The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_hpts.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 2016-2018 Netflix, Inc.
    3  *
    4  * Redistribution and use in source and binary forms, with or without
    5  * modification, are permitted provided that the following conditions
    6  * are met:
    7  * 1. Redistributions of source code must retain the above copyright
    8  *    notice, this list of conditions and the following disclaimer.
    9  * 2. Redistributions in binary form must reproduce the above copyright
   10  *    notice, this list of conditions and the following disclaimer in the
   11  *    documentation and/or other materials provided with the distribution.
   12  *
   13  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   23  * SUCH DAMAGE.
   24  *
   25  */
   26 #include <sys/cdefs.h>
   27 __FBSDID("$FreeBSD$");
   28 
   29 #include "opt_inet.h"
   30 #include "opt_inet6.h"
   31 #include "opt_rss.h"
   32 
   33 /**
   34  * Some notes about usage.
   35  *
   36  * The tcp_hpts system is designed to provide a high precision timer
   37  * system for tcp. Its main purpose is to provide a mechanism for
   38  * pacing packets out onto the wire. It can be used in two ways
   39  * by a given TCP stack (and those two methods can be used simultaneously).
   40  *
   41  * First, and probably the main thing its used by Rack and BBR, it can
   42  * be used to call tcp_output() of a transport stack at some time in the future.
   43  * The normal way this is done is that tcp_output() of the stack schedules
   44  * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The
   45  * slot is the time from now that the stack wants to be called but it
   46  * must be converted to tcp_hpts's notion of slot. This is done with
   47  * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical
   48  * call from the tcp_output() routine might look like:
   49  *
   50  * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550));
   51  *
   52  * The above would schedule tcp_ouput() to be called in 550 useconds.
   53  * Note that if using this mechanism the stack will want to add near
   54  * its top a check to prevent unwanted calls (from user land or the
   55  * arrival of incoming ack's). So it would add something like:
   56  *
   57  * if (tcp_in_hpts(inp))
   58  *    return;
   59  *
   60  * to prevent output processing until the time alotted has gone by.
   61  * Of course this is a bare bones example and the stack will probably
   62  * have more consideration then just the above.
   63  *
   64  * In order to run input queued segments from the HPTS context the
   65  * tcp stack must define an input function for
   66  * tfb_do_queued_segments(). This function understands
   67  * how to dequeue a array of packets that were input and
   68  * knows how to call the correct processing routine.
   69  *
   70  * Locking in this is important as well so most likely the
   71  * stack will need to define the tfb_do_segment_nounlock()
   72  * splitting tfb_do_segment() into two parts. The main processing
   73  * part that does not unlock the INP and returns a value of 1 or 0.
   74  * It returns 0 if all is well and the lock was not released. It
   75  * returns 1 if we had to destroy the TCB (a reset received etc).
   76  * The remains of tfb_do_segment() then become just a simple call
   77  * to the tfb_do_segment_nounlock() function and check the return
   78  * code and possibly unlock.
   79  *
   80  * The stack must also set the flag on the INP that it supports this
   81  * feature i.e. INP_SUPPORTS_MBUFQ. The LRO code recoginizes
   82  * this flag as well and will queue packets when it is set.
   83  * There are other flags as well INP_MBUF_QUEUE_READY and
   84  * INP_DONT_SACK_QUEUE. The first flag tells the LRO code
   85  * that we are in the pacer for output so there is no
   86  * need to wake up the hpts system to get immediate
   87  * input. The second tells the LRO code that its okay
   88  * if a SACK arrives you can still defer input and let
   89  * the current hpts timer run (this is usually set when
   90  * a rack timer is up so we know SACK's are happening
   91  * on the connection already and don't want to wakeup yet).
   92  *
   93  * There is a common functions within the rack_bbr_common code
   94  * version i.e. ctf_do_queued_segments(). This function
   95  * knows how to take the input queue of packets from
   96  * tp->t_in_pkts and process them digging out
   97  * all the arguments, calling any bpf tap and
   98  * calling into tfb_do_segment_nounlock(). The common
   99  * function (ctf_do_queued_segments())  requires that
  100  * you have defined the tfb_do_segment_nounlock() as
  101  * described above.
  102  */
  103 
  104 #include <sys/param.h>
  105 #include <sys/bus.h>
  106 #include <sys/interrupt.h>
  107 #include <sys/module.h>
  108 #include <sys/kernel.h>
  109 #include <sys/hhook.h>
  110 #include <sys/malloc.h>
  111 #include <sys/mbuf.h>
  112 #include <sys/proc.h>           /* for proc0 declaration */
  113 #include <sys/socket.h>
  114 #include <sys/socketvar.h>
  115 #include <sys/sysctl.h>
  116 #include <sys/systm.h>
  117 #include <sys/refcount.h>
  118 #include <sys/sched.h>
  119 #include <sys/queue.h>
  120 #include <sys/smp.h>
  121 #include <sys/counter.h>
  122 #include <sys/time.h>
  123 #include <sys/kthread.h>
  124 #include <sys/kern_prefetch.h>
  125 
  126 #include <vm/uma.h>
  127 #include <vm/vm.h>
  128 
  129 #include <net/route.h>
  130 #include <net/vnet.h>
  131 
  132 #ifdef RSS
  133 #include <net/netisr.h>
  134 #include <net/rss_config.h>
  135 #endif
  136 
  137 #define TCPSTATES               /* for logging */
  138 
  139 #include <netinet/in.h>
  140 #include <netinet/in_kdtrace.h>
  141 #include <netinet/in_pcb.h>
  142 #include <netinet/ip.h>
  143 #include <netinet/ip_icmp.h>    /* required for icmp_var.h */
  144 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM */
  145 #include <netinet/ip_var.h>
  146 #include <netinet/ip6.h>
  147 #include <netinet6/in6_pcb.h>
  148 #include <netinet6/ip6_var.h>
  149 #include <netinet/tcp.h>
  150 #include <netinet/tcp_fsm.h>
  151 #include <netinet/tcp_seq.h>
  152 #include <netinet/tcp_timer.h>
  153 #include <netinet/tcp_var.h>
  154 #include <netinet/tcpip.h>
  155 #include <netinet/cc/cc.h>
  156 #include <netinet/tcp_hpts.h>
  157 #include <netinet/tcp_log_buf.h>
  158 
  159 #ifdef tcp_offload
  160 #include <netinet/tcp_offload.h>
  161 #endif
  162 
  163 /*
  164  * The hpts uses a 102400 wheel. The wheel
  165  * defines the time in 10 usec increments (102400 x 10).
  166  * This gives a range of 10usec - 1024ms to place
  167  * an entry within. If the user requests more than
  168  * 1.024 second, a remaineder is attached and the hpts
  169  * when seeing the remainder will re-insert the
  170  * inpcb forward in time from where it is until
  171  * the remainder is zero.
  172  */
  173 
  174 #define NUM_OF_HPTSI_SLOTS 102400
  175 
  176 /* Each hpts has its own p_mtx which is used for locking */
  177 #define HPTS_MTX_ASSERT(hpts)   mtx_assert(&(hpts)->p_mtx, MA_OWNED)
  178 #define HPTS_LOCK(hpts)         mtx_lock(&(hpts)->p_mtx)
  179 #define HPTS_UNLOCK(hpts)       mtx_unlock(&(hpts)->p_mtx)
  180 struct tcp_hpts_entry {
  181         /* Cache line 0x00 */
  182         struct mtx p_mtx;       /* Mutex for hpts */
  183         struct timeval p_mysleep;       /* Our min sleep time */
  184         uint64_t syscall_cnt;
  185         uint64_t sleeping;      /* What the actual sleep was (if sleeping) */
  186         uint16_t p_hpts_active; /* Flag that says hpts is awake  */
  187         uint8_t p_wheel_complete; /* have we completed the wheel arc walk? */
  188         uint32_t p_curtick;     /* Tick in 10 us the hpts is going to */
  189         uint32_t p_runningslot; /* Current tick we are at if we are running */
  190         uint32_t p_prev_slot;   /* Previous slot we were on */
  191         uint32_t p_cur_slot;    /* Current slot in wheel hpts is draining */
  192         uint32_t p_nxt_slot;    /* The next slot outside the current range of
  193                                  * slots that the hpts is running on. */
  194         int32_t p_on_queue_cnt; /* Count on queue in this hpts */
  195         uint32_t p_lasttick;    /* Last tick before the current one */
  196         uint8_t p_direct_wake :1, /* boolean */
  197                 p_on_min_sleep:1, /* boolean */
  198                 p_hpts_wake_scheduled:1, /* boolean */
  199                 p_avail:5;
  200         uint8_t p_fill[3];        /* Fill to 32 bits */
  201         /* Cache line 0x40 */
  202         struct hptsh {
  203                 TAILQ_HEAD(, inpcb)     head;
  204                 uint32_t                count;
  205                 uint32_t                gencnt;
  206         } *p_hptss;                     /* Hptsi wheel */
  207         uint32_t p_hpts_sleep_time;     /* Current sleep interval having a max
  208                                          * of 255ms */
  209         uint32_t overidden_sleep;       /* what was overrided by min-sleep for logging */
  210         uint32_t saved_lasttick;        /* for logging */
  211         uint32_t saved_curtick;         /* for logging */
  212         uint32_t saved_curslot;         /* for logging */
  213         uint32_t saved_prev_slot;       /* for logging */
  214         uint32_t p_delayed_by;  /* How much were we delayed by */
  215         /* Cache line 0x80 */
  216         struct sysctl_ctx_list hpts_ctx;
  217         struct sysctl_oid *hpts_root;
  218         struct intr_event *ie;
  219         void *ie_cookie;
  220         uint16_t p_num;         /* The hpts number one per cpu */
  221         uint16_t p_cpu;         /* The hpts CPU */
  222         /* There is extra space in here */
  223         /* Cache line 0x100 */
  224         struct callout co __aligned(CACHE_LINE_SIZE);
  225 }               __aligned(CACHE_LINE_SIZE);
  226 
  227 static struct tcp_hptsi {
  228         struct cpu_group **grps;
  229         struct tcp_hpts_entry **rp_ent; /* Array of hptss */
  230         uint32_t *cts_last_ran;
  231         uint32_t grp_cnt;
  232         uint32_t rp_num_hptss;  /* Number of hpts threads */
  233 } tcp_pace;
  234 
  235 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts");
  236 #ifdef RSS
  237 static int tcp_bind_threads = 1;
  238 #else
  239 static int tcp_bind_threads = 2;
  240 #endif
  241 static int tcp_use_irq_cpu = 0;
  242 static uint32_t *cts_last_ran;
  243 static int hpts_does_tp_logging = 0;
  244 
  245 static int32_t tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout);
  246 static void tcp_hpts_thread(void *ctx);
  247 static void tcp_init_hptsi(void *st);
  248 
  249 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP;
  250 static int conn_cnt_thresh = DEFAULT_CONNECTION_THESHOLD;
  251 static int32_t dynamic_min_sleep = DYNAMIC_MIN_SLEEP;
  252 static int32_t dynamic_max_sleep = DYNAMIC_MAX_SLEEP;
  253 
  254 
  255 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
  256     "TCP Hpts controls");
  257 SYSCTL_NODE(_net_inet_tcp_hpts, OID_AUTO, stats, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
  258     "TCP Hpts statistics");
  259 
  260 #define timersub(tvp, uvp, vvp)                                         \
  261         do {                                                            \
  262                 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;          \
  263                 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;       \
  264                 if ((vvp)->tv_usec < 0) {                               \
  265                         (vvp)->tv_sec--;                                \
  266                         (vvp)->tv_usec += 1000000;                      \
  267                 }                                                       \
  268         } while (0)
  269 
  270 static int32_t tcp_hpts_precision = 120;
  271 
  272 static struct hpts_domain_info {
  273         int count;
  274         int cpu[MAXCPU];
  275 } hpts_domains[MAXMEMDOM];
  276 
  277 enum {
  278         IHPTS_NONE = 0,
  279         IHPTS_ONQUEUE,
  280         IHPTS_MOVING,
  281 };
  282 
  283 counter_u64_t hpts_hopelessly_behind;
  284 
  285 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, hopeless, CTLFLAG_RD,
  286     &hpts_hopelessly_behind,
  287     "Number of times hpts could not catch up and was behind hopelessly");
  288 
  289 counter_u64_t hpts_loops;
  290 
  291 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, loops, CTLFLAG_RD,
  292     &hpts_loops, "Number of times hpts had to loop to catch up");
  293 
  294 counter_u64_t back_tosleep;
  295 
  296 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, no_tcbsfound, CTLFLAG_RD,
  297     &back_tosleep, "Number of times hpts found no tcbs");
  298 
  299 counter_u64_t combined_wheel_wrap;
  300 
  301 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, comb_wheel_wrap, CTLFLAG_RD,
  302     &combined_wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
  303 
  304 counter_u64_t wheel_wrap;
  305 
  306 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, wheel_wrap, CTLFLAG_RD,
  307     &wheel_wrap, "Number of times the wheel lagged enough to have an insert see wrap");
  308 
  309 counter_u64_t hpts_direct_call;
  310 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_call, CTLFLAG_RD,
  311     &hpts_direct_call, "Number of times hpts was called by syscall/trap or other entry");
  312 
  313 counter_u64_t hpts_wake_timeout;
  314 
  315 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, timeout_wakeup, CTLFLAG_RD,
  316     &hpts_wake_timeout, "Number of times hpts threads woke up via the callout expiring");
  317 
  318 counter_u64_t hpts_direct_awakening;
  319 
  320 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, direct_awakening, CTLFLAG_RD,
  321     &hpts_direct_awakening, "Number of times hpts threads woke up via the callout expiring");
  322 
  323 counter_u64_t hpts_back_tosleep;
  324 
  325 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, back_tosleep, CTLFLAG_RD,
  326     &hpts_back_tosleep, "Number of times hpts threads woke up via the callout expiring and went back to sleep no work");
  327 
  328 counter_u64_t cpu_uses_flowid;
  329 counter_u64_t cpu_uses_random;
  330 
  331 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_flowid, CTLFLAG_RD,
  332     &cpu_uses_flowid, "Number of times when setting cpuid we used the flowid field");
  333 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts_stats, OID_AUTO, cpusel_random, CTLFLAG_RD,
  334     &cpu_uses_random, "Number of times when setting cpuid we used the a random value");
  335 
  336 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads);
  337 TUNABLE_INT("net.inet.tcp.use_irq", &tcp_use_irq_cpu);
  338 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, bind_hptss, CTLFLAG_RD,
  339     &tcp_bind_threads, 2,
  340     "Thread Binding tunable");
  341 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, use_irq, CTLFLAG_RD,
  342     &tcp_use_irq_cpu, 0,
  343     "Use of irq CPU  tunable");
  344 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW,
  345     &tcp_hpts_precision, 120,
  346     "Value for PRE() precision of callout");
  347 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, cnt_thresh, CTLFLAG_RW,
  348     &conn_cnt_thresh, 0,
  349     "How many connections (below) make us use the callout based mechanism");
  350 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW,
  351     &hpts_does_tp_logging, 0,
  352     "Do we add to any tp that has logging on pacer logs");
  353 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_minsleep, CTLFLAG_RW,
  354     &dynamic_min_sleep, 250,
  355     "What is the dynamic minsleep value?");
  356 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, dyn_maxsleep, CTLFLAG_RW,
  357     &dynamic_max_sleep, 5000,
  358     "What is the dynamic maxsleep value?");
  359 
  360 static int32_t max_pacer_loops = 10;
  361 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, loopmax, CTLFLAG_RW,
  362     &max_pacer_loops, 10,
  363     "What is the maximum number of times the pacer will loop trying to catch up");
  364 
  365 #define HPTS_MAX_SLEEP_ALLOWED (NUM_OF_HPTSI_SLOTS/2)
  366 
  367 static uint32_t hpts_sleep_max = HPTS_MAX_SLEEP_ALLOWED;
  368 
  369 static int
  370 sysctl_net_inet_tcp_hpts_max_sleep(SYSCTL_HANDLER_ARGS)
  371 {
  372         int error;
  373         uint32_t new;
  374 
  375         new = hpts_sleep_max;
  376         error = sysctl_handle_int(oidp, &new, 0, req);
  377         if (error == 0 && req->newptr) {
  378                 if ((new < (dynamic_min_sleep/HPTS_TICKS_PER_SLOT)) ||
  379                      (new > HPTS_MAX_SLEEP_ALLOWED))
  380                         error = EINVAL;
  381                 else
  382                         hpts_sleep_max = new;
  383         }
  384         return (error);
  385 }
  386 
  387 static int
  388 sysctl_net_inet_tcp_hpts_min_sleep(SYSCTL_HANDLER_ARGS)
  389 {
  390         int error;
  391         uint32_t new;
  392 
  393         new = tcp_min_hptsi_time;
  394         error = sysctl_handle_int(oidp, &new, 0, req);
  395         if (error == 0 && req->newptr) {
  396                 if (new < LOWEST_SLEEP_ALLOWED)
  397                         error = EINVAL;
  398                 else
  399                         tcp_min_hptsi_time = new;
  400         }
  401         return (error);
  402 }
  403 
  404 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, maxsleep,
  405     CTLTYPE_UINT | CTLFLAG_RW,
  406     &hpts_sleep_max, 0,
  407     &sysctl_net_inet_tcp_hpts_max_sleep, "IU",
  408     "Maximum time hpts will sleep in slots");
  409 
  410 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, minsleep,
  411     CTLTYPE_UINT | CTLFLAG_RW,
  412     &tcp_min_hptsi_time, 0,
  413     &sysctl_net_inet_tcp_hpts_min_sleep, "IU",
  414     "The minimum time the hpts must sleep before processing more slots");
  415 
  416 static int ticks_indicate_more_sleep = TICKS_INDICATE_MORE_SLEEP;
  417 static int ticks_indicate_less_sleep = TICKS_INDICATE_LESS_SLEEP;
  418 static int tcp_hpts_no_wake_over_thresh = 1;
  419 
  420 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, more_sleep, CTLFLAG_RW,
  421     &ticks_indicate_more_sleep, 0,
  422     "If we only process this many or less on a timeout, we need longer sleep on the next callout");
  423 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, less_sleep, CTLFLAG_RW,
  424     &ticks_indicate_less_sleep, 0,
  425     "If we process this many or more on a timeout, we need less sleep on the next callout");
  426 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, nowake_over_thresh, CTLFLAG_RW,
  427     &tcp_hpts_no_wake_over_thresh, 0,
  428     "When we are over the threshold on the pacer do we prohibit wakeups?");
  429 
  430 static void
  431 tcp_hpts_log(struct tcp_hpts_entry *hpts, struct tcpcb *tp, struct timeval *tv,
  432              int slots_to_run, int idx, int from_callout)
  433 {
  434         union tcp_log_stackspecific log;
  435         /*
  436          * Unused logs are
  437          * 64 bit - delRate, rttProp, bw_inuse
  438          * 16 bit - cwnd_gain
  439          *  8 bit - bbr_state, bbr_substate, inhpts;
  440          */
  441         memset(&log.u_bbr, 0, sizeof(log.u_bbr));
  442         log.u_bbr.flex1 = hpts->p_nxt_slot;
  443         log.u_bbr.flex2 = hpts->p_cur_slot;
  444         log.u_bbr.flex3 = hpts->p_prev_slot;
  445         log.u_bbr.flex4 = idx;
  446         log.u_bbr.flex5 = hpts->p_curtick;
  447         log.u_bbr.flex6 = hpts->p_on_queue_cnt;
  448         log.u_bbr.flex7 = hpts->p_cpu;
  449         log.u_bbr.flex8 = (uint8_t)from_callout;
  450         log.u_bbr.inflight = slots_to_run;
  451         log.u_bbr.applimited = hpts->overidden_sleep;
  452         log.u_bbr.delivered = hpts->saved_curtick;
  453         log.u_bbr.timeStamp = tcp_tv_to_usectick(tv);
  454         log.u_bbr.epoch = hpts->saved_curslot;
  455         log.u_bbr.lt_epoch = hpts->saved_prev_slot;
  456         log.u_bbr.pkts_out = hpts->p_delayed_by;
  457         log.u_bbr.lost = hpts->p_hpts_sleep_time;
  458         log.u_bbr.pacing_gain = hpts->p_cpu;
  459         log.u_bbr.pkt_epoch = hpts->p_runningslot;
  460         log.u_bbr.use_lt_bw = 1;
  461         TCP_LOG_EVENTP(tp, NULL,
  462                        &tptosocket(tp)->so_rcv,
  463                        &tptosocket(tp)->so_snd,
  464                        BBR_LOG_HPTSDIAG, 0,
  465                        0, &log, false, tv);
  466 }
  467 
  468 static void
  469 tcp_wakehpts(struct tcp_hpts_entry *hpts)
  470 {
  471         HPTS_MTX_ASSERT(hpts);
  472 
  473         if (tcp_hpts_no_wake_over_thresh && (hpts->p_on_queue_cnt >= conn_cnt_thresh)) {
  474                 hpts->p_direct_wake = 0;
  475                 return;
  476         }
  477         if (hpts->p_hpts_wake_scheduled == 0) {
  478                 hpts->p_hpts_wake_scheduled = 1;
  479                 swi_sched(hpts->ie_cookie, 0);
  480         }
  481 }
  482 
  483 static void
  484 hpts_timeout_swi(void *arg)
  485 {
  486         struct tcp_hpts_entry *hpts;
  487 
  488         hpts = (struct tcp_hpts_entry *)arg;
  489         swi_sched(hpts->ie_cookie, 0);
  490 }
  491 
  492 static void
  493 inp_hpts_insert(struct inpcb *inp, struct tcp_hpts_entry *hpts)
  494 {
  495         struct hptsh *hptsh;
  496 
  497         INP_WLOCK_ASSERT(inp);
  498         HPTS_MTX_ASSERT(hpts);
  499         MPASS(hpts->p_cpu == inp->inp_hpts_cpu);
  500         MPASS(!(inp->inp_flags & INP_DROPPED));
  501 
  502         hptsh = &hpts->p_hptss[inp->inp_hptsslot];
  503 
  504         if (inp->inp_in_hpts == IHPTS_NONE) {
  505                 inp->inp_in_hpts = IHPTS_ONQUEUE;
  506                 in_pcbref(inp);
  507         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
  508                 inp->inp_in_hpts = IHPTS_ONQUEUE;
  509         } else
  510                 MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
  511         inp->inp_hpts_gencnt = hptsh->gencnt;
  512 
  513         TAILQ_INSERT_TAIL(&hptsh->head, inp, inp_hpts);
  514         hptsh->count++;
  515         hpts->p_on_queue_cnt++;
  516 }
  517 
  518 static struct tcp_hpts_entry *
  519 tcp_hpts_lock(struct inpcb *inp)
  520 {
  521         struct tcp_hpts_entry *hpts;
  522 
  523         INP_LOCK_ASSERT(inp);
  524 
  525         hpts = tcp_pace.rp_ent[inp->inp_hpts_cpu];
  526         HPTS_LOCK(hpts);
  527 
  528         return (hpts);
  529 }
  530 
  531 static void
  532 inp_hpts_release(struct inpcb *inp)
  533 {
  534         bool released __diagused;
  535 
  536         inp->inp_in_hpts = IHPTS_NONE;
  537         released = in_pcbrele_wlocked(inp);
  538         MPASS(released == false);
  539 }
  540 
  541 /*
  542  * Called normally with the INP_LOCKED but it
  543  * does not matter, the hpts lock is the key
  544  * but the lock order allows us to hold the
  545  * INP lock and then get the hpts lock.
  546  */
  547 void
  548 tcp_hpts_remove(struct inpcb *inp)
  549 {
  550         struct tcp_hpts_entry *hpts;
  551         struct hptsh *hptsh;
  552 
  553         INP_WLOCK_ASSERT(inp);
  554 
  555         hpts = tcp_hpts_lock(inp);
  556         if (inp->inp_in_hpts == IHPTS_ONQUEUE) {
  557                 hptsh = &hpts->p_hptss[inp->inp_hptsslot];
  558                 inp->inp_hpts_request = 0;
  559                 if (__predict_true(inp->inp_hpts_gencnt == hptsh->gencnt)) {
  560                         TAILQ_REMOVE(&hptsh->head, inp, inp_hpts);
  561                         MPASS(hptsh->count > 0);
  562                         hptsh->count--;
  563                         MPASS(hpts->p_on_queue_cnt > 0);
  564                         hpts->p_on_queue_cnt--;
  565                         inp_hpts_release(inp);
  566                 } else {
  567                         /*
  568                          * tcp_hptsi() now owns the TAILQ head of this inp.
  569                          * Can't TAILQ_REMOVE, just mark it.
  570                          */
  571 #ifdef INVARIANTS
  572                         struct inpcb *tmp;
  573 
  574                         TAILQ_FOREACH(tmp, &hptsh->head, inp_hpts)
  575                                 MPASS(tmp != inp);
  576 #endif
  577                         inp->inp_in_hpts = IHPTS_MOVING;
  578                         inp->inp_hptsslot = -1;
  579                 }
  580         } else if (inp->inp_in_hpts == IHPTS_MOVING) {
  581                 /*
  582                  * Handle a special race condition:
  583                  * tcp_hptsi() moves inpcb to detached tailq
  584                  * tcp_hpts_remove() marks as IHPTS_MOVING, slot = -1
  585                  * tcp_hpts_insert() sets slot to a meaningful value
  586                  * tcp_hpts_remove() again (we are here!), then in_pcbdrop()
  587                  * tcp_hptsi() finds pcb with meaningful slot and INP_DROPPED
  588                  */
  589                 inp->inp_hptsslot = -1;
  590         }
  591         HPTS_UNLOCK(hpts);
  592 }
  593 
  594 bool
  595 tcp_in_hpts(struct inpcb *inp)
  596 {
  597 
  598         return (inp->inp_in_hpts == IHPTS_ONQUEUE);
  599 }
  600 
  601 static inline int
  602 hpts_slot(uint32_t wheel_slot, uint32_t plus)
  603 {
  604         /*
  605          * Given a slot on the wheel, what slot
  606          * is that plus ticks out?
  607          */
  608         KASSERT(wheel_slot < NUM_OF_HPTSI_SLOTS, ("Invalid tick %u not on wheel", wheel_slot));
  609         return ((wheel_slot + plus) % NUM_OF_HPTSI_SLOTS);
  610 }
  611 
  612 static inline int
  613 tick_to_wheel(uint32_t cts_in_wticks)
  614 {
  615         /*
  616          * Given a timestamp in ticks (so by
  617          * default to get it to a real time one
  618          * would multiply by 10.. i.e the number
  619          * of ticks in a slot) map it to our limited
  620          * space wheel.
  621          */
  622         return (cts_in_wticks % NUM_OF_HPTSI_SLOTS);
  623 }
  624 
  625 static inline int
  626 hpts_slots_diff(int prev_slot, int slot_now)
  627 {
  628         /*
  629          * Given two slots that are someplace
  630          * on our wheel. How far are they apart?
  631          */
  632         if (slot_now > prev_slot)
  633                 return (slot_now - prev_slot);
  634         else if (slot_now == prev_slot)
  635                 /*
  636                  * Special case, same means we can go all of our
  637                  * wheel less one slot.
  638                  */
  639                 return (NUM_OF_HPTSI_SLOTS - 1);
  640         else
  641                 return ((NUM_OF_HPTSI_SLOTS - prev_slot) + slot_now);
  642 }
  643 
  644 /*
  645  * Given a slot on the wheel that is the current time
  646  * mapped to the wheel (wheel_slot), what is the maximum
  647  * distance forward that can be obtained without
  648  * wrapping past either prev_slot or running_slot
  649  * depending on the htps state? Also if passed
  650  * a uint32_t *, fill it with the slot location.
  651  *
  652  * Note if you do not give this function the current
  653  * time (that you think it is) mapped to the wheel slot
  654  * then the results will not be what you expect and
  655  * could lead to invalid inserts.
  656  */
  657 static inline int32_t
  658 max_slots_available(struct tcp_hpts_entry *hpts, uint32_t wheel_slot, uint32_t *target_slot)
  659 {
  660         uint32_t dis_to_travel, end_slot, pacer_to_now, avail_on_wheel;
  661 
  662         if ((hpts->p_hpts_active == 1) &&
  663             (hpts->p_wheel_complete == 0)) {
  664                 end_slot = hpts->p_runningslot;
  665                 /* Back up one tick */
  666                 if (end_slot == 0)
  667                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
  668                 else
  669                         end_slot--;
  670                 if (target_slot)
  671                         *target_slot = end_slot;
  672         } else {
  673                 /*
  674                  * For the case where we are
  675                  * not active, or we have
  676                  * completed the pass over
  677                  * the wheel, we can use the
  678                  * prev tick and subtract one from it. This puts us
  679                  * as far out as possible on the wheel.
  680                  */
  681                 end_slot = hpts->p_prev_slot;
  682                 if (end_slot == 0)
  683                         end_slot = NUM_OF_HPTSI_SLOTS - 1;
  684                 else
  685                         end_slot--;
  686                 if (target_slot)
  687                         *target_slot = end_slot;
  688                 /*
  689                  * Now we have close to the full wheel left minus the
  690                  * time it has been since the pacer went to sleep. Note
  691                  * that wheel_tick, passed in, should be the current time
  692                  * from the perspective of the caller, mapped to the wheel.
  693                  */
  694                 if (hpts->p_prev_slot != wheel_slot)
  695                         dis_to_travel = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
  696                 else
  697                         dis_to_travel = 1;
  698                 /*
  699                  * dis_to_travel in this case is the space from when the
  700                  * pacer stopped (p_prev_slot) and where our wheel_slot
  701                  * is now. To know how many slots we can put it in we
  702                  * subtract from the wheel size. We would not want
  703                  * to place something after p_prev_slot or it will
  704                  * get ran too soon.
  705                  */
  706                 return (NUM_OF_HPTSI_SLOTS - dis_to_travel);
  707         }
  708         /*
  709          * So how many slots are open between p_runningslot -> p_cur_slot
  710          * that is what is currently un-available for insertion. Special
  711          * case when we are at the last slot, this gets 1, so that
  712          * the answer to how many slots are available is all but 1.
  713          */
  714         if (hpts->p_runningslot == hpts->p_cur_slot)
  715                 dis_to_travel = 1;
  716         else
  717                 dis_to_travel = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
  718         /*
  719          * How long has the pacer been running?
  720          */
  721         if (hpts->p_cur_slot != wheel_slot) {
  722                 /* The pacer is a bit late */
  723                 pacer_to_now = hpts_slots_diff(hpts->p_cur_slot, wheel_slot);
  724         } else {
  725                 /* The pacer is right on time, now == pacers start time */
  726                 pacer_to_now = 0;
  727         }
  728         /*
  729          * To get the number left we can insert into we simply
  730          * subtract the distance the pacer has to run from how
  731          * many slots there are.
  732          */
  733         avail_on_wheel = NUM_OF_HPTSI_SLOTS - dis_to_travel;
  734         /*
  735          * Now how many of those we will eat due to the pacer's
  736          * time (p_cur_slot) of start being behind the
  737          * real time (wheel_slot)?
  738          */
  739         if (avail_on_wheel <= pacer_to_now) {
  740                 /*
  741                  * Wheel wrap, we can't fit on the wheel, that
  742                  * is unusual the system must be way overloaded!
  743                  * Insert into the assured slot, and return special
  744                  * "".
  745                  */
  746                 counter_u64_add(combined_wheel_wrap, 1);
  747                 *target_slot = hpts->p_nxt_slot;
  748                 return (0);
  749         } else {
  750                 /*
  751                  * We know how many slots are open
  752                  * on the wheel (the reverse of what
  753                  * is left to run. Take away the time
  754                  * the pacer started to now (wheel_slot)
  755                  * and that tells you how many slots are
  756                  * open that can be inserted into that won't
  757                  * be touched by the pacer until later.
  758                  */
  759                 return (avail_on_wheel - pacer_to_now);
  760         }
  761 }
  762 
  763 
  764 #ifdef INVARIANTS
  765 static void
  766 check_if_slot_would_be_wrong(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t inp_hptsslot, int line)
  767 {
  768         /*
  769          * Sanity checks for the pacer with invariants
  770          * on insert.
  771          */
  772         KASSERT(inp_hptsslot < NUM_OF_HPTSI_SLOTS,
  773                 ("hpts:%p inp:%p slot:%d > max",
  774                  hpts, inp, inp_hptsslot));
  775         if ((hpts->p_hpts_active) &&
  776             (hpts->p_wheel_complete == 0)) {
  777                 /*
  778                  * If the pacer is processing a arc
  779                  * of the wheel, we need to make
  780                  * sure we are not inserting within
  781                  * that arc.
  782                  */
  783                 int distance, yet_to_run;
  784 
  785                 distance = hpts_slots_diff(hpts->p_runningslot, inp_hptsslot);
  786                 if (hpts->p_runningslot != hpts->p_cur_slot)
  787                         yet_to_run = hpts_slots_diff(hpts->p_runningslot, hpts->p_cur_slot);
  788                 else
  789                         yet_to_run = 0; /* processing last slot */
  790                 KASSERT(yet_to_run <= distance,
  791                         ("hpts:%p inp:%p slot:%d distance:%d yet_to_run:%d rs:%d cs:%d",
  792                          hpts, inp, inp_hptsslot,
  793                          distance, yet_to_run,
  794                          hpts->p_runningslot, hpts->p_cur_slot));
  795         }
  796 }
  797 #endif
  798 
  799 uint32_t
  800 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag)
  801 {
  802         struct tcp_hpts_entry *hpts;
  803         struct timeval tv;
  804         uint32_t slot_on, wheel_cts, last_slot, need_new_to = 0;
  805         int32_t wheel_slot, maxslots;
  806         bool need_wakeup = false;
  807 
  808         INP_WLOCK_ASSERT(inp);
  809         MPASS(!tcp_in_hpts(inp));
  810         MPASS(!(inp->inp_flags & INP_DROPPED));
  811 
  812         /*
  813          * We now return the next-slot the hpts will be on, beyond its
  814          * current run (if up) or where it was when it stopped if it is
  815          * sleeping.
  816          */
  817         hpts = tcp_hpts_lock(inp);
  818         microuptime(&tv);
  819         if (diag) {
  820                 memset(diag, 0, sizeof(struct hpts_diag));
  821                 diag->p_hpts_active = hpts->p_hpts_active;
  822                 diag->p_prev_slot = hpts->p_prev_slot;
  823                 diag->p_runningslot = hpts->p_runningslot;
  824                 diag->p_nxt_slot = hpts->p_nxt_slot;
  825                 diag->p_cur_slot = hpts->p_cur_slot;
  826                 diag->p_curtick = hpts->p_curtick;
  827                 diag->p_lasttick = hpts->p_lasttick;
  828                 diag->slot_req = slot;
  829                 diag->p_on_min_sleep = hpts->p_on_min_sleep;
  830                 diag->hpts_sleep_time = hpts->p_hpts_sleep_time;
  831         }
  832         if (slot == 0) {
  833                 /* Ok we need to set it on the hpts in the current slot */
  834                 inp->inp_hpts_request = 0;
  835                 if ((hpts->p_hpts_active == 0) || (hpts->p_wheel_complete)) {
  836                         /*
  837                          * A sleeping hpts we want in next slot to run
  838                          * note that in this state p_prev_slot == p_cur_slot
  839                          */
  840                         inp->inp_hptsslot = hpts_slot(hpts->p_prev_slot, 1);
  841                         if ((hpts->p_on_min_sleep == 0) &&
  842                             (hpts->p_hpts_active == 0))
  843                                 need_wakeup = true;
  844                 } else
  845                         inp->inp_hptsslot = hpts->p_runningslot;
  846                 if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
  847                         inp_hpts_insert(inp, hpts);
  848                 if (need_wakeup) {
  849                         /*
  850                          * Activate the hpts if it is sleeping and its
  851                          * timeout is not 1.
  852                          */
  853                         hpts->p_direct_wake = 1;
  854                         tcp_wakehpts(hpts);
  855                 }
  856                 slot_on = hpts->p_nxt_slot;
  857                 HPTS_UNLOCK(hpts);
  858 
  859                 return (slot_on);
  860         }
  861         /* Get the current time relative to the wheel */
  862         wheel_cts = tcp_tv_to_hptstick(&tv);
  863         /* Map it onto the wheel */
  864         wheel_slot = tick_to_wheel(wheel_cts);
  865         /* Now what's the max we can place it at? */
  866         maxslots = max_slots_available(hpts, wheel_slot, &last_slot);
  867         if (diag) {
  868                 diag->wheel_slot = wheel_slot;
  869                 diag->maxslots = maxslots;
  870                 diag->wheel_cts = wheel_cts;
  871         }
  872         if (maxslots == 0) {
  873                 /* The pacer is in a wheel wrap behind, yikes! */
  874                 if (slot > 1) {
  875                         /*
  876                          * Reduce by 1 to prevent a forever loop in
  877                          * case something else is wrong. Note this
  878                          * probably does not hurt because the pacer
  879                          * if its true is so far behind we will be
  880                          * > 1second late calling anyway.
  881                          */
  882                         slot--;
  883                 }
  884                 inp->inp_hptsslot = last_slot;
  885                 inp->inp_hpts_request = slot;
  886         } else  if (maxslots >= slot) {
  887                 /* It all fits on the wheel */
  888                 inp->inp_hpts_request = 0;
  889                 inp->inp_hptsslot = hpts_slot(wheel_slot, slot);
  890         } else {
  891                 /* It does not fit */
  892                 inp->inp_hpts_request = slot - maxslots;
  893                 inp->inp_hptsslot = last_slot;
  894         }
  895         if (diag) {
  896                 diag->slot_remaining = inp->inp_hpts_request;
  897                 diag->inp_hptsslot = inp->inp_hptsslot;
  898         }
  899 #ifdef INVARIANTS
  900         check_if_slot_would_be_wrong(hpts, inp, inp->inp_hptsslot, line);
  901 #endif
  902         if (__predict_true(inp->inp_in_hpts != IHPTS_MOVING))
  903                 inp_hpts_insert(inp, hpts);
  904         if ((hpts->p_hpts_active == 0) &&
  905             (inp->inp_hpts_request == 0) &&
  906             (hpts->p_on_min_sleep == 0)) {
  907                 /*
  908                  * The hpts is sleeping and NOT on a minimum
  909                  * sleep time, we need to figure out where
  910                  * it will wake up at and if we need to reschedule
  911                  * its time-out.
  912                  */
  913                 uint32_t have_slept, yet_to_sleep;
  914 
  915                 /* Now do we need to restart the hpts's timer? */
  916                 have_slept = hpts_slots_diff(hpts->p_prev_slot, wheel_slot);
  917                 if (have_slept < hpts->p_hpts_sleep_time)
  918                         yet_to_sleep = hpts->p_hpts_sleep_time - have_slept;
  919                 else {
  920                         /* We are over-due */
  921                         yet_to_sleep = 0;
  922                         need_wakeup = 1;
  923                 }
  924                 if (diag) {
  925                         diag->have_slept = have_slept;
  926                         diag->yet_to_sleep = yet_to_sleep;
  927                 }
  928                 if (yet_to_sleep &&
  929                     (yet_to_sleep > slot)) {
  930                         /*
  931                          * We need to reschedule the hpts's time-out.
  932                          */
  933                         hpts->p_hpts_sleep_time = slot;
  934                         need_new_to = slot * HPTS_TICKS_PER_SLOT;
  935                 }
  936         }
  937         /*
  938          * Now how far is the hpts sleeping to? if active is 1, its
  939          * up and ticking we do nothing, otherwise we may need to
  940          * reschedule its callout if need_new_to is set from above.
  941          */
  942         if (need_wakeup) {
  943                 hpts->p_direct_wake = 1;
  944                 tcp_wakehpts(hpts);
  945                 if (diag) {
  946                         diag->need_new_to = 0;
  947                         diag->co_ret = 0xffff0000;
  948                 }
  949         } else if (need_new_to) {
  950                 int32_t co_ret;
  951                 struct timeval tv;
  952                 sbintime_t sb;
  953 
  954                 tv.tv_sec = 0;
  955                 tv.tv_usec = 0;
  956                 while (need_new_to > HPTS_USEC_IN_SEC) {
  957                         tv.tv_sec++;
  958                         need_new_to -= HPTS_USEC_IN_SEC;
  959                 }
  960                 tv.tv_usec = need_new_to;
  961                 sb = tvtosbt(tv);
  962                 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0,
  963                                               hpts_timeout_swi, hpts, hpts->p_cpu,
  964                                               (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
  965                 if (diag) {
  966                         diag->need_new_to = need_new_to;
  967                         diag->co_ret = co_ret;
  968                 }
  969         }
  970         slot_on = hpts->p_nxt_slot;
  971         HPTS_UNLOCK(hpts);
  972 
  973         return (slot_on);
  974 }
  975 
  976 uint16_t
  977 hpts_random_cpu(struct inpcb *inp){
  978         /*
  979          * No flow type set distribute the load randomly.
  980          */
  981         uint16_t cpuid;
  982         uint32_t ran;
  983 
  984         /*
  985          * Shortcut if it is already set. XXXGL: does it happen?
  986          */
  987         if (inp->inp_hpts_cpu_set) {
  988                 return (inp->inp_hpts_cpu);
  989         }
  990         /* Nothing set use a random number */
  991         ran = arc4random();
  992         cpuid = (((ran & 0xffff) % mp_ncpus) % tcp_pace.rp_num_hptss);
  993         return (cpuid);
  994 }
  995 
  996 static uint16_t
  997 hpts_cpuid(struct inpcb *inp, int *failed)
  998 {
  999         u_int cpuid;
 1000 #ifdef NUMA
 1001         struct hpts_domain_info *di;
 1002 #endif
 1003 
 1004         *failed = 0;
 1005         if (inp->inp_hpts_cpu_set) {
 1006                 return (inp->inp_hpts_cpu);
 1007         }
 1008         /*
 1009          * If we are using the irq cpu set by LRO or
 1010          * the driver then it overrides all other domains.
 1011          */
 1012         if (tcp_use_irq_cpu) {
 1013                 if (inp->inp_irq_cpu_set == 0) {
 1014                         *failed = 1;
 1015                         return(0);
 1016                 }
 1017                 return(inp->inp_irq_cpu);
 1018         }
 1019         /* If one is set the other must be the same */
 1020 #ifdef RSS
 1021         cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
 1022         if (cpuid == NETISR_CPUID_NONE)
 1023                 return (hpts_random_cpu(inp));
 1024         else
 1025                 return (cpuid);
 1026 #endif
 1027         /*
 1028          * We don't have a flowid -> cpuid mapping, so cheat and just map
 1029          * unknown cpuids to curcpu.  Not the best, but apparently better
 1030          * than defaulting to swi 0.
 1031          */
 1032         if (inp->inp_flowtype == M_HASHTYPE_NONE) {
 1033                 counter_u64_add(cpu_uses_random, 1);
 1034                 return (hpts_random_cpu(inp));
 1035         }
 1036         /*
 1037          * Hash to a thread based on the flowid.  If we are using numa,
 1038          * then restrict the hash to the numa domain where the inp lives.
 1039          */
 1040 
 1041 #ifdef NUMA
 1042         if ((vm_ndomains == 1) ||
 1043             (inp->inp_numa_domain == M_NODOM)) {
 1044 #endif
 1045                 cpuid = inp->inp_flowid % mp_ncpus;
 1046 #ifdef NUMA
 1047         } else {
 1048                 /* Hash into the cpu's that use that domain */
 1049                 di = &hpts_domains[inp->inp_numa_domain];
 1050                 cpuid = di->cpu[inp->inp_flowid % di->count];
 1051         }
 1052 #endif
 1053         counter_u64_add(cpu_uses_flowid, 1);
 1054         return (cpuid);
 1055 }
 1056 
 1057 #ifdef not_longer_used_gleb
 1058 static void
 1059 tcp_drop_in_pkts(struct tcpcb *tp)
 1060 {
 1061         struct mbuf *m, *n;
 1062 
 1063         m = tp->t_in_pkt;
 1064         if (m)
 1065                 n = m->m_nextpkt;
 1066         else
 1067                 n = NULL;
 1068         tp->t_in_pkt = NULL;
 1069         while (m) {
 1070                 m_freem(m);
 1071                 m = n;
 1072                 if (m)
 1073                         n = m->m_nextpkt;
 1074         }
 1075 }
 1076 #endif
 1077 
 1078 static void
 1079 tcp_hpts_set_max_sleep(struct tcp_hpts_entry *hpts, int wrap_loop_cnt)
 1080 {
 1081         uint32_t t = 0, i;
 1082 
 1083         if ((hpts->p_on_queue_cnt) && (wrap_loop_cnt < 2)) {
 1084                 /*
 1085                  * Find next slot that is occupied and use that to
 1086                  * be the sleep time.
 1087                  */
 1088                 for (i = 0, t = hpts_slot(hpts->p_cur_slot, 1); i < NUM_OF_HPTSI_SLOTS; i++) {
 1089                         if (TAILQ_EMPTY(&hpts->p_hptss[t].head) == 0) {
 1090                                 break;
 1091                         }
 1092                         t = (t + 1) % NUM_OF_HPTSI_SLOTS;
 1093                 }
 1094                 KASSERT((i != NUM_OF_HPTSI_SLOTS), ("Hpts:%p cnt:%d but none found", hpts, hpts->p_on_queue_cnt));
 1095                 hpts->p_hpts_sleep_time = min((i + 1), hpts_sleep_max);
 1096         } else {
 1097                 /* No one on the wheel sleep for all but 400 slots or sleep max  */
 1098                 hpts->p_hpts_sleep_time = hpts_sleep_max;
 1099         }
 1100 }
 1101 
 1102 static int32_t
 1103 tcp_hptsi(struct tcp_hpts_entry *hpts, int from_callout)
 1104 {
 1105         struct tcpcb *tp;
 1106         struct inpcb *inp;
 1107         struct timeval tv;
 1108         int32_t slots_to_run, i, error;
 1109         int32_t loop_cnt = 0;
 1110         int32_t did_prefetch = 0;
 1111         int32_t prefetch_ninp = 0;
 1112         int32_t prefetch_tp = 0;
 1113         int32_t wrap_loop_cnt = 0;
 1114         int32_t slot_pos_of_endpoint = 0;
 1115         int32_t orig_exit_slot;
 1116         int8_t completed_measure = 0, seen_endpoint = 0;
 1117 
 1118         HPTS_MTX_ASSERT(hpts);
 1119         NET_EPOCH_ASSERT();
 1120         /* record previous info for any logging */
 1121         hpts->saved_lasttick = hpts->p_lasttick;
 1122         hpts->saved_curtick = hpts->p_curtick;
 1123         hpts->saved_curslot = hpts->p_cur_slot;
 1124         hpts->saved_prev_slot = hpts->p_prev_slot;
 1125 
 1126         hpts->p_lasttick = hpts->p_curtick;
 1127         hpts->p_curtick = tcp_gethptstick(&tv);
 1128         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
 1129         orig_exit_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
 1130         if ((hpts->p_on_queue_cnt == 0) ||
 1131             (hpts->p_lasttick == hpts->p_curtick)) {
 1132                 /*
 1133                  * No time has yet passed,
 1134                  * or nothing to do.
 1135                  */
 1136                 hpts->p_prev_slot = hpts->p_cur_slot;
 1137                 hpts->p_lasttick = hpts->p_curtick;
 1138                 goto no_run;
 1139         }
 1140 again:
 1141         hpts->p_wheel_complete = 0;
 1142         HPTS_MTX_ASSERT(hpts);
 1143         slots_to_run = hpts_slots_diff(hpts->p_prev_slot, hpts->p_cur_slot);
 1144         if (((hpts->p_curtick - hpts->p_lasttick) >
 1145              ((NUM_OF_HPTSI_SLOTS-1) * HPTS_TICKS_PER_SLOT)) &&
 1146             (hpts->p_on_queue_cnt != 0)) {
 1147                 /*
 1148                  * Wheel wrap is occuring, basically we
 1149                  * are behind and the distance between
 1150                  * run's has spread so much it has exceeded
 1151                  * the time on the wheel (1.024 seconds). This
 1152                  * is ugly and should NOT be happening. We
 1153                  * need to run the entire wheel. We last processed
 1154                  * p_prev_slot, so that needs to be the last slot
 1155                  * we run. The next slot after that should be our
 1156                  * reserved first slot for new, and then starts
 1157                  * the running position. Now the problem is the
 1158                  * reserved "not to yet" place does not exist
 1159                  * and there may be inp's in there that need
 1160                  * running. We can merge those into the
 1161                  * first slot at the head.
 1162                  */
 1163                 wrap_loop_cnt++;
 1164                 hpts->p_nxt_slot = hpts_slot(hpts->p_prev_slot, 1);
 1165                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 2);
 1166                 /*
 1167                  * Adjust p_cur_slot to be where we are starting from
 1168                  * hopefully we will catch up (fat chance if something
 1169                  * is broken this bad :( )
 1170                  */
 1171                 hpts->p_cur_slot = hpts->p_prev_slot;
 1172                 /*
 1173                  * The next slot has guys to run too, and that would
 1174                  * be where we would normally start, lets move them into
 1175                  * the next slot (p_prev_slot + 2) so that we will
 1176                  * run them, the extra 10usecs of late (by being
 1177                  * put behind) does not really matter in this situation.
 1178                  */
 1179                 TAILQ_FOREACH(inp, &hpts->p_hptss[hpts->p_nxt_slot].head,
 1180                     inp_hpts) {
 1181                         MPASS(inp->inp_hptsslot == hpts->p_nxt_slot);
 1182                         MPASS(inp->inp_hpts_gencnt ==
 1183                             hpts->p_hptss[hpts->p_nxt_slot].gencnt);
 1184                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
 1185 
 1186                         /*
 1187                          * Update gencnt and nextslot accordingly to match
 1188                          * the new location. This is safe since it takes both
 1189                          * the INP lock and the pacer mutex to change the
 1190                          * inp_hptsslot and inp_hpts_gencnt.
 1191                          */
 1192                         inp->inp_hpts_gencnt =
 1193                             hpts->p_hptss[hpts->p_runningslot].gencnt;
 1194                         inp->inp_hptsslot = hpts->p_runningslot;
 1195                 }
 1196                 TAILQ_CONCAT(&hpts->p_hptss[hpts->p_runningslot].head,
 1197                     &hpts->p_hptss[hpts->p_nxt_slot].head, inp_hpts);
 1198                 hpts->p_hptss[hpts->p_runningslot].count +=
 1199                     hpts->p_hptss[hpts->p_nxt_slot].count;
 1200                 hpts->p_hptss[hpts->p_nxt_slot].count = 0;
 1201                 hpts->p_hptss[hpts->p_nxt_slot].gencnt++;
 1202                 slots_to_run = NUM_OF_HPTSI_SLOTS - 1;
 1203                 counter_u64_add(wheel_wrap, 1);
 1204         } else {
 1205                 /*
 1206                  * Nxt slot is always one after p_runningslot though
 1207                  * its not used usually unless we are doing wheel wrap.
 1208                  */
 1209                 hpts->p_nxt_slot = hpts->p_prev_slot;
 1210                 hpts->p_runningslot = hpts_slot(hpts->p_prev_slot, 1);
 1211         }
 1212         if (hpts->p_on_queue_cnt == 0) {
 1213                 goto no_one;
 1214         }
 1215         for (i = 0; i < slots_to_run; i++) {
 1216                 struct inpcb *inp, *ninp;
 1217                 TAILQ_HEAD(, inpcb) head = TAILQ_HEAD_INITIALIZER(head);
 1218                 struct hptsh *hptsh;
 1219                 uint32_t runningslot;
 1220 
 1221                 /*
 1222                  * Calculate our delay, if there are no extra ticks there
 1223                  * was not any (i.e. if slots_to_run == 1, no delay).
 1224                  */
 1225                 hpts->p_delayed_by = (slots_to_run - (i + 1)) *
 1226                     HPTS_TICKS_PER_SLOT;
 1227 
 1228                 runningslot = hpts->p_runningslot;
 1229                 hptsh = &hpts->p_hptss[runningslot];
 1230                 TAILQ_SWAP(&head, &hptsh->head, inpcb, inp_hpts);
 1231                 hpts->p_on_queue_cnt -= hptsh->count;
 1232                 hptsh->count = 0;
 1233                 hptsh->gencnt++;
 1234 
 1235                 HPTS_UNLOCK(hpts);
 1236 
 1237                 TAILQ_FOREACH_SAFE(inp, &head, inp_hpts, ninp) {
 1238                         bool set_cpu;
 1239 
 1240                         if (ninp != NULL) {
 1241                                 /* We prefetch the next inp if possible */
 1242                                 kern_prefetch(ninp, &prefetch_ninp);
 1243                                 prefetch_ninp = 1;
 1244                         }
 1245 
 1246                         /* For debugging */
 1247                         if (seen_endpoint == 0) {
 1248                                 seen_endpoint = 1;
 1249                                 orig_exit_slot = slot_pos_of_endpoint =
 1250                                     runningslot;
 1251                         } else if (completed_measure == 0) {
 1252                                 /* Record the new position */
 1253                                 orig_exit_slot = runningslot;
 1254                         }
 1255 
 1256                         INP_WLOCK(inp);
 1257                         if (inp->inp_hpts_cpu_set == 0) {
 1258                                 set_cpu = true;
 1259                         } else {
 1260                                 set_cpu = false;
 1261                         }
 1262 
 1263                         if (__predict_false(inp->inp_in_hpts == IHPTS_MOVING)) {
 1264                                 if (inp->inp_hptsslot == -1) {
 1265                                         inp->inp_in_hpts = IHPTS_NONE;
 1266                                         if (in_pcbrele_wlocked(inp) == false)
 1267                                                 INP_WUNLOCK(inp);
 1268                                 } else {
 1269                                         HPTS_LOCK(hpts);
 1270                                         inp_hpts_insert(inp, hpts);
 1271                                         HPTS_UNLOCK(hpts);
 1272                                         INP_WUNLOCK(inp);
 1273                                 }
 1274                                 continue;
 1275                         }
 1276 
 1277                         MPASS(inp->inp_in_hpts == IHPTS_ONQUEUE);
 1278                         MPASS(!(inp->inp_flags & INP_DROPPED));
 1279                         KASSERT(runningslot == inp->inp_hptsslot,
 1280                                 ("Hpts:%p inp:%p slot mis-aligned %u vs %u",
 1281                                  hpts, inp, runningslot, inp->inp_hptsslot));
 1282 
 1283                         if (inp->inp_hpts_request) {
 1284                                 /*
 1285                                  * This guy is deferred out further in time
 1286                                  * then our wheel had available on it.
 1287                                  * Push him back on the wheel or run it
 1288                                  * depending.
 1289                                  */
 1290                                 uint32_t maxslots, last_slot, remaining_slots;
 1291 
 1292                                 remaining_slots = slots_to_run - (i + 1);
 1293                                 if (inp->inp_hpts_request > remaining_slots) {
 1294                                         HPTS_LOCK(hpts);
 1295                                         /*
 1296                                          * How far out can we go?
 1297                                          */
 1298                                         maxslots = max_slots_available(hpts,
 1299                                             hpts->p_cur_slot, &last_slot);
 1300                                         if (maxslots >= inp->inp_hpts_request) {
 1301                                                 /* We can place it finally to
 1302                                                  * be processed.  */
 1303                                                 inp->inp_hptsslot = hpts_slot(
 1304                                                     hpts->p_runningslot,
 1305                                                     inp->inp_hpts_request);
 1306                                                 inp->inp_hpts_request = 0;
 1307                                         } else {
 1308                                                 /* Work off some more time */
 1309                                                 inp->inp_hptsslot = last_slot;
 1310                                                 inp->inp_hpts_request -=
 1311                                                     maxslots;
 1312                                         }
 1313                                         inp_hpts_insert(inp, hpts);
 1314                                         HPTS_UNLOCK(hpts);
 1315                                         INP_WUNLOCK(inp);
 1316                                         continue;
 1317                                 }
 1318                                 inp->inp_hpts_request = 0;
 1319                                 /* Fall through we will so do it now */
 1320                         }
 1321 
 1322                         inp_hpts_release(inp);
 1323                         tp = intotcpcb(inp);
 1324                         MPASS(tp);
 1325                         if (set_cpu) {
 1326                                 /*
 1327                                  * Setup so the next time we will move to
 1328                                  * the right CPU. This should be a rare
 1329                                  * event. It will sometimes happens when we
 1330                                  * are the client side (usually not the
 1331                                  * server). Somehow tcp_output() gets called
 1332                                  * before the tcp_do_segment() sets the
 1333                                  * intial state. This means the r_cpu and
 1334                                  * r_hpts_cpu is 0. We get on the hpts, and
 1335                                  * then tcp_input() gets called setting up
 1336                                  * the r_cpu to the correct value. The hpts
 1337                                  * goes off and sees the mis-match. We
 1338                                  * simply correct it here and the CPU will
 1339                                  * switch to the new hpts nextime the tcb
 1340                                  * gets added to the hpts (not this one)
 1341                                  * :-)
 1342                                  */
 1343                                 tcp_set_hpts(inp);
 1344                         }
 1345                         CURVNET_SET(inp->inp_vnet);
 1346                         /* Lets do any logging that we might want to */
 1347                         if (hpts_does_tp_logging && (tp->t_logstate != TCP_LOG_STATE_OFF)) {
 1348                                 tcp_hpts_log(hpts, tp, &tv, slots_to_run, i, from_callout);
 1349                         }
 1350 
 1351                         if (tp->t_fb_ptr != NULL) {
 1352                                 kern_prefetch(tp->t_fb_ptr, &did_prefetch);
 1353                                 did_prefetch = 1;
 1354                         }
 1355                         if ((inp->inp_flags2 & INP_SUPPORTS_MBUFQ) && tp->t_in_pkt) {
 1356                                 error = (*tp->t_fb->tfb_do_queued_segments)(inp->inp_socket, tp, 0);
 1357                                 if (error) {
 1358                                         /* The input killed the connection */
 1359                                         goto skip_pacing;
 1360                                 }
 1361                         }
 1362                         inp->inp_hpts_calls = 1;
 1363                         error = tcp_output(tp);
 1364                         if (error < 0)
 1365                                 goto skip_pacing;
 1366                         inp->inp_hpts_calls = 0;
 1367                         if (ninp) {
 1368                                 /*
 1369                                  * If we have a nxt inp, see if we can
 1370                                  * prefetch it. Note this may seem
 1371                                  * "risky" since we have no locks (other
 1372                                  * than the previous inp) and there no
 1373                                  * assurance that ninp was not pulled while
 1374                                  * we were processing inp and freed. If this
 1375                                  * occurred it could mean that either:
 1376                                  *
 1377                                  * a) Its NULL (which is fine we won't go
 1378                                  * here) <or> b) Its valid (which is cool we
 1379                                  * will prefetch it) <or> c) The inp got
 1380                                  * freed back to the slab which was
 1381                                  * reallocated. Then the piece of memory was
 1382                                  * re-used and something else (not an
 1383                                  * address) is in inp_ppcb. If that occurs
 1384                                  * we don't crash, but take a TLB shootdown
 1385                                  * performance hit (same as if it was NULL
 1386                                  * and we tried to pre-fetch it).
 1387                                  *
 1388                                  * Considering that the likelyhood of <c> is
 1389                                  * quite rare we will take a risk on doing
 1390                                  * this. If performance drops after testing
 1391                                  * we can always take this out. NB: the
 1392                                  * kern_prefetch on amd64 actually has
 1393                                  * protection against a bad address now via
 1394                                  * the DMAP_() tests. This will prevent the
 1395                                  * TLB hit, and instead if <c> occurs just
 1396                                  * cause us to load cache with a useless
 1397                                  * address (to us).
 1398                                  *
 1399                                  * XXXGL: with tcpcb == inpcb, I'm unsure this
 1400                                  * prefetch is still correct and useful.
 1401                                  */
 1402                                 kern_prefetch(ninp, &prefetch_tp);
 1403                                 prefetch_tp = 1;
 1404                         }
 1405                         INP_WUNLOCK(inp);
 1406                 skip_pacing:
 1407                         CURVNET_RESTORE();
 1408                 }
 1409                 if (seen_endpoint) {
 1410                         /*
 1411                          * We now have a accurate distance between
 1412                          * slot_pos_of_endpoint <-> orig_exit_slot
 1413                          * to tell us how late we were, orig_exit_slot
 1414                          * is where we calculated the end of our cycle to
 1415                          * be when we first entered.
 1416                          */
 1417                         completed_measure = 1;
 1418                 }
 1419                 HPTS_LOCK(hpts);
 1420                 hpts->p_runningslot++;
 1421                 if (hpts->p_runningslot >= NUM_OF_HPTSI_SLOTS) {
 1422                         hpts->p_runningslot = 0;
 1423                 }
 1424         }
 1425 no_one:
 1426         HPTS_MTX_ASSERT(hpts);
 1427         hpts->p_delayed_by = 0;
 1428         /*
 1429          * Check to see if we took an excess amount of time and need to run
 1430          * more ticks (if we did not hit eno-bufs).
 1431          */
 1432         hpts->p_prev_slot = hpts->p_cur_slot;
 1433         hpts->p_lasttick = hpts->p_curtick;
 1434         if ((from_callout == 0) || (loop_cnt > max_pacer_loops)) {
 1435                 /*
 1436                  * Something is serious slow we have
 1437                  * looped through processing the wheel
 1438                  * and by the time we cleared the
 1439                  * needs to run max_pacer_loops time
 1440                  * we still needed to run. That means
 1441                  * the system is hopelessly behind and
 1442                  * can never catch up :(
 1443                  *
 1444                  * We will just lie to this thread
 1445                  * and let it thing p_curtick is
 1446                  * correct. When it next awakens
 1447                  * it will find itself further behind.
 1448                  */
 1449                 if (from_callout)
 1450                         counter_u64_add(hpts_hopelessly_behind, 1);
 1451                 goto no_run;
 1452         }
 1453         hpts->p_curtick = tcp_gethptstick(&tv);
 1454         hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
 1455         if (seen_endpoint == 0) {
 1456                 /* We saw no endpoint but we may be looping */
 1457                 orig_exit_slot = hpts->p_cur_slot;
 1458         }
 1459         if ((wrap_loop_cnt < 2) &&
 1460             (hpts->p_lasttick != hpts->p_curtick)) {
 1461                 counter_u64_add(hpts_loops, 1);
 1462                 loop_cnt++;
 1463                 goto again;
 1464         }
 1465 no_run:
 1466         cts_last_ran[hpts->p_num] = tcp_tv_to_usectick(&tv);
 1467         /*
 1468          * Set flag to tell that we are done for
 1469          * any slot input that happens during
 1470          * input.
 1471          */
 1472         hpts->p_wheel_complete = 1;
 1473         /*
 1474          * Now did we spend too long running input and need to run more ticks?
 1475          * Note that if wrap_loop_cnt < 2 then we should have the conditions
 1476          * in the KASSERT's true. But if the wheel is behind i.e. wrap_loop_cnt
 1477          * is greater than 2, then the condtion most likely are *not* true.
 1478          * Also if we are called not from the callout, we don't run the wheel
 1479          * multiple times so the slots may not align either.
 1480          */
 1481         KASSERT(((hpts->p_prev_slot == hpts->p_cur_slot) ||
 1482                  (wrap_loop_cnt >= 2) || (from_callout == 0)),
 1483                 ("H:%p p_prev_slot:%u not equal to p_cur_slot:%u", hpts,
 1484                  hpts->p_prev_slot, hpts->p_cur_slot));
 1485         KASSERT(((hpts->p_lasttick == hpts->p_curtick)
 1486                  || (wrap_loop_cnt >= 2) || (from_callout == 0)),
 1487                 ("H:%p p_lasttick:%u not equal to p_curtick:%u", hpts,
 1488                  hpts->p_lasttick, hpts->p_curtick));
 1489         if (from_callout && (hpts->p_lasttick != hpts->p_curtick)) {
 1490                 hpts->p_curtick = tcp_gethptstick(&tv);
 1491                 counter_u64_add(hpts_loops, 1);
 1492                 hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
 1493                 goto again;
 1494         }
 1495 
 1496         if (from_callout){
 1497                 tcp_hpts_set_max_sleep(hpts, wrap_loop_cnt);
 1498         }
 1499         if (seen_endpoint)
 1500                 return(hpts_slots_diff(slot_pos_of_endpoint, orig_exit_slot));
 1501         else
 1502                 return (0);
 1503 }
 1504 
 1505 void
 1506 __tcp_set_hpts(struct inpcb *inp, int32_t line)
 1507 {
 1508         struct tcp_hpts_entry *hpts;
 1509         int failed;
 1510 
 1511         INP_WLOCK_ASSERT(inp);
 1512         hpts = tcp_hpts_lock(inp);
 1513         if ((inp->inp_in_hpts == 0) &&
 1514             (inp->inp_hpts_cpu_set == 0)) {
 1515                 inp->inp_hpts_cpu = hpts_cpuid(inp, &failed);
 1516                 if (failed == 0)
 1517                         inp->inp_hpts_cpu_set = 1;
 1518         }
 1519         mtx_unlock(&hpts->p_mtx);
 1520 }
 1521 
 1522 static void
 1523 __tcp_run_hpts(struct tcp_hpts_entry *hpts)
 1524 {
 1525         int ticks_ran;
 1526 
 1527         if (hpts->p_hpts_active) {
 1528                 /* Already active */
 1529                 return;
 1530         }
 1531         if (mtx_trylock(&hpts->p_mtx) == 0) {
 1532                 /* Someone else got the lock */
 1533                 return;
 1534         }
 1535         if (hpts->p_hpts_active)
 1536                 goto out_with_mtx;
 1537         hpts->syscall_cnt++;
 1538         counter_u64_add(hpts_direct_call, 1);
 1539         hpts->p_hpts_active = 1;
 1540         ticks_ran = tcp_hptsi(hpts, 0);
 1541         /* We may want to adjust the sleep values here */
 1542         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
 1543                 if (ticks_ran > ticks_indicate_less_sleep) {
 1544                         struct timeval tv;
 1545                         sbintime_t sb;
 1546 
 1547                         hpts->p_mysleep.tv_usec /= 2;
 1548                         if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
 1549                                 hpts->p_mysleep.tv_usec = dynamic_min_sleep;
 1550                         /* Reschedule with new to value */
 1551                         tcp_hpts_set_max_sleep(hpts, 0);
 1552                         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
 1553                         /* Validate its in the right ranges */
 1554                         if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
 1555                                 hpts->overidden_sleep = tv.tv_usec;
 1556                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
 1557                         } else if (tv.tv_usec > dynamic_max_sleep) {
 1558                                 /* Lets not let sleep get above this value */
 1559                                 hpts->overidden_sleep = tv.tv_usec;
 1560                                 tv.tv_usec = dynamic_max_sleep;
 1561                         }
 1562                         /*
 1563                          * In this mode the timer is a backstop to
 1564                          * all the userret/lro_flushes so we use
 1565                          * the dynamic value and set the on_min_sleep
 1566                          * flag so we will not be awoken.
 1567                          */
 1568                         sb = tvtosbt(tv);
 1569                         /* Store off to make visible the actual sleep time */
 1570                         hpts->sleeping = tv.tv_usec;
 1571                         callout_reset_sbt_on(&hpts->co, sb, 0,
 1572                                              hpts_timeout_swi, hpts, hpts->p_cpu,
 1573                                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
 1574                 } else if (ticks_ran < ticks_indicate_more_sleep) {
 1575                         /* For the further sleep, don't reschedule  hpts */
 1576                         hpts->p_mysleep.tv_usec *= 2;
 1577                         if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
 1578                                 hpts->p_mysleep.tv_usec = dynamic_max_sleep;
 1579                 }
 1580                 hpts->p_on_min_sleep = 1;
 1581         }
 1582         hpts->p_hpts_active = 0;
 1583 out_with_mtx:
 1584         HPTS_MTX_ASSERT(hpts);
 1585         mtx_unlock(&hpts->p_mtx);
 1586 }
 1587 
 1588 static struct tcp_hpts_entry *
 1589 tcp_choose_hpts_to_run(void)
 1590 {
 1591         int i, oldest_idx, start, end;
 1592         uint32_t cts, time_since_ran, calc;
 1593 
 1594         cts = tcp_get_usecs(NULL);
 1595         time_since_ran = 0;
 1596         /* Default is all one group */
 1597         start = 0;
 1598         end = tcp_pace.rp_num_hptss;
 1599         /*
 1600          * If we have more than one L3 group figure out which one
 1601          * this CPU is in.
 1602          */
 1603         if (tcp_pace.grp_cnt > 1) {
 1604                 for (i = 0; i < tcp_pace.grp_cnt; i++) {
 1605                         if (CPU_ISSET(curcpu, &tcp_pace.grps[i]->cg_mask)) {
 1606                                 start = tcp_pace.grps[i]->cg_first;
 1607                                 end = (tcp_pace.grps[i]->cg_last + 1);
 1608                                 break;
 1609                         }
 1610                 }
 1611         }
 1612         oldest_idx = -1;
 1613         for (i = start; i < end; i++) {
 1614                 if (TSTMP_GT(cts, cts_last_ran[i]))
 1615                         calc = cts - cts_last_ran[i];
 1616                 else
 1617                         calc = 0;
 1618                 if (calc > time_since_ran) {
 1619                         oldest_idx = i;
 1620                         time_since_ran = calc;
 1621                 }
 1622         }
 1623         if (oldest_idx >= 0)
 1624                 return(tcp_pace.rp_ent[oldest_idx]);
 1625         else
 1626                 return(tcp_pace.rp_ent[(curcpu % tcp_pace.rp_num_hptss)]);
 1627 }
 1628 
 1629 
 1630 void
 1631 tcp_run_hpts(void)
 1632 {
 1633         static struct tcp_hpts_entry *hpts;
 1634         struct epoch_tracker et;
 1635 
 1636         NET_EPOCH_ENTER(et);
 1637         hpts = tcp_choose_hpts_to_run();
 1638         __tcp_run_hpts(hpts);
 1639         NET_EPOCH_EXIT(et);
 1640 }
 1641 
 1642 
 1643 static void
 1644 tcp_hpts_thread(void *ctx)
 1645 {
 1646         struct tcp_hpts_entry *hpts;
 1647         struct epoch_tracker et;
 1648         struct timeval tv;
 1649         sbintime_t sb;
 1650         int ticks_ran;
 1651 
 1652         hpts = (struct tcp_hpts_entry *)ctx;
 1653         mtx_lock(&hpts->p_mtx);
 1654         if (hpts->p_direct_wake) {
 1655                 /* Signaled by input or output with low occupancy count. */
 1656                 callout_stop(&hpts->co);
 1657                 counter_u64_add(hpts_direct_awakening, 1);
 1658         } else {
 1659                 /* Timed out, the normal case. */
 1660                 counter_u64_add(hpts_wake_timeout, 1);
 1661                 if (callout_pending(&hpts->co) ||
 1662                     !callout_active(&hpts->co)) {
 1663                         mtx_unlock(&hpts->p_mtx);
 1664                         return;
 1665                 }
 1666         }
 1667         callout_deactivate(&hpts->co);
 1668         hpts->p_hpts_wake_scheduled = 0;
 1669         NET_EPOCH_ENTER(et);
 1670         if (hpts->p_hpts_active) {
 1671                 /*
 1672                  * We are active already. This means that a syscall
 1673                  * trap or LRO is running in behalf of hpts. In that case
 1674                  * we need to double our timeout since there seems to be
 1675                  * enough activity in the system that we don't need to
 1676                  * run as often (if we were not directly woken).
 1677                  */
 1678                 if (hpts->p_direct_wake == 0) {
 1679                         counter_u64_add(hpts_back_tosleep, 1);
 1680                         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
 1681                                 hpts->p_mysleep.tv_usec *= 2;
 1682                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
 1683                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
 1684                                 tv.tv_usec = hpts->p_mysleep.tv_usec;
 1685                                 hpts->p_on_min_sleep = 1;
 1686                         } else {
 1687                                 /*
 1688                                  * Here we have low count on the wheel, but
 1689                                  * somehow we still collided with one of the
 1690                                  * connections. Lets go back to sleep for a
 1691                                  * min sleep time, but clear the flag so we
 1692                                  * can be awoken by insert.
 1693                                  */
 1694                                 hpts->p_on_min_sleep = 0;
 1695                                 tv.tv_usec = tcp_min_hptsi_time;
 1696                         }
 1697                 } else {
 1698                         /*
 1699                          * Directly woken most likely to reset the
 1700                          * callout time.
 1701                          */
 1702                         tv.tv_sec = 0;
 1703                         tv.tv_usec = hpts->p_mysleep.tv_usec;
 1704                 }
 1705                 goto back_to_sleep;
 1706         }
 1707         hpts->sleeping = 0;
 1708         hpts->p_hpts_active = 1;
 1709         ticks_ran = tcp_hptsi(hpts, 1);
 1710         tv.tv_sec = 0;
 1711         tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
 1712         if (hpts->p_on_queue_cnt >= conn_cnt_thresh) {
 1713                 if(hpts->p_direct_wake == 0) {
 1714                         /*
 1715                          * Only adjust sleep time if we were
 1716                          * called from the callout i.e. direct_wake == 0.
 1717                          */
 1718                         if (ticks_ran < ticks_indicate_more_sleep) {
 1719                                 hpts->p_mysleep.tv_usec *= 2;
 1720                                 if (hpts->p_mysleep.tv_usec > dynamic_max_sleep)
 1721                                         hpts->p_mysleep.tv_usec = dynamic_max_sleep;
 1722                         } else if (ticks_ran > ticks_indicate_less_sleep) {
 1723                                 hpts->p_mysleep.tv_usec /= 2;
 1724                                 if (hpts->p_mysleep.tv_usec < dynamic_min_sleep)
 1725                                         hpts->p_mysleep.tv_usec = dynamic_min_sleep;
 1726                         }
 1727                 }
 1728                 if (tv.tv_usec < hpts->p_mysleep.tv_usec) {
 1729                         hpts->overidden_sleep = tv.tv_usec;
 1730                         tv.tv_usec = hpts->p_mysleep.tv_usec;
 1731                 } else if (tv.tv_usec > dynamic_max_sleep) {
 1732                         /* Lets not let sleep get above this value */
 1733                         hpts->overidden_sleep = tv.tv_usec;
 1734                         tv.tv_usec = dynamic_max_sleep;
 1735                 }
 1736                 /*
 1737                  * In this mode the timer is a backstop to
 1738                  * all the userret/lro_flushes so we use
 1739                  * the dynamic value and set the on_min_sleep
 1740                  * flag so we will not be awoken.
 1741                  */
 1742                 hpts->p_on_min_sleep = 1;
 1743         } else if (hpts->p_on_queue_cnt == 0)  {
 1744                 /*
 1745                  * No one on the wheel, please wake us up
 1746                  * if you insert on the wheel.
 1747                  */
 1748                 hpts->p_on_min_sleep = 0;
 1749                 hpts->overidden_sleep = 0;
 1750         } else {
 1751                 /*
 1752                  * We hit here when we have a low number of
 1753                  * clients on the wheel (our else clause).
 1754                  * We may need to go on min sleep, if we set
 1755                  * the flag we will not be awoken if someone
 1756                  * is inserted ahead of us. Clearing the flag
 1757                  * means we can be awoken. This is "old mode"
 1758                  * where the timer is what runs hpts mainly.
 1759                  */
 1760                 if (tv.tv_usec < tcp_min_hptsi_time) {
 1761                         /*
 1762                          * Yes on min sleep, which means
 1763                          * we cannot be awoken.
 1764                          */
 1765                         hpts->overidden_sleep = tv.tv_usec;
 1766                         tv.tv_usec = tcp_min_hptsi_time;
 1767                         hpts->p_on_min_sleep = 1;
 1768                 } else {
 1769                         /* Clear the min sleep flag */
 1770                         hpts->overidden_sleep = 0;
 1771                         hpts->p_on_min_sleep = 0;
 1772                 }
 1773         }
 1774         HPTS_MTX_ASSERT(hpts);
 1775         hpts->p_hpts_active = 0;
 1776 back_to_sleep:
 1777         hpts->p_direct_wake = 0;
 1778         sb = tvtosbt(tv);
 1779         /* Store off to make visible the actual sleep time */
 1780         hpts->sleeping = tv.tv_usec;
 1781         callout_reset_sbt_on(&hpts->co, sb, 0,
 1782                              hpts_timeout_swi, hpts, hpts->p_cpu,
 1783                              (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
 1784         NET_EPOCH_EXIT(et);
 1785         mtx_unlock(&hpts->p_mtx);
 1786 }
 1787 
 1788 #undef  timersub
 1789 
 1790 static int32_t
 1791 hpts_count_level(struct cpu_group *cg)
 1792 {
 1793         int32_t count_l3, i;
 1794 
 1795         count_l3 = 0;
 1796         if (cg->cg_level == CG_SHARE_L3)
 1797                 count_l3++;
 1798         /* Walk all the children looking for L3 */
 1799         for (i = 0; i < cg->cg_children; i++) {
 1800                 count_l3 += hpts_count_level(&cg->cg_child[i]);
 1801         }
 1802         return (count_l3);
 1803 }
 1804 
 1805 static void
 1806 hpts_gather_grps(struct cpu_group **grps, int32_t *at, int32_t max, struct cpu_group *cg)
 1807 {
 1808         int32_t idx, i;
 1809 
 1810         idx = *at;
 1811         if (cg->cg_level == CG_SHARE_L3) {
 1812                 grps[idx] = cg;
 1813                 idx++;
 1814                 if (idx == max) {
 1815                         *at = idx;
 1816                         return;
 1817                 }
 1818         }
 1819         *at = idx;
 1820         /* Walk all the children looking for L3 */
 1821         for (i = 0; i < cg->cg_children; i++) {
 1822                 hpts_gather_grps(grps, at, max, &cg->cg_child[i]);
 1823         }
 1824 }
 1825 
 1826 static void
 1827 tcp_init_hptsi(void *st)
 1828 {
 1829         struct cpu_group *cpu_top;
 1830         int32_t error __diagused;
 1831         int32_t i, j, bound = 0, created = 0;
 1832         size_t sz, asz;
 1833         struct timeval tv;
 1834         sbintime_t sb;
 1835         struct tcp_hpts_entry *hpts;
 1836         struct pcpu *pc;
 1837         char unit[16];
 1838         uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
 1839         int count, domain;
 1840 
 1841 #ifdef SMP
 1842         cpu_top = smp_topo();
 1843 #else
 1844         cpu_top = NULL;
 1845 #endif
 1846         tcp_pace.rp_num_hptss = ncpus;
 1847         hpts_hopelessly_behind = counter_u64_alloc(M_WAITOK);
 1848         hpts_loops = counter_u64_alloc(M_WAITOK);
 1849         back_tosleep = counter_u64_alloc(M_WAITOK);
 1850         combined_wheel_wrap = counter_u64_alloc(M_WAITOK);
 1851         wheel_wrap = counter_u64_alloc(M_WAITOK);
 1852         hpts_wake_timeout = counter_u64_alloc(M_WAITOK);
 1853         hpts_direct_awakening = counter_u64_alloc(M_WAITOK);
 1854         hpts_back_tosleep = counter_u64_alloc(M_WAITOK);
 1855         hpts_direct_call = counter_u64_alloc(M_WAITOK);
 1856         cpu_uses_flowid = counter_u64_alloc(M_WAITOK);
 1857         cpu_uses_random = counter_u64_alloc(M_WAITOK);
 1858 
 1859         sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *));
 1860         tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO);
 1861         sz = (sizeof(uint32_t) * tcp_pace.rp_num_hptss);
 1862         cts_last_ran = malloc(sz, M_TCPHPTS, M_WAITOK);
 1863         tcp_pace.grp_cnt = 0;
 1864         if (cpu_top == NULL) {
 1865                 tcp_pace.grp_cnt = 1;
 1866         } else {
 1867                 /* Find out how many cache level 3 domains we have */
 1868                 count = 0;
 1869                 tcp_pace.grp_cnt = hpts_count_level(cpu_top);
 1870                 if (tcp_pace.grp_cnt == 0) {
 1871                         tcp_pace.grp_cnt = 1;
 1872                 }
 1873                 sz = (tcp_pace.grp_cnt * sizeof(struct cpu_group *));
 1874                 tcp_pace.grps = malloc(sz, M_TCPHPTS, M_WAITOK);
 1875                 /* Now populate the groups */
 1876                 if (tcp_pace.grp_cnt == 1) {
 1877                         /*
 1878                          * All we need is the top level all cpu's are in
 1879                          * the same cache so when we use grp[0]->cg_mask
 1880                          * with the cg_first <-> cg_last it will include
 1881                          * all cpu's in it. The level here is probably
 1882                          * zero which is ok.
 1883                          */
 1884                         tcp_pace.grps[0] = cpu_top;
 1885                 } else {
 1886                         /*
 1887                          * Here we must find all the level three cache domains
 1888                          * and setup our pointers to them.
 1889                          */
 1890                         count = 0;
 1891                         hpts_gather_grps(tcp_pace.grps, &count, tcp_pace.grp_cnt, cpu_top);
 1892                 }
 1893         }
 1894         asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS;
 1895         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
 1896                 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry),
 1897                     M_TCPHPTS, M_WAITOK | M_ZERO);
 1898                 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, M_TCPHPTS, M_WAITOK);
 1899                 hpts = tcp_pace.rp_ent[i];
 1900                 /*
 1901                  * Init all the hpts structures that are not specifically
 1902                  * zero'd by the allocations. Also lets attach them to the
 1903                  * appropriate sysctl block as well.
 1904                  */
 1905                 mtx_init(&hpts->p_mtx, "tcp_hpts_lck",
 1906                     "hpts", MTX_DEF | MTX_DUPOK);
 1907                 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) {
 1908                         TAILQ_INIT(&hpts->p_hptss[j].head);
 1909                         hpts->p_hptss[j].count = 0;
 1910                         hpts->p_hptss[j].gencnt = 0;
 1911                 }
 1912                 sysctl_ctx_init(&hpts->hpts_ctx);
 1913                 sprintf(unit, "%d", i);
 1914                 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx,
 1915                     SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts),
 1916                     OID_AUTO,
 1917                     unit,
 1918                     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
 1919                     "");
 1920                 SYSCTL_ADD_INT(&hpts->hpts_ctx,
 1921                     SYSCTL_CHILDREN(hpts->hpts_root),
 1922                     OID_AUTO, "out_qcnt", CTLFLAG_RD,
 1923                     &hpts->p_on_queue_cnt, 0,
 1924                     "Count TCB's awaiting output processing");
 1925                 SYSCTL_ADD_U16(&hpts->hpts_ctx,
 1926                     SYSCTL_CHILDREN(hpts->hpts_root),
 1927                     OID_AUTO, "active", CTLFLAG_RD,
 1928                     &hpts->p_hpts_active, 0,
 1929                     "Is the hpts active");
 1930                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
 1931                     SYSCTL_CHILDREN(hpts->hpts_root),
 1932                     OID_AUTO, "curslot", CTLFLAG_RD,
 1933                     &hpts->p_cur_slot, 0,
 1934                     "What the current running pacers goal");
 1935                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
 1936                     SYSCTL_CHILDREN(hpts->hpts_root),
 1937                     OID_AUTO, "runtick", CTLFLAG_RD,
 1938                     &hpts->p_runningslot, 0,
 1939                     "What the running pacers current slot is");
 1940                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
 1941                     SYSCTL_CHILDREN(hpts->hpts_root),
 1942                     OID_AUTO, "curtick", CTLFLAG_RD,
 1943                     &hpts->p_curtick, 0,
 1944                     "What the running pacers last tick mapped to the wheel was");
 1945                 SYSCTL_ADD_UINT(&hpts->hpts_ctx,
 1946                     SYSCTL_CHILDREN(hpts->hpts_root),
 1947                     OID_AUTO, "lastran", CTLFLAG_RD,
 1948                     &cts_last_ran[i], 0,
 1949                     "The last usec tick that this hpts ran");
 1950                 SYSCTL_ADD_LONG(&hpts->hpts_ctx,
 1951                     SYSCTL_CHILDREN(hpts->hpts_root),
 1952                     OID_AUTO, "cur_min_sleep", CTLFLAG_RD,
 1953                     &hpts->p_mysleep.tv_usec,
 1954                     "What the running pacers is using for p_mysleep.tv_usec");
 1955                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
 1956                     SYSCTL_CHILDREN(hpts->hpts_root),
 1957                     OID_AUTO, "now_sleeping", CTLFLAG_RD,
 1958                     &hpts->sleeping, 0,
 1959                     "What the running pacers is actually sleeping for");
 1960                 SYSCTL_ADD_U64(&hpts->hpts_ctx,
 1961                     SYSCTL_CHILDREN(hpts->hpts_root),
 1962                     OID_AUTO, "syscall_cnt", CTLFLAG_RD,
 1963                     &hpts->syscall_cnt, 0,
 1964                     "How many times we had syscalls on this hpts");
 1965 
 1966                 hpts->p_hpts_sleep_time = hpts_sleep_max;
 1967                 hpts->p_num = i;
 1968                 hpts->p_curtick = tcp_gethptstick(&tv);
 1969                 cts_last_ran[i] = tcp_tv_to_usectick(&tv);
 1970                 hpts->p_prev_slot = hpts->p_cur_slot = tick_to_wheel(hpts->p_curtick);
 1971                 hpts->p_cpu = 0xffff;
 1972                 hpts->p_nxt_slot = hpts_slot(hpts->p_cur_slot, 1);
 1973                 callout_init(&hpts->co, 1);
 1974         }
 1975         /* Don't try to bind to NUMA domains if we don't have any */
 1976         if (vm_ndomains == 1 && tcp_bind_threads == 2)
 1977                 tcp_bind_threads = 0;
 1978 
 1979         /*
 1980          * Now lets start ithreads to handle the hptss.
 1981          */
 1982         for (i = 0; i < tcp_pace.rp_num_hptss; i++) {
 1983                 hpts = tcp_pace.rp_ent[i];
 1984                 hpts->p_cpu = i;
 1985 
 1986                 error = swi_add(&hpts->ie, "hpts",
 1987                     tcp_hpts_thread, (void *)hpts,
 1988                     SWI_NET, INTR_MPSAFE, &hpts->ie_cookie);
 1989                 KASSERT(error == 0,
 1990                         ("Can't add hpts:%p i:%d err:%d",
 1991                          hpts, i, error));
 1992                 created++;
 1993                 hpts->p_mysleep.tv_sec = 0;
 1994                 hpts->p_mysleep.tv_usec = tcp_min_hptsi_time;
 1995                 if (tcp_bind_threads == 1) {
 1996                         if (intr_event_bind(hpts->ie, i) == 0)
 1997                                 bound++;
 1998                 } else if (tcp_bind_threads == 2) {
 1999                         /* Find the group for this CPU (i) and bind into it */
 2000                         for (j = 0; j < tcp_pace.grp_cnt; j++) {
 2001                                 if (CPU_ISSET(i, &tcp_pace.grps[j]->cg_mask)) {
 2002                                         if (intr_event_bind_ithread_cpuset(hpts->ie,
 2003                                                 &tcp_pace.grps[j]->cg_mask) == 0) {
 2004                                                 bound++;
 2005                                                 pc = pcpu_find(i);
 2006                                                 domain = pc->pc_domain;
 2007                                                 count = hpts_domains[domain].count;
 2008                                                 hpts_domains[domain].cpu[count] = i;
 2009                                                 hpts_domains[domain].count++;
 2010                                                 break;
 2011                                         }
 2012                                 }
 2013                         }
 2014                 }
 2015                 tv.tv_sec = 0;
 2016                 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_SLOT;
 2017                 hpts->sleeping = tv.tv_usec;
 2018                 sb = tvtosbt(tv);
 2019                 callout_reset_sbt_on(&hpts->co, sb, 0,
 2020                                      hpts_timeout_swi, hpts, hpts->p_cpu,
 2021                                      (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision)));
 2022         }
 2023         /*
 2024          * If we somehow have an empty domain, fall back to choosing
 2025          * among all htps threads.
 2026          */
 2027         for (i = 0; i < vm_ndomains; i++) {
 2028                 if (hpts_domains[i].count == 0) {
 2029                         tcp_bind_threads = 0;
 2030                         break;
 2031                 }
 2032         }
 2033         printf("TCP Hpts created %d swi interrupt threads and bound %d to %s\n",
 2034             created, bound,
 2035             tcp_bind_threads == 2 ? "NUMA domains" : "cpus");
 2036 #ifdef INVARIANTS
 2037         printf("HPTS is in INVARIANT mode!!\n");
 2038 #endif
 2039 }
 2040 
 2041 SYSINIT(tcphptsi, SI_SUB_SOFTINTR, SI_ORDER_ANY, tcp_init_hptsi, NULL);
 2042 MODULE_VERSION(tcphpts, 1);

Cache object: 9be64c79d60ba333001bb34c55ee8456


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.