          * Refer to RFC 1071 for more info.
  958                          *
  959                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
  960                          * in_cksum_skip 2nd argument is NOT the number of
  961                          * bytes to read from the mbuf at "skip" bytes offset
  962                          * from the start of the mbuf (very counter intuitive!).
  963                          * The number of bytes to read is calculated internally
  964                          * by the function as len-skip i.e. to sum over the IP
  965                          * payload (TCP header + data) bytes, it is INCORRECT
  966                          * to call the function like this:
  967                          * in_cksum_skip(at, ip->ip_len - offset, offset)
  968                          * Rather, it should be called like this:
  969                          * in_cksum_skip(at, ip->ip_len, offset)
  970                          * which means read "ip->ip_len - offset" bytes from
  971                          * the mbuf cluster "at" at offset "offset" bytes from
  972                          * the beginning of the "at" mbuf's data pointer.
  973                          */
  974                         th->th_sum = in_cksum_skip(*m, ntohs(ip->ip_len),
  975                             ip_hl);
  976                 }
  977 
  978                 /*
  979                  * XXX: Having to calculate the checksum in software and then
  980                  * hash over all bytes is really inefficient. Would be nice to
  981                  * find a way to create the hash and checksum in the same pass
  982                  * over the bytes.
  983                  */
  984                 pn->hash = hash_pkt(*m, ip_hl);
  985         }
  986 
  987         mtx_lock(&siftr_pkt_queue_mtx);
  988         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
  989         mtx_unlock(&siftr_pkt_queue_mtx);
  990         goto ret;
  991 
  992 inp_unlock:
  993         if (inp_locally_locked)
  994                 INP_RUNLOCK(inp);
  995 
  996 ret:
  997         /* Returning 0 ensures pfil will not discard the pkt */
  998         return (0);
  999 }
 1000 
 1001 
 1002 #ifdef SIFTR_IPV6
 1003 static int
 1004 siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
 1005     struct inpcb *inp)
 1006 {
 1007         struct pkt_node *pn;
 1008         struct ip6_hdr *ip6;
 1009         struct tcphdr *th;
 1010         struct tcpcb *tp;
 1011         struct siftr_stats *ss;
 1012         unsigned int ip6_hl;
 1013         int inp_locally_locked;
 1014 
 1015         inp_locally_locked = 0;
 1016         ss = DPCPU_PTR(ss);
 1017 
 1018         /*
 1019          * m_pullup is not required here because ip6_{input|output}
 1020          * already do the heavy lifting for us.
 1021          */
 1022 
 1023         ip6 = mtod(*m, struct ip6_hdr *);
 1024 
 1025         /*
 1026          * Only continue processing if the packet is TCP
 1027          * XXX: We should follow the next header fields
 1028          * as shown on Pg 6 RFC 2460, but right now we'll
 1029          * only check pkts that have no extension headers.
 1030          */
 1031         if (ip6->ip6_nxt != IPPROTO_TCP)
 1032                 goto ret6;
 1033 
 1034         /*
 1035          * If a kernel subsystem reinjects packets into the stack, our pfil
 1036          * hook will be called multiple times for the same packet.
 1037          * Make sure we only process unique packets.
 1038          */
 1039         if (siftr_chkreinject(*m, dir, ss))
 1040                 goto ret6;
 1041 
 1042         if (dir == PFIL_IN)
 1043                 ss->n_in++;
 1044         else
 1045                 ss->n_out++;
 1046 
 1047         ip6_hl = sizeof(struct ip6_hdr);
 1048 
 1049         /*
 1050          * Create a tcphdr struct starting at the correct offset
 1051          * in the ipv6 packet. ip->ip_hl gives the ip header length
 1052          * in 4-byte words, so multiply it to get the size in bytes.
 1053          */
 1054         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
 1055 
 1056         /*
 1057          * For inbound packets, the pfil hooks don't provide a pointer to the
 1058          * inpcb, so we need to find it ourselves and lock it.
 1059          */
 1060         if (!inp) {
 1061                 /* Find the corresponding inpcb for this pkt. */
 1062                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
 1063                     th->th_sport, th->th_dport, dir, ss);
 1064 
 1065                 if (inp == NULL)
 1066                         goto ret6;
 1067                 else
 1068                         inp_locally_locked = 1;
 1069         }
 1070 
 1071         /* Find the TCP control block that corresponds with this packet. */
 1072         tp = intotcpcb(inp);
 1073 
 1074         /*
 1075          * If we can't find the TCP control block (happens occasionaly for a
 1076          * packet sent during the shutdown phase of a TCP connection),
 1077          * or we're in the timewait state, bail.
 1078          */
 1079         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
 1080                 if (dir == PFIL_IN)
 1081                         ss->nskip_in_tcpcb++;
 1082                 else
 1083                         ss->nskip_out_tcpcb++;
 1084 
 1085                 goto inp_unlock6;
 1086         }
 1087 
 1088         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
 1089 
 1090         if (pn == NULL) {
 1091                 if (dir == PFIL_IN)
 1092                         ss->nskip_in_malloc++;
 1093                 else
 1094                         ss->nskip_out_malloc++;
 1095 
 1096                 goto inp_unlock6;
 1097         }
 1098 
 1099         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
 1100 
 1101         /* XXX: Figure out how to generate hashes for IPv6 packets. */
 1102 
 1103         mtx_lock(&siftr_pkt_queue_mtx);
 1104         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
 1105         mtx_unlock(&siftr_pkt_queue_mtx);
 1106         goto ret6;
 1107 
 1108 inp_unlock6:
 1109         if (inp_locally_locked)
 1110                 INP_RUNLOCK(inp);
 1111 
 1112 ret6:
 1113         /* Returning 0 ensures pfil will not discard the pkt. */
 1114         return (0);
 1115 }
 1116 #endif /* #ifdef SIFTR_IPV6 */
 1117 
 1118 
 1119 static int
 1120 siftr_pfil(int action)
 1121 {
 1122         struct pfil_head *pfh_inet;
 1123 #ifdef SIFTR_IPV6
 1124         struct pfil_head *pfh_inet6;
 1125 #endif
 1126         VNET_ITERATOR_DECL(vnet_iter);
 1127 
 1128         VNET_LIST_RLOCK();
 1129         VNET_FOREACH(vnet_iter) {
 1130                 CURVNET_SET(vnet_iter);
 1131                 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
 1132 #ifdef SIFTR_IPV6
 1133                 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
 1134 #endif
 1135 
 1136                 if (action == HOOK) {
 1137                         pfil_add_hook(siftr_chkpkt, NULL,
 1138                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1139 #ifdef SIFTR_IPV6
 1140                         pfil_add_hook(siftr_chkpkt6, NULL,
 1141                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1142 #endif
 1143                 } else if (action == UNHOOK) {
 1144                         pfil_remove_hook(siftr_chkpkt, NULL,
 1145                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1146 #ifdef SIFTR_IPV6
 1147                         pfil_remove_hook(siftr_chkpkt6, NULL,
 1148                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1149 #endif
 1150                 }
 1151                 CURVNET_RESTORE();
 1152         }
 1153         VNET_LIST_RUNLOCK();
 1154 
 1155         return (0);
 1156 }
 1157 
 1158 
 1159 static int
 1160 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
 1161 {
 1162         struct alq *new_alq;
 1163         int error;
 1164 
 1165         error = sysctl_handle_string(oidp, arg1, arg2, req);
 1166 
 1167         /* Check for error or same filename */
 1168         if (error != 0 || req->newptr == NULL ||
 1169             strncmp(siftr_logfile, arg1, arg2) == 0)
 1170                 goto done;
 1171 
 1172         /* Filname changed */
 1173         error = alq_open(&new_alq, arg1, curthread->td_ucred,
 1174             SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1175         if (error != 0)
 1176                 goto done;
 1177 
 1178         /*
 1179          * If disabled, siftr_alq == NULL so we simply close
 1180          * the alq as we've proved it can be opened.
 1181          * If enabled, close the existing alq and switch the old
 1182          * for the new.
 1183          */
 1184         if (siftr_alq == NULL) {
 1185                 alq_close(new_alq);
 1186         } else {
 1187                 alq_close(siftr_alq);
 1188                 siftr_alq = new_alq;
 1189         }
 1190 
 1191         /* Update filename upon success */
 1192         strlcpy(siftr_logfile, arg1, arg2);
 1193 done:
 1194         return (error);
 1195 }
 1196 
 1197 static int
 1198 siftr_manage_ops(uint8_t action)
 1199 {
 1200         struct siftr_stats totalss;
 1201         struct timeval tval;
 1202         struct flow_hash_node *counter, *tmp_counter;
 1203         struct sbuf *s;
 1204         int i, key_index, error;
 1205         uint32_t bytes_to_write, total_skipped_pkts;
 1206         uint16_t lport, fport;
 1207         uint8_t *key, ipver __unused;
 1208 
 1209 #ifdef SIFTR_IPV6
 1210         uint32_t laddr[4];
 1211         uint32_t faddr[4];
 1212 #else
 1213         uint8_t laddr[4];
 1214         uint8_t faddr[4];
 1215 #endif
 1216 
 1217         error = 0;
 1218         total_skipped_pkts = 0;
 1219 
 1220         /* Init an autosizing sbuf that initially holds 200 chars. */
 1221         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
 1222                 return (-1);
 1223 
 1224         if (action == SIFTR_ENABLE) {
 1225                 /*
 1226                  * Create our alq
 1227                  * XXX: We should abort if alq_open fails!
 1228                  */
 1229                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
 1230                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1231 
 1232                 STAILQ_INIT(&pkt_queue);
 1233 
 1234                 DPCPU_ZERO(ss);
 1235 
 1236                 siftr_exit_pkt_manager_thread = 0;
 1237 
 1238                 kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
 1239                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
 1240                     "siftr_pkt_manager_thr");
 1241 
 1242                 siftr_pfil(HOOK);
 1243 
 1244                 microtime(&tval);
 1245 
 1246                 sbuf_printf(s,
 1247                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
 1248                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
 1249                     "sysver=%u\tipmode=%u\n",
 1250                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
 1251                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
 1252 
 1253                 sbuf_finish(s);
 1254                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
 1255 
 1256         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
 1257                 /*
 1258                  * Remove the pfil hook functions. All threads currently in
 1259                  * the hook functions are allowed to exit before siftr_pfil()
 1260                  * returns.
 1261                  */
 1262                 siftr_pfil(UNHOOK);
 1263 
 1264                 /* This will block until the pkt manager thread unlocks it. */
 1265                 mtx_lock(&siftr_pkt_mgr_mtx);
 1266 
 1267                 /* Tell the pkt manager thread that it should exit now. */
 1268                 siftr_exit_pkt_manager_thread = 1;
 1269 
 1270                 /*
 1271                  * Wake the pkt_manager thread so it realises that
 1272                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
 1273                  * The wakeup won't be delivered until we unlock
 1274                  * siftr_pkt_mgr_mtx so this isn't racy.
 1275                  */
 1276                 wakeup(&wait_for_pkt);
 1277 
 1278                 /* Wait for the pkt_manager thread to exit. */
 1279                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
 1280                     "thrwait", 0);
 1281 
 1282                 siftr_pkt_manager_thr = NULL;
 1283                 mtx_unlock(&siftr_pkt_mgr_mtx);
 1284 
 1285                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
 1286                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
 1287                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
 1288                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
 1289                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
 1290                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
 1291                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
 1292                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
 1293                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
 1294                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
 1295 
 1296                 total_skipped_pkts = totalss.nskip_in_malloc +
 1297                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
 1298                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
 1299                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
 1300                     totalss.nskip_out_inpcb;
 1301 
 1302                 microtime(&tval);
 1303 
 1304                 sbuf_printf(s,
 1305                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
 1306                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
 1307                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
 1308                     "num_outbound_skipped_pkts_malloc=%u\t"
 1309                     "num_inbound_skipped_pkts_mtx=%u\t"
 1310                     "num_outbound_skipped_pkts_mtx=%u\t"
 1311                     "num_inbound_skipped_pkts_tcpcb=%u\t"
 1312                     "num_outbound_skipped_pkts_tcpcb=%u\t"
 1313                     "num_inbound_skipped_pkts_inpcb=%u\t"
 1314                     "num_outbound_skipped_pkts_inpcb=%u\t"
 1315                     "total_skipped_tcp_pkts=%u\tflow_list=",
 1316                     (intmax_t)tval.tv_sec,
 1317                     tval.tv_usec,
 1318                     (uintmax_t)totalss.n_in,
 1319                     (uintmax_t)totalss.n_out,
 1320                     (uintmax_t)(totalss.n_in + totalss.n_out),
 1321                     totalss.nskip_in_malloc,
 1322                     totalss.nskip_out_malloc,
 1323                     totalss.nskip_in_mtx,
 1324                     totalss.nskip_out_mtx,
 1325                     totalss.nskip_in_tcpcb,
 1326                     totalss.nskip_out_tcpcb,
 1327                     totalss.nskip_in_inpcb,
 1328                     totalss.nskip_out_inpcb,
 1329                     total_skipped_pkts);
 1330 
 1331                 /*
 1332                  * Iterate over the flow hash, printing a summary of each
 1333                  * flow seen and freeing any malloc'd memory.
 1334                  * The hash consists of an array of LISTs (man 3 queue).
 1335                  */
 1336                 for (i = 0; i <= siftr_hashmask; i++) {
 1337                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
 1338                             tmp_counter) {
 1339                                 key = counter->key;
 1340                                 key_index = 1;
 1341 
 1342                                 ipver = key[0];
 1343 
 1344                                 memcpy(laddr, key + key_index, sizeof(laddr));
 1345                                 key_index += sizeof(laddr);
 1346                                 memcpy(&lport, key + key_index, sizeof(lport));
 1347                                 key_index += sizeof(lport);
 1348                                 memcpy(faddr, key + key_index, sizeof(faddr));
 1349                                 key_index += sizeof(faddr);
 1350                                 memcpy(&fport, key + key_index, sizeof(fport));
 1351 
 1352 #ifdef SIFTR_IPV6
 1353                                 laddr[3] = ntohl(laddr[3]);
 1354                                 faddr[3] = ntohl(faddr[3]);
 1355 
 1356                                 if (ipver == INP_IPV6) {
 1357                                         laddr[0] = ntohl(laddr[0]);
 1358                                         laddr[1] = ntohl(laddr[1]);
 1359                                         laddr[2] = ntohl(laddr[2]);
 1360                                         faddr[0] = ntohl(faddr[0]);
 1361                                         faddr[1] = ntohl(faddr[1]);
 1362                                         faddr[2] = ntohl(faddr[2]);
 1363 
 1364                                         sbuf_printf(s,
 1365                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
 1366                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
 1367                                             UPPER_SHORT(laddr[0]),
 1368                                             LOWER_SHORT(laddr[0]),
 1369                                             UPPER_SHORT(laddr[1]),
 1370                                             LOWER_SHORT(laddr[1]),
 1371                                             UPPER_SHORT(laddr[2]),
 1372                                             LOWER_SHORT(laddr[2]),
 1373                                             UPPER_SHORT(laddr[3]),
 1374                                             LOWER_SHORT(laddr[3]),
 1375                                             ntohs(lport),
 1376                                             UPPER_SHORT(faddr[0]),
 1377                                             LOWER_SHORT(faddr[0]),
 1378                                             UPPER_SHORT(faddr[1]),
 1379                                             LOWER_SHORT(faddr[1]),
 1380                                             UPPER_SHORT(faddr[2]),
 1381                                             LOWER_SHORT(faddr[2]),
 1382                                             UPPER_SHORT(faddr[3]),
 1383                                             LOWER_SHORT(faddr[3]),
 1384                                             ntohs(fport));
 1385                                 } else {
 1386                                         laddr[0] = FIRST_OCTET(laddr[3]);
 1387                                         laddr[1] = SECOND_OCTET(laddr[3]);
 1388                                         laddr[2] = THIRD_OCTET(laddr[3]);
 1389                                         laddr[3] = FOURTH_OCTET(laddr[3]);
 1390                                         faddr[0] = FIRST_OCTET(faddr[3]);
 1391                                         faddr[1] = SECOND_OCTET(faddr[3]);
 1392                                         faddr[2] = THIRD_OCTET(faddr[3]);
 1393                                         faddr[3] = FOURTH_OCTET(faddr[3]);
 1394 #endif
 1395                                         sbuf_printf(s,
 1396                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
 1397                                             laddr[0],
 1398                                             laddr[1],
 1399                                             laddr[2],
 1400                                             laddr[3],
 1401                                             ntohs(lport),
 1402                                             faddr[0],
 1403                                             faddr[1],
 1404                                             faddr[2],
 1405                                             faddr[3],
 1406                                             ntohs(fport));
 1407 #ifdef SIFTR_IPV6
 1408                                 }
 1409 #endif
 1410 
 1411                                 free(counter, M_SIFTR_HASHNODE);
 1412                         }
 1413 
 1414                         LIST_INIT(counter_hash + i);
 1415                 }
 1416 
 1417                 sbuf_printf(s, "\n");
 1418                 sbuf_finish(s);
 1419 
 1420                 i = 0;
 1421                 do {
 1422                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
 1423                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
 1424                         i += bytes_to_write;
 1425                 } while (i < sbuf_len(s));
 1426 
 1427                 alq_close(siftr_alq);
 1428                 siftr_alq = NULL;
 1429         }
 1430 
 1431         sbuf_delete(s);
 1432 
 1433         /*
 1434          * XXX: Should be using ret to check if any functions fail
 1435          * and set error appropriately
 1436          */
 1437 
 1438         return (error);
 1439 }
 1440 
 1441 
 1442 static int
 1443 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
 1444 {
 1445         if (req->newptr == NULL)
 1446                 goto skip;
 1447 
 1448         /* If the value passed in isn't 0 or 1, return an error. */
 1449         if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
 1450                 return (1);
 1451 
 1452         /* If we are changing state (0 to 1 or 1 to 0). */
 1453         if (CAST_PTR_INT(req->newptr) != siftr_enabled )
 1454                 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
 1455                         siftr_manage_ops(SIFTR_DISABLE);
 1456                         return (1);
 1457                 }
 1458 
 1459 skip:
 1460         return (sysctl_handle_int(oidp, arg1, arg2, req));
 1461 }
 1462 
 1463 
 1464 static void
 1465 siftr_shutdown_handler(void *arg)
 1466 {
 1467         siftr_manage_ops(SIFTR_DISABLE);
 1468 }
 1469 
 1470 
 1471 /*
 1472  * Module is being unloaded or machine is shutting down. Take care of cleanup.
 1473  */
 1474 static int
 1475 deinit_siftr(void)
 1476 {
 1477         /* Cleanup. */
 1478         siftr_manage_ops(SIFTR_DISABLE);
 1479         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
 1480         mtx_destroy(&siftr_pkt_queue_mtx);
 1481         mtx_destroy(&siftr_pkt_mgr_mtx);
 1482 
 1483         return (0);
 1484 }
 1485 
 1486 
 1487 /*
 1488  * Module has just been loaded into the kernel.
 1489  */
 1490 static int
 1491 init_siftr(void)
 1492 {
 1493         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
 1494             SHUTDOWN_PRI_FIRST);
 1495 
 1496         /* Initialise our flow counter hash table. */
 1497         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
 1498             &siftr_hashmask);
 1499 
 1500         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
 1501         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
 1502 
 1503         /* Print message to the user's current terminal. */
 1504         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
 1505             "          http://caia.swin.edu.au/urp/newtcp\n\n",
 1506             MODVERSION_STR);
 1507 
 1508         return (0);
 1509 }
 1510 
 1511 
 1512 /*
 1513  * This is the function that is called to load and unload the module.
 1514  * When the module is loaded, this function is called once with
 1515  * "what" == MOD_LOAD
 1516  * When the module is unloaded, this function is called twice with
 1517  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
 1518  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
 1519  * this function is called once with "what" = MOD_SHUTDOWN
 1520  * When the system is shut down, the handler isn't called until the very end
 1521  * of the shutdown sequence i.e. after the disks have been synced.
 1522  */
 1523 static int
 1524 siftr_load_handler(module_t mod, int what, void *arg)
 1525 {
 1526         int ret;
 1527 
 1528         switch (what) {
 1529         case MOD_LOAD:
 1530                 ret = init_siftr();
 1531                 break;
 1532 
 1533         case MOD_QUIESCE:
 1534         case MOD_SHUTDOWN:
 1535                 ret = deinit_siftr();
 1536                 break;
 1537 
 1538         case MOD_UNLOAD:
 1539                 ret = 0;
 1540                 break;
 1541 
 1542         default:
 1543                 ret = EINVAL;
 1544                 break;
 1545         }
 1546 
 1547         return (ret);
 1548 }
 1549 
 1550 
 1551 static moduledata_t siftr_mod = {
 1552         .name = "siftr",
 1553         .evhand = siftr_load_handler,
 1554 };
 1555 
 1556 /*
 1557  * Param 1: name of the kernel module
 1558  * Param 2: moduledata_t struct containing info about the kernel module
 1559  *          and the execution entry point for the module
 1560  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
 1561  *          Defines the module initialisation order
 1562  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
 1563  *          Defines the initialisation order of this kld relative to others
 1564  *          within the same subsystem as defined by param 3
 1565  */
 1566 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_LAST, SI_ORDER_ANY);
 1567 MODULE_DEPEND(siftr, alq, 1, 1, 1);
 1568 MODULE_VERSION(siftr, MODVERSION);

Cache object: 66c4a02b5dad88dfec7c0ab3c261b8b2


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.