The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/siftr.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2007-2009
    3  *      Swinburne University of Technology, Melbourne, Australia.
    4  * Copyright (c) 2009-2010, The FreeBSD Foundation
    5  * All rights reserved.
    6  *
    7  * Portions of this software were developed at the Centre for Advanced
    8  * Internet Architectures, Swinburne University of Technology, Melbourne,
    9  * Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
   10  *
   11  * Redistribution and use in source and binary forms, with or without
   12  * modification, are permitted provided that the following conditions
   13  * are met:
   14  * 1. Redistributions of source code must retain the above copyright
   15  *    notice, this list of conditions and the following disclaimer.
   16  * 2. Redistributions in binary form must reproduce the above copyright
   17  *    notice, this list of conditions and the following disclaimer in the
   18  *    documentation and/or other materials provided with the distribution.
   19  *
   20  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
   21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
   24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   30  * SUCH DAMAGE.
   31  */
   32 
   33 /******************************************************
   34  * Statistical Information For TCP Research (SIFTR)
   35  *
   36  * A FreeBSD kernel module that adds very basic intrumentation to the
   37  * TCP stack, allowing internal stats to be recorded to a log file
   38  * for experimental, debugging and performance analysis purposes.
   39  *
   40  * SIFTR was first released in 2007 by James Healy and Lawrence Stewart whilst
   41  * working on the NewTCP research project at Swinburne University of
   42  * Technology's Centre for Advanced Internet Architectures, Melbourne,
   43  * Australia, which was made possible in part by a grant from the Cisco
   44  * University Research Program Fund at Community Foundation Silicon Valley.
   45  * More details are available at:
   46  *   http://caia.swin.edu.au/urp/newtcp/
   47  *
   48  * Work on SIFTR v1.2.x was sponsored by the FreeBSD Foundation as part of
   49  * the "Enhancing the FreeBSD TCP Implementation" project 2008-2009.
   50  * More details are available at:
   51  *   http://www.freebsdfoundation.org/
   52  *   http://caia.swin.edu.au/freebsd/etcp09/
   53  *
   54  * Lawrence Stewart is the current maintainer, and all contact regarding
   55  * SIFTR should be directed to him via email: lastewart@swin.edu.au
   56  *
   57  * Initial release date: June 2007
   58  * Most recent update: September 2010
   59  ******************************************************/
   60 
   61 #include <sys/cdefs.h>
   62 __FBSDID("$FreeBSD$");
   63 
   64 #include <sys/param.h>
   65 #include <sys/alq.h>
   66 #include <sys/errno.h>
   67 #include <sys/hash.h>
   68 #include <sys/kernel.h>
   69 #include <sys/kthread.h>
   70 #include <sys/lock.h>
   71 #include <sys/mbuf.h>
   72 #include <sys/module.h>
   73 #include <sys/mutex.h>
   74 #include <sys/pcpu.h>
   75 #include <sys/proc.h>
   76 #include <sys/sbuf.h>
   77 #include <sys/smp.h>
   78 #include <sys/socket.h>
   79 #include <sys/socketvar.h>
   80 #include <sys/sysctl.h>
   81 #include <sys/unistd.h>
   82 
   83 #include <net/if.h>
   84 #include <net/pfil.h>
   85 
   86 #include <netinet/in.h>
   87 #include <netinet/in_pcb.h>
   88 #include <netinet/in_systm.h>
   89 #include <netinet/in_var.h>
   90 #include <netinet/ip.h>
   91 #include <netinet/tcp_var.h>
   92 
   93 #ifdef SIFTR_IPV6
   94 #include <netinet/ip6.h>
   95 #include <netinet6/in6_pcb.h>
   96 #endif /* SIFTR_IPV6 */
   97 
   98 #include <machine/in_cksum.h>
   99 
  100 /*
  101  * Three digit version number refers to X.Y.Z where:
  102  * X is the major version number
  103  * Y is bumped to mark backwards incompatible changes
  104  * Z is bumped to mark backwards compatible changes
  105  */
  106 #define V_MAJOR         1
  107 #define V_BACKBREAK     2
  108 #define V_BACKCOMPAT    4
  109 #define MODVERSION      __CONCAT(V_MAJOR, __CONCAT(V_BACKBREAK, V_BACKCOMPAT))
  110 #define MODVERSION_STR  __XSTRING(V_MAJOR) "." __XSTRING(V_BACKBREAK) "." \
  111     __XSTRING(V_BACKCOMPAT)
  112 
  113 #define HOOK 0
  114 #define UNHOOK 1
  115 #define SIFTR_EXPECTED_MAX_TCP_FLOWS 65536
  116 #define SYS_NAME "FreeBSD"
  117 #define PACKET_TAG_SIFTR 100
  118 #define PACKET_COOKIE_SIFTR 21749576
  119 #define SIFTR_LOG_FILE_MODE 0644
  120 #define SIFTR_DISABLE 0
  121 #define SIFTR_ENABLE 1
  122 
  123 /*
  124  * Hard upper limit on the length of log messages. Bump this up if you add new
  125  * data fields such that the line length could exceed the below value.
  126  */
  127 #define MAX_LOG_MSG_LEN 200
  128 /* XXX: Make this a sysctl tunable. */
  129 #define SIFTR_ALQ_BUFLEN (1000*MAX_LOG_MSG_LEN)
  130 
  131 /*
  132  * 1 byte for IP version
  133  * IPv4: src/dst IP (4+4) + src/dst port (2+2) = 12 bytes
  134  * IPv6: src/dst IP (16+16) + src/dst port (2+2) = 36 bytes
  135  */
  136 #ifdef SIFTR_IPV6
  137 #define FLOW_KEY_LEN 37
  138 #else
  139 #define FLOW_KEY_LEN 13
  140 #endif
  141 
  142 #ifdef SIFTR_IPV6
  143 #define SIFTR_IPMODE 6
  144 #else
  145 #define SIFTR_IPMODE 4
  146 #endif
  147 
  148 /* useful macros */
  149 #define CAST_PTR_INT(X) (*((int*)(X)))
  150 
  151 #define UPPER_SHORT(X)  (((X) & 0xFFFF0000) >> 16)
  152 #define LOWER_SHORT(X)  ((X) & 0x0000FFFF)
  153 
  154 #define FIRST_OCTET(X)  (((X) & 0xFF000000) >> 24)
  155 #define SECOND_OCTET(X) (((X) & 0x00FF0000) >> 16)
  156 #define THIRD_OCTET(X)  (((X) & 0x0000FF00) >> 8)
  157 #define FOURTH_OCTET(X) ((X) & 0x000000FF)
  158 
  159 static MALLOC_DEFINE(M_SIFTR, "siftr", "dynamic memory used by SIFTR");
  160 static MALLOC_DEFINE(M_SIFTR_PKTNODE, "siftr_pktnode",
  161     "SIFTR pkt_node struct");
  162 static MALLOC_DEFINE(M_SIFTR_HASHNODE, "siftr_hashnode",
  163     "SIFTR flow_hash_node struct");
  164 
  165 /* Used as links in the pkt manager queue. */
  166 struct pkt_node {
  167         /* Timestamp of pkt as noted in the pfil hook. */
  168         struct timeval          tval;
  169         /* Direction pkt is travelling; either PFIL_IN or PFIL_OUT. */
  170         uint8_t                 direction;
  171         /* IP version pkt_node relates to; either INP_IPV4 or INP_IPV6. */
  172         uint8_t                 ipver;
  173         /* Hash of the pkt which triggered the log message. */
  174         uint32_t                hash;
  175         /* Local/foreign IP address. */
  176 #ifdef SIFTR_IPV6
  177         uint32_t                ip_laddr[4];
  178         uint32_t                ip_faddr[4];
  179 #else
  180         uint8_t                 ip_laddr[4];
  181         uint8_t                 ip_faddr[4];
  182 #endif
  183         /* Local TCP port. */
  184         uint16_t                tcp_localport;
  185         /* Foreign TCP port. */
  186         uint16_t                tcp_foreignport;
  187         /* Congestion Window (bytes). */
  188         u_long                  snd_cwnd;
  189         /* Sending Window (bytes). */
  190         u_long                  snd_wnd;
  191         /* Receive Window (bytes). */
  192         u_long                  rcv_wnd;
  193         /* Bandwidth Controlled Window (bytes). */
  194         u_long                  snd_bwnd;
  195         /* Slow Start Threshold (bytes). */
  196         u_long                  snd_ssthresh;
  197         /* Current state of the TCP FSM. */
  198         int                     conn_state;
  199         /* Max Segment Size (bytes). */
  200         u_int                   max_seg_size;
  201         /*
  202          * Smoothed RTT stored as found in the TCP control block
  203          * in units of (TCP_RTT_SCALE*hz).
  204          */
  205         int                     smoothed_rtt;
  206         /* Is SACK enabled? */
  207         u_char                  sack_enabled;
  208         /* Window scaling for snd window. */
  209         u_char                  snd_scale;
  210         /* Window scaling for recv window. */
  211         u_char                  rcv_scale;
  212         /* TCP control block flags. */
  213         u_int                   flags;
  214         /* Retransmit timeout length. */
  215         int                     rxt_length;
  216         /* Size of the TCP send buffer in bytes. */
  217         u_int                   snd_buf_hiwater;
  218         /* Current num bytes in the send socket buffer. */
  219         u_int                   snd_buf_cc;
  220         /* Size of the TCP receive buffer in bytes. */
  221         u_int                   rcv_buf_hiwater;
  222         /* Current num bytes in the receive socket buffer. */
  223         u_int                   rcv_buf_cc;
  224         /* Number of bytes inflight that we are waiting on ACKs for. */
  225         u_int                   sent_inflight_bytes;
  226         /* Number of segments currently in the reassembly queue. */
  227         int                     t_segqlen;
  228         /* Link to next pkt_node in the list. */
  229         STAILQ_ENTRY(pkt_node)  nodes;
  230 };
  231 
  232 struct flow_hash_node
  233 {
  234         uint16_t counter;
  235         uint8_t key[FLOW_KEY_LEN];
  236         LIST_ENTRY(flow_hash_node) nodes;
  237 };
  238 
  239 struct siftr_stats
  240 {
  241         /* # TCP pkts seen by the SIFTR PFIL hooks, including any skipped. */
  242         uint64_t n_in;
  243         uint64_t n_out;
  244         /* # pkts skipped due to failed malloc calls. */
  245         uint32_t nskip_in_malloc;
  246         uint32_t nskip_out_malloc;
  247         /* # pkts skipped due to failed mtx acquisition. */
  248         uint32_t nskip_in_mtx;
  249         uint32_t nskip_out_mtx;
  250         /* # pkts skipped due to failed inpcb lookups. */
  251         uint32_t nskip_in_inpcb;
  252         uint32_t nskip_out_inpcb;
  253         /* # pkts skipped due to failed tcpcb lookups. */
  254         uint32_t nskip_in_tcpcb;
  255         uint32_t nskip_out_tcpcb;
  256         /* # pkts skipped due to stack reinjection. */
  257         uint32_t nskip_in_dejavu;
  258         uint32_t nskip_out_dejavu;
  259 };
  260 
  261 static DPCPU_DEFINE(struct siftr_stats, ss);
  262 
  263 static volatile unsigned int siftr_exit_pkt_manager_thread = 0;
  264 static unsigned int siftr_enabled = 0;
  265 static unsigned int siftr_pkts_per_log = 1;
  266 static unsigned int siftr_generate_hashes = 0;
  267 /* static unsigned int siftr_binary_log = 0; */
  268 static char siftr_logfile[PATH_MAX] = "/var/log/siftr.log";
  269 static u_long siftr_hashmask;
  270 STAILQ_HEAD(pkthead, pkt_node) pkt_queue = STAILQ_HEAD_INITIALIZER(pkt_queue);
  271 LIST_HEAD(listhead, flow_hash_node) *counter_hash;
  272 static int wait_for_pkt;
  273 static struct alq *siftr_alq = NULL;
  274 static struct mtx siftr_pkt_queue_mtx;
  275 static struct mtx siftr_pkt_mgr_mtx;
  276 static struct thread *siftr_pkt_manager_thr = NULL;
  277 /*
  278  * pfil.h defines PFIL_IN as 1 and PFIL_OUT as 2,
  279  * which we use as an index into this array.
  280  */
  281 static char direction[3] = {'\0', 'i','o'};
  282 
  283 /* Required function prototypes. */
  284 static int siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS);
  285 static int siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS);
  286 
  287 
  288 /* Declare the net.inet.siftr sysctl tree and populate it. */
  289 
  290 SYSCTL_DECL(_net_inet_siftr);
  291 
  292 SYSCTL_NODE(_net_inet, OID_AUTO, siftr, CTLFLAG_RW, NULL,
  293     "siftr related settings");
  294 
  295 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, enabled, CTLTYPE_UINT|CTLFLAG_RW,
  296     &siftr_enabled, 0, &siftr_sysctl_enabled_handler, "IU",
  297     "switch siftr module operations on/off");
  298 
  299 SYSCTL_PROC(_net_inet_siftr, OID_AUTO, logfile, CTLTYPE_STRING|CTLFLAG_RW,
  300     &siftr_logfile, sizeof(siftr_logfile), &siftr_sysctl_logfile_name_handler,
  301     "A", "file to save siftr log messages to");
  302 
  303 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, ppl, CTLFLAG_RW,
  304     &siftr_pkts_per_log, 1,
  305     "number of packets between generating a log message");
  306 
  307 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, genhashes, CTLFLAG_RW,
  308     &siftr_generate_hashes, 0,
  309     "enable packet hash generation");
  310 
  311 /* XXX: TODO
  312 SYSCTL_UINT(_net_inet_siftr, OID_AUTO, binary, CTLFLAG_RW,
  313     &siftr_binary_log, 0,
  314     "write log files in binary instead of ascii");
  315 */
  316 
  317 
  318 /* Begin functions. */
  319 
  320 static void
  321 siftr_process_pkt(struct pkt_node * pkt_node)
  322 {
  323         struct flow_hash_node *hash_node;
  324         struct listhead *counter_list;
  325         struct siftr_stats *ss;
  326         struct ale *log_buf;
  327         uint8_t key[FLOW_KEY_LEN];
  328         uint8_t found_match, key_offset;
  329 
  330         hash_node = NULL;
  331         ss = DPCPU_PTR(ss);
  332         found_match = 0;
  333         key_offset = 1;
  334 
  335         /*
  336          * Create the key that will be used to create a hash index
  337          * into our hash table. Our key consists of:
  338          * ipversion, localip, localport, foreignip, foreignport
  339          */
  340         key[0] = pkt_node->ipver;
  341         memcpy(key + key_offset, &pkt_node->ip_laddr,
  342             sizeof(pkt_node->ip_laddr));
  343         key_offset += sizeof(pkt_node->ip_laddr);
  344         memcpy(key + key_offset, &pkt_node->tcp_localport,
  345             sizeof(pkt_node->tcp_localport));
  346         key_offset += sizeof(pkt_node->tcp_localport);
  347         memcpy(key + key_offset, &pkt_node->ip_faddr,
  348             sizeof(pkt_node->ip_faddr));
  349         key_offset += sizeof(pkt_node->ip_faddr);
  350         memcpy(key + key_offset, &pkt_node->tcp_foreignport,
  351             sizeof(pkt_node->tcp_foreignport));
  352 
  353         counter_list = counter_hash +
  354             (hash32_buf(key, sizeof(key), 0) & siftr_hashmask);
  355 
  356         /*
  357          * If the list is not empty i.e. the hash index has
  358          * been used by another flow previously.
  359          */
  360         if (LIST_FIRST(counter_list) != NULL) {
  361                 /*
  362                  * Loop through the hash nodes in the list.
  363                  * There should normally only be 1 hash node in the list,
  364                  * except if there have been collisions at the hash index
  365                  * computed by hash32_buf().
  366                  */
  367                 LIST_FOREACH(hash_node, counter_list, nodes) {
  368                         /*
  369                          * Check if the key for the pkt we are currently
  370                          * processing is the same as the key stored in the
  371                          * hash node we are currently processing.
  372                          * If they are the same, then we've found the
  373                          * hash node that stores the counter for the flow
  374                          * the pkt belongs to.
  375                          */
  376                         if (memcmp(hash_node->key, key, sizeof(key)) == 0) {
  377                                 found_match = 1;
  378                                 break;
  379                         }
  380                 }
  381         }
  382 
  383         /* If this flow hash hasn't been seen before or we have a collision. */
  384         if (hash_node == NULL || !found_match) {
  385                 /* Create a new hash node to store the flow's counter. */
  386                 hash_node = malloc(sizeof(struct flow_hash_node),
  387                     M_SIFTR_HASHNODE, M_WAITOK);
  388 
  389                 if (hash_node != NULL) {
  390                         /* Initialise our new hash node list entry. */
  391                         hash_node->counter = 0;
  392                         memcpy(hash_node->key, key, sizeof(key));
  393                         LIST_INSERT_HEAD(counter_list, hash_node, nodes);
  394                 } else {
  395                         /* Malloc failed. */
  396                         if (pkt_node->direction == PFIL_IN)
  397                                 ss->nskip_in_malloc++;
  398                         else
  399                                 ss->nskip_out_malloc++;
  400 
  401                         return;
  402                 }
  403         } else if (siftr_pkts_per_log > 1) {
  404                 /*
  405                  * Taking the remainder of the counter divided
  406                  * by the current value of siftr_pkts_per_log
  407                  * and storing that in counter provides a neat
  408                  * way to modulate the frequency of log
  409                  * messages being written to the log file.
  410                  */
  411                 hash_node->counter = (hash_node->counter + 1) %
  412                     siftr_pkts_per_log;
  413 
  414                 /*
  415                  * If we have not seen enough packets since the last time
  416                  * we wrote a log message for this connection, return.
  417                  */
  418                 if (hash_node->counter > 0)
  419                         return;
  420         }
  421 
  422         log_buf = alq_getn(siftr_alq, MAX_LOG_MSG_LEN, ALQ_WAITOK);
  423 
  424         if (log_buf == NULL)
  425                 return; /* Should only happen if the ALQ is shutting down. */
  426 
  427 #ifdef SIFTR_IPV6
  428         pkt_node->ip_laddr[3] = ntohl(pkt_node->ip_laddr[3]);
  429         pkt_node->ip_faddr[3] = ntohl(pkt_node->ip_faddr[3]);
  430 
  431         if (pkt_node->ipver == INP_IPV6) { /* IPv6 packet */
  432                 pkt_node->ip_laddr[0] = ntohl(pkt_node->ip_laddr[0]);
  433                 pkt_node->ip_laddr[1] = ntohl(pkt_node->ip_laddr[1]);
  434                 pkt_node->ip_laddr[2] = ntohl(pkt_node->ip_laddr[2]);
  435                 pkt_node->ip_faddr[0] = ntohl(pkt_node->ip_faddr[0]);
  436                 pkt_node->ip_faddr[1] = ntohl(pkt_node->ip_faddr[1]);
  437                 pkt_node->ip_faddr[2] = ntohl(pkt_node->ip_faddr[2]);
  438 
  439                 /* Construct an IPv6 log message. */
  440                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  441                     MAX_LOG_MSG_LEN,
  442                     "%c,0x%08x,%zd.%06ld,%x:%x:%x:%x:%x:%x:%x:%x,%u,%x:%x:%x:"
  443                     "%x:%x:%x:%x:%x,%u,%ld,%ld,%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,"
  444                     "%u,%d,%u,%u,%u,%u,%u,%u\n",
  445                     direction[pkt_node->direction],
  446                     pkt_node->hash,
  447                     pkt_node->tval.tv_sec,
  448                     pkt_node->tval.tv_usec,
  449                     UPPER_SHORT(pkt_node->ip_laddr[0]),
  450                     LOWER_SHORT(pkt_node->ip_laddr[0]),
  451                     UPPER_SHORT(pkt_node->ip_laddr[1]),
  452                     LOWER_SHORT(pkt_node->ip_laddr[1]),
  453                     UPPER_SHORT(pkt_node->ip_laddr[2]),
  454                     LOWER_SHORT(pkt_node->ip_laddr[2]),
  455                     UPPER_SHORT(pkt_node->ip_laddr[3]),
  456                     LOWER_SHORT(pkt_node->ip_laddr[3]),
  457                     ntohs(pkt_node->tcp_localport),
  458                     UPPER_SHORT(pkt_node->ip_faddr[0]),
  459                     LOWER_SHORT(pkt_node->ip_faddr[0]),
  460                     UPPER_SHORT(pkt_node->ip_faddr[1]),
  461                     LOWER_SHORT(pkt_node->ip_faddr[1]),
  462                     UPPER_SHORT(pkt_node->ip_faddr[2]),
  463                     LOWER_SHORT(pkt_node->ip_faddr[2]),
  464                     UPPER_SHORT(pkt_node->ip_faddr[3]),
  465                     LOWER_SHORT(pkt_node->ip_faddr[3]),
  466                     ntohs(pkt_node->tcp_foreignport),
  467                     pkt_node->snd_ssthresh,
  468                     pkt_node->snd_cwnd,
  469                     pkt_node->snd_bwnd,
  470                     pkt_node->snd_wnd,
  471                     pkt_node->rcv_wnd,
  472                     pkt_node->snd_scale,
  473                     pkt_node->rcv_scale,
  474                     pkt_node->conn_state,
  475                     pkt_node->max_seg_size,
  476                     pkt_node->smoothed_rtt,
  477                     pkt_node->sack_enabled,
  478                     pkt_node->flags,
  479                     pkt_node->rxt_length,
  480                     pkt_node->snd_buf_hiwater,
  481                     pkt_node->snd_buf_cc,
  482                     pkt_node->rcv_buf_hiwater,
  483                     pkt_node->rcv_buf_cc,
  484                     pkt_node->sent_inflight_bytes,
  485                     pkt_node->t_segqlen);
  486         } else { /* IPv4 packet */
  487                 pkt_node->ip_laddr[0] = FIRST_OCTET(pkt_node->ip_laddr[3]);
  488                 pkt_node->ip_laddr[1] = SECOND_OCTET(pkt_node->ip_laddr[3]);
  489                 pkt_node->ip_laddr[2] = THIRD_OCTET(pkt_node->ip_laddr[3]);
  490                 pkt_node->ip_laddr[3] = FOURTH_OCTET(pkt_node->ip_laddr[3]);
  491                 pkt_node->ip_faddr[0] = FIRST_OCTET(pkt_node->ip_faddr[3]);
  492                 pkt_node->ip_faddr[1] = SECOND_OCTET(pkt_node->ip_faddr[3]);
  493                 pkt_node->ip_faddr[2] = THIRD_OCTET(pkt_node->ip_faddr[3]);
  494                 pkt_node->ip_faddr[3] = FOURTH_OCTET(pkt_node->ip_faddr[3]);
  495 #endif /* SIFTR_IPV6 */
  496 
  497                 /* Construct an IPv4 log message. */
  498                 log_buf->ae_bytesused = snprintf(log_buf->ae_data,
  499                     MAX_LOG_MSG_LEN,
  500                     "%c,0x%08x,%jd.%06ld,%u.%u.%u.%u,%u,%u.%u.%u.%u,%u,%ld,%ld,"
  501                     "%ld,%ld,%ld,%u,%u,%u,%u,%u,%u,%u,%d,%u,%u,%u,%u,%u,%u\n",
  502                     direction[pkt_node->direction],
  503                     pkt_node->hash,
  504                     (intmax_t)pkt_node->tval.tv_sec,
  505                     pkt_node->tval.tv_usec,
  506                     pkt_node->ip_laddr[0],
  507                     pkt_node->ip_laddr[1],
  508                     pkt_node->ip_laddr[2],
  509                     pkt_node->ip_laddr[3],
  510                     ntohs(pkt_node->tcp_localport),
  511                     pkt_node->ip_faddr[0],
  512                     pkt_node->ip_faddr[1],
  513                     pkt_node->ip_faddr[2],
  514                     pkt_node->ip_faddr[3],
  515                     ntohs(pkt_node->tcp_foreignport),
  516                     pkt_node->snd_ssthresh,
  517                     pkt_node->snd_cwnd,
  518                     pkt_node->snd_bwnd,
  519                     pkt_node->snd_wnd,
  520                     pkt_node->rcv_wnd,
  521                     pkt_node->snd_scale,
  522                     pkt_node->rcv_scale,
  523                     pkt_node->conn_state,
  524                     pkt_node->max_seg_size,
  525                     pkt_node->smoothed_rtt,
  526                     pkt_node->sack_enabled,
  527                     pkt_node->flags,
  528                     pkt_node->rxt_length,
  529                     pkt_node->snd_buf_hiwater,
  530                     pkt_node->snd_buf_cc,
  531                     pkt_node->rcv_buf_hiwater,
  532                     pkt_node->rcv_buf_cc,
  533                     pkt_node->sent_inflight_bytes,
  534                     pkt_node->t_segqlen);
  535 #ifdef SIFTR_IPV6
  536         }
  537 #endif
  538 
  539         alq_post_flags(siftr_alq, log_buf, 0);
  540 }
  541 
  542 
  543 static void
  544 siftr_pkt_manager_thread(void *arg)
  545 {
  546         STAILQ_HEAD(pkthead, pkt_node) tmp_pkt_queue =
  547             STAILQ_HEAD_INITIALIZER(tmp_pkt_queue);
  548         struct pkt_node *pkt_node, *pkt_node_temp;
  549         uint8_t draining;
  550 
  551         draining = 2;
  552 
  553         mtx_lock(&siftr_pkt_mgr_mtx);
  554 
  555         /* draining == 0 when queue has been flushed and it's safe to exit. */
  556         while (draining) {
  557                 /*
  558                  * Sleep until we are signalled to wake because thread has
  559                  * been told to exit or until 1 tick has passed.
  560                  */
  561                 mtx_sleep(&wait_for_pkt, &siftr_pkt_mgr_mtx, PWAIT, "pktwait",
  562                     1);
  563 
  564                 /* Gain exclusive access to the pkt_node queue. */
  565                 mtx_lock(&siftr_pkt_queue_mtx);
  566 
  567                 /*
  568                  * Move pkt_queue to tmp_pkt_queue, which leaves
  569                  * pkt_queue empty and ready to receive more pkt_nodes.
  570                  */
  571                 STAILQ_CONCAT(&tmp_pkt_queue, &pkt_queue);
  572 
  573                 /*
  574                  * We've finished making changes to the list. Unlock it
  575                  * so the pfil hooks can continue queuing pkt_nodes.
  576                  */
  577                 mtx_unlock(&siftr_pkt_queue_mtx);
  578 
  579                 /*
  580                  * We can't hold a mutex whilst calling siftr_process_pkt
  581                  * because ALQ might sleep waiting for buffer space.
  582                  */
  583                 mtx_unlock(&siftr_pkt_mgr_mtx);
  584 
  585                 /* Flush all pkt_nodes to the log file. */
  586                 STAILQ_FOREACH_SAFE(pkt_node, &tmp_pkt_queue, nodes,
  587                     pkt_node_temp) {
  588                         siftr_process_pkt(pkt_node);
  589                         STAILQ_REMOVE_HEAD(&tmp_pkt_queue, nodes);
  590                         free(pkt_node, M_SIFTR_PKTNODE);
  591                 }
  592 
  593                 KASSERT(STAILQ_EMPTY(&tmp_pkt_queue),
  594                     ("SIFTR tmp_pkt_queue not empty after flush"));
  595 
  596                 mtx_lock(&siftr_pkt_mgr_mtx);
  597 
  598                 /*
  599                  * If siftr_exit_pkt_manager_thread gets set during the window
  600                  * where we are draining the tmp_pkt_queue above, there might
  601                  * still be pkts in pkt_queue that need to be drained.
  602                  * Allow one further iteration to occur after
  603                  * siftr_exit_pkt_manager_thread has been set to ensure
  604                  * pkt_queue is completely empty before we kill the thread.
  605                  *
  606                  * siftr_exit_pkt_manager_thread is set only after the pfil
  607                  * hooks have been removed, so only 1 extra iteration
  608                  * is needed to drain the queue.
  609                  */
  610                 if (siftr_exit_pkt_manager_thread)
  611                         draining--;
  612         }
  613 
  614         mtx_unlock(&siftr_pkt_mgr_mtx);
  615 
  616         /* Calls wakeup on this thread's struct thread ptr. */
  617         kthread_exit();
  618 }
  619 
  620 
  621 static uint32_t
  622 hash_pkt(struct mbuf *m, uint32_t offset)
  623 {
  624         uint32_t hash;
  625 
  626         hash = 0;
  627 
  628         while (m != NULL && offset > m->m_len) {
  629                 /*
  630                  * The IP packet payload does not start in this mbuf, so
  631                  * need to figure out which mbuf it starts in and what offset
  632                  * into the mbuf's data region the payload starts at.
  633                  */
  634                 offset -= m->m_len;
  635                 m = m->m_next;
  636         }
  637 
  638         while (m != NULL) {
  639                 /* Ensure there is data in the mbuf */
  640                 if ((m->m_len - offset) > 0)
  641                         hash = hash32_buf(m->m_data + offset,
  642                             m->m_len - offset, hash);
  643 
  644                 m = m->m_next;
  645                 offset = 0;
  646         }
  647 
  648         return (hash);
  649 }
  650 
  651 
  652 /*
  653  * Check if a given mbuf has the SIFTR mbuf tag. If it does, log the fact that
  654  * it's a reinjected packet and return. If it doesn't, tag the mbuf and return.
  655  * Return value >0 means the caller should skip processing this mbuf.
  656  */
  657 static inline int
  658 siftr_chkreinject(struct mbuf *m, int dir, struct siftr_stats *ss)
  659 {
  660         if (m_tag_locate(m, PACKET_COOKIE_SIFTR, PACKET_TAG_SIFTR, NULL)
  661             != NULL) {
  662                 if (dir == PFIL_IN)
  663                         ss->nskip_in_dejavu++;
  664                 else
  665                         ss->nskip_out_dejavu++;
  666 
  667                 return (1);
  668         } else {
  669                 struct m_tag *tag = m_tag_alloc(PACKET_COOKIE_SIFTR,
  670                     PACKET_TAG_SIFTR, 0, M_NOWAIT);
  671                 if (tag == NULL) {
  672                         if (dir == PFIL_IN)
  673                                 ss->nskip_in_malloc++;
  674                         else
  675                                 ss->nskip_out_malloc++;
  676 
  677                         return (1);
  678                 }
  679 
  680                 m_tag_prepend(m, tag);
  681         }
  682 
  683         return (0);
  684 }
  685 
  686 
  687 /*
  688  * Look up an inpcb for a packet. Return the inpcb pointer if found, or NULL
  689  * otherwise.
  690  */
  691 static inline struct inpcb *
  692 siftr_findinpcb(int ipver, struct ip *ip, struct mbuf *m, uint16_t sport,
  693     uint16_t dport, int dir, struct siftr_stats *ss)
  694 {
  695         struct inpcb *inp;
  696 
  697         /* We need the tcbinfo lock. */
  698         INP_INFO_UNLOCK_ASSERT(&V_tcbinfo);
  699         INP_INFO_RLOCK(&V_tcbinfo);
  700 
  701         if (dir == PFIL_IN)
  702                 inp = (ipver == INP_IPV4 ?
  703                     in_pcblookup_hash(&V_tcbinfo, ip->ip_src, sport, ip->ip_dst,
  704                     dport, 0, m->m_pkthdr.rcvif)
  705                     :
  706 #ifdef SIFTR_IPV6
  707                     in6_pcblookup_hash(&V_tcbinfo,
  708                     &((struct ip6_hdr *)ip)->ip6_src, sport,
  709                     &((struct ip6_hdr *)ip)->ip6_dst, dport, 0,
  710                     m->m_pkthdr.rcvif)
  711 #else
  712                     NULL
  713 #endif
  714                     );
  715 
  716         else
  717                 inp = (ipver == INP_IPV4 ?
  718                     in_pcblookup_hash(&V_tcbinfo, ip->ip_dst, dport, ip->ip_src,
  719                     sport, 0, m->m_pkthdr.rcvif)
  720                     :
  721 #ifdef SIFTR_IPV6
  722                     in6_pcblookup_hash(&V_tcbinfo,
  723                     &((struct ip6_hdr *)ip)->ip6_dst, dport,
  724                     &((struct ip6_hdr *)ip)->ip6_src, sport, 0,
  725                     m->m_pkthdr.rcvif)
  726 #else
  727                     NULL
  728 #endif
  729                     );
  730 
  731         /* If we can't find the inpcb, bail. */
  732         if (inp == NULL) {
  733                 if (dir == PFIL_IN)
  734                         ss->nskip_in_inpcb++;
  735                 else
  736                         ss->nskip_out_inpcb++;
  737         } else {
  738                 /* Acquire the inpcb lock. */
  739                 INP_UNLOCK_ASSERT(inp);
  740                 INP_RLOCK(inp);
  741         }
  742         INP_INFO_RUNLOCK(&V_tcbinfo);
  743 
  744         return (inp);
  745 }
  746 
  747 
  748 static inline void
  749 siftr_siftdata(struct pkt_node *pn, struct inpcb *inp, struct tcpcb *tp,
  750     int ipver, int dir, int inp_locally_locked)
  751 {
  752 #ifdef SIFTR_IPV6
  753         if (ipver == INP_IPV4) {
  754                 pn->ip_laddr[3] = inp->inp_laddr.s_addr;
  755                 pn->ip_faddr[3] = inp->inp_faddr.s_addr;
  756 #else
  757                 *((uint32_t *)pn->ip_laddr) = inp->inp_laddr.s_addr;
  758                 *((uint32_t *)pn->ip_faddr) = inp->inp_faddr.s_addr;
  759 #endif
  760 #ifdef SIFTR_IPV6
  761         } else {
  762                 pn->ip_laddr[0] = inp->in6p_laddr.s6_addr32[0];
  763                 pn->ip_laddr[1] = inp->in6p_laddr.s6_addr32[1];
  764                 pn->ip_laddr[2] = inp->in6p_laddr.s6_addr32[2];
  765                 pn->ip_laddr[3] = inp->in6p_laddr.s6_addr32[3];
  766                 pn->ip_faddr[0] = inp->in6p_faddr.s6_addr32[0];
  767                 pn->ip_faddr[1] = inp->in6p_faddr.s6_addr32[1];
  768                 pn->ip_faddr[2] = inp->in6p_faddr.s6_addr32[2];
  769                 pn->ip_faddr[3] = inp->in6p_faddr.s6_addr32[3];
  770         }
  771 #endif
  772         pn->tcp_localport = inp->inp_lport;
  773         pn->tcp_foreignport = inp->inp_fport;
  774         pn->snd_cwnd = tp->snd_cwnd;
  775         pn->snd_wnd = tp->snd_wnd;
  776         pn->rcv_wnd = tp->rcv_wnd;
  777         pn->snd_bwnd = tp->snd_bwnd;
  778         pn->snd_ssthresh = tp->snd_ssthresh;
  779         pn->snd_scale = tp->snd_scale;
  780         pn->rcv_scale = tp->rcv_scale;
  781         pn->conn_state = tp->t_state;
  782         pn->max_seg_size = tp->t_maxseg;
  783         pn->smoothed_rtt = tp->t_srtt;
  784         pn->sack_enabled = (tp->t_flags & TF_SACK_PERMIT) != 0;
  785         pn->flags = tp->t_flags;
  786         pn->rxt_length = tp->t_rxtcur;
  787         pn->snd_buf_hiwater = inp->inp_socket->so_snd.sb_hiwat;
  788         pn->snd_buf_cc = inp->inp_socket->so_snd.sb_cc;
  789         pn->rcv_buf_hiwater = inp->inp_socket->so_rcv.sb_hiwat;
  790         pn->rcv_buf_cc = inp->inp_socket->so_rcv.sb_cc;
  791         pn->sent_inflight_bytes = tp->snd_max - tp->snd_una;
  792         pn->t_segqlen = tp->t_segqlen;
  793 
  794         /* We've finished accessing the tcb so release the lock. */
  795         if (inp_locally_locked)
  796                 INP_RUNLOCK(inp);
  797 
  798         pn->ipver = ipver;
  799         pn->direction = dir;
  800 
  801         /*
  802          * Significantly more accurate than using getmicrotime(), but slower!
  803          * Gives true microsecond resolution at the expense of a hit to
  804          * maximum pps throughput processing when SIFTR is loaded and enabled.
  805          */
  806         microtime(&pn->tval);
  807 }
  808 
  809 
  810 /*
  811  * pfil hook that is called for each IPv4 packet making its way through the
  812  * stack in either direction.
  813  * The pfil subsystem holds a non-sleepable mutex somewhere when
  814  * calling our hook function, so we can't sleep at all.
  815  * It's very important to use the M_NOWAIT flag with all function calls
  816  * that support it so that they won't sleep, otherwise you get a panic.
  817  */
  818 static int
  819 siftr_chkpkt(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  820     struct inpcb *inp)
  821 {
  822         struct pkt_node *pn;
  823         struct ip *ip;
  824         struct tcphdr *th;
  825         struct tcpcb *tp;
  826         struct siftr_stats *ss;
  827         unsigned int ip_hl;
  828         int inp_locally_locked;
  829 
  830         inp_locally_locked = 0;
  831         ss = DPCPU_PTR(ss);
  832 
  833         /*
  834          * m_pullup is not required here because ip_{input|output}
  835          * already do the heavy lifting for us.
  836          */
  837 
  838         ip = mtod(*m, struct ip *);
  839 
  840         /* Only continue processing if the packet is TCP. */
  841         if (ip->ip_p != IPPROTO_TCP)
  842                 goto ret;
  843 
  844         /*
  845          * If a kernel subsystem reinjects packets into the stack, our pfil
  846          * hook will be called multiple times for the same packet.
  847          * Make sure we only process unique packets.
  848          */
  849         if (siftr_chkreinject(*m, dir, ss))
  850                 goto ret;
  851 
  852         if (dir == PFIL_IN)
  853                 ss->n_in++;
  854         else
  855                 ss->n_out++;
  856 
  857         /*
  858          * Create a tcphdr struct starting at the correct offset
  859          * in the IP packet. ip->ip_hl gives the ip header length
  860          * in 4-byte words, so multiply it to get the size in bytes.
  861          */
  862         ip_hl = (ip->ip_hl << 2);
  863         th = (struct tcphdr *)((caddr_t)ip + ip_hl);
  864 
  865         /*
  866          * If the pfil hooks don't provide a pointer to the
  867          * inpcb, we need to find it ourselves and lock it.
  868          */
  869         if (!inp) {
  870                 /* Find the corresponding inpcb for this pkt. */
  871                 inp = siftr_findinpcb(INP_IPV4, ip, *m, th->th_sport,
  872                     th->th_dport, dir, ss);
  873 
  874                 if (inp == NULL)
  875                         goto ret;
  876                 else
  877                         inp_locally_locked = 1;
  878         }
  879 
  880         INP_LOCK_ASSERT(inp);
  881 
  882         /* Find the TCP control block that corresponds with this packet */
  883         tp = intotcpcb(inp);
  884 
  885         /*
  886          * If we can't find the TCP control block (happens occasionaly for a
  887          * packet sent during the shutdown phase of a TCP connection),
  888          * or we're in the timewait state, bail
  889          */
  890         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
  891                 if (dir == PFIL_IN)
  892                         ss->nskip_in_tcpcb++;
  893                 else
  894                         ss->nskip_out_tcpcb++;
  895 
  896                 goto inp_unlock;
  897         }
  898 
  899         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
  900 
  901         if (pn == NULL) {
  902                 if (dir == PFIL_IN)
  903                         ss->nskip_in_malloc++;
  904                 else
  905                         ss->nskip_out_malloc++;
  906 
  907                 goto inp_unlock;
  908         }
  909 
  910         siftr_siftdata(pn, inp, tp, INP_IPV4, dir, inp_locally_locked);
  911 
  912         if (siftr_generate_hashes) {
  913                 if ((*m)->m_pkthdr.csum_flags & CSUM_TCP) {
  914                         /*
  915                          * For outbound packets, the TCP checksum isn't
  916                          * calculated yet. This is a problem for our packet
  917                          * hashing as the receiver will calc a different hash
  918                          * to ours if we don't include the correct TCP checksum
  919                          * in the bytes being hashed. To work around this
  920                          * problem, we manually calc the TCP checksum here in
  921                          * software. We unset the CSUM_TCP flag so the lower
  922                          * layers don't recalc it.
  923                          */
  924                         (*m)->m_pkthdr.csum_flags &= ~CSUM_TCP;
  925 
  926                         /*
  927                          * Calculate the TCP checksum in software and assign
  928                          * to correct TCP header field, which will follow the
  929                          * packet mbuf down the stack. The trick here is that
  930                          * tcp_output() sets th->th_sum to the checksum of the
  931                          * pseudo header for us already. Because of the nature
  932                          * of the checksumming algorithm, we can sum over the
  933                          * entire IP payload (i.e. TCP header and data), which
  934                          * will include the already calculated pseduo header
  935                          * checksum, thus giving us the complete TCP checksum.
  936                          *
  937                          * To put it in simple terms, if checksum(1,2,3,4)=10,
  938                          * then checksum(1,2,3,4,5) == checksum(10,5).
  939                          * This property is what allows us to "cheat" and
  940                          * checksum only the IP payload which has the TCP
  941                          * th_sum field populated with the pseudo header's
  942                          * checksum, and not need to futz around checksumming
  943                          * pseudo header bytes and TCP header/data in one hit.
  944                          * Refer to RFC 1071 for more info.
  945                          *
  946                          * NB: in_cksum_skip(struct mbuf *m, int len, int skip)
  947                          * in_cksum_skip 2nd argument is NOT the number of
  948                          * bytes to read from the mbuf at "skip" bytes offset
  949                          * from the start of the mbuf (very counter intuitive!).
  950                          * The number of bytes to read is calculated internally
  951                          * by the function as len-skip i.e. to sum over the IP
  952                          * payload (TCP header + data) bytes, it is INCORRECT
  953                          * to call the function like this:
  954                          * in_cksum_skip(at, ip->ip_len - offset, offset)
  955                          * Rather, it should be called like this:
  956                          * in_cksum_skip(at, ip->ip_len, offset)
  957                          * which means read "ip->ip_len - offset" bytes from
  958                          * the mbuf cluster "at" at offset "offset" bytes from
  959                          * the beginning of the "at" mbuf's data pointer.
  960                          */
  961                         th->th_sum = in_cksum_skip(*m, ip->ip_len, ip_hl);
  962                 }
  963 
  964                 /*
  965                  * XXX: Having to calculate the checksum in software and then
  966                  * hash over all bytes is really inefficient. Would be nice to
  967                  * find a way to create the hash and checksum in the same pass
  968                  * over the bytes.
  969                  */
  970                 pn->hash = hash_pkt(*m, ip_hl);
  971         }
  972 
  973         mtx_lock(&siftr_pkt_queue_mtx);
  974         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
  975         mtx_unlock(&siftr_pkt_queue_mtx);
  976         goto ret;
  977 
  978 inp_unlock:
  979         if (inp_locally_locked)
  980                 INP_RUNLOCK(inp);
  981 
  982 ret:
  983         /* Returning 0 ensures pfil will not discard the pkt */
  984         return (0);
  985 }
  986 
  987 
  988 #ifdef SIFTR_IPV6
  989 static int
  990 siftr_chkpkt6(void *arg, struct mbuf **m, struct ifnet *ifp, int dir,
  991     struct inpcb *inp)
  992 {
  993         struct pkt_node *pn;
  994         struct ip6_hdr *ip6;
  995         struct tcphdr *th;
  996         struct tcpcb *tp;
  997         struct siftr_stats *ss;
  998         unsigned int ip6_hl;
  999         int inp_locally_locked;
 1000 
 1001         inp_locally_locked = 0;
 1002         ss = DPCPU_PTR(ss);
 1003 
 1004         /*
 1005          * m_pullup is not required here because ip6_{input|output}
 1006          * already do the heavy lifting for us.
 1007          */
 1008 
 1009         ip6 = mtod(*m, struct ip6_hdr *);
 1010 
 1011         /*
 1012          * Only continue processing if the packet is TCP
 1013          * XXX: We should follow the next header fields
 1014          * as shown on Pg 6 RFC 2460, but right now we'll
 1015          * only check pkts that have no extension headers.
 1016          */
 1017         if (ip6->ip6_nxt != IPPROTO_TCP)
 1018                 goto ret6;
 1019 
 1020         /*
 1021          * If a kernel subsystem reinjects packets into the stack, our pfil
 1022          * hook will be called multiple times for the same packet.
 1023          * Make sure we only process unique packets.
 1024          */
 1025         if (siftr_chkreinject(*m, dir, ss))
 1026                 goto ret6;
 1027 
 1028         if (dir == PFIL_IN)
 1029                 ss->n_in++;
 1030         else
 1031                 ss->n_out++;
 1032 
 1033         ip6_hl = sizeof(struct ip6_hdr);
 1034 
 1035         /*
 1036          * Create a tcphdr struct starting at the correct offset
 1037          * in the ipv6 packet. ip->ip_hl gives the ip header length
 1038          * in 4-byte words, so multiply it to get the size in bytes.
 1039          */
 1040         th = (struct tcphdr *)((caddr_t)ip6 + ip6_hl);
 1041 
 1042         /*
 1043          * For inbound packets, the pfil hooks don't provide a pointer to the
 1044          * inpcb, so we need to find it ourselves and lock it.
 1045          */
 1046         if (!inp) {
 1047                 /* Find the corresponding inpcb for this pkt. */
 1048                 inp = siftr_findinpcb(INP_IPV6, (struct ip *)ip6, *m,
 1049                     th->th_sport, th->th_dport, dir, ss);
 1050 
 1051                 if (inp == NULL)
 1052                         goto ret6;
 1053                 else
 1054                         inp_locally_locked = 1;
 1055         }
 1056 
 1057         /* Find the TCP control block that corresponds with this packet. */
 1058         tp = intotcpcb(inp);
 1059 
 1060         /*
 1061          * If we can't find the TCP control block (happens occasionaly for a
 1062          * packet sent during the shutdown phase of a TCP connection),
 1063          * or we're in the timewait state, bail.
 1064          */
 1065         if (tp == NULL || inp->inp_flags & INP_TIMEWAIT) {
 1066                 if (dir == PFIL_IN)
 1067                         ss->nskip_in_tcpcb++;
 1068                 else
 1069                         ss->nskip_out_tcpcb++;
 1070 
 1071                 goto inp_unlock6;
 1072         }
 1073 
 1074         pn = malloc(sizeof(struct pkt_node), M_SIFTR_PKTNODE, M_NOWAIT|M_ZERO);
 1075 
 1076         if (pn == NULL) {
 1077                 if (dir == PFIL_IN)
 1078                         ss->nskip_in_malloc++;
 1079                 else
 1080                         ss->nskip_out_malloc++;
 1081 
 1082                 goto inp_unlock6;
 1083         }
 1084 
 1085         siftr_siftdata(pn, inp, tp, INP_IPV6, dir, inp_locally_locked);
 1086 
 1087         /* XXX: Figure out how to generate hashes for IPv6 packets. */
 1088 
 1089         mtx_lock(&siftr_pkt_queue_mtx);
 1090         STAILQ_INSERT_TAIL(&pkt_queue, pn, nodes);
 1091         mtx_unlock(&siftr_pkt_queue_mtx);
 1092         goto ret6;
 1093 
 1094 inp_unlock6:
 1095         if (inp_locally_locked)
 1096                 INP_RUNLOCK(inp);
 1097 
 1098 ret6:
 1099         /* Returning 0 ensures pfil will not discard the pkt. */
 1100         return (0);
 1101 }
 1102 #endif /* #ifdef SIFTR_IPV6 */
 1103 
 1104 
 1105 static int
 1106 siftr_pfil(int action)
 1107 {
 1108         struct pfil_head *pfh_inet;
 1109 #ifdef SIFTR_IPV6
 1110         struct pfil_head *pfh_inet6;
 1111 #endif
 1112         VNET_ITERATOR_DECL(vnet_iter);
 1113 
 1114         VNET_LIST_RLOCK();
 1115         VNET_FOREACH(vnet_iter) {
 1116                 CURVNET_SET(vnet_iter);
 1117                 pfh_inet = pfil_head_get(PFIL_TYPE_AF, AF_INET);
 1118 #ifdef SIFTR_IPV6
 1119                 pfh_inet6 = pfil_head_get(PFIL_TYPE_AF, AF_INET6);
 1120 #endif
 1121 
 1122                 if (action == HOOK) {
 1123                         pfil_add_hook(siftr_chkpkt, NULL,
 1124                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1125 #ifdef SIFTR_IPV6
 1126                         pfil_add_hook(siftr_chkpkt6, NULL,
 1127                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1128 #endif
 1129                 } else if (action == UNHOOK) {
 1130                         pfil_remove_hook(siftr_chkpkt, NULL,
 1131                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet);
 1132 #ifdef SIFTR_IPV6
 1133                         pfil_remove_hook(siftr_chkpkt6, NULL,
 1134                             PFIL_IN | PFIL_OUT | PFIL_WAITOK, pfh_inet6);
 1135 #endif
 1136                 }
 1137                 CURVNET_RESTORE();
 1138         }
 1139         VNET_LIST_RUNLOCK();
 1140 
 1141         return (0);
 1142 }
 1143 
 1144 
 1145 static int
 1146 siftr_sysctl_logfile_name_handler(SYSCTL_HANDLER_ARGS)
 1147 {
 1148         struct alq *new_alq;
 1149         int error;
 1150 
 1151         if (req->newptr == NULL)
 1152                 goto skip;
 1153 
 1154         /* If old filename and new filename are different. */
 1155         if (strncmp(siftr_logfile, (char *)req->newptr, PATH_MAX)) {
 1156 
 1157                 error = alq_open(&new_alq, req->newptr, curthread->td_ucred,
 1158                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1159 
 1160                 /* Bail if unable to create new alq. */
 1161                 if (error)
 1162                         return (1);
 1163 
 1164                 /*
 1165                  * If disabled, siftr_alq == NULL so we simply close
 1166                  * the alq as we've proved it can be opened.
 1167                  * If enabled, close the existing alq and switch the old
 1168                  * for the new.
 1169                  */
 1170                 if (siftr_alq == NULL)
 1171                         alq_close(new_alq);
 1172                 else {
 1173                         alq_close(siftr_alq);
 1174                         siftr_alq = new_alq;
 1175                 }
 1176         }
 1177 
 1178 skip:
 1179         return (sysctl_handle_string(oidp, arg1, arg2, req));
 1180 }
 1181 
 1182 
 1183 static int
 1184 siftr_manage_ops(uint8_t action)
 1185 {
 1186         struct siftr_stats totalss;
 1187         struct timeval tval;
 1188         struct flow_hash_node *counter, *tmp_counter;
 1189         struct sbuf *s;
 1190         int i, key_index, ret, error;
 1191         uint32_t bytes_to_write, total_skipped_pkts;
 1192         uint16_t lport, fport;
 1193         uint8_t *key, ipver;
 1194 
 1195 #ifdef SIFTR_IPV6
 1196         uint32_t laddr[4];
 1197         uint32_t faddr[4];
 1198 #else
 1199         uint8_t laddr[4];
 1200         uint8_t faddr[4];
 1201 #endif
 1202 
 1203         error = 0;
 1204         total_skipped_pkts = 0;
 1205 
 1206         /* Init an autosizing sbuf that initially holds 200 chars. */
 1207         if ((s = sbuf_new(NULL, NULL, 200, SBUF_AUTOEXTEND)) == NULL)
 1208                 return (-1);
 1209 
 1210         if (action == SIFTR_ENABLE) {
 1211                 /*
 1212                  * Create our alq
 1213                  * XXX: We should abort if alq_open fails!
 1214                  */
 1215                 alq_open(&siftr_alq, siftr_logfile, curthread->td_ucred,
 1216                     SIFTR_LOG_FILE_MODE, SIFTR_ALQ_BUFLEN, 0);
 1217 
 1218                 STAILQ_INIT(&pkt_queue);
 1219 
 1220                 DPCPU_ZERO(ss);
 1221 
 1222                 siftr_exit_pkt_manager_thread = 0;
 1223 
 1224                 ret = kthread_add(&siftr_pkt_manager_thread, NULL, NULL,
 1225                     &siftr_pkt_manager_thr, RFNOWAIT, 0,
 1226                     "siftr_pkt_manager_thr");
 1227 
 1228                 siftr_pfil(HOOK);
 1229 
 1230                 microtime(&tval);
 1231 
 1232                 sbuf_printf(s,
 1233                     "enable_time_secs=%jd\tenable_time_usecs=%06ld\t"
 1234                     "siftrver=%s\thz=%u\ttcp_rtt_scale=%u\tsysname=%s\t"
 1235                     "sysver=%u\tipmode=%u\n",
 1236                     (intmax_t)tval.tv_sec, tval.tv_usec, MODVERSION_STR, hz,
 1237                     TCP_RTT_SCALE, SYS_NAME, __FreeBSD_version, SIFTR_IPMODE);
 1238 
 1239                 sbuf_finish(s);
 1240                 alq_writen(siftr_alq, sbuf_data(s), sbuf_len(s), ALQ_WAITOK);
 1241 
 1242         } else if (action == SIFTR_DISABLE && siftr_pkt_manager_thr != NULL) {
 1243                 /*
 1244                  * Remove the pfil hook functions. All threads currently in
 1245                  * the hook functions are allowed to exit before siftr_pfil()
 1246                  * returns.
 1247                  */
 1248                 siftr_pfil(UNHOOK);
 1249 
 1250                 /* This will block until the pkt manager thread unlocks it. */
 1251                 mtx_lock(&siftr_pkt_mgr_mtx);
 1252 
 1253                 /* Tell the pkt manager thread that it should exit now. */
 1254                 siftr_exit_pkt_manager_thread = 1;
 1255 
 1256                 /*
 1257                  * Wake the pkt_manager thread so it realises that
 1258                  * siftr_exit_pkt_manager_thread == 1 and exits gracefully.
 1259                  * The wakeup won't be delivered until we unlock
 1260                  * siftr_pkt_mgr_mtx so this isn't racy.
 1261                  */
 1262                 wakeup(&wait_for_pkt);
 1263 
 1264                 /* Wait for the pkt_manager thread to exit. */
 1265                 mtx_sleep(siftr_pkt_manager_thr, &siftr_pkt_mgr_mtx, PWAIT,
 1266                     "thrwait", 0);
 1267 
 1268                 siftr_pkt_manager_thr = NULL;
 1269                 mtx_unlock(&siftr_pkt_mgr_mtx);
 1270 
 1271                 totalss.n_in = DPCPU_VARSUM(ss, n_in);
 1272                 totalss.n_out = DPCPU_VARSUM(ss, n_out);
 1273                 totalss.nskip_in_malloc = DPCPU_VARSUM(ss, nskip_in_malloc);
 1274                 totalss.nskip_out_malloc = DPCPU_VARSUM(ss, nskip_out_malloc);
 1275                 totalss.nskip_in_mtx = DPCPU_VARSUM(ss, nskip_in_mtx);
 1276                 totalss.nskip_out_mtx = DPCPU_VARSUM(ss, nskip_out_mtx);
 1277                 totalss.nskip_in_tcpcb = DPCPU_VARSUM(ss, nskip_in_tcpcb);
 1278                 totalss.nskip_out_tcpcb = DPCPU_VARSUM(ss, nskip_out_tcpcb);
 1279                 totalss.nskip_in_inpcb = DPCPU_VARSUM(ss, nskip_in_inpcb);
 1280                 totalss.nskip_out_inpcb = DPCPU_VARSUM(ss, nskip_out_inpcb);
 1281 
 1282                 total_skipped_pkts = totalss.nskip_in_malloc +
 1283                     totalss.nskip_out_malloc + totalss.nskip_in_mtx +
 1284                     totalss.nskip_out_mtx + totalss.nskip_in_tcpcb +
 1285                     totalss.nskip_out_tcpcb + totalss.nskip_in_inpcb +
 1286                     totalss.nskip_out_inpcb;
 1287 
 1288                 microtime(&tval);
 1289 
 1290                 sbuf_printf(s,
 1291                     "disable_time_secs=%jd\tdisable_time_usecs=%06ld\t"
 1292                     "num_inbound_tcp_pkts=%ju\tnum_outbound_tcp_pkts=%ju\t"
 1293                     "total_tcp_pkts=%ju\tnum_inbound_skipped_pkts_malloc=%u\t"
 1294                     "num_outbound_skipped_pkts_malloc=%u\t"
 1295                     "num_inbound_skipped_pkts_mtx=%u\t"
 1296                     "num_outbound_skipped_pkts_mtx=%u\t"
 1297                     "num_inbound_skipped_pkts_tcpcb=%u\t"
 1298                     "num_outbound_skipped_pkts_tcpcb=%u\t"
 1299                     "num_inbound_skipped_pkts_inpcb=%u\t"
 1300                     "num_outbound_skipped_pkts_inpcb=%u\t"
 1301                     "total_skipped_tcp_pkts=%u\tflow_list=",
 1302                     (intmax_t)tval.tv_sec,
 1303                     tval.tv_usec,
 1304                     (uintmax_t)totalss.n_in,
 1305                     (uintmax_t)totalss.n_out,
 1306                     (uintmax_t)(totalss.n_in + totalss.n_out),
 1307                     totalss.nskip_in_malloc,
 1308                     totalss.nskip_out_malloc,
 1309                     totalss.nskip_in_mtx,
 1310                     totalss.nskip_out_mtx,
 1311                     totalss.nskip_in_tcpcb,
 1312                     totalss.nskip_out_tcpcb,
 1313                     totalss.nskip_in_inpcb,
 1314                     totalss.nskip_out_inpcb,
 1315                     total_skipped_pkts);
 1316 
 1317                 /*
 1318                  * Iterate over the flow hash, printing a summary of each
 1319                  * flow seen and freeing any malloc'd memory.
 1320                  * The hash consists of an array of LISTs (man 3 queue).
 1321                  */
 1322                 for (i = 0; i <= siftr_hashmask; i++) {
 1323                         LIST_FOREACH_SAFE(counter, counter_hash + i, nodes,
 1324                             tmp_counter) {
 1325                                 key = counter->key;
 1326                                 key_index = 1;
 1327 
 1328                                 ipver = key[0];
 1329 
 1330                                 memcpy(laddr, key + key_index, sizeof(laddr));
 1331                                 key_index += sizeof(laddr);
 1332                                 memcpy(&lport, key + key_index, sizeof(lport));
 1333                                 key_index += sizeof(lport);
 1334                                 memcpy(faddr, key + key_index, sizeof(faddr));
 1335                                 key_index += sizeof(faddr);
 1336                                 memcpy(&fport, key + key_index, sizeof(fport));
 1337 
 1338 #ifdef SIFTR_IPV6
 1339                                 laddr[3] = ntohl(laddr[3]);
 1340                                 faddr[3] = ntohl(faddr[3]);
 1341 
 1342                                 if (ipver == INP_IPV6) {
 1343                                         laddr[0] = ntohl(laddr[0]);
 1344                                         laddr[1] = ntohl(laddr[1]);
 1345                                         laddr[2] = ntohl(laddr[2]);
 1346                                         faddr[0] = ntohl(faddr[0]);
 1347                                         faddr[1] = ntohl(faddr[1]);
 1348                                         faddr[2] = ntohl(faddr[2]);
 1349 
 1350                                         sbuf_printf(s,
 1351                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u-"
 1352                                             "%x:%x:%x:%x:%x:%x:%x:%x;%u,",
 1353                                             UPPER_SHORT(laddr[0]),
 1354                                             LOWER_SHORT(laddr[0]),
 1355                                             UPPER_SHORT(laddr[1]),
 1356                                             LOWER_SHORT(laddr[1]),
 1357                                             UPPER_SHORT(laddr[2]),
 1358                                             LOWER_SHORT(laddr[2]),
 1359                                             UPPER_SHORT(laddr[3]),
 1360                                             LOWER_SHORT(laddr[3]),
 1361                                             ntohs(lport),
 1362                                             UPPER_SHORT(faddr[0]),
 1363                                             LOWER_SHORT(faddr[0]),
 1364                                             UPPER_SHORT(faddr[1]),
 1365                                             LOWER_SHORT(faddr[1]),
 1366                                             UPPER_SHORT(faddr[2]),
 1367                                             LOWER_SHORT(faddr[2]),
 1368                                             UPPER_SHORT(faddr[3]),
 1369                                             LOWER_SHORT(faddr[3]),
 1370                                             ntohs(fport));
 1371                                 } else {
 1372                                         laddr[0] = FIRST_OCTET(laddr[3]);
 1373                                         laddr[1] = SECOND_OCTET(laddr[3]);
 1374                                         laddr[2] = THIRD_OCTET(laddr[3]);
 1375                                         laddr[3] = FOURTH_OCTET(laddr[3]);
 1376                                         faddr[0] = FIRST_OCTET(faddr[3]);
 1377                                         faddr[1] = SECOND_OCTET(faddr[3]);
 1378                                         faddr[2] = THIRD_OCTET(faddr[3]);
 1379                                         faddr[3] = FOURTH_OCTET(faddr[3]);
 1380 #endif
 1381                                         sbuf_printf(s,
 1382                                             "%u.%u.%u.%u;%u-%u.%u.%u.%u;%u,",
 1383                                             laddr[0],
 1384                                             laddr[1],
 1385                                             laddr[2],
 1386                                             laddr[3],
 1387                                             ntohs(lport),
 1388                                             faddr[0],
 1389                                             faddr[1],
 1390                                             faddr[2],
 1391                                             faddr[3],
 1392                                             ntohs(fport));
 1393 #ifdef SIFTR_IPV6
 1394                                 }
 1395 #endif
 1396 
 1397                                 free(counter, M_SIFTR_HASHNODE);
 1398                         }
 1399 
 1400                         LIST_INIT(counter_hash + i);
 1401                 }
 1402 
 1403                 sbuf_printf(s, "\n");
 1404                 sbuf_finish(s);
 1405 
 1406                 i = 0;
 1407                 do {
 1408                         bytes_to_write = min(SIFTR_ALQ_BUFLEN, sbuf_len(s)-i);
 1409                         alq_writen(siftr_alq, sbuf_data(s)+i, bytes_to_write, ALQ_WAITOK);
 1410                         i += bytes_to_write;
 1411                 } while (i < sbuf_len(s));
 1412 
 1413                 alq_close(siftr_alq);
 1414                 siftr_alq = NULL;
 1415         }
 1416 
 1417         sbuf_delete(s);
 1418 
 1419         /*
 1420          * XXX: Should be using ret to check if any functions fail
 1421          * and set error appropriately
 1422          */
 1423 
 1424         return (error);
 1425 }
 1426 
 1427 
 1428 static int
 1429 siftr_sysctl_enabled_handler(SYSCTL_HANDLER_ARGS)
 1430 {
 1431         if (req->newptr == NULL)
 1432                 goto skip;
 1433 
 1434         /* If the value passed in isn't 0 or 1, return an error. */
 1435         if (CAST_PTR_INT(req->newptr) != 0 && CAST_PTR_INT(req->newptr) != 1)
 1436                 return (1);
 1437 
 1438         /* If we are changing state (0 to 1 or 1 to 0). */
 1439         if (CAST_PTR_INT(req->newptr) != siftr_enabled )
 1440                 if (siftr_manage_ops(CAST_PTR_INT(req->newptr))) {
 1441                         siftr_manage_ops(SIFTR_DISABLE);
 1442                         return (1);
 1443                 }
 1444 
 1445 skip:
 1446         return (sysctl_handle_int(oidp, arg1, arg2, req));
 1447 }
 1448 
 1449 
 1450 static void
 1451 siftr_shutdown_handler(void *arg)
 1452 {
 1453         siftr_manage_ops(SIFTR_DISABLE);
 1454 }
 1455 
 1456 
 1457 /*
 1458  * Module is being unloaded or machine is shutting down. Take care of cleanup.
 1459  */
 1460 static int
 1461 deinit_siftr(void)
 1462 {
 1463         /* Cleanup. */
 1464         siftr_manage_ops(SIFTR_DISABLE);
 1465         hashdestroy(counter_hash, M_SIFTR, siftr_hashmask);
 1466         mtx_destroy(&siftr_pkt_queue_mtx);
 1467         mtx_destroy(&siftr_pkt_mgr_mtx);
 1468 
 1469         return (0);
 1470 }
 1471 
 1472 
 1473 /*
 1474  * Module has just been loaded into the kernel.
 1475  */
 1476 static int
 1477 init_siftr(void)
 1478 {
 1479         EVENTHANDLER_REGISTER(shutdown_pre_sync, siftr_shutdown_handler, NULL,
 1480             SHUTDOWN_PRI_FIRST);
 1481 
 1482         /* Initialise our flow counter hash table. */
 1483         counter_hash = hashinit(SIFTR_EXPECTED_MAX_TCP_FLOWS, M_SIFTR,
 1484             &siftr_hashmask);
 1485 
 1486         mtx_init(&siftr_pkt_queue_mtx, "siftr_pkt_queue_mtx", NULL, MTX_DEF);
 1487         mtx_init(&siftr_pkt_mgr_mtx, "siftr_pkt_mgr_mtx", NULL, MTX_DEF);
 1488 
 1489         /* Print message to the user's current terminal. */
 1490         uprintf("\nStatistical Information For TCP Research (SIFTR) %s\n"
 1491             "          http://caia.swin.edu.au/urp/newtcp\n\n",
 1492             MODVERSION_STR);
 1493 
 1494         return (0);
 1495 }
 1496 
 1497 
 1498 /*
 1499  * This is the function that is called to load and unload the module.
 1500  * When the module is loaded, this function is called once with
 1501  * "what" == MOD_LOAD
 1502  * When the module is unloaded, this function is called twice with
 1503  * "what" = MOD_QUIESCE first, followed by "what" = MOD_UNLOAD second
 1504  * When the system is shut down e.g. CTRL-ALT-DEL or using the shutdown command,
 1505  * this function is called once with "what" = MOD_SHUTDOWN
 1506  * When the system is shut down, the handler isn't called until the very end
 1507  * of the shutdown sequence i.e. after the disks have been synced.
 1508  */
 1509 static int
 1510 siftr_load_handler(module_t mod, int what, void *arg)
 1511 {
 1512         int ret;
 1513 
 1514         switch (what) {
 1515         case MOD_LOAD:
 1516                 ret = init_siftr();
 1517                 break;
 1518 
 1519         case MOD_QUIESCE:
 1520         case MOD_SHUTDOWN:
 1521                 ret = deinit_siftr();
 1522                 break;
 1523 
 1524         case MOD_UNLOAD:
 1525                 ret = 0;
 1526                 break;
 1527 
 1528         default:
 1529                 ret = EINVAL;
 1530                 break;
 1531         }
 1532 
 1533         return (ret);
 1534 }
 1535 
 1536 
 1537 static moduledata_t siftr_mod = {
 1538         .name = "siftr",
 1539         .evhand = siftr_load_handler,
 1540 };
 1541 
 1542 /*
 1543  * Param 1: name of the kernel module
 1544  * Param 2: moduledata_t struct containing info about the kernel module
 1545  *          and the execution entry point for the module
 1546  * Param 3: From sysinit_sub_id enumeration in /usr/include/sys/kernel.h
 1547  *          Defines the module initialisation order
 1548  * Param 4: From sysinit_elem_order enumeration in /usr/include/sys/kernel.h
 1549  *          Defines the initialisation order of this kld relative to others
 1550  *          within the same subsystem as defined by param 3
 1551  */
 1552 DECLARE_MODULE(siftr, siftr_mod, SI_SUB_SMP, SI_ORDER_ANY);
 1553 MODULE_DEPEND(siftr, alq, 1, 1, 1);
 1554 MODULE_VERSION(siftr, MODVERSION);

Cache object: d23869fac3bf97c7d45947ee4af51ca8


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.