The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_sack.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    3  *      The Regents of the University of California.  All rights reserved.
    4  *
    5  * Redistribution and use in source and binary forms, with or without
    6  * modification, are permitted provided that the following conditions
    7  * are met:
    8  * 1. Redistributions of source code must retain the above copyright
    9  *    notice, this list of conditions and the following disclaimer.
   10  * 2. Redistributions in binary form must reproduce the above copyright
   11  *    notice, this list of conditions and the following disclaimer in the
   12  *    documentation and/or other materials provided with the distribution.
   13  * 4. Neither the name of the University nor the names of its contributors
   14  *    may be used to endorse or promote products derived from this software
   15  *    without specific prior written permission.
   16  *
   17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   27  * SUCH DAMAGE.
   28  *
   29  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
   30  * $FreeBSD$
   31  */
   32 
   33 /*-
   34  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
   35  *      The Regents of the University of California.  All rights reserved.
   36  *
   37  * Redistribution and use in source and binary forms, with or without
   38  * modification, are permitted provided that the following conditions
   39  * are met:
   40  * 1. Redistributions of source code must retain the above copyright
   41  *    notice, this list of conditions and the following disclaimer.
   42  * 2. Redistributions in binary form must reproduce the above copyright
   43  *    notice, this list of conditions and the following disclaimer in the
   44  *    documentation and/or other materials provided with the distribution.
   45  * 3. Neither the name of the University nor the names of its contributors
   46  *    may be used to endorse or promote products derived from this software
   47  *    without specific prior written permission.
   48  *
   49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   59  * SUCH DAMAGE.
   60  *
   61  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
   62  *
   63  * NRL grants permission for redistribution and use in source and binary
   64  * forms, with or without modification, of the software and documentation
   65  * created at NRL provided that the following conditions are met:
   66  *
   67  * 1. Redistributions of source code must retain the above copyright
   68  *    notice, this list of conditions and the following disclaimer.
   69  * 2. Redistributions in binary form must reproduce the above copyright
   70  *    notice, this list of conditions and the following disclaimer in the
   71  *    documentation and/or other materials provided with the distribution.
   72  * 3. All advertising materials mentioning features or use of this software
   73  *    must display the following acknowledgements:
   74  *      This product includes software developed by the University of
   75  *      California, Berkeley and its contributors.
   76  *      This product includes software developed at the Information
   77  *      Technology Division, US Naval Research Laboratory.
   78  * 4. Neither the name of the NRL nor the names of its contributors
   79  *    may be used to endorse or promote products derived from this software
   80  *    without specific prior written permission.
   81  *
   82  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
   83  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   84  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   85  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
   86  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   87  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   88  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   89  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   90  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   91  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   92  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   93  *
   94  * The views and conclusions contained in the software and documentation
   95  * are those of the authors and should not be interpreted as representing
   96  * official policies, either expressed or implied, of the US Naval
   97  * Research Laboratory (NRL).
   98  */
   99 #include "opt_inet.h"
  100 #include "opt_inet6.h"
  101 #include "opt_tcpdebug.h"
  102 #include "opt_tcp_input.h"
  103 #include "opt_tcp_sack.h"
  104 
  105 #include <sys/param.h>
  106 #include <sys/systm.h>
  107 #include <sys/kernel.h>
  108 #include <sys/sysctl.h>
  109 #include <sys/malloc.h>
  110 #include <sys/mbuf.h>
  111 #include <sys/proc.h>           /* for proc0 declaration */
  112 #include <sys/protosw.h>
  113 #include <sys/socket.h>
  114 #include <sys/socketvar.h>
  115 #include <sys/syslog.h>
  116 #include <sys/systm.h>
  117 
  118 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
  119 
  120 #include <vm/uma.h>
  121 
  122 #include <net/if.h>
  123 #include <net/route.h>
  124 
  125 #include <netinet/in.h>
  126 #include <netinet/in_systm.h>
  127 #include <netinet/ip.h>
  128 #include <netinet/ip_icmp.h>    /* for ICMP_BANDLIM             */
  129 #include <netinet/in_var.h>
  130 #include <netinet/icmp_var.h>   /* for ICMP_BANDLIM             */
  131 #include <netinet/in_pcb.h>
  132 #include <netinet/ip_var.h>
  133 #include <netinet/ip6.h>
  134 #include <netinet/icmp6.h>
  135 #include <netinet6/nd6.h>
  136 #include <netinet6/ip6_var.h>
  137 #include <netinet6/in6_pcb.h>
  138 #include <netinet/tcp.h>
  139 #include <netinet/tcp_fsm.h>
  140 #include <netinet/tcp_seq.h>
  141 #include <netinet/tcp_timer.h>
  142 #include <netinet/tcp_var.h>
  143 #include <netinet6/tcp6_var.h>
  144 #include <netinet/tcpip.h>
  145 #ifdef TCPDEBUG
  146 #include <netinet/tcp_debug.h>
  147 #endif /* TCPDEBUG */
  148 
  149 #include <machine/in_cksum.h>
  150 
  151 extern struct uma_zone *sack_hole_zone;
  152 
  153 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
  154 int tcp_do_sack = 1;
  155 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
  156         &tcp_do_sack, 0, "Enable/Disable TCP SACK support");
  157 TUNABLE_INT("net.inet.tcp.sack.enable", &tcp_do_sack);
  158 
  159 static int tcp_sack_maxholes = 128;
  160 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_RW,
  161         &tcp_sack_maxholes, 0, 
  162     "Maximum number of TCP SACK holes allowed per connection");
  163 
  164 static int tcp_sack_globalmaxholes = 65536;
  165 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_RW,
  166         &tcp_sack_globalmaxholes, 0, 
  167     "Global maximum number of TCP SACK holes");
  168 
  169 static int tcp_sack_globalholes = 0;
  170 SYSCTL_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_RD,
  171     &tcp_sack_globalholes, 0,
  172     "Global number of TCP SACK holes currently allocated");
  173 
  174 /*
  175  * This function is called upon receipt of new valid data (while not in header
  176  * prediction mode), and it updates the ordered list of sacks.
  177  */
  178 void
  179 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
  180 {
  181         /*
  182          * First reported block MUST be the most recent one.  Subsequent
  183          * blocks SHOULD be in the order in which they arrived at the
  184          * receiver.  These two conditions make the implementation fully
  185          * compliant with RFC 2018.
  186          */
  187         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
  188         int num_head, num_saved, i;
  189 
  190         INP_LOCK_ASSERT(tp->t_inpcb);
  191 
  192         /* Check arguments */
  193         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
  194 
  195         /* SACK block for the received segment. */
  196         head_blk.start = rcv_start;
  197         head_blk.end = rcv_end;
  198 
  199         /*
  200          * Merge updated SACK blocks into head_blk, and
  201          * save unchanged SACK blocks into saved_blks[].
  202          * num_saved will have the number of the saved SACK blocks.
  203          */
  204         num_saved = 0;
  205         for (i = 0; i < tp->rcv_numsacks; i++) {
  206                 tcp_seq start = tp->sackblks[i].start;
  207                 tcp_seq end = tp->sackblks[i].end;
  208                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
  209                         /*
  210                          * Discard this SACK block.
  211                          */
  212                 } else if (SEQ_LEQ(head_blk.start, end) &&
  213                            SEQ_GEQ(head_blk.end, start)) {
  214                         /*
  215                          * Merge this SACK block into head_blk.
  216                          * This SACK block itself will be discarded.
  217                          */
  218                         if (SEQ_GT(head_blk.start, start))
  219                                 head_blk.start = start;
  220                         if (SEQ_LT(head_blk.end, end))
  221                                 head_blk.end = end;
  222                 } else {
  223                         /*
  224                          * Save this SACK block.
  225                          */
  226                         saved_blks[num_saved].start = start;
  227                         saved_blks[num_saved].end = end;
  228                         num_saved++;
  229                 }
  230         }
  231 
  232         /*
  233          * Update SACK list in tp->sackblks[].
  234          */
  235         num_head = 0;
  236         if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
  237                 /*
  238                  * The received data segment is an out-of-order segment.
  239                  * Put head_blk at the top of SACK list.
  240                  */
  241                 tp->sackblks[0] = head_blk;
  242                 num_head = 1;
  243                 /*
  244                  * If the number of saved SACK blocks exceeds its limit,
  245                  * discard the last SACK block.
  246                  */
  247                 if (num_saved >= MAX_SACK_BLKS)
  248                         num_saved--;
  249         }
  250         if (num_saved > 0) {
  251                 /*
  252                  * Copy the saved SACK blocks back.
  253                  */
  254                 bcopy(saved_blks, &tp->sackblks[num_head],
  255                       sizeof(struct sackblk) * num_saved);
  256         }
  257 
  258         /* Save the number of SACK blocks. */
  259         tp->rcv_numsacks = num_head + num_saved;
  260 }
  261 
  262 /*
  263  * Delete all receiver-side SACK information.
  264  */
  265 void
  266 tcp_clean_sackreport(tp)
  267         struct tcpcb *tp;
  268 {
  269         int i;
  270 
  271         INP_LOCK_ASSERT(tp->t_inpcb);
  272         tp->rcv_numsacks = 0;
  273         for (i = 0; i < MAX_SACK_BLKS; i++)
  274                 tp->sackblks[i].start = tp->sackblks[i].end=0;
  275 }
  276 
  277 /*
  278  * Allocate struct sackhole.
  279  */
  280 static struct sackhole *
  281 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
  282 {
  283         struct sackhole *hole;
  284 
  285         if (tp->snd_numholes >= tcp_sack_maxholes ||
  286             tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
  287                 tcpstat.tcps_sack_sboverflow++;
  288                 return NULL;
  289         }
  290 
  291         hole = (struct sackhole *)uma_zalloc(sack_hole_zone, M_NOWAIT);
  292         if (hole == NULL)
  293                 return NULL;
  294 
  295         hole->start = start;
  296         hole->end = end;
  297         hole->rxmit = start;
  298 
  299         tp->snd_numholes++;
  300         tcp_sack_globalholes++;
  301 
  302         return hole;
  303 }
  304 
  305 /*
  306  * Free struct sackhole.
  307  */
  308 static void
  309 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
  310 {
  311         uma_zfree(sack_hole_zone, hole);
  312 
  313         tp->snd_numholes--;
  314         tcp_sack_globalholes--;
  315 
  316         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
  317         KASSERT(tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
  318 }
  319 
  320 /*
  321  * Insert new SACK hole into scoreboard.
  322  */
  323 static struct sackhole *
  324 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
  325                     struct sackhole *after)
  326 {
  327         struct sackhole *hole;
  328 
  329         /* Allocate a new SACK hole. */
  330         hole = tcp_sackhole_alloc(tp, start, end);
  331         if (hole == NULL)
  332                 return NULL;
  333 
  334         /* Insert the new SACK hole into scoreboard */
  335         if (after != NULL)
  336                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
  337         else
  338                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
  339 
  340         /* Update SACK hint. */
  341         if (tp->sackhint.nexthole == NULL)
  342                 tp->sackhint.nexthole = hole;
  343 
  344         return hole;
  345 }
  346 
  347 /*
  348  * Remove SACK hole from scoreboard.
  349  */
  350 static void
  351 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
  352 {
  353         /* Update SACK hint. */
  354         if (tp->sackhint.nexthole == hole)
  355                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
  356 
  357         /* Remove this SACK hole. */
  358         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
  359 
  360         /* Free this SACK hole. */
  361         tcp_sackhole_free(tp, hole);
  362 }
  363 
  364 /*
  365  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
  366  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
  367  * the sequence space).
  368  */
  369 void
  370 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
  371 {
  372         struct sackhole *cur, *temp;
  373         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
  374         int i, j, num_sack_blks;
  375 
  376         INP_LOCK_ASSERT(tp->t_inpcb);
  377 
  378         num_sack_blks = 0;
  379         /*
  380          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
  381          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
  382          */
  383         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
  384                 sack_blocks[num_sack_blks].start = tp->snd_una;
  385                 sack_blocks[num_sack_blks++].end = th_ack;
  386         }
  387         /*
  388          * Append received valid SACK blocks to sack_blocks[].
  389          */
  390         for (i = 0; i < to->to_nsacks; i++) {
  391                 bcopy((to->to_sacks + i * TCPOLEN_SACK), &sack, sizeof(sack));
  392                 sack.start = ntohl(sack.start);
  393                 sack.end = ntohl(sack.end);
  394                 if (SEQ_GT(sack.end, sack.start) &&
  395                     SEQ_GT(sack.start, tp->snd_una) &&
  396                     SEQ_GT(sack.start, th_ack) &&
  397                     SEQ_LT(sack.start, tp->snd_max) &&
  398                     SEQ_GT(sack.end, tp->snd_una) &&
  399                     SEQ_LEQ(sack.end, tp->snd_max))
  400                         sack_blocks[num_sack_blks++] = sack;
  401         }
  402 
  403         /*
  404          * Return if SND.UNA is not advanced and no valid SACK block
  405          * is received.
  406          */
  407         if (num_sack_blks == 0)
  408                 return;
  409 
  410         /*
  411          * Sort the SACK blocks so we can update the scoreboard
  412          * with just one pass. The overhead of sorting upto 4+1 elements
  413          * is less than making upto 4+1 passes over the scoreboard.
  414          */
  415         for (i = 0; i < num_sack_blks; i++) {
  416                 for (j = i + 1; j < num_sack_blks; j++) {
  417                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
  418                                 sack = sack_blocks[i];
  419                                 sack_blocks[i] = sack_blocks[j];
  420                                 sack_blocks[j] = sack;
  421                         }
  422                 }
  423         }
  424         if (TAILQ_EMPTY(&tp->snd_holes))
  425                 /*
  426                  * Empty scoreboard. Need to initialize snd_fack (it may be
  427                  * uninitialized or have a bogus value). Scoreboard holes
  428                  * (from the sack blocks received) are created later below (in
  429                  * the logic that adds holes to the tail of the scoreboard).
  430                  */
  431                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
  432         /*
  433          * In the while-loop below, incoming SACK blocks (sack_blocks[])
  434          * and SACK holes (snd_holes) are traversed from their tails with
  435          * just one pass in order to reduce the number of compares especially
  436          * when the bandwidth-delay product is large.
  437          * Note: Typically, in the first RTT of SACK recovery, the highest
  438          * three or four SACK blocks with the same ack number are received.
  439          * In the second RTT, if retransmitted data segments are not lost,
  440          * the highest three or four SACK blocks with ack number advancing
  441          * are received.
  442          */
  443         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
  444         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
  445                 /*
  446                  * The highest SACK block is beyond fack.
  447                  * Append new SACK hole at the tail.
  448                  * If the second or later highest SACK blocks are also
  449                  * beyond the current fack, they will be inserted by
  450                  * way of hole splitting in the while-loop below.
  451                  */
  452                 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
  453                 if (temp != NULL) {
  454                         tp->snd_fack = sblkp->end;
  455                         /* Go to the previous sack block. */
  456                         sblkp--;
  457                 } else {
  458                         /* 
  459                          * We failed to add a new hole based on the current 
  460                          * sack block.  Skip over all the sack blocks that 
  461                          * fall completely to the right of snd_fack and proceed
  462                          * to trim the scoreboard based on the remaining sack
  463                          * blocks. This also trims the scoreboard for th_ack 
  464                          * (which is sack_blocks[0]).
  465                          */
  466                         while (sblkp >= sack_blocks && 
  467                                SEQ_LT(tp->snd_fack, sblkp->start))
  468                                 sblkp--;
  469                         if (sblkp >= sack_blocks && 
  470                             SEQ_LT(tp->snd_fack, sblkp->end))
  471                                 tp->snd_fack = sblkp->end;
  472                 }
  473         } else if (SEQ_LT(tp->snd_fack, sblkp->end))
  474                 /* fack is advanced. */
  475                 tp->snd_fack = sblkp->end;
  476         /* We must have at least one SACK hole in scoreboard */
  477         KASSERT(!TAILQ_EMPTY(&tp->snd_holes), ("SACK scoreboard must not be empty"));
  478         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
  479         /*
  480          * Since the incoming sack blocks are sorted, we can process them
  481          * making one sweep of the scoreboard.
  482          */
  483         while (sblkp >= sack_blocks  && cur != NULL) {
  484                 if (SEQ_GEQ(sblkp->start, cur->end)) {
  485                         /*
  486                          * SACKs data beyond the current hole.
  487                          * Go to the previous sack block.
  488                          */
  489                         sblkp--;
  490                         continue;
  491                 }
  492                 if (SEQ_LEQ(sblkp->end, cur->start)) {
  493                         /*
  494                          * SACKs data before the current hole.
  495                          * Go to the previous hole.
  496                          */
  497                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
  498                         continue;
  499                 }
  500                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
  501                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
  502                         ("sackhint bytes rtx >= 0"));
  503                 if (SEQ_LEQ(sblkp->start, cur->start)) {
  504                         /* Data acks at least the beginning of hole */
  505                         if (SEQ_GEQ(sblkp->end, cur->end)) {
  506                                 /* Acks entire hole, so delete hole */
  507                                 temp = cur;
  508                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
  509                                 tcp_sackhole_remove(tp, temp);
  510                                 /*
  511                                  * The sack block may ack all or part of the next
  512                                  * hole too, so continue onto the next hole.
  513                                  */
  514                                 continue;
  515                         } else {
  516                                 /* Move start of hole forward */
  517                                 cur->start = sblkp->end;
  518                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
  519                         }
  520                 } else {
  521                         /* Data acks at least the end of hole */
  522                         if (SEQ_GEQ(sblkp->end, cur->end)) {
  523                                 /* Move end of hole backward */
  524                                 cur->end = sblkp->start;
  525                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
  526                         } else {
  527                                 /*
  528                                  * ACKs some data in middle of a hole; need to
  529                                  * split current hole
  530                                  */
  531                                 temp = tcp_sackhole_insert(tp, sblkp->end,
  532                                                            cur->end, cur);
  533                                 if (temp != NULL) {
  534                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
  535                                                 temp->rxmit = cur->rxmit;
  536                                                 tp->sackhint.sack_bytes_rexmit
  537                                                         += (temp->rxmit
  538                                                             - temp->start);
  539                                         }
  540                                         cur->end = sblkp->start;
  541                                         cur->rxmit = SEQ_MIN(cur->rxmit,
  542                                                              cur->end);
  543                                 }
  544                         }
  545                 }
  546                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
  547                 /*
  548                  * Testing sblkp->start against cur->start tells us whether
  549                  * we're done with the sack block or the sack hole.
  550                  * Accordingly, we advance one or the other.
  551                  */
  552                 if (SEQ_LEQ(sblkp->start, cur->start))
  553                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
  554                 else
  555                         sblkp--;
  556         }
  557 }
  558 
  559 /*
  560  * Free all SACK holes to clear the scoreboard.
  561  */
  562 void
  563 tcp_free_sackholes(struct tcpcb *tp)
  564 {
  565         struct sackhole *q;
  566 
  567         INP_LOCK_ASSERT(tp->t_inpcb);
  568         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
  569                 tcp_sackhole_remove(tp, q);
  570         tp->sackhint.sack_bytes_rexmit = 0;
  571 
  572         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
  573         KASSERT(tp->sackhint.nexthole == NULL,
  574                 ("tp->sackhint.nexthole == NULL"));
  575 }
  576 
  577 /*
  578  * Partial ack handling within a sack recovery episode. 
  579  * Keeping this very simple for now. When a partial ack
  580  * is received, force snd_cwnd to a value that will allow
  581  * the sender to transmit no more than 2 segments.
  582  * If necessary, a better scheme can be adopted at a 
  583  * later point, but for now, the goal is to prevent the
  584  * sender from bursting a large amount of data in the midst
  585  * of sack recovery.
  586  */
  587 void
  588 tcp_sack_partialack(tp, th)
  589         struct tcpcb *tp;
  590         struct tcphdr *th;
  591 {
  592         int num_segs = 1;
  593 
  594         INP_LOCK_ASSERT(tp->t_inpcb);
  595         callout_stop(tp->tt_rexmt);
  596         tp->t_rtttime = 0;
  597         /* send one or 2 segments based on how much new data was acked */
  598         if (((th->th_ack - tp->snd_una) / tp->t_maxseg) > 2)
  599                 num_segs = 2;
  600         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
  601                 (tp->snd_nxt - tp->sack_newdata) +
  602                 num_segs * tp->t_maxseg);
  603         if (tp->snd_cwnd > tp->snd_ssthresh)
  604                 tp->snd_cwnd = tp->snd_ssthresh;
  605         tp->t_flags |= TF_ACKNOW;
  606         (void) tcp_output(tp);
  607 }
  608 
  609 /*
  610  * Debug version of tcp_sack_output() that walks the scoreboard. Used for
  611  * now to sanity check the hint.
  612  */
  613 static struct sackhole *
  614 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
  615 {
  616         struct sackhole *p;
  617 
  618         INP_LOCK_ASSERT(tp->t_inpcb);
  619         *sack_bytes_rexmt = 0;
  620         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
  621                 if (SEQ_LT(p->rxmit, p->end)) {
  622                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
  623                                 continue;
  624                         }
  625                         *sack_bytes_rexmt += (p->rxmit - p->start);
  626                         break;
  627                 }
  628                 *sack_bytes_rexmt += (p->rxmit - p->start);
  629         }
  630         return (p);
  631 }
  632 
  633 /*
  634  * Returns the next hole to retransmit and the number of retransmitted bytes
  635  * from the scoreboard. We store both the next hole and the number of
  636  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
  637  * reception). This avoids scoreboard traversals completely.
  638  *
  639  * The loop here will traverse *at most* one link. Here's the argument.
  640  * For the loop to traverse more than 1 link before finding the next hole to
  641  * retransmit, we would need to have at least 1 node following the current hint
  642  * with (rxmit == end). But, for all holes following the current hint,
  643  * (start == rxmit), since we have not yet retransmitted from them. Therefore,
  644  * in order to traverse more 1 link in the loop below, we need to have at least
  645  * one node following the current hint with (start == rxmit == end).
  646  * But that can't happen, (start == end) means that all the data in that hole
  647  * has been sacked, in which case, the hole would have been removed from the
  648  * scoreboard.
  649  */
  650 struct sackhole *
  651 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
  652 {
  653         struct sackhole *hole = NULL, *dbg_hole = NULL;
  654         int dbg_bytes_rexmt;
  655 
  656         INP_LOCK_ASSERT(tp->t_inpcb);
  657         dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
  658         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
  659         hole = tp->sackhint.nexthole;
  660         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
  661                 goto out;
  662         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
  663                 if (SEQ_LT(hole->rxmit, hole->end)) {
  664                         tp->sackhint.nexthole = hole;
  665                         break;
  666                 }
  667         }
  668 out:
  669         if (dbg_hole != hole) {
  670                 printf("%s: Computed sack hole not the same as cached value\n", __func__);
  671                 hole = dbg_hole;
  672         }
  673         if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
  674                 printf("%s: Computed sack_bytes_retransmitted (%d) not "
  675                        "the same as cached value (%d)\n",
  676                        __func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
  677                 *sack_bytes_rexmt = dbg_bytes_rexmt;
  678         }
  679         return (hole);
  680 }
  681 
  682 /*
  683  * After a timeout, the SACK list may be rebuilt.  This SACK information
  684  * should be used to avoid retransmitting SACKed data.  This function
  685  * traverses the SACK list to see if snd_nxt should be moved forward.
  686  */
  687 void
  688 tcp_sack_adjust(struct tcpcb *tp)
  689 {
  690         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
  691 
  692         INP_LOCK_ASSERT(tp->t_inpcb);
  693         if (cur == NULL)
  694                 return; /* No holes */
  695         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
  696                 return; /* We're already beyond any SACKed blocks */
  697         /*
  698          * Two cases for which we want to advance snd_nxt:
  699          * i) snd_nxt lies between end of one hole and beginning of another
  700          * ii) snd_nxt lies between end of last hole and snd_fack
  701          */
  702         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
  703                 if (SEQ_LT(tp->snd_nxt, cur->end))
  704                         return;
  705                 if (SEQ_GEQ(tp->snd_nxt, p->start))
  706                         cur = p;
  707                 else {
  708                         tp->snd_nxt = p->start;
  709                         return;
  710                 }
  711         }
  712         if (SEQ_LT(tp->snd_nxt, cur->end))
  713                 return;
  714         tp->snd_nxt = tp->snd_fack;
  715         return;
  716 }

Cache object: 61b177230c65bc4d190ebc3093fcc115


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.