The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/siftr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007-2009
    3  *      Swinburne University of Technology, Melbourne, Australia.
    4  * Copyright (c) 2009-2010, The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed at the Centre for Advanced
    8  * Internet Architectures, Swinburne University of Technology, Melbourne,
    9  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 /******************************************************
   34  * Statistical Information For TCP Research (SIFTR)
   35  *
   36  * A FreeBSD kernel module that adds very basic intrumentation to the
   37  * TCP stack, allowing internal stats to be recorded to a log file
   38  * for experimental, debugging and performance analysis purposes.
   39  *
   40  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
   41  * working on the NewTCP research project at Swinburne University's Centre for
   42  * Advanced Internet Architectures, Melbourne, Australia, which was made
   43  * possible in part by a grant from the Cisco University Research Program Fund
   44  * at Community Foundation Silicon Valley. More details are available at:
   45  *   http://caia.swin.edu.au/urp/newtcp/
   46  *
   47  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
   48  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
   49  * More details are available at:
   50  *   http://www.freebsdfoundation.org/
   51  *   http://caia.swin.edu.au/freebsd/etcp09/
   52  *
   53  * Lawrence Stewart is the current maintainer, and all contact regarding
   54  * SIFTR should be directed to him via email: lastewart@swin.edu.au
   55  *
   56  * Initial release date: June 2007
   57  * Most recent update: September 2010
   58  ******************************************************/
   59 
   60 #include <sys/cdefs.h>
   61 __FBSDID("$FreeBSD: releng/8.2/sys/netinet/siftr.c 215928 2010-11-27 03:23:40Z lstewart $");
   62 
   63 #include <sys/param.h>
   64 #include <sys/alq.h>
   65 #include <sys/errno.h>
   66 #include <sys/hash.h>
   67 #include <sys/kernel.h>
   68 #include <sys/kthread.h>
   69 #include <sys/lock.h>
   70 #include <sys/mbuf.h>
   71 #include <sys/module.h>
   72 #include <sys/mutex.h>
   73 #include <sys/pcpu.h>
   74 #include <sys/proc.h>
   75 #include <sys/sbuf.h>
   76 #include <sys/smp.h>
   77 #include <sys/socket.h>
   78 #include <sys/socketvar.h>
   79 #include <sys/sysctl.h>
   80 #include <sys/unistd.h>
   81 
   82 #include <net/if.h>
   83 #include <net/pfil.h>
   84 
   85 #include <netinet/in.h>
   86 #include <netinet/in_pcb.h>
   87 #include <netinet/in_systm.h>
   88 #include <netinet/in_var.h>
   89 #include <netinet/ip.h>
   90 #include <netinet/tcp_var.h>
   91 
   92 #ifdef SIFTR_IPV6
   93 #include <netinet/ip6.h>
   94 #include <netinet6/in6_pcb.h>
   95 #endif /* SIFTR_IPV6 */
   96 
   97 #include <machine/in_cksum.h>
   98 
   99 /*
  100  * Three digit version number refers to X.Y.Z where:
  101  * X is the major version number
  102  * Y is bumped to mark backwards incompatible changes
  103  * Z is bumped to mark backwards compatible changes
  104  */
  105 #define V_MAJOR         1
  106 #define V_BACKBREAK     2
  107 #define V_BACKCOMPAT    4
  108 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
  109 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
  110     __XSTRING(V_BACKCOMPAT)
  111 
  112 #define HOOK 0
  113 #define UNHOOK 1
  114 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
  115 #define SYS_NAME "FreeBSD"
  116 #define PACKET_TAG_SIFTR 100
  117 #define PACKET_COOKIE_SIFTR 21749576
  118 #define SIFTR_LOG_FILE_MODE 0644
  119 #define SIFTR_DISABLE 0
  120 #define SIFTR_ENABLE 1
  121 
  122 /*
  123  * Hard upper limit on the length of log messages. Bump this up if you add new
  124  * data fields such that the line length could exceed the below value.
  125  */
  126 #define MAX_LOG_MSG_LEN 200
  127 /* XXX: Make this a sysctl tunable. */
  128 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
  129 
  130 /*
  131  * 1 byte for IP version
  132  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
  133  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
  134  */
  135 #ifdef SIFTR_IPV6
  136 #define FLOW_KEY_LEN 37
  137 #else
  138 #define FLOW_KEY_LEN 13
  139 #endif
  140 
  141 #ifdef SIFTR_IPV6
  142 #define SIFTR_IPMODE 6
  143 #else
  144 #define SIFTR_IPMODE 4
  145 #endif
  146 
  147 /* useful macros */
  148 #define CAST_PTR_INT(X) (*((int*)(X)))
  149 
  150 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
  151 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
  152 
  153 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
  154 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
  155 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
  156 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
  157 
  158 MALLOC_DECLARE(M_SIFTR);
  159 MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
  160 
  161 MALLOC_DECLARE(M_SIFTR_PKTNODE);
  162 MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode", "SIFTR pkt_node struct");
  163 
  164 MALLOC_DECLARE(M_SIFTR_HASHNODE);
  165 MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode", "SIFTR flow_hash_node struct");
  166 
  167 /* Used as links in the pkt manager queue. */
  168 struct pkt_node {
  169         /* Timestamp of pkt as noted in the pfil hook. */
  170         struct timeval          tval;
  171         /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
  172         uint8_t                 direction;
  173         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
  174         uint8_t                 ipver;
  175         /* Hash of the pkt which triggered the log message. */
  176         uint32_t                hash;
  177         /* Local/foreign IP address. */
  178 #ifdef SIFTR_IPV6
  179         uint32_t                ip_laddr[4];
  180         uint32_t                ip_faddr[4];
  181 #else
  182         uint8_t                 ip_laddr[4];
  183         uint8_t                 ip_faddr[4];
  184 #endif
  185         /* Local TCP port. */
  186         uint16_t                tcp_localport;
  187         /* Foreign TCP port. */
  188         uint16_t                tcp_foreignport;
  189         /* Congestion Window (bytes). */
  190         u_long                  snd_cwnd;
  191         /* Sending Window (bytes). */
  192         u_long                  snd_wnd;
  193         /* Receive Window (bytes). */
  194         u_long                  rcv_wnd;
  195         /* Bandwidth Controlled Window (bytes). */
  196         u_long                  snd_bwnd;
  197         /* Slow Start Threshold (bytes). */
  198         u_long                  snd_ssthresh;
  199         /* Current state of the TCP FSM. */
  200         int                     conn_state;
  201         /* Max Segment Size (bytes). */
  202         u_int                   max_seg_size;
  203         /*
  204          * Smoothed RTT stored as found in the TCP control block
  205          * in units of (TCP_RTT_SCALE*hz).
  206          */
  207         int                     smoothed_rtt;
  208         /* Is SACK enabled? */
  209         u_char                  sack_enabled;
  210         /* Window scaling for snd window. */
  211         u_char                  snd_scale;
  212         /* Window scaling for recv window. */
  213         u_char                  rcv_scale;
  214         /* TCP control block flags. */
  215         u_int                   flags;
  216         /* Retransmit timeout length. */
  217         int                     rxt_length;
  218         /* Size of the TCP send buffer in bytes. */
  219         u_int                   snd_buf_hiwater;
  220         /* Current num bytes in the send socket buffer. */
  221         u_int                   snd_buf_cc;
  222         /* Size of the TCP receive buffer in bytes. */
  223         u_int                   rcv_buf_hiwater;
  224         /* Current num bytes in the receive socket buffer. */
  225         u_int                   rcv_buf_cc;
  226         /* Number of bytes inflight that we are waiting on ACKs for. */
  227         u_int                   sent_inflight_bytes;
  228         /* Number of segments currently in the reassembly queue. */
  229         int                     t_segqlen;
  230         /* Link to next pkt_node in the list. */
  231         STAILQ_ENTRY(pkt_node)  nodes;
  232 };
  233 
  234 struct flow_hash_node
  235 {
  236         uint16_t counter;
  237         uint8_t key[FLOW_KEY_LEN];
  238         LIST_ENTRY(flow_hash_node) nodes;
  239 };
  240 
  241 struct siftr_stats
  242 {
  243         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
  244         uint64_t n_in;
  245         uint64_t n_out;
  246         /* # pkts skipped due to failed malloc calls. */
  247         uint32_t nskip_in_malloc;
  248         uint32_t nskip_out_malloc;
  249         /* # pkts skipped due to failed mtx acquisition. */
  250         uint32_t nskip_in_mtx;
  251         uint32_t nskip_out_mtx;
  252         /* # pkts skipped due to failed inpcb lookups. */
  253         uint32_t nskip_in_inpcb;
  254         uint32_t nskip_out_inpcb;
  255         /* # pkts skipped due to failed tcpcb lookups. */
  256         uint32_t nskip_in_tcpcb;
  257         uint32_t nskip_out_tcpcb;
  258         /* # pkts skipped due to stack reinjection. */
  259         uint32_t nskip_in_dejavu;
  260         uint32_t nskip_out_dejavu;
  261 };
  262 
  263 static DPCPU_DEFINE(struct siftr_stats, ss);
  264 
  265 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
  266 static unsigned int siftr_enabled = 0;
  267 static unsigned int siftr_pkts_per_log = 1;
  268 static unsigned int siftr_generate_hashes = 0;
  269 /* static unsigned int siftr_binary_log = 0; */
  270 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
  271 static u_long siftr_hashmask;
  272 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
  273 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
  274 static int wait_for_pkt;
  275 static struct alq *siftr_alq = NULL;
  276 static struct mtx siftr_pkt_queue_mtx;
  277 static struct mtx siftr_pkt_mgr_mtx;
  278 static struct thread *siftr_pkt_manager_thr = NULL;
  279 /*
  280  * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
  281  * which we use as an index into this array.
  282  */
  283 static char direction[3] = {'\0', 'i','o'};
  284 
  285 /* Required function prototypes. */
  286 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
  287 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
  288 
  289 
  290 /* Declare the net.inet.siftr sysctl tree and populate it. */
  291 
  292 SYSCTL_DECL(_net_inet_siftr);
  293 
  294 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
  295     "siftr related settings");
  296 
  297 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
  298     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
  299     "switch siftr module operations on/off");
  300 
  301 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
  302     &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
  303     "A", "file to save siftr log messages to");
  304 
  305 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
  306     &siftr_pkts_per_log, 1,
  307     "number of packets between generating a log message");
  308 
  309 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
  310     &siftr_generate_hashes, 0,
  311     "enable packet hash generation");
  312 
  313 /* XXX: TODO
  314 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
  315     &siftr_binary_log, 0,
  316     "write log files in binary instead of ascii");
  317 */
  318 
  319 
  320 /* Begin functions. */
  321 
  322 static void
  323 siftr_process_pkt(struct pkt_node * pkt_node)
  324 {
  325         struct flow_hash_node *hash_node;
  326         struct listhead *counter_list;
  327         struct siftr_stats *ss;
  328         struct ale *log_buf;
  329         uint8_t key[FLOW_KEY_LEN];
  330         uint8_t found_match, key_offset;
  331 
  332         hash_node = NULL;
  333         ss = DPCPU_PTR(ss);
  334         found_match = 0;
  335         key_offset = 1;
  336 
  337         /*
  338          * Create the key that will be used to create a hash index
  339          * into our hash table. Our key consists of:
  340          * ipversion, localip, localport, foreignip, foreignport
  341          */
  342         key[0] = pkt_node->ipver;
  343         memcpy(key + key_offset, &pkt_node->ip_laddr,
  344             sizeof(pkt_node->ip_laddr));
  345         key_offset += sizeof(pkt_node->ip_laddr);
  346         memcpy(key + key_offset, &pkt_node->tcp_localport,
  347             sizeof(pkt_node->tcp_localport));
  348         key_offset += sizeof(pkt_node->tcp_localport);
  349         memcpy(key + key_offset, &pkt_node->ip_faddr,
  350             sizeof(pkt_node->ip_faddr));
  351         key_offset += sizeof(pkt_node->ip_faddr);
  352         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
  353             sizeof(pkt_node->tcp_foreignport));
  354 
  355         counter_list = counter_hash +
  356             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
  357 
  358         /*
  359          * If the list is not empty i.e. the hash index has
  360          * been used by another flow previously.
  361          */
  362         if (LIST_FIRST(counter_list) != NULL) {
  363                 /*
  364                  * Loop through the hash nodes in the list.
  365                  * There should normally only be 1 hash node in the list,
  366                  * except if there have been collisions at the hash index
  367                  * computed by hash32_buf().
  368                  */
  369                 LIST_FOREACH(hash_node, counter_list, nodes) {
  370                         /*
  371                          * Check if the key for the pkt we are currently
  372                          * processing is the same as the key stored in the
  373                          * hash node we are currently processing.
  374                          * If they are the same, then we've found the
  375                          * hash node that stores the counter for the flow
  376                          * the pkt belongs to.
  377                          */
  378                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
  379                                 found_match = 1;
  380                                 break;
  381                         }
  382                 }
  383         }
  384 
  385         /* If this flow hash hasn't been seen before or we have a collision. */
  386         if (hash_node == NULL || !found_match) {
  387                 /* Create a new hash node to store the flow's counter. */
  388                 hash_node = malloc(sizeof(struct flow_hash_node),
  389                     M_SIFTR_HASHNODE, M_WAITOK);
  390 
  391                 if (hash_node != NULL) {
  392                         /* Initialise our new hash node list entry. */
  393                         hash_node->counter = 0;
  394                         memcpy(hash_node->key, key, sizeof(key));
  395                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
  396                 } else {
  397                         /* Malloc failed. */
  398                         if (pkt_node->direction == PFIL_IN)
  399                                 ss->nskip_in_malloc++;
  400                         else
  401                                 ss->nskip_out_malloc++;
  402 
  403                         return;
  404                 }
  405         } else if (siftr_pkts_per_log > 1) {
  406                 /*
  407                  * Taking the remainder of the counter divided
  408                  * by the current value of siftr_pkts_per_log
  409                  * and storing that in counter provides a neat
  410                  * way to modulate the frequency of log
  411                  * messages being written to the log file.
  412                  */
  413                 hash_node->counter = (hash_node->counter + 1) %
  414                     siftr_pkts_per_log;
  415 
  416                 /*
  417                  * If we have not seen enough packets since the last time
  418                  * we wrote a log message for this connection, return.
  419                  */
  420                 if (hash_node->counter > 0)
  421                         return;
  422         }
  423 
  424         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
  425 
  426         if (log_buf == NULL)
  427                 return; /* Should only happen if the ALQ is shutting down. */
  428 
  429 #ifdef SIFTR_IPV6
  430         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
  431         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
  432 
  433         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
  434                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
  435                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
  436                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
  437                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
  438                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
  439                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
  440 
  441                 /* Construct an IPv6 log message. */
  442                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  443                     MAX_LOG_MSG_LEN,
  444                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
  445                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
  446                     "%u,%d,%u,%u,%u,%u,%u,%u\n",
  447                     direction[pkt_node->direction],
  448                     pkt_node->hash,
  449                     pkt_node->tval.tv_sec,
  450                     pkt_node->tval.tv_usec,
  451                     UPPER_SHORT(pkt_node->ip_laddr[0]),
  452                     LOWER_SHORT(pkt_node->ip_laddr[0]),
  453                     UPPER_SHORT(pkt_node->ip_laddr[1]),
  454                     LOWER_SHORT(pkt_node->ip_laddr[1]),
  455                     UPPER_SHORT(pkt_node->ip_laddr[2]),
  456                     LOWER_SHORT(pkt_node->ip_laddr[2]),
  457                     UPPER_SHORT(pkt_node->ip_laddr[3]),
  458                     LOWER_SHORT(pkt_node->ip_laddr[3]),
  459                     ntohs(pkt_node->tcp_localport),
  460                     UPPER_SHORT(pkt_node->ip_faddr[0]),
  461                     LOWER_SHORT(pkt_node->ip_faddr[0]),
  462                     UPPER_SHORT(pkt_node->ip_faddr[1]),
  463                     LOWER_SHORT(pkt_node->ip_faddr[1]),
  464                     UPPER_SHORT(pkt_node->ip_faddr[2]),
  465                     LOWER_SHORT(pkt_node->ip_faddr[2]),
  466                     UPPER_SHORT(pkt_node->ip_faddr[3]),
  467                     LOWER_SHORT(pkt_node->ip_faddr[3]),
  468                     ntohs(pkt_node->tcp_foreignport),
  469                     pkt_node->snd_ssthresh,
  470                     pkt_node->snd_cwnd,
  471                     pkt_node->snd_bwnd,
  472                     pkt_node->snd_wnd,
  473                     pkt_node->rcv_wnd,
  474                     pkt_node->snd_scale,
  475                     pkt_node->rcv_scale,
  476                     pkt_node->conn_state,
  477                     pkt_node->max_seg_size,
  478                     pkt_node->smoothed_rtt,
  479                     pkt_node->sack_enabled,
  480                     pkt_node->flags,
  481                     pkt_node->rxt_length,
  482                     pkt_node->snd_buf_hiwater,
  483                     pkt_node->snd_buf_cc,
  484                     pkt_node->rcv_buf_hiwater,
  485                     pkt_node->rcv_buf_cc,
  486                     pkt_node->sent_inflight_bytes,
  487                     pkt_node->t_segqlen);
  488         } else { /* IPv4 packet */
  489                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
  490                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
  491                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
  492                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
  493                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
  494                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
  495                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
  496                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
  497 #endif /* SIFTR_IPV6 */
  498 
  499                 /* Construct an IPv4 log message. */
  500                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  501                     MAX_LOG_MSG_LEN,
  502                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
  503                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
  504                     direction[pkt_node->direction],
  505                     pkt_node->hash,
  506                     (intmax_t)pkt_node->tval.tv_sec,
  507                     pkt_node->tval.tv_usec,
  508                     pkt_node->ip_laddr[0],
  509                     pkt_node->ip_laddr[1],
  510                     pkt_node->ip_laddr[2],
  511                     pkt_node->ip_laddr[3],
  512                     ntohs(pkt_node->tcp_localport),
  513                     pkt_node->ip_faddr[0],
  514                     pkt_node->ip_faddr[1],
  515                     pkt_node->ip_faddr[2],
  516                     pkt_node->ip_faddr[3],
  517                     ntohs(pkt_node->tcp_foreignport),
  518                     pkt_node->snd_ssthresh,
  519                     pkt_node->snd_cwnd,
  520                     pkt_node->snd_bwnd,
  521                     pkt_node->snd_wnd,
  522                     pkt_node->rcv_wnd,
  523                     pkt_node->snd_scale,
  524                     pkt_node->rcv_scale,
  525                     pkt_node->conn_state,
  526                     pkt_node->max_seg_size,
  527                     pkt_node->smoothed_rtt,
  528                     pkt_node->sack_enabled,
  529                     pkt_node->flags,
  530                     pkt_node->rxt_length,
  531                     pkt_node->snd_buf_hiwater,
  532                     pkt_node->snd_buf_cc,
  533                     pkt_node->rcv_buf_hiwater,
  534                     pkt_node->rcv_buf_cc,
  535                     pkt_node->sent_inflight_bytes,
  536                     pkt_node->t_segqlen);
  537 #ifdef SIFTR_IPV6
  538         }
  539 #endif
  540 
  541         alq_post_flags(siftr_alq, log_buf, 0);
  542 }
  543 
  544 
  545 static void
  546 siftr_pkt_manager_thread(void *arg)
  547 {
  548         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
  549             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
  550         struct pkt_node *pkt_node, *pkt_node_temp;
  551         uint8_t draining;
  552 
  553         draining = 2;
  554 
  555         mtx_lock(&siftr_pkt_mgr_mtx);
  556 
  557         /* draining == 0 when queue has been flushed and it's safe to exit. */
  558         while (draining) {
  559                 /*
  560                  * Sleep until we are signalled to wake because thread has
  561                  * been told to exit or until 1 tick has passed.
  562                  */
  563                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
  564                     1);
  565 
  566                 /* Gain exclusive access to the pkt_node queue. */
  567                 mtx_lock(&siftr_pkt_queue_mtx);
  568 
  569                 /*
  570                  * Move pkt_queue to tmp_pkt_queue, which leaves
  571                  * pkt_queue empty and ready to receive more pkt_nodes.
  572                  */
  573                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
  574 
  575                 /*
  576                  * We've finished making changes to the list. Unlock it
  577                  * so the pfil hooks can continue queuing pkt_nodes.
  578                  */
  579                 mtx_unlock(&siftr_pkt_queue_mtx);
  580 
  581                 /*
  582                  * We can't hold a mutex whilst calling siftr_process_pkt
  583                  * because ALQ might sleep waiting for buffer space.
  584                  */
  585                 mtx_unlock(&siftr_pkt_mgr_mtx);
  586 
  587                 /* Flush all pkt_nodes to the log file. */
  588                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
  589                     pkt_node_temp) {
  590                         siftr_process_pkt(pkt_node);
  591                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
  592                         free(pkt_node, M_SIFTR_PKTNODE);
  593                 }
  594 
  595                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
  596                     ("SIFTR tmp_pkt_queue not empty after flush"));
  597 
  598                 mtx_lock(&siftr_pkt_mgr_mtx);
  599 
  600                 /*
  601                  * If siftr_exit_pkt_manager_thread gets set during the window
  602                  * where we are draining the tmp_pkt_queue above, there might
  603                  * still be pkts in pkt_queue that need to be drained.
  604                  * Allow one further iteration to occur after
  605                  * siftr_exit_pkt_manager_thread has been set to ensure
  606                  * pkt_queue is completely empty before we kill the thread.
  607                  *
  608                  * siftr_exit_pkt_manager_thread is set only after the pfil
  609                  * hooks have been removed, so only 1 extra iteration
  610                  * is needed to drain the queue.
  611                  */
  612                 if (siftr_exit_pkt_manager_thread)
  613                         draining--;
  614         }
  615 
  616         mtx_unlock(&siftr_pkt_mgr_mtx);
  617 
  618         /* Calls wakeup on this thread's struct thread ptr. */
  619         kthread_exit();
  620 }
  621 
  622 
  623 static uint32_t
  624 hash_pkt(struct mbuf *m, uint32_t offset)
  625 {
  626         uint32_t hash;
  627 
  628         hash = 0;
  629 
  630         while (m != NULL && offset > m->m_len) {
  631                 /*
  632                  * The IP packet payload does not start in this mbuf, so
  633                  * need to figure out which mbuf it starts in and what offset
  634                  * into the mbuf's data region the payload starts at.
  635                  */
  636                 offset -= m->m_len;
  637                 m = m->m_next;
  638         }
  639 
  640         while (m != NULL) {
  641                 /* Ensure there is data in the mbuf */
  642                 if ((m->m_len - offset) > 0)
  643                         hash = hash32_buf(m->m_data + offset,
  644                             m->m_len - offset, hash);
  645 
  646                 m = m->m_next;
  647                 offset = 0;
  648         }
  649 
  650         return (hash);
  651 }
  652 
  653 
  654 /*
  655  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
  656  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
  657  * Return value >0 means the caller should skip processing this mbuf.
  658  */
  659 static inline int
  660 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
  661 {
  662         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
  663             != NULL) {
  664                 if (dir == PFIL_IN)
  665                         ss->nskip_in_dejavu++;
  666                 else
  667                         ss->nskip_out_dejavu++;
  668 
  669                 return (1);
  670         } else {
  671                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
  672                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
  673                 if (tag == NULL) {
  674                         if (dir == PFIL_IN)
  675                                 ss->nskip_in_malloc++;
  676                         else
  677                                 ss->nskip_out_malloc++;
  678 
  679                         return (1);
  680                 }
  681 
  682                 m_tag_prepend(m, tag);
  683         }
  684 
  685         return (0);
  686 }
  687 
  688 
  689 /*
  690  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
  691  * otherwise.
  692  */
  693 static inline struct inpcb *
  694 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
  695     uint16_t dport, int dir, struct siftr_stats *ss)
  696 {
  697         struct inpcb *inp;
  698 
  699         /* We need the tcbinfo lock. */
  700         INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
  701         INP_INFO_RLOCK(&V_tcbinfo);
  702 
  703         if (dir == PFIL_IN)
  704                 inp = (ipver == INP_IPV4 ?
  705                     in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
  706                     dport, 0, m->m_pkthdr.rcvif)
  707                     :
  708 #ifdef SIFTR_IPV6
  709                     in6_pcblookup_hash(&V_tcbinfo,
  710                     &((struct ip6_hdr *)ip)->ip6_src, sport,
  711                     &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
  712                     m->m_pkthdr.rcvif)
  713 #else
  714                     NULL
  715 #endif
  716                     );
  717 
  718         else
  719                 inp = (ipver == INP_IPV4 ?
  720                     in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
  721                     sport, 0, m->m_pkthdr.rcvif)
  722                     :
  723 #ifdef SIFTR_IPV6
  724                     in6_pcblookup_hash(&V_tcbinfo,
  725                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
  726                     &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
  727                     m->m_pkthdr.rcvif)
  728 #else
  729                     NULL
  730 #endif
  731                     );
  732 
  733         /* If we can't find the inpcb, bail. */
  734         if (inp == NULL) {
  735                 if (dir == PFIL_IN)
  736                         ss->nskip_in_inpcb++;
  737                 else
  738                         ss->nskip_out_inpcb++;
  739         } else {
  740                 /* Acquire the inpcb lock. */
  741                 INP_UNLOCK_ASSERT(inp);
  742                 INP_RLOCK(inp);
  743         }
  744         INP_INFO_RUNLOCK(&V_tcbinfo);
  745 
  746         return (inp);
  747 }
  748 
  749 
  750 static inline void
  751 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
  752     int ipver, int dir, int inp_locally_locked)
  753 {
  754 #ifdef SIFTR_IPV6
  755         if (ipver == INP_IPV4) {
  756                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
  757                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
  758 #else
  759                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
  760                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
  761 #endif
  762 #ifdef SIFTR_IPV6
  763         } else {
  764                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
  765                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
  766                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
  767                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
  768                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
  769                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
  770                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
  771                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
  772         }
  773 #endif
  774         pn->tcp_localport = inp->inp_lport;
  775         pn->tcp_foreignport = inp->inp_fport;
  776         pn->snd_cwnd = tp->snd_cwnd;
  777         pn->snd_wnd = tp->snd_wnd;
  778         pn->rcv_wnd = tp->rcv_wnd;
  779         pn->snd_bwnd = tp->snd_bwnd;
  780         pn->snd_ssthresh = tp->snd_ssthresh;
  781         pn->snd_scale = tp->snd_scale;
  782         pn->rcv_scale = tp->rcv_scale;
  783         pn->conn_state = tp->t_state;
  784         pn->max_seg_size = tp->t_maxseg;
  785         pn->smoothed_rtt = tp->t_srtt;
  786         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
  787         pn->flags = tp->t_flags;
  788         pn->rxt_length = tp->t_rxtcur;
  789         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
  790         pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
  791         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
  792         pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
  793         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
  794         pn->t_segqlen = tp->t_segqlen;
  795 
  796         /* We've finished accessing the tcb so release the lock. */
  797         if (inp_locally_locked)
  798                 INP_RUNLOCK(inp);
  799 
  800         pn->ipver = ipver;
  801         pn->direction = dir;
  802 
  803         /*
  804          * Significantly more accurate than using getmicrotime(), but slower!
  805          * Gives true microsecond resolution at the expense of a hit to
  806          * maximum pps throughput processing when SIFTR is loaded and enabled.
  807          */
  808         microtime(&pn->tval);
  809 }
  810 
  811 
  812 /*
  813  * pfil hook that is called for each IPv4 packet making its way through the
  814  * stack in either direction.
  815  * The pfil subsystem holds a non-sleepable mutex somewhere when
  816  * calling our hook function, so we can't sleep at all.
  817  * It's very important to use the M_NOWAIT flag with all function calls
  818  * that support it so that they won't sleep, otherwise you get a panic.
  819  */
  820 static int
  821 siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  822     struct inpcb *inp)
  823 {
  824         struct pkt_node *pn;
  825         struct ip *ip;
  826         struct tcphdr *th;
  827         struct tcpcb *tp;
  828         struct siftr_stats *ss;
  829         unsigned int ip_hl;
  830         int inp_locally_locked;
  831 
  832         inp_locally_locked = 0;
  833         ss = DPCPU_PTR(ss);
  834 
  835         /*
  836          * m_pullup is not required here because ip_{input|output}
  837          * already do the heavy lifting for us.
  838          */
  839 
  840         ip = mtod(*m, struct ip *);
  841 
  842         /* Only continue processing if the packet is TCP. */
  843         if (ip->ip_p != IPPROTO_TCP)
  844                 goto ret;
  845 
  846         /*
  847          * If a kernel subsystem reinjects packets into the stack, our pfil
  848          * hook will be called multiple times for the same packet.
  849          * Make sure we only process unique packets.
  850          */
  851         if (siftr_chkreinject(*m, dir, ss))
  852                 goto ret;
  853 
  854         if (dir == PFIL_IN)
  855                 ss->n_in++;
  856         else
  857                 ss->n_out++;
  858 
  859         /*
  860          * Create a tcphdr struct starting at the correct offset
  861          * in the IP packet. ip->ip_hl gives the ip header length
  862          * in 4-byte words, so multiply it to get the size in bytes.
  863          */
  864         ip_hl = (ip->ip_hl << 2);
  865         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
  866 
  867         /*
  868          * If the pfil hooks don't provide a pointer to the
  869          * inpcb, we need to find it ourselves and lock it.
  870          */
  871         if (!inp) {
  872                 /* Find the corresponding inpcb for this pkt. */
  873                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
  874                     th->th_dport, dir, ss);
  875 
  876                 if (inp == NULL)
  877                         goto ret;
  878                 else
  879                         inp_locally_locked = 1;
  880         }
  881 
  882         INP_LOCK_ASSERT(inp);
  883 
  884         /* Find the TCP control block that corresponds with this packet */
  885         tp = intotcpcb(inp);
  886 
  887         /*
  888          * If we can't find the TCP control block (happens occasionaly for a
  889          * packet sent during the shutdown phase of a TCP connection),
  890          * or we're in the timewait state, bail
  891          */
  892         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
  893                 if (dir == PFIL_IN)
  894                         ss->nskip_in_tcpcb++;
  895                 else
  896                         ss->nskip_out_tcpcb++;
  897 
  898                 goto inp_unlock;
  899         }
  900 
  901         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
  902 
  903         if (pn == NULL) {
  904                 if (dir == PFIL_IN)
  905                         ss->nskip_in_malloc++;
  906                 else
  907                         ss->nskip_out_malloc++;
  908 
  909                 goto inp_unlock;
  910         }
  911 
  912         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
  913 
  914         if (siftr_generate_hashes) {
  915                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
  916                         /*
  917                          * For outbound packets, the TCP checksum isn't
  918                          * calculated yet. This is a problem for our packet
  919                          * hashing as the receiver will calc a different hash
  920                          * to ours if we don't include the correct TCP checksum
  921                          * in the bytes being hashed. To work around this
  922                          * problem, we manually calc the TCP checksum here in
  923                          * software. We unset the CSUM_TCP flag so the lower
  924                          * layers don't recalc it.
  925                          */
  926                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
  927 
  928                         /*
  929                          * Calculate the TCP checksum in software and assign
  930                          * to correct TCP header field, which will follow the
  931                          * packet mbuf down the stack. The trick here is that
  932                          * tcp_output() sets th->th_sum to the checksum of the
  933                          * pseudo header for us already. Because of the nature
  934                          * of the checksumming algorithm, we can sum over the
  935                          * entire IP payload (i.e. TCP header and data), which
  936                          * will include the already calculated pseduo header
  937                          * checksum, thus giving us the complete TCP checksum.
  938                          *
  939                          * To put it in simple terms, if checksum(1,2,3,4)=10,
  940                          * then checksum(1,2,3,4,5) == checksum(10,5).
  941                          * This property is what allows us to "cheat" and
  942                          * checksum only the IP payload which has the TCP
  943                          * th_sum field populated with the pseudo header's
  944                          * checksum, and not need to futz around checksumming
  945                          * pseudo header bytes and TCP header/data in one hit.
  946                          * Refer to RFC 1071 for more info.
  947                          *
  948                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
  949                          * in_cksum_skip 2nd argument is NOT the number of
  950                          * bytes to read from the mbuf at "skip" bytes offset
  951                          * from the start of the mbuf (very counter intuitive!).
  952                          * The number of bytes to read is calculated internally
  953                          * by the function as len-skip i.e. to sum over the IP
  954                          * payload (TCP header + data) bytes, it is INCORRECT
  955                          * to call the function like this:
  956                          * in_cksum_skip(at, ip->ip_len - offset, offset)
  957                          * Rather, it should be called like this:
  958                          * in_cksum_skip(at, ip->ip_len, offset)
  959                          * which means read "ip->ip_len - offset" bytes from
  960                          * the mbuf cluster "at" at offset "offset" bytes from
  961                          * the beginning of the "at" mbuf's data pointer.
  962                          */
  963                         th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
  964                 }
  965 
  966                 /*
  967                  * XXX: Having to calculate the checksum in software and then
  968                  * hash over all bytes is really inefficient. Would be nice to
  969                  * find a way to create the hash and checksum in the same pass
  970                  * over the bytes.
  971                  */
  972                 pn->hash = hash_pkt(*m, ip_hl);
  973         }
  974 
  975         mtx_lock(&siftr_pkt_queue_mtx);
  976         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
  977         mtx_unlock(&siftr_pkt_queue_mtx);
  978         goto ret;
  979 
  980 inp_unlock:
  981         if (inp_locally_locked)
  982                 INP_RUNLOCK(inp);
  983 
  984 ret:
  985         /* Returning 0 ensures pfil will not discard the pkt */
  986         return (0);
  987 }
  988 
  989 
  990 #ifdef SIFTR_IPV6
  991 static int
  992 siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  993     struct inpcb *inp)
  994 {
  995         struct pkt_node *pn;
  996         struct ip6_hdr *ip6;
  997         struct tcphdr *th;
  998         struct tcpcb *tp;
  999         struct siftr_stats *ss;
 1000         unsigned int ip6_hl;
 1001         int inp_locally_locked;
 1002 
 1003         inp_locally_locked = 0;
 1004         ss = DPCPU_PTR(ss);
 1005 
 1006         /*
 1007          * m_pullup is not required here because ip6_{input|output}
 1008          * already do the heavy lifting for us.
 1009          */
 1010 
 1011         ip6 = mtod(*m, struct ip6_hdr *);
 1012 
 1013         /*
 1014          * Only continue processing if the packet is TCP
 1015          * XXX: We should follow the next header fields
 1016          * as shown on Pg 6 RFC 2460, but right now we'll
 1017          * only check pkts that have no extension headers.
 1018          */
 1019         if (ip6->ip6_nxt != IPPROTO_TCP)
 1020                 goto ret6;
 1021 
 1022         /*
 1023          * If a kernel subsystem reinjects packets into the stack, our pfil
 1024          * hook will be called multiple times for the same packet.
 1025          * Make sure we only process unique packets.
 1026          */
 1027         if (siftr_chkreinject(*m, dir, ss))
 1028                 goto ret6;
 1029 
 1030         if (dir == PFIL_IN)
 1031                 ss->n_in++;
 1032         else
 1033                 ss->n_out++;
 1034 
 1035         ip6_hl = sizeof(struct ip6_hdr);
 1036 
 1037         /*
 1038          * Create a tcphdr struct starting at the correct offset
 1039          * in the ipv6 packet. ip->ip_hl gives the ip header length
 1040          * in 4-byte words, so multiply it to get the size in bytes.
 1041          */
 1042         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
 1043 
 1044         /*
 1045          * For inbound packets, the pfil hooks don't provide a pointer to the
 1046          * inpcb, so we need to find it ourselves and lock it.
 1047          */
 1048         if (!inp) {
 1049                 /* Find the corresponding inpcb for this pkt. */
 1050                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
 1051                     th->th_sport, th->th_dport, dir, ss);
 1052 
 1053                 if (inp == NULL)
 1054                         goto ret6;
 1055                 else
 1056                         inp_locally_locked = 1;
 1057         }
 1058 
 1059         /* Find the TCP control block that corresponds with this packet. */
 1060         tp = intotcpcb(inp);
 1061 
 1062         /*
 1063          * If we can't find the TCP control block (happens occasionaly for a
 1064          * packet sent during the shutdown phase of a TCP connection),
 1065          * or we're in the timewait state, bail.
 1066          */
 1067         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
 1068                 if (dir == PFIL_IN)
 1069                         ss->nskip_in_tcpcb++;
 1070                 else
 1071                         ss->nskip_out_tcpcb++;
 1072 
 1073                 goto inp_unlock6;
 1074         }
 1075 
 1076         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
 1077 
 1078         if (pn == NULL) {
 1079                 if (dir == PFIL_IN)
 1080                         ss->nskip_in_malloc++;
 1081                 else
 1082                         ss->nskip_out_malloc++;
 1083 
 1084                 goto inp_unlock6;
 1085         }
 1086 
 1087         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
 1088 
 1089         /* XXX: Figure out how to generate hashes for IPv6 packets. */
 1090 
 1091         mtx_lock(&siftr_pkt_queue_mtx);
 1092         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
 1093         mtx_unlock(&siftr_pkt_queue_mtx);
 1094         goto ret6;
 1095 
 1096 inp_unlock6:
 1097         if (inp_locally_locked)
 1098                 INP_RUNLOCK(inp);
 1099 
 1100 ret6:
 1101         /* Returning 0 ensures pfil will not discard the pkt. */
 1102         return (0);
 1103 }
 1104 #endif /* #ifdef SIFTR_IPV6 */
 1105 
 1106 
 1107 static int
 1108 siftr_pfil(int action)
 1109 {
 1110         struct pfil_head *pfh_inet;
 1111 #ifdef SIFTR_IPV6
 1112         struct pfil_head *pfh_inet6;
 1113 #endif
 1114         VNET_ITERATOR_DECL(vnet_iter);
 1115 
 1116         VNET_LIST_RLOCK();
 1117         VNET_FOREACH(vnet_iter) {
 1118                 CURVNET_SET(vnet_iter);
 1119                 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
 1120 #ifdef SIFTR_IPV6
 1121                 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
 1122 #endif
 1123 
 1124                 if (action == HOOK) {
 1125                         pfil_add_hook(siftr_chkpkt, NULL,
 1126                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1127 #ifdef SIFTR_IPV6
 1128                         pfil_add_hook(siftr_chkpkt6, NULL,
 1129                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1130 #endif
 1131                 } else if (action == UNHOOK) {
 1132                         pfil_remove_hook(siftr_chkpkt, NULL,
 1133                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1134 #ifdef SIFTR_IPV6
 1135                         pfil_remove_hook(siftr_chkpkt6, NULL,
 1136                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1137 #endif
 1138                 }
 1139                 CURVNET_RESTORE();
 1140         }
 1141         VNET_LIST_RUNLOCK();
 1142 
 1143         return (0);
 1144 }
 1145 
 1146 
 1147 static int
 1148 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
 1149 {
 1150         struct alq *new_alq;
 1151         int error;
 1152 
 1153         if (req->newptr == NULL)
 1154                 goto skip;
 1155 
 1156         /* If old filename and new filename are different. */
 1157         if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
 1158 
 1159                 error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
 1160                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1161 
 1162                 /* Bail if unable to create new alq. */
 1163                 if (error)
 1164                         return (1);
 1165 
 1166                 /*
 1167                  * If disabled, siftr_alq == NULL so we simply close
 1168                  * the alq as we've proved it can be opened.
 1169                  * If enabled, close the existing alq and switch the old
 1170                  * for the new.
 1171                  */
 1172                 if (siftr_alq == NULL)
 1173                         alq_close(new_alq);
 1174                 else {
 1175                         alq_close(siftr_alq);
 1176                         siftr_alq = new_alq;
 1177                 }
 1178         }
 1179 
 1180 skip:
 1181         return (sysctl_handle_string(oidp, arg1, arg2, req));
 1182 }
 1183 
 1184 
 1185 static int
 1186 siftr_manage_ops(uint8_t action)
 1187 {
 1188         struct siftr_stats totalss;
 1189         struct timeval tval;
 1190         struct flow_hash_node *counter, *tmp_counter;
 1191         struct sbuf *s;
 1192         int i, key_index, ret, error;
 1193         uint32_t bytes_to_write, total_skipped_pkts;
 1194         uint16_t lport, fport;
 1195         uint8_t *key, ipver;
 1196 
 1197 #ifdef SIFTR_IPV6
 1198         uint32_t laddr[4];
 1199         uint32_t faddr[4];
 1200 #else
 1201         uint8_t laddr[4];
 1202         uint8_t faddr[4];
 1203 #endif
 1204 
 1205         error = 0;
 1206         total_skipped_pkts = 0;
 1207 
 1208         /* Init an autosizing sbuf that initially holds 200 chars. */
 1209         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
 1210                 return (-1);
 1211 
 1212         if (action == SIFTR_ENABLE) {
 1213                 /*
 1214                  * Create our alq
 1215                  * XXX: We should abort if alq_open fails!
 1216                  */
 1217                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
 1218                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1219 
 1220                 STAILQ_INIT(&pkt_queue);
 1221 
 1222                 DPCPU_ZERO(ss);
 1223 
 1224                 siftr_exit_pkt_manager_thread = 0;
 1225 
 1226                 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
 1227                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
 1228                     "siftr_pkt_manager_thr");
 1229 
 1230                 siftr_pfil(HOOK);
 1231 
 1232                 microtime(&tval);
 1233 
 1234                 sbuf_printf(s,
 1235                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
 1236                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
 1237                     "sysver=%u\tipmode=%u\n",
 1238                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
 1239                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
 1240 
 1241                 sbuf_finish(s);
 1242                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
 1243 
 1244         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
 1245                 /*
 1246                  * Remove the pfil hook functions. All threads currently in
 1247                  * the hook functions are allowed to exit before siftr_pfil()
 1248                  * returns.
 1249                  */
 1250                 siftr_pfil(UNHOOK);
 1251 
 1252                 /* This will block until the pkt manager thread unlocks it. */
 1253                 mtx_lock(&siftr_pkt_mgr_mtx);
 1254 
 1255                 /* Tell the pkt manager thread that it should exit now. */
 1256                 siftr_exit_pkt_manager_thread = 1;
 1257 
 1258                 /*
 1259                  * Wake the pkt_manager thread so it realises that
 1260                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
 1261                  * The wakeup won't be delivered until we unlock
 1262                  * siftr_pkt_mgr_mtx so this isn't racy.
 1263                  */
 1264                 wakeup(&wait_for_pkt);
 1265 
 1266                 /* Wait for the pkt_manager thread to exit. */
 1267                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
 1268                     "thrwait", 0);
 1269 
 1270                 siftr_pkt_manager_thr = NULL;
 1271                 mtx_unlock(&siftr_pkt_mgr_mtx);
 1272 
 1273                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
 1274                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
 1275                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
 1276                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
 1277                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
 1278                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
 1279                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
 1280                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
 1281                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
 1282                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
 1283 
 1284                 total_skipped_pkts = totalss.nskip_in_malloc +
 1285                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
 1286                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
 1287                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
 1288                     totalss.nskip_out_inpcb;
 1289 
 1290                 microtime(&tval);
 1291 
 1292                 sbuf_printf(s,
 1293                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
 1294                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
 1295                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
 1296                     "num_outbound_skipped_pkts_malloc=%u\t"
 1297                     "num_inbound_skipped_pkts_mtx=%u\t"
 1298                     "num_outbound_skipped_pkts_mtx=%u\t"
 1299                     "num_inbound_skipped_pkts_tcpcb=%u\t"
 1300                     "num_outbound_skipped_pkts_tcpcb=%u\t"
 1301                     "num_inbound_skipped_pkts_inpcb=%u\t"
 1302                     "num_outbound_skipped_pkts_inpcb=%u\t"
 1303                     "total_skipped_tcp_pkts=%u\tflow_list=",
 1304                     (intmax_t)tval.tv_sec,
 1305                     tval.tv_usec,
 1306                     (uintmax_t)totalss.n_in,
 1307                     (uintmax_t)totalss.n_out,
 1308                     (uintmax_t)(totalss.n_in + totalss.n_out),
 1309                     totalss.nskip_in_malloc,
 1310                     totalss.nskip_out_malloc,
 1311                     totalss.nskip_in_mtx,
 1312                     totalss.nskip_out_mtx,
 1313                     totalss.nskip_in_tcpcb,
 1314                     totalss.nskip_out_tcpcb,
 1315                     totalss.nskip_in_inpcb,
 1316                     totalss.nskip_out_inpcb,
 1317                     total_skipped_pkts);
 1318 
 1319                 /*
 1320                  * Iterate over the flow hash, printing a summary of each
 1321                  * flow seen and freeing any malloc'd memory.
 1322                  * The hash consists of an array of LISTs (man 3 queue).
 1323                  */
 1324                 for (i = 0; i < siftr_hashmask; i++) {
 1325                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
 1326                             tmp_counter) {
 1327                                 key = counter->key;
 1328                                 key_index = 1;
 1329 
 1330                                 ipver = key[0];
 1331 
 1332                                 memcpy(laddr, key + key_index, sizeof(laddr));
 1333                                 key_index += sizeof(laddr);
 1334                                 memcpy(&lport, key + key_index, sizeof(lport));
 1335                                 key_index += sizeof(lport);
 1336                                 memcpy(faddr, key + key_index, sizeof(faddr));
 1337                                 key_index += sizeof(faddr);
 1338                                 memcpy(&fport, key + key_index, sizeof(fport));
 1339 
 1340 #ifdef SIFTR_IPV6
 1341                                 laddr[3] = ntohl(laddr[3]);
 1342                                 faddr[3] = ntohl(faddr[3]);
 1343 
 1344                                 if (ipver == INP_IPV6) {
 1345                                         laddr[0] = ntohl(laddr[0]);
 1346                                         laddr[1] = ntohl(laddr[1]);
 1347                                         laddr[2] = ntohl(laddr[2]);
 1348                                         faddr[0] = ntohl(faddr[0]);
 1349                                         faddr[1] = ntohl(faddr[1]);
 1350                                         faddr[2] = ntohl(faddr[2]);
 1351 
 1352                                         sbuf_printf(s,
 1353                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
 1354                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
 1355                                             UPPER_SHORT(laddr[0]),
 1356                                             LOWER_SHORT(laddr[0]),
 1357                                             UPPER_SHORT(laddr[1]),
 1358                                             LOWER_SHORT(laddr[1]),
 1359                                             UPPER_SHORT(laddr[2]),
 1360                                             LOWER_SHORT(laddr[2]),
 1361                                             UPPER_SHORT(laddr[3]),
 1362                                             LOWER_SHORT(laddr[3]),
 1363                                             ntohs(lport),
 1364                                             UPPER_SHORT(faddr[0]),
 1365                                             LOWER_SHORT(faddr[0]),
 1366                                             UPPER_SHORT(faddr[1]),
 1367                                             LOWER_SHORT(faddr[1]),
 1368                                             UPPER_SHORT(faddr[2]),
 1369                                             LOWER_SHORT(faddr[2]),
 1370                                             UPPER_SHORT(faddr[3]),
 1371                                             LOWER_SHORT(faddr[3]),
 1372                                             ntohs(fport));
 1373                                 } else {
 1374                                         laddr[0] = FIRST_OCTET(laddr[3]);
 1375                                         laddr[1] = SECOND_OCTET(laddr[3]);
 1376                                         laddr[2] = THIRD_OCTET(laddr[3]);
 1377                                         laddr[3] = FOURTH_OCTET(laddr[3]);
 1378                                         faddr[0] = FIRST_OCTET(faddr[3]);
 1379                                         faddr[1] = SECOND_OCTET(faddr[3]);
 1380                                         faddr[2] = THIRD_OCTET(faddr[3]);
 1381                                         faddr[3] = FOURTH_OCTET(faddr[3]);
 1382 #endif
 1383                                         sbuf_printf(s,
 1384                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
 1385                                             laddr[0],
 1386                                             laddr[1],
 1387                                             laddr[2],
 1388                                             laddr[3],
 1389                                             ntohs(lport),
 1390                                             faddr[0],
 1391                                             faddr[1],
 1392                                             faddr[2],
 1393                                             faddr[3],
 1394                                             ntohs(fport));
 1395 #ifdef SIFTR_IPV6
 1396                                 }
 1397 #endif
 1398 
 1399                                 free(counter, M_SIFTR_HASHNODE);
 1400                         }
 1401 
 1402                         LIST_INIT(counter_hash + i);
 1403                 }
 1404 
 1405                 sbuf_printf(s, "\n");
 1406                 sbuf_finish(s);
 1407 
 1408                 i = 0;
 1409                 do {
 1410                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
 1411                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
 1412                         i += bytes_to_write;
 1413                 } while (i < sbuf_len(s));
 1414 
 1415                 alq_close(siftr_alq);
 1416                 siftr_alq = NULL;
 1417         }
 1418 
 1419         sbuf_delete(s);
 1420 
 1421         /*
 1422          * XXX: Should be using ret to check if any functions fail
 1423          * and set error appropriately
 1424          */
 1425 
 1426         return (error);
 1427 }
 1428 
 1429 
 1430 static int
 1431 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
 1432 {
 1433         if (req->newptr == NULL)
 1434                 goto skip;
 1435 
 1436         /* If the value passed in isn't 0 or 1, return an error. */
 1437         if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
 1438                 return (1);
 1439 
 1440         /* If we are changing state (0 to 1 or 1 to 0). */
 1441         if (CAST_PTR_INT(req->newptr) != siftr_enabled )
 1442                 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
 1443                         siftr_manage_ops(SIFTR_DISABLE);
 1444                         return (1);
 1445                 }
 1446 
 1447 skip:
 1448         return (sysctl_handle_int(oidp, arg1, arg2, req));
 1449 }
 1450 
 1451 
 1452 static void
 1453 siftr_shutdown_handler(void *arg)
 1454 {
 1455         siftr_manage_ops(SIFTR_DISABLE);
 1456 }
 1457 
 1458 
 1459 /*
 1460  * Module is being unloaded or machine is shutting down. Take care of cleanup.
 1461  */
 1462 static int
 1463 deinit_siftr(void)
 1464 {
 1465         /* Cleanup. */
 1466         siftr_manage_ops(SIFTR_DISABLE);
 1467         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
 1468         mtx_destroy(&siftr_pkt_queue_mtx);
 1469         mtx_destroy(&siftr_pkt_mgr_mtx);
 1470 
 1471         return (0);
 1472 }
 1473 
 1474 
 1475 /*
 1476  * Module has just been loaded into the kernel.
 1477  */
 1478 static int
 1479 init_siftr(void)
 1480 {
 1481         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
 1482             SHUTDOWN_PRI_FIRST);
 1483 
 1484         /* Initialise our flow counter hash table. */
 1485         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
 1486             &siftr_hashmask);
 1487 
 1488         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
 1489         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
 1490 
 1491         /* Print message to the user's current terminal. */
 1492         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
 1493             "          http://caia.swin.edu.au/urp/newtcp\n\n",
 1494             MODVERSION_STR);
 1495 
 1496         return (0);
 1497 }
 1498 
 1499 
 1500 /*
 1501  * This is the function that is called to load and unload the module.
 1502  * When the module is loaded, this function is called once with
 1503  * "what" == MOD_LOAD
 1504  * When the module is unloaded, this function is called twice with
 1505  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
 1506  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
 1507  * this function is called once with "what" = MOD_SHUTDOWN
 1508  * When the system is shut down, the handler isn't called until the very end
 1509  * of the shutdown sequence i.e. after the disks have been synced.
 1510  */
 1511 static int
 1512 siftr_load_handler(module_t mod, int what, void *arg)
 1513 {
 1514         int ret;
 1515 
 1516         switch (what) {
 1517         case MOD_LOAD:
 1518                 ret = init_siftr();
 1519                 break;
 1520 
 1521         case MOD_QUIESCE:
 1522         case MOD_SHUTDOWN:
 1523                 ret = deinit_siftr();
 1524                 break;
 1525 
 1526         case MOD_UNLOAD:
 1527                 ret = 0;
 1528                 break;
 1529 
 1530         default:
 1531                 ret = EINVAL;
 1532                 break;
 1533         }
 1534 
 1535         return (ret);
 1536 }
 1537 
 1538 
 1539 static moduledata_t siftr_mod = {
 1540         .name = "siftr",
 1541         .evhand = siftr_load_handler,
 1542 };
 1543 
 1544 /*
 1545  * Param 1: name of the kernel module
 1546  * Param 2: moduledata_t struct containing info about the kernel module
 1547  *          and the execution entry point for the module
 1548  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
 1549  *          Defines the module initialisation order
 1550  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
 1551  *          Defines the initialisation order of this kld relative to others
 1552  *          within the same subsystem as defined by param 3
 1553  */
 1554 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
 1555 MODULE_DEPEND(siftr, alq, 1, 1, 1);
 1556 MODULE_VERSION(siftr, MODVERSION);

Cache object: 64b4b077c2cff1d05b4de10bea7eaa4c


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.