The Design and Implementation of the FreeBSD Operating System, Second Edition
Now available: The Design and Implementation of the FreeBSD Operating System (Second Edition)


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]

FreeBSD/Linux Kernel Cross Reference
sys/netinet/tcp_sack.c

Version: -  FREEBSD  -  FREEBSD-13-STABLE  -  FREEBSD-13-0  -  FREEBSD-12-STABLE  -  FREEBSD-12-0  -  FREEBSD-11-STABLE  -  FREEBSD-11-0  -  FREEBSD-10-STABLE  -  FREEBSD-10-0  -  FREEBSD-9-STABLE  -  FREEBSD-9-0  -  FREEBSD-8-STABLE  -  FREEBSD-8-0  -  FREEBSD-7-STABLE  -  FREEBSD-7-0  -  FREEBSD-6-STABLE  -  FREEBSD-6-0  -  FREEBSD-5-STABLE  -  FREEBSD-5-0  -  FREEBSD-4-STABLE  -  FREEBSD-3-STABLE  -  FREEBSD22  -  l41  -  OPENBSD  -  linux-2.6  -  MK84  -  PLAN9  -  xnu-8792 
SearchContext: -  none  -  3  -  10 

    1 /*-
    2  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    3  *      The Regents of the University of California.
    4  * All rights reserved.
    5  *
    6  * Redistribution and use in source and binary forms, with or without
    7  * modification, are permitted provided that the following conditions
    8  * are met:
    9  * 1. Redistributions of source code must retain the above copyright
   10  *    notice, this list of conditions and the following disclaimer.
   11  * 2. Redistributions in binary form must reproduce the above copyright
   12  *    notice, this list of conditions and the following disclaimer in the
   13  *    documentation and/or other materials provided with the distribution.
   14  * 4. Neither the name of the University nor the names of its contributors
   15  *    may be used to endorse or promote products derived from this software
   16  *    without specific prior written permission.
   17  *
   18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   28  * SUCH DAMAGE.
   29  *
   30  *      @(#)tcp_sack.c  8.12 (Berkeley) 5/24/95
   31  */
   32 
   33 /*-
   34  *      @@(#)COPYRIGHT  1.1 (NRL) 17 January 1995
   35  *
   36  * NRL grants permission for redistribution and use in source and binary
   37  * forms, with or without modification, of the software and documentation
   38  * created at NRL provided that the following conditions are met:
   39  *
   40  * 1. Redistributions of source code must retain the above copyright
   41  *    notice, this list of conditions and the following disclaimer.
   42  * 2. Redistributions in binary form must reproduce the above copyright
   43  *    notice, this list of conditions and the following disclaimer in the
   44  *    documentation and/or other materials provided with the distribution.
   45  * 3. All advertising materials mentioning features or use of this software
   46  *    must display the following acknowledgements:
   47  *      This product includes software developed by the University of
   48  *      California, Berkeley and its contributors.
   49  *      This product includes software developed at the Information
   50  *      Technology Division, US Naval Research Laboratory.
   51  * 4. Neither the name of the NRL nor the names of its contributors
   52  *    may be used to endorse or promote products derived from this software
   53  *    without specific prior written permission.
   54  *
   55  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
   56  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
   57  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
   58  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
   59  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   60  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   61  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   62  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   63  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   64  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   65  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   66  *
   67  * The views and conclusions contained in the software and documentation
   68  * are those of the authors and should not be interpreted as representing
   69  * official policies, either expressed or implied, of the US Naval
   70  * Research Laboratory (NRL).
   71  */
   72 
   73 #include <sys/cdefs.h>
   74 __FBSDID("$FreeBSD: releng/8.0/sys/netinet/tcp_sack.c 196019 2009-08-01 19:26:27Z rwatson $");
   75 
   76 #include "opt_inet.h"
   77 #include "opt_inet6.h"
   78 #include "opt_tcpdebug.h"
   79 
   80 #include <sys/param.h>
   81 #include <sys/systm.h>
   82 #include <sys/kernel.h>
   83 #include <sys/sysctl.h>
   84 #include <sys/malloc.h>
   85 #include <sys/mbuf.h>
   86 #include <sys/proc.h>           /* for proc0 declaration */
   87 #include <sys/protosw.h>
   88 #include <sys/socket.h>
   89 #include <sys/socketvar.h>
   90 #include <sys/syslog.h>
   91 #include <sys/systm.h>
   92 
   93 #include <machine/cpu.h>        /* before tcp_seq.h, for tcp_random18() */
   94 
   95 #include <vm/uma.h>
   96 
   97 #include <net/if.h>
   98 #include <net/route.h>
   99 #include <net/vnet.h>
  100 
  101 #include <netinet/in.h>
  102 #include <netinet/in_systm.h>
  103 #include <netinet/ip.h>
  104 #include <netinet/in_var.h>
  105 #include <netinet/in_pcb.h>
  106 #include <netinet/ip_var.h>
  107 #include <netinet/ip6.h>
  108 #include <netinet/icmp6.h>
  109 #include <netinet6/nd6.h>
  110 #include <netinet6/ip6_var.h>
  111 #include <netinet6/in6_pcb.h>
  112 #include <netinet/tcp.h>
  113 #include <netinet/tcp_fsm.h>
  114 #include <netinet/tcp_seq.h>
  115 #include <netinet/tcp_timer.h>
  116 #include <netinet/tcp_var.h>
  117 #include <netinet6/tcp6_var.h>
  118 #include <netinet/tcpip.h>
  119 #ifdef TCPDEBUG
  120 #include <netinet/tcp_debug.h>
  121 #endif /* TCPDEBUG */
  122 
  123 #include <machine/in_cksum.h>
  124 
  125 VNET_DECLARE(struct uma_zone *, sack_hole_zone);
  126 VNET_DEFINE(int, tcp_do_sack);
  127 VNET_DEFINE(int, tcp_sack_maxholes);
  128 VNET_DEFINE(int, tcp_sack_globalmaxholes);
  129 VNET_DEFINE(int, tcp_sack_globalholes);
  130 
  131 #define V_sack_hole_zone                VNET(sack_hole_zone)
  132 #define V_tcp_do_sack                   VNET(tcp_do_sack)
  133 #define V_tcp_sack_maxholes             VNET(tcp_sack_maxholes)
  134 #define V_tcp_sack_globalmaxholes       VNET(tcp_sack_globalmaxholes)
  135 #define V_tcp_sack_globalholes          VNET(tcp_sack_globalholes)
  136 
  137 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, 0, "TCP SACK");
  138 SYSCTL_VNET_INT(_net_inet_tcp_sack, OID_AUTO, enable, CTLFLAG_RW,
  139     &VNET_NAME(tcp_do_sack), 0, "Enable/Disable TCP SACK support");
  140 
  141 SYSCTL_VNET_INT(_net_inet_tcp_sack, OID_AUTO, maxholes, CTLFLAG_RW,
  142     &VNET_NAME(tcp_sack_maxholes), 0,
  143     "Maximum number of TCP SACK holes allowed per connection");
  144 
  145 SYSCTL_VNET_INT(_net_inet_tcp_sack, OID_AUTO, globalmaxholes, CTLFLAG_RW,
  146     &VNET_NAME(tcp_sack_globalmaxholes), 0, 
  147     "Global maximum number of TCP SACK holes");
  148 
  149 SYSCTL_VNET_INT(_net_inet_tcp_sack, OID_AUTO, globalholes, CTLFLAG_RD,
  150     &VNET_NAME(tcp_sack_globalholes), 0,
  151     "Global number of TCP SACK holes currently allocated");
  152 
  153 /*
  154  * This function is called upon receipt of new valid data (while not in
  155  * header prediction mode), and it updates the ordered list of sacks.
  156  */
  157 void
  158 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
  159 {
  160         /*
  161          * First reported block MUST be the most recent one.  Subsequent
  162          * blocks SHOULD be in the order in which they arrived at the
  163          * receiver.  These two conditions make the implementation fully
  164          * compliant with RFC 2018.
  165          */
  166         struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
  167         int num_head, num_saved, i;
  168 
  169         INP_WLOCK_ASSERT(tp->t_inpcb);
  170 
  171         /* Check arguments. */
  172         KASSERT(SEQ_LT(rcv_start, rcv_end), ("rcv_start < rcv_end"));
  173 
  174         /* SACK block for the received segment. */
  175         head_blk.start = rcv_start;
  176         head_blk.end = rcv_end;
  177 
  178         /*
  179          * Merge updated SACK blocks into head_blk, and save unchanged SACK
  180          * blocks into saved_blks[].  num_saved will have the number of the
  181          * saved SACK blocks.
  182          */
  183         num_saved = 0;
  184         for (i = 0; i < tp->rcv_numsacks; i++) {
  185                 tcp_seq start = tp->sackblks[i].start;
  186                 tcp_seq end = tp->sackblks[i].end;
  187                 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
  188                         /*
  189                          * Discard this SACK block.
  190                          */
  191                 } else if (SEQ_LEQ(head_blk.start, end) &&
  192                            SEQ_GEQ(head_blk.end, start)) {
  193                         /*
  194                          * Merge this SACK block into head_blk.  This SACK
  195                          * block itself will be discarded.
  196                          */
  197                         if (SEQ_GT(head_blk.start, start))
  198                                 head_blk.start = start;
  199                         if (SEQ_LT(head_blk.end, end))
  200                                 head_blk.end = end;
  201                 } else {
  202                         /*
  203                          * Save this SACK block.
  204                          */
  205                         saved_blks[num_saved].start = start;
  206                         saved_blks[num_saved].end = end;
  207                         num_saved++;
  208                 }
  209         }
  210 
  211         /*
  212          * Update SACK list in tp->sackblks[].
  213          */
  214         num_head = 0;
  215         if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
  216                 /*
  217                  * The received data segment is an out-of-order segment.  Put
  218                  * head_blk at the top of SACK list.
  219                  */
  220                 tp->sackblks[0] = head_blk;
  221                 num_head = 1;
  222                 /*
  223                  * If the number of saved SACK blocks exceeds its limit,
  224                  * discard the last SACK block.
  225                  */
  226                 if (num_saved >= MAX_SACK_BLKS)
  227                         num_saved--;
  228         }
  229         if (num_saved > 0) {
  230                 /*
  231                  * Copy the saved SACK blocks back.
  232                  */
  233                 bcopy(saved_blks, &tp->sackblks[num_head],
  234                       sizeof(struct sackblk) * num_saved);
  235         }
  236 
  237         /* Save the number of SACK blocks. */
  238         tp->rcv_numsacks = num_head + num_saved;
  239 }
  240 
  241 /*
  242  * Delete all receiver-side SACK information.
  243  */
  244 void
  245 tcp_clean_sackreport(struct tcpcb *tp)
  246 {
  247         int i;
  248 
  249         INP_WLOCK_ASSERT(tp->t_inpcb);
  250         tp->rcv_numsacks = 0;
  251         for (i = 0; i < MAX_SACK_BLKS; i++)
  252                 tp->sackblks[i].start = tp->sackblks[i].end=0;
  253 }
  254 
  255 /*
  256  * Allocate struct sackhole.
  257  */
  258 static struct sackhole *
  259 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
  260 {
  261         struct sackhole *hole;
  262 
  263         if (tp->snd_numholes >= V_tcp_sack_maxholes ||
  264             V_tcp_sack_globalholes >= V_tcp_sack_globalmaxholes) {
  265                 TCPSTAT_INC(tcps_sack_sboverflow);
  266                 return NULL;
  267         }
  268 
  269         hole = (struct sackhole *)uma_zalloc(V_sack_hole_zone, M_NOWAIT);
  270         if (hole == NULL)
  271                 return NULL;
  272 
  273         hole->start = start;
  274         hole->end = end;
  275         hole->rxmit = start;
  276 
  277         tp->snd_numholes++;
  278         atomic_add_int(&V_tcp_sack_globalholes, 1);
  279 
  280         return hole;
  281 }
  282 
  283 /*
  284  * Free struct sackhole.
  285  */
  286 static void
  287 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
  288 {
  289 
  290         uma_zfree(V_sack_hole_zone, hole);
  291 
  292         tp->snd_numholes--;
  293         atomic_subtract_int(&V_tcp_sack_globalholes, 1);
  294 
  295         KASSERT(tp->snd_numholes >= 0, ("tp->snd_numholes >= 0"));
  296         KASSERT(V_tcp_sack_globalholes >= 0, ("tcp_sack_globalholes >= 0"));
  297 }
  298 
  299 /*
  300  * Insert new SACK hole into scoreboard.
  301  */
  302 static struct sackhole *
  303 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
  304     struct sackhole *after)
  305 {
  306         struct sackhole *hole;
  307 
  308         /* Allocate a new SACK hole. */
  309         hole = tcp_sackhole_alloc(tp, start, end);
  310         if (hole == NULL)
  311                 return NULL;
  312 
  313         /* Insert the new SACK hole into scoreboard. */
  314         if (after != NULL)
  315                 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
  316         else
  317                 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
  318 
  319         /* Update SACK hint. */
  320         if (tp->sackhint.nexthole == NULL)
  321                 tp->sackhint.nexthole = hole;
  322 
  323         return hole;
  324 }
  325 
  326 /*
  327  * Remove SACK hole from scoreboard.
  328  */
  329 static void
  330 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
  331 {
  332 
  333         /* Update SACK hint. */
  334         if (tp->sackhint.nexthole == hole)
  335                 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
  336 
  337         /* Remove this SACK hole. */
  338         TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
  339 
  340         /* Free this SACK hole. */
  341         tcp_sackhole_free(tp, hole);
  342 }
  343 
  344 /*
  345  * Process cumulative ACK and the TCP SACK option to update the scoreboard.
  346  * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
  347  * the sequence space).
  348  */
  349 void
  350 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
  351 {
  352         struct sackhole *cur, *temp;
  353         struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
  354         int i, j, num_sack_blks;
  355 
  356         INP_WLOCK_ASSERT(tp->t_inpcb);
  357 
  358         num_sack_blks = 0;
  359         /*
  360          * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
  361          * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
  362          */
  363         if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
  364                 sack_blocks[num_sack_blks].start = tp->snd_una;
  365                 sack_blocks[num_sack_blks++].end = th_ack;
  366         }
  367         /*
  368          * Append received valid SACK blocks to sack_blocks[], but only if we
  369          * received new blocks from the other side.
  370          */
  371         if (to->to_flags & TOF_SACK) {
  372                 for (i = 0; i < to->to_nsacks; i++) {
  373                         bcopy((to->to_sacks + i * TCPOLEN_SACK),
  374                             &sack, sizeof(sack));
  375                         sack.start = ntohl(sack.start);
  376                         sack.end = ntohl(sack.end);
  377                         if (SEQ_GT(sack.end, sack.start) &&
  378                             SEQ_GT(sack.start, tp->snd_una) &&
  379                             SEQ_GT(sack.start, th_ack) &&
  380                             SEQ_LT(sack.start, tp->snd_max) &&
  381                             SEQ_GT(sack.end, tp->snd_una) &&
  382                             SEQ_LEQ(sack.end, tp->snd_max))
  383                                 sack_blocks[num_sack_blks++] = sack;
  384                 }
  385         }
  386         /*
  387          * Return if SND.UNA is not advanced and no valid SACK block is
  388          * received.
  389          */
  390         if (num_sack_blks == 0)
  391                 return;
  392 
  393         /*
  394          * Sort the SACK blocks so we can update the scoreboard with just one
  395          * pass. The overhead of sorting upto 4+1 elements is less than
  396          * making upto 4+1 passes over the scoreboard.
  397          */
  398         for (i = 0; i < num_sack_blks; i++) {
  399                 for (j = i + 1; j < num_sack_blks; j++) {
  400                         if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
  401                                 sack = sack_blocks[i];
  402                                 sack_blocks[i] = sack_blocks[j];
  403                                 sack_blocks[j] = sack;
  404                         }
  405                 }
  406         }
  407         if (TAILQ_EMPTY(&tp->snd_holes))
  408                 /*
  409                  * Empty scoreboard. Need to initialize snd_fack (it may be
  410                  * uninitialized or have a bogus value). Scoreboard holes
  411                  * (from the sack blocks received) are created later below
  412                  * (in the logic that adds holes to the tail of the
  413                  * scoreboard).
  414                  */
  415                 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
  416         /*
  417          * In the while-loop below, incoming SACK blocks (sack_blocks[]) and
  418          * SACK holes (snd_holes) are traversed from their tails with just
  419          * one pass in order to reduce the number of compares especially when
  420          * the bandwidth-delay product is large.
  421          *
  422          * Note: Typically, in the first RTT of SACK recovery, the highest
  423          * three or four SACK blocks with the same ack number are received.
  424          * In the second RTT, if retransmitted data segments are not lost,
  425          * the highest three or four SACK blocks with ack number advancing
  426          * are received.
  427          */
  428         sblkp = &sack_blocks[num_sack_blks - 1];        /* Last SACK block */
  429         if (SEQ_LT(tp->snd_fack, sblkp->start)) {
  430                 /*
  431                  * The highest SACK block is beyond fack.  Append new SACK
  432                  * hole at the tail.  If the second or later highest SACK
  433                  * blocks are also beyond the current fack, they will be
  434                  * inserted by way of hole splitting in the while-loop below.
  435                  */
  436                 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
  437                 if (temp != NULL) {
  438                         tp->snd_fack = sblkp->end;
  439                         /* Go to the previous sack block. */
  440                         sblkp--;
  441                 } else {
  442                         /* 
  443                          * We failed to add a new hole based on the current 
  444                          * sack block.  Skip over all the sack blocks that 
  445                          * fall completely to the right of snd_fack and
  446                          * proceed to trim the scoreboard based on the
  447                          * remaining sack blocks.  This also trims the
  448                          * scoreboard for th_ack (which is sack_blocks[0]).
  449                          */
  450                         while (sblkp >= sack_blocks && 
  451                                SEQ_LT(tp->snd_fack, sblkp->start))
  452                                 sblkp--;
  453                         if (sblkp >= sack_blocks && 
  454                             SEQ_LT(tp->snd_fack, sblkp->end))
  455                                 tp->snd_fack = sblkp->end;
  456                 }
  457         } else if (SEQ_LT(tp->snd_fack, sblkp->end))
  458                 /* fack is advanced. */
  459                 tp->snd_fack = sblkp->end;
  460         /* We must have at least one SACK hole in scoreboard. */
  461         KASSERT(!TAILQ_EMPTY(&tp->snd_holes),
  462             ("SACK scoreboard must not be empty"));
  463         cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole. */
  464         /*
  465          * Since the incoming sack blocks are sorted, we can process them
  466          * making one sweep of the scoreboard.
  467          */
  468         while (sblkp >= sack_blocks  && cur != NULL) {
  469                 if (SEQ_GEQ(sblkp->start, cur->end)) {
  470                         /*
  471                          * SACKs data beyond the current hole.  Go to the
  472                          * previous sack block.
  473                          */
  474                         sblkp--;
  475                         continue;
  476                 }
  477                 if (SEQ_LEQ(sblkp->end, cur->start)) {
  478                         /*
  479                          * SACKs data before the current hole.  Go to the
  480                          * previous hole.
  481                          */
  482                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
  483                         continue;
  484                 }
  485                 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
  486                 KASSERT(tp->sackhint.sack_bytes_rexmit >= 0,
  487                     ("sackhint bytes rtx >= 0"));
  488                 if (SEQ_LEQ(sblkp->start, cur->start)) {
  489                         /* Data acks at least the beginning of hole. */
  490                         if (SEQ_GEQ(sblkp->end, cur->end)) {
  491                                 /* Acks entire hole, so delete hole. */
  492                                 temp = cur;
  493                                 cur = TAILQ_PREV(cur, sackhole_head, scblink);
  494                                 tcp_sackhole_remove(tp, temp);
  495                                 /*
  496                                  * The sack block may ack all or part of the
  497                                  * next hole too, so continue onto the next
  498                                  * hole.
  499                                  */
  500                                 continue;
  501                         } else {
  502                                 /* Move start of hole forward. */
  503                                 cur->start = sblkp->end;
  504                                 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
  505                         }
  506                 } else {
  507                         /* Data acks at least the end of hole. */
  508                         if (SEQ_GEQ(sblkp->end, cur->end)) {
  509                                 /* Move end of hole backward. */
  510                                 cur->end = sblkp->start;
  511                                 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
  512                         } else {
  513                                 /*
  514                                  * ACKs some data in middle of a hole; need
  515                                  * to split current hole
  516                                  */
  517                                 temp = tcp_sackhole_insert(tp, sblkp->end,
  518                                     cur->end, cur);
  519                                 if (temp != NULL) {
  520                                         if (SEQ_GT(cur->rxmit, temp->rxmit)) {
  521                                                 temp->rxmit = cur->rxmit;
  522                                                 tp->sackhint.sack_bytes_rexmit
  523                                                     += (temp->rxmit
  524                                                     - temp->start);
  525                                         }
  526                                         cur->end = sblkp->start;
  527                                         cur->rxmit = SEQ_MIN(cur->rxmit,
  528                                             cur->end);
  529                                 }
  530                         }
  531                 }
  532                 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
  533                 /*
  534                  * Testing sblkp->start against cur->start tells us whether
  535                  * we're done with the sack block or the sack hole.
  536                  * Accordingly, we advance one or the other.
  537                  */
  538                 if (SEQ_LEQ(sblkp->start, cur->start))
  539                         cur = TAILQ_PREV(cur, sackhole_head, scblink);
  540                 else
  541                         sblkp--;
  542         }
  543 }
  544 
  545 /*
  546  * Free all SACK holes to clear the scoreboard.
  547  */
  548 void
  549 tcp_free_sackholes(struct tcpcb *tp)
  550 {
  551         struct sackhole *q;
  552 
  553         INP_WLOCK_ASSERT(tp->t_inpcb);
  554         while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
  555                 tcp_sackhole_remove(tp, q);
  556         tp->sackhint.sack_bytes_rexmit = 0;
  557 
  558         KASSERT(tp->snd_numholes == 0, ("tp->snd_numholes == 0"));
  559         KASSERT(tp->sackhint.nexthole == NULL,
  560                 ("tp->sackhint.nexthole == NULL"));
  561 }
  562 
  563 /*
  564  * Partial ack handling within a sack recovery episode.  Keeping this very
  565  * simple for now.  When a partial ack is received, force snd_cwnd to a value
  566  * that will allow the sender to transmit no more than 2 segments.  If
  567  * necessary, a better scheme can be adopted at a later point, but for now,
  568  * the goal is to prevent the sender from bursting a large amount of data in
  569  * the midst of sack recovery.
  570  */
  571 void
  572 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
  573 {
  574         int num_segs = 1;
  575 
  576         INP_WLOCK_ASSERT(tp->t_inpcb);
  577         tcp_timer_activate(tp, TT_REXMT, 0);
  578         tp->t_rtttime = 0;
  579         /* Send one or 2 segments based on how much new data was acked. */
  580         if (((th->th_ack - tp->snd_una) / tp->t_maxseg) > 2)
  581                 num_segs = 2;
  582         tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
  583             (tp->snd_nxt - tp->sack_newdata) + num_segs * tp->t_maxseg);
  584         if (tp->snd_cwnd > tp->snd_ssthresh)
  585                 tp->snd_cwnd = tp->snd_ssthresh;
  586         tp->t_flags |= TF_ACKNOW;
  587         (void) tcp_output(tp);
  588 }
  589 
  590 #if 0
  591 /*
  592  * Debug version of tcp_sack_output() that walks the scoreboard.  Used for
  593  * now to sanity check the hint.
  594  */
  595 static struct sackhole *
  596 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
  597 {
  598         struct sackhole *p;
  599 
  600         INP_WLOCK_ASSERT(tp->t_inpcb);
  601         *sack_bytes_rexmt = 0;
  602         TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
  603                 if (SEQ_LT(p->rxmit, p->end)) {
  604                         if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
  605                                 continue;
  606                         }
  607                         *sack_bytes_rexmt += (p->rxmit - p->start);
  608                         break;
  609                 }
  610                 *sack_bytes_rexmt += (p->rxmit - p->start);
  611         }
  612         return (p);
  613 }
  614 #endif
  615 
  616 /*
  617  * Returns the next hole to retransmit and the number of retransmitted bytes
  618  * from the scoreboard.  We store both the next hole and the number of
  619  * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
  620  * reception).  This avoids scoreboard traversals completely.
  621  *
  622  * The loop here will traverse *at most* one link.  Here's the argument.  For
  623  * the loop to traverse more than 1 link before finding the next hole to
  624  * retransmit, we would need to have at least 1 node following the current
  625  * hint with (rxmit == end).  But, for all holes following the current hint,
  626  * (start == rxmit), since we have not yet retransmitted from them.
  627  * Therefore, in order to traverse more 1 link in the loop below, we need to
  628  * have at least one node following the current hint with (start == rxmit ==
  629  * end).  But that can't happen, (start == end) means that all the data in
  630  * that hole has been sacked, in which case, the hole would have been removed
  631  * from the scoreboard.
  632  */
  633 struct sackhole *
  634 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
  635 {
  636         struct sackhole *hole = NULL;
  637 
  638         INP_WLOCK_ASSERT(tp->t_inpcb);
  639         *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
  640         hole = tp->sackhint.nexthole;
  641         if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
  642                 goto out;
  643         while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
  644                 if (SEQ_LT(hole->rxmit, hole->end)) {
  645                         tp->sackhint.nexthole = hole;
  646                         break;
  647                 }
  648         }
  649 out:
  650         return (hole);
  651 }
  652 
  653 /*
  654  * After a timeout, the SACK list may be rebuilt.  This SACK information
  655  * should be used to avoid retransmitting SACKed data.  This function
  656  * traverses the SACK list to see if snd_nxt should be moved forward.
  657  */
  658 void
  659 tcp_sack_adjust(struct tcpcb *tp)
  660 {
  661         struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
  662 
  663         INP_WLOCK_ASSERT(tp->t_inpcb);
  664         if (cur == NULL)
  665                 return; /* No holes */
  666         if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
  667                 return; /* We're already beyond any SACKed blocks */
  668         /*-
  669          * Two cases for which we want to advance snd_nxt:
  670          * i) snd_nxt lies between end of one hole and beginning of another
  671          * ii) snd_nxt lies between end of last hole and snd_fack
  672          */
  673         while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
  674                 if (SEQ_LT(tp->snd_nxt, cur->end))
  675                         return;
  676                 if (SEQ_GEQ(tp->snd_nxt, p->start))
  677                         cur = p;
  678                 else {
  679                         tp->snd_nxt = p->start;
  680                         return;
  681                 }
  682         }
  683         if (SEQ_LT(tp->snd_nxt, cur->end))
  684                 return;
  685         tp->snd_nxt = tp->snd_fack;
  686 }

Cache object: 4930a5077a04b242d7abd6eb19200b1d


[ source navigation ] [ diff markup ] [ identifier search ] [ freetext search ] [ file search ] [ list types ] [ track identifier ]


This page is part of the FreeBSD/Linux Linux Kernel Cross-Reference, and was automatically generated using a modified version of the LXR engine.