The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_sack.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    3  *      The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
   31  */
   32 
   33 /*-
   34  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
   35  *
   36  * NRL grants permission for redistribution and use in source and binary
   37  * forms, with or without modification, of the software and documentation
   38  * created at NRL provided that the following conditions are met:
   39  *
   40  * 1. Redistributions of source code must retain the above copyright
   41  *    notice, this list of conditions and the following disclaimer.
   42  * 2. Redistributions in binary form must reproduce the above copyright
   43  *    notice, this list of conditions and the following disclaimer in the
   44  *    documentation and/or other materials provided with the distribution.
   45  * 3. All advertising materials mentioning features or use of this software
   46  *    must display the following acknowledgements:
   47  *      This product includes software developed by the University of
   48  *      California, Berkeley and its contributors.
   49  *      This product includes software developed at the Information
   50  *      Technology Division, US Naval Research Laboratory.
   51  * 4. Neither the name of the NRL nor the names of its contributors
   52  *    may be used to endorse or promote products derived from this software
   53  *    without specific prior written permission.
   54  *
   55  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
   56  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   58  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
   59  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   60  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   61  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   62  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   63  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   64  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   65  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   66  *
   67  * The views and conclusions contained in the software and documentation
   68  * are those of the authors and should not be interpreted as representing
   69  * official policies, either expressed or implied, of the US Naval
   70  * Research Laboratory (NRL).
   71  */
   72 
   73 #include <sys/cdefs.h>
   74 __FBSDID("$FreeBSD$");
   75 
   76 #include "opt_inet.h"
   77 #include "opt_inet6.h"
   78 #include "opt_tcpdebug.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/sysctl.h>
   84 #include <sys/malloc.h>
   85 #include <sys/mbuf.h>
   86 #include <sys/proc.h>           /* for proc0 declaration */
   87 #include <sys/protosw.h>
   88 #include <sys/socket.h>
   89 #include <sys/socketvar.h>
   90 #include <sys/syslog.h>
   91 #include <sys/systm.h>
   92 
   93 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
   94 
   95 #include <vm/uma.h>
   96 
   97 #include <net/if.h>
   98 #include <net/if_var.h>
   99 #include <net/route.h>
  100 #include <net/vnet.h>
  101 
  102 #include <netinet/in.h>
  103 #include <netinet/in_systm.h>
  104 #include <netinet/ip.h>
  105 #include <netinet/in_var.h>
  106 #include <netinet/in_pcb.h>
  107 #include <netinet/ip_var.h>
  108 #include <netinet/ip6.h>
  109 #include <netinet/icmp6.h>
  110 #include <netinet6/nd6.h>
  111 #include <netinet6/ip6_var.h>
  112 #include <netinet6/in6_pcb.h>
  113 #include <netinet/tcp.h>
  114 #include <netinet/tcp_fsm.h>
  115 #include <netinet/tcp_seq.h>
  116 #include <netinet/tcp_timer.h>
  117 #include <netinet/tcp_var.h>
  118 #include <netinet6/tcp6_var.h>
  119 #include <netinet/tcpip.h>
  120 #ifdef TCPDEBUG
  121 #include <netinet/tcp_debug.h>
  122 #endif /* TCPDEBUG */
  123 
  124 #include <machine/in_cksum.h>
  125 
  126 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
  127 #define V_sack_hole_zone                VNET(sack_hole_zone)
  128 
  129 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
  130 VNET_DEFINE(int, tcp_do_sack) = 1;
  131 #define V_tcp_do_sack                   VNET(tcp_do_sack)
  132 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_VNET | CTLFLAG_RW,
  133     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
  134 
  135 VNET_DEFINE(int, tcp_sack_maxholes) = 128;
  136 #define V_tcp_sack_maxholes             VNET(tcp_sack_maxholes)
  137 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_VNET | CTLFLAG_RW,
  138     &VNET_NAME(tcp_sack_maxholes), 0,
  139     "Maximum number of TCP SACK holes allowed per connection");
  140 
  141 VNET_DEFINE(int, tcp_sack_globalmaxholes) = 65536;
  142 #define V_tcp_sack_globalmaxholes       VNET(tcp_sack_globalmaxholes)
  143 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_VNET | CTLFLAG_RW,
  144     &VNET_NAME(tcp_sack_globalmaxholes), 0, 
  145     "Global maximum number of TCP SACK holes");
  146 
  147 VNET_DEFINE(int, tcp_sack_globalholes) = 0;
  148 #define V_tcp_sack_globalholes          VNET(tcp_sack_globalholes)
  149 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_VNET | CTLFLAG_RD,
  150     &VNET_NAME(tcp_sack_globalholes), 0,
  151     "Global number of TCP SACK holes currently allocated");
  152 
  153 
  154 /*
  155  * This function will find overlaps with the currently stored sackblocks
  156  * and add any overlap as a dsack block upfront
  157  */
  158 void
  159 tcp_update_dsack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
  160 {
  161         struct sackblk head_blk,mid_blk,saved_blks[MAX_SACK_BLKS];
  162         int i, j, n, identical;
  163         tcp_seq start, end;
  164 
  165         INP_WLOCK_ASSERT(tp->t_inpcb);
  166 
  167         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
  168 
  169         if (SEQ_LT(rcv_end, tp->rcv_nxt) ||
  170             ((rcv_end == tp->rcv_nxt) &&
  171              (tp->rcv_numsacks > 0 ) &&
  172              (tp->sackblks[0].end == tp->rcv_nxt))) {
  173                 saved_blks[0].start = rcv_start;
  174                 saved_blks[0].end = rcv_end;
  175         } else {
  176                 saved_blks[0].start = saved_blks[0].end = 0;
  177         }
  178 
  179         head_blk.start = head_blk.end = 0;
  180         mid_blk.start = rcv_start;
  181         mid_blk.end = rcv_end;
  182         identical = 0;
  183 
  184         for (i = 0; i < tp->rcv_numsacks; i++) {
  185                 start = tp->sackblks[i].start;
  186                 end = tp->sackblks[i].end;
  187                 if (SEQ_LT(rcv_end, start)) {
  188                         /* pkt left to sack blk */
  189                         continue;
  190                 }
  191                 if (SEQ_GT(rcv_start, end)) {
  192                         /* pkt right to sack blk */
  193                         continue;
  194                 }
  195                 if (SEQ_GT(tp->rcv_nxt, end)) {
  196                         if ((SEQ_MAX(rcv_start, start) != SEQ_MIN(rcv_end, end)) &&
  197                             (SEQ_GT(head_blk.start, SEQ_MAX(rcv_start, start)) ||
  198                             (head_blk.start == head_blk.end))) {
  199                                 head_blk.start = SEQ_MAX(rcv_start, start);
  200                                 head_blk.end = SEQ_MIN(rcv_end, end);
  201                         }
  202                         continue;
  203                 }
  204                 if (((head_blk.start == head_blk.end) ||
  205                      SEQ_LT(start, head_blk.start)) &&
  206                      (SEQ_GT(end, rcv_start) &&
  207                       SEQ_LEQ(start, rcv_end))) {
  208                         head_blk.start = start;
  209                         head_blk.end = end;
  210                 }
  211                 mid_blk.start = SEQ_MIN(mid_blk.start, start);
  212                 mid_blk.end = SEQ_MAX(mid_blk.end, end);
  213                 if ((mid_blk.start == start) &&
  214                     (mid_blk.end == end))
  215                         identical = 1;
  216         }
  217         if (SEQ_LT(head_blk.start, head_blk.end)) {
  218                 /* store overlapping range */
  219                 saved_blks[0].start = SEQ_MAX(rcv_start, head_blk.start);
  220                 saved_blks[0].end   = SEQ_MIN(rcv_end, head_blk.end);
  221         }
  222         n = 1;
  223         /*
  224          * Second, if not ACKed, store the SACK block that
  225          * overlaps with the DSACK block unless it is identical
  226          */
  227         if ((SEQ_LT(tp->rcv_nxt, mid_blk.end) &&
  228             !((mid_blk.start == saved_blks[0].start) &&
  229             (mid_blk.end == saved_blks[0].end))) ||
  230             identical == 1) {
  231                 saved_blks[n].start = mid_blk.start;
  232                 saved_blks[n++].end = mid_blk.end;
  233         }
  234         for (j = 0; (j < tp->rcv_numsacks) && (n < MAX_SACK_BLKS); j++) {
  235                 if (((SEQ_LT(tp->sackblks[j].end, mid_blk.start) ||
  236                       SEQ_GT(tp->sackblks[j].start, mid_blk.end)) &&
  237                     (SEQ_GT(tp->sackblks[j].start, tp->rcv_nxt))))
  238                 saved_blks[n++] = tp->sackblks[j];
  239         }
  240         j = 0;
  241         for (i = 0; i < n; i++) {
  242                 /* we can end up with a stale inital entry */
  243                 if (SEQ_LT(saved_blks[i].start, saved_blks[i].end)) {
  244                         tp->sackblks[j++] = saved_blks[i];
  245                 }
  246         }
  247         tp->rcv_numsacks = j;
  248 }
  249 
  250 /*
  251  * This function is called upon receipt of new valid data (while not in
  252  * header prediction mode), and it updates the ordered list of sacks.
  253  */
  254 void
  255 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
  256 {
  257         /*
  258          * First reported block MUST be the most recent one.  Subsequent
  259          * blocks SHOULD be in the order in which they arrived at the
  260          * receiver.  These two conditions make the implementation fully
  261          * compliant with RFC 2018.
  262          */
  263         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
  264         int num_head, num_saved, i;
  265 
  266         INP_WLOCK_ASSERT(tp->t_inpcb);
  267 
  268         /* Check arguments. */
  269         KASSERT(SEQ_LEQ(rcv_start, rcv_end), ("rcv_start <= rcv_end"));
  270 
  271         if ((rcv_start == rcv_end) &&
  272             (tp->rcv_numsacks >= 1) &&
  273             (rcv_end == tp->sackblks[0].end)) {
  274                 /* retaining DSACK block below rcv_nxt (todrop) */
  275                 head_blk = tp->sackblks[0];
  276         } else {
  277                 /* SACK block for the received segment. */
  278                 head_blk.start = rcv_start;
  279                 head_blk.end = rcv_end;
  280         }
  281 
  282         /*
  283          * Merge updated SACK blocks into head_blk, and save unchanged SACK
  284          * blocks into saved_blks[].  num_saved will have the number of the
  285          * saved SACK blocks.
  286          */
  287         num_saved = 0;
  288         for (i = 0; i < tp->rcv_numsacks; i++) {
  289                 tcp_seq start = tp->sackblks[i].start;
  290                 tcp_seq end = tp->sackblks[i].end;
  291                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
  292                         /*
  293                          * Discard this SACK block.
  294                          */
  295                 } else if (SEQ_LEQ(head_blk.start, end) &&
  296                            SEQ_GEQ(head_blk.end, start)) {
  297                         /*
  298                          * Merge this SACK block into head_blk.  This SACK
  299                          * block itself will be discarded.
  300                          */
  301                         /*
  302                          * |-|
  303                          *   |---|  merge
  304                          *
  305                          *     |-|
  306                          * |---|    merge
  307                          *
  308                          * |-----|
  309                          *   |-|    DSACK smaller
  310                          *
  311                          *   |-|
  312                          * |-----|  DSACK smaller
  313                          */
  314                         if (head_blk.start == end)
  315                                 head_blk.start = start;
  316                         else if (head_blk.end == start)
  317                                 head_blk.end = end;
  318                         else {
  319                                 if (SEQ_LT(head_blk.start, start)) {
  320                                         tcp_seq temp = start;
  321                                         start = head_blk.start;
  322                                         head_blk.start = temp;
  323                                 }
  324                                 if (SEQ_GT(head_blk.end, end)) {
  325                                         tcp_seq temp = end;
  326                                         end = head_blk.end;
  327                                         head_blk.end = temp;
  328                                 }
  329                                 if ((head_blk.start != start) ||
  330                                     (head_blk.end != end)) {
  331                                         if ((num_saved >= 1) &&
  332                                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
  333                                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
  334                                                 num_saved--;
  335                                         saved_blks[num_saved].start = start;
  336                                         saved_blks[num_saved].end = end;
  337                                         num_saved++;
  338                                 }
  339                         }
  340                 } else {
  341                         /*
  342                          * This block supercedes the prior block
  343                          */
  344                         if ((num_saved >= 1) &&
  345                            SEQ_GEQ(saved_blks[num_saved-1].start, start) &&
  346                            SEQ_LEQ(saved_blks[num_saved-1].end, end))
  347                                 num_saved--;
  348                         /*
  349                          * Save this SACK block.
  350                          */
  351                         saved_blks[num_saved].start = start;
  352                         saved_blks[num_saved].end = end;
  353                         num_saved++;
  354                 }
  355         }
  356 
  357         /*
  358          * Update SACK list in tp->sackblks[].
  359          */
  360         num_head = 0;
  361         if (SEQ_LT(rcv_start, rcv_end)) {
  362                 /*
  363                  * The received data segment is an out-of-order segment.  Put
  364                  * head_blk at the top of SACK list.
  365                  */
  366                 tp->sackblks[0] = head_blk;
  367                 num_head = 1;
  368                 /*
  369                  * If the number of saved SACK blocks exceeds its limit,
  370                  * discard the last SACK block.
  371                  */
  372                 if (num_saved >= MAX_SACK_BLKS)
  373                         num_saved--;
  374         }
  375         if ((rcv_start == rcv_end) &&
  376             (rcv_start == tp->sackblks[0].end)) {
  377                 num_head = 1;
  378         }
  379         if (num_saved > 0) {
  380                 /*
  381                  * Copy the saved SACK blocks back.
  382                  */
  383                 bcopy(saved_blks, &tp->sackblks[num_head],
  384                       sizeof(struct sackblk) * num_saved);
  385         }
  386 
  387         /* Save the number of SACK blocks. */
  388         tp->rcv_numsacks = num_head + num_saved;
  389 }
  390 
  391 void
  392 tcp_clean_dsack_blocks(struct tcpcb *tp)
  393 {
  394         struct sackblk saved_blks[MAX_SACK_BLKS];
  395         int num_saved, i;
  396 
  397         INP_WLOCK_ASSERT(tp->t_inpcb);
  398         /*
  399          * Clean up any DSACK blocks that
  400          * are in our queue of sack blocks.
  401          * 
  402          */
  403         num_saved = 0;
  404         for (i = 0; i < tp->rcv_numsacks; i++) {
  405                 tcp_seq start = tp->sackblks[i].start;
  406                 tcp_seq end = tp->sackblks[i].end;
  407                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
  408                         /*
  409                          * Discard this D-SACK block.
  410                          */
  411                         continue;
  412                 }
  413                 /*
  414                  * Save this SACK block.
  415                  */
  416                 saved_blks[num_saved].start = start;
  417                 saved_blks[num_saved].end = end;
  418                 num_saved++;
  419         }
  420         if (num_saved > 0) {
  421                 /*
  422                  * Copy the saved SACK blocks back.
  423                  */
  424                 bcopy(saved_blks, &tp->sackblks[0],
  425                       sizeof(struct sackblk) * num_saved);
  426         }
  427         tp->rcv_numsacks = num_saved;
  428 }
  429 
  430 /*
  431  * Delete all receiver-side SACK information.
  432  */
  433 void
  434 tcp_clean_sackreport(struct tcpcb *tp)
  435 {
  436         int i;
  437 
  438         INP_WLOCK_ASSERT(tp->t_inpcb);
  439         tp->rcv_numsacks = 0;
  440         for (i = 0; i < MAX_SACK_BLKS; i++)
  441                 tp->sackblks[i].start = tp->sackblks[i].end=0;
  442 }
  443 
  444 /*
  445  * Allocate struct sackhole.
  446  */
  447 static struct sackhole *
  448 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
  449 {
  450         struct sackhole *hole;
  451 
  452         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
  453             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
  454                 TCPSTAT_INC(tcps_sack_sboverflow);
  455                 return NULL;
  456         }
  457 
  458         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
  459         if (hole == NULL)
  460                 return NULL;
  461 
  462         hole->start = start;
  463         hole->end = end;
  464         hole->rxmit = start;
  465 
  466         tp->snd_numholes++;
  467         atomic_add_int(&V_tcp_sack_globalholes, 1);
  468 
  469         return hole;
  470 }
  471 
  472 /*
  473  * Free struct sackhole.
  474  */
  475 static void
  476 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
  477 {
  478 
  479         uma_zfree(V_sack_hole_zone, hole);
  480 
  481         tp->snd_numholes--;
  482         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
  483 
  484         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
  485         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
  486 }
  487 
  488 /*
  489  * Insert new SACK hole into scoreboard.
  490  */
  491 static struct sackhole *
  492 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
  493     struct sackhole *after)
  494 {
  495         struct sackhole *hole;
  496 
  497         /* Allocate a new SACK hole. */
  498         hole = tcp_sackhole_alloc(tp, start, end);
  499         if (hole == NULL)
  500                 return NULL;
  501 
  502         /* Insert the new SACK hole into scoreboard. */
  503         if (after != NULL)
  504                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
  505         else
  506                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
  507 
  508         /* Update SACK hint. */
  509         if (tp->sackhint.nexthole == NULL)
  510                 tp->sackhint.nexthole = hole;
  511 
  512         return hole;
  513 }
  514 
  515 /*
  516  * Remove SACK hole from scoreboard.
  517  */
  518 static void
  519 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
  520 {
  521 
  522         /* Update SACK hint. */
  523         if (tp->sackhint.nexthole == hole)
  524                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
  525 
  526         /* Remove this SACK hole. */
  527         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
  528 
  529         /* Free this SACK hole. */
  530         tcp_sackhole_free(tp, hole);
  531 }
  532 
  533 /*
  534  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
  535  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
  536  * the sequence space).
  537  * Returns 1 if incoming ACK has previously unknown SACK information,
  538  * 0 otherwise. Note: We treat (snd_una, th_ack) as a sack block so any changes
  539  * to that (i.e. left edge moving) would also be considered a change in SACK
  540  * information which is slightly different than rfc6675.
  541  */
  542 int
  543 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
  544 {
  545         struct sackhole *cur, *temp;
  546         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
  547         int i, j, num_sack_blks, sack_changed;
  548 
  549         INP_WLOCK_ASSERT(tp->t_inpcb);
  550 
  551         num_sack_blks = 0;
  552         sack_changed = 0;
  553         /*
  554          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
  555          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
  556          */
  557         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
  558                 sack_blocks[num_sack_blks].start = tp->snd_una;
  559                 sack_blocks[num_sack_blks++].end = th_ack;
  560         }
  561         /*
  562          * Append received valid SACK blocks to sack_blocks[], but only if we
  563          * received new blocks from the other side.
  564          */
  565         if (to->to_flags & TOF_SACK) {
  566                 tp->sackhint.sacked_bytes = 0;  /* reset */
  567                 for (i = 0; i < to->to_nsacks; i++) {
  568                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
  569                             &sack, sizeof(sack));
  570                         sack.start = ntohl(sack.start);
  571                         sack.end = ntohl(sack.end);
  572                         if (SEQ_GT(sack.end, sack.start) &&
  573                             SEQ_GT(sack.start, tp->snd_una) &&
  574                             SEQ_GT(sack.start, th_ack) &&
  575                             SEQ_LT(sack.start, tp->snd_max) &&
  576                             SEQ_GT(sack.end, tp->snd_una) &&
  577                             SEQ_LEQ(sack.end, tp->snd_max)) {
  578                                 sack_blocks[num_sack_blks++] = sack;
  579                                 tp->sackhint.sacked_bytes +=
  580                                     (sack.end-sack.start);
  581                         }
  582                 }
  583         }
  584         /*
  585          * Return if SND.UNA is not advanced and no valid SACK block is
  586          * received.
  587          */
  588         if (num_sack_blks == 0)
  589                 return (sack_changed);
  590 
  591         /*
  592          * Sort the SACK blocks so we can update the scoreboard with just one
  593          * pass. The overhead of sorting up to 4+1 elements is less than
  594          * making up to 4+1 passes over the scoreboard.
  595          */
  596         for (i = 0; i < num_sack_blks; i++) {
  597                 for (j = i + 1; j < num_sack_blks; j++) {
  598                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
  599                                 sack = sack_blocks[i];
  600                                 sack_blocks[i] = sack_blocks[j];
  601                                 sack_blocks[j] = sack;
  602                         }
  603                 }
  604         }
  605         if (TAILQ_EMPTY(&tp->snd_holes))
  606                 /*
  607                  * Empty scoreboard. Need to initialize snd_fack (it may be
  608                  * uninitialized or have a bogus value). Scoreboard holes
  609                  * (from the sack blocks received) are created later below
  610                  * (in the logic that adds holes to the tail of the
  611                  * scoreboard).
  612                  */
  613                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
  614         /*
  615          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
  616          * SACK holes (snd_holes) are traversed from their tails with just
  617          * one pass in order to reduce the number of compares especially when
  618          * the bandwidth-delay product is large.
  619          *
  620          * Note: Typically, in the first RTT of SACK recovery, the highest
  621          * three or four SACK blocks with the same ack number are received.
  622          * In the second RTT, if retransmitted data segments are not lost,
  623          * the highest three or four SACK blocks with ack number advancing
  624          * are received.
  625          */
  626         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
  627         tp->sackhint.last_sack_ack = sblkp->end;
  628         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
  629                 /*
  630                  * The highest SACK block is beyond fack.  Append new SACK
  631                  * hole at the tail.  If the second or later highest SACK
  632                  * blocks are also beyond the current fack, they will be
  633                  * inserted by way of hole splitting in the while-loop below.
  634                  */
  635                 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
  636                 if (temp != NULL) {
  637                         tp->snd_fack = sblkp->end;
  638                         /* Go to the previous sack block. */
  639                         sblkp--;
  640                         sack_changed = 1;
  641                 } else {
  642                         /* 
  643                          * We failed to add a new hole based on the current 
  644                          * sack block.  Skip over all the sack blocks that 
  645                          * fall completely to the right of snd_fack and
  646                          * proceed to trim the scoreboard based on the
  647                          * remaining sack blocks.  This also trims the
  648                          * scoreboard for th_ack (which is sack_blocks[0]).
  649                          */
  650                         while (sblkp >= sack_blocks && 
  651                                SEQ_LT(tp->snd_fack, sblkp->start))
  652                                 sblkp--;
  653                         if (sblkp >= sack_blocks && 
  654                             SEQ_LT(tp->snd_fack, sblkp->end))
  655                                 tp->snd_fack = sblkp->end;
  656                 }
  657         } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
  658                 /* fack is advanced. */
  659                 tp->snd_fack = sblkp->end;
  660                 sack_changed = 1;
  661         }
  662         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
  663         /*
  664          * Since the incoming sack blocks are sorted, we can process them
  665          * making one sweep of the scoreboard.
  666          */
  667         while (sblkp >= sack_blocks  && cur != NULL) {
  668                 if (SEQ_GEQ(sblkp->start, cur->end)) {
  669                         /*
  670                          * SACKs data beyond the current hole.  Go to the
  671                          * previous sack block.
  672                          */
  673                         sblkp--;
  674                         continue;
  675                 }
  676                 if (SEQ_LEQ(sblkp->end, cur->start)) {
  677                         /*
  678                          * SACKs data before the current hole.  Go to the
  679                          * previous hole.
  680                          */
  681                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
  682                         continue;
  683                 }
  684                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
  685                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
  686                     ("sackhint bytes rtx >= 0"));
  687                 sack_changed = 1;
  688                 if (SEQ_LEQ(sblkp->start, cur->start)) {
  689                         /* Data acks at least the beginning of hole. */
  690                         if (SEQ_GEQ(sblkp->end, cur->end)) {
  691                                 /* Acks entire hole, so delete hole. */
  692                                 temp = cur;
  693                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
  694                                 tcp_sackhole_remove(tp, temp);
  695                                 /*
  696                                  * The sack block may ack all or part of the
  697                                  * next hole too, so continue onto the next
  698                                  * hole.
  699                                  */
  700                                 continue;
  701                         } else {
  702                                 /* Move start of hole forward. */
  703                                 cur->start = sblkp->end;
  704                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
  705                         }
  706                 } else {
  707                         /* Data acks at least the end of hole. */
  708                         if (SEQ_GEQ(sblkp->end, cur->end)) {
  709                                 /* Move end of hole backward. */
  710                                 cur->end = sblkp->start;
  711                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
  712                         } else {
  713                                 /*
  714                                  * ACKs some data in middle of a hole; need
  715                                  * to split current hole
  716                                  */
  717                                 temp = tcp_sackhole_insert(tp, sblkp->end,
  718                                     cur->end, cur);
  719                                 if (temp != NULL) {
  720                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
  721                                                 temp->rxmit = cur->rxmit;
  722                                                 tp->sackhint.sack_bytes_rexmit
  723                                                     += (temp->rxmit
  724                                                     - temp->start);
  725                                         }
  726                                         cur->end = sblkp->start;
  727                                         cur->rxmit = SEQ_MIN(cur->rxmit,
  728                                             cur->end);
  729                                 }
  730                         }
  731                 }
  732                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
  733                 /*
  734                  * Testing sblkp->start against cur->start tells us whether
  735                  * we're done with the sack block or the sack hole.
  736                  * Accordingly, we advance one or the other.
  737                  */
  738                 if (SEQ_LEQ(sblkp->start, cur->start))
  739                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
  740                 else
  741                         sblkp--;
  742         }
  743         return (sack_changed);
  744 }
  745 
  746 /*
  747  * Free all SACK holes to clear the scoreboard.
  748  */
  749 void
  750 tcp_free_sackholes(struct tcpcb *tp)
  751 {
  752         struct sackhole *q;
  753 
  754         INP_WLOCK_ASSERT(tp->t_inpcb);
  755         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
  756                 tcp_sackhole_remove(tp, q);
  757         tp->sackhint.sack_bytes_rexmit = 0;
  758 
  759         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
  760         KASSERT(tp->sackhint.nexthole == NULL,
  761                 ("tp->sackhint.nexthole == NULL"));
  762 }
  763 
  764 /*
  765  * Partial ack handling within a sack recovery episode.  Keeping this very
  766  * simple for now.  When a partial ack is received, force snd_cwnd to a value
  767  * that will allow the sender to transmit no more than 2 segments.  If
  768  * necessary, a better scheme can be adopted at a later point, but for now,
  769  * the goal is to prevent the sender from bursting a large amount of data in
  770  * the midst of sack recovery.
  771  */
  772 void
  773 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
  774 {
  775         int num_segs = 1;
  776 
  777         INP_WLOCK_ASSERT(tp->t_inpcb);
  778         tcp_timer_activate(tp, TT_REXMT, 0);
  779         tp->t_rtttime = 0;
  780         /* Send one or 2 segments based on how much new data was acked. */
  781         if ((BYTES_THIS_ACK(tp, th) / tp->t_maxseg) >= 2)
  782                 num_segs = 2;
  783         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
  784             (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
  785         if (tp->snd_cwnd > tp->snd_ssthresh)
  786                 tp->snd_cwnd = tp->snd_ssthresh;
  787         tp->t_flags |= TF_ACKNOW;
  788         (void) tp->t_fb->tfb_tcp_output(tp);
  789 }
  790 
  791 #if 0
  792 /*
  793  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
  794  * now to sanity check the hint.
  795  */
  796 static struct sackhole *
  797 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
  798 {
  799         struct sackhole *p;
  800 
  801         INP_WLOCK_ASSERT(tp->t_inpcb);
  802         *sack_bytes_rexmt = 0;
  803         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
  804                 if (SEQ_LT(p->rxmit, p->end)) {
  805                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
  806                                 continue;
  807                         }
  808                         *sack_bytes_rexmt += (p->rxmit - p->start);
  809                         break;
  810                 }
  811                 *sack_bytes_rexmt += (p->rxmit - p->start);
  812         }
  813         return (p);
  814 }
  815 #endif
  816 
  817 /*
  818  * Returns the next hole to retransmit and the number of retransmitted bytes
  819  * from the scoreboard.  We store both the next hole and the number of
  820  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
  821  * reception).  This avoids scoreboard traversals completely.
  822  *
  823  * The loop here will traverse *at most* one link.  Here's the argument.  For
  824  * the loop to traverse more than 1 link before finding the next hole to
  825  * retransmit, we would need to have at least 1 node following the current
  826  * hint with (rxmit == end).  But, for all holes following the current hint,
  827  * (start == rxmit), since we have not yet retransmitted from them.
  828  * Therefore, in order to traverse more 1 link in the loop below, we need to
  829  * have at least one node following the current hint with (start == rxmit ==
  830  * end).  But that can't happen, (start == end) means that all the data in
  831  * that hole has been sacked, in which case, the hole would have been removed
  832  * from the scoreboard.
  833  */
  834 struct sackhole *
  835 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
  836 {
  837         struct sackhole *hole = NULL;
  838 
  839         INP_WLOCK_ASSERT(tp->t_inpcb);
  840         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
  841         hole = tp->sackhint.nexthole;
  842         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
  843                 goto out;
  844         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
  845                 if (SEQ_LT(hole->rxmit, hole->end)) {
  846                         tp->sackhint.nexthole = hole;
  847                         break;
  848                 }
  849         }
  850 out:
  851         return (hole);
  852 }
  853 
  854 /*
  855  * After a timeout, the SACK list may be rebuilt.  This SACK information
  856  * should be used to avoid retransmitting SACKed data.  This function
  857  * traverses the SACK list to see if snd_nxt should be moved forward.
  858  */
  859 void
  860 tcp_sack_adjust(struct tcpcb *tp)
  861 {
  862         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
  863 
  864         INP_WLOCK_ASSERT(tp->t_inpcb);
  865         if (cur == NULL)
  866                 return; /* No holes */
  867         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
  868                 return; /* We're already beyond any SACKed blocks */
  869         /*-
  870          * Two cases for which we want to advance snd_nxt:
  871          * i) snd_nxt lies between end of one hole and beginning of another
  872          * ii) snd_nxt lies between end of last hole and snd_fack
  873          */
  874         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
  875                 if (SEQ_LT(tp->snd_nxt, cur->end))
  876                         return;
  877                 if (SEQ_GEQ(tp->snd_nxt, p->start))
  878                         cur = p;
  879                 else {
  880                         tp->snd_nxt = p->start;
  881                         return;
  882                 }
  883         }
  884         if (SEQ_LT(tp->snd_nxt, cur->end))
  885                 return;
  886         tp->snd_nxt = tp->snd_fack;
  887 }

Cache object: 200c7d19b35c9b6431bf43f12f0dddc3


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.